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Abstract 

Distance sampling is a popular statistical method to estimate the density 

of wild animal populations. Conventional distance sampling represents 

animals as fixed points in space that are detected with an unknown 

probability that depends on the distance between the observer and the 

Acc
ep

te
d 

M
an

us
cr

ipt

http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1764362&domain=pdf


animal. Animal movement can cause substantial bias in density 

estimation. Methods to correct for responsive animal movement exist, but 

none account for non-responsive movement independent of the observer. 

Here, an explicit animal movement model is incorporated into distance 

sampling, combining distance sampling survey data with animal telemetry 

data. Detection probability depends on the entire unobserved path the 

animal travels. The intractable integration over all possible animal paths is 

approximated by a hidden Markov model. A simulation study shows the 

method to be negligibly biased (less than 5%) in scenarios where 

conventional distance sampling overestimates abundance by up to 100%. 

The method is applied to line transect surveys (1999–2006) of spotted 

dolphins (Stenella attenuata) in the eastern tropical Pacific where 

abundance is shown to be positively biased by 21% on average, which 

can have substantial impact on the population dynamics estimated from 

these abundance estimates and on the choice of statistical methodology 

applied to future surveys. 

 

Keywords: abundance; hidden Markov model; continuous-time; diffusion 

 

1 Introduction 

Distance sampling is a statistical method used to estimate the population density 

of wild animals (Buckland et al. 2015). It is applied to a wide variety of taxa, e.g., 

birds (Newson et al. 2008), cetaceans (Hammond et al. 2013), and mammals 

(Aars et al. 2009). Many conservation and management studies depend on the 

accuracy of distance sampling inference; yet, the statistical method relies on a 

key assumption that is substantially violated in some applications. 
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Distance sampling is a snapshot method (Buckland et al. 2005): the survey is 

assumed to occur instantaneously. Animals are idealised as static points that are 

detected with unknown probability by an observer, who stands at a point or 

traverses a line within the study region. Surveyed transects, lines or points, are 

placed according to a randomised design such that animals are distributed 

independently of the observer. Furthermore, it is assumed animals are distributed 

independently of each other. For line transects, animals are distributed uniformly 

around the line, in point transects they follow a triangular distribution. Given this, 

the decline in the number of detections as distance from the observer increases 

is solely due to a change in the probability of detection; thus, the recorded 

locations are used to estimate this probability and, ultimately, animal density. In 

short, distance sampling is a thinned point process model with unknown thinning 

probability (Hedley and Buckland 2004, Yuan et al. 2017). The assumption that 

the survey is a temporal snapshot of the animal population is central to distance 

sampling theory; the method, however, is applied to surveys of mobile animal 

populations where transects are surveyed over a time interval within which 

animals may have moved a significant distance. 

Animal movement can be in response to an observer’s presence (Turnock and 

Quinn 1991), attraction or avoidance, or can be of the animal’s own accord, 

independent of the observer. Responsive movement is a well-known problem, 
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and specific survey techniques, searching further along line transects to see 

animals before they respond or remaining at point transects long enough for 

animals to resume normal behaviour, are recommended to mitigate bias in 

density estimates (Buckland et al. 2005). Furthermore, double-observer methods 

exist that can account for responsive movement (Conn et al. 2018, Borchers et 

al. 1998, Palka and Hammond 2001). In comparison, movement independent of 

the observer has received little attention. For point transects, a snapshot method 

is recommended to reduce bias in estimates (Buckland 2006); however, many 

surveys do not employ this method, and it does not suit technological advances 

where observation technology may survey a point for a considerable time. 

Splitting continuous surveying periods at points into discrete snapshots involves 

subjective judgments that can affect the inferences obtained (Howe et al. 2017). 

Alternatively, cue-counting, where animals’ cues such as bird calls are counted 

rather than individuals, is used as it is negligibly biased by non-responsive animal 

movement, but this relies on the animal population having a clearly defined cue 

(Buckland et al. 2005). For line transects, a rule-of-thumb, based on a limited 

simulation study, deems surveys on animals that move at less than half the 

observer’s speed to be free of substantial bias (Hiby 1982); yet, observer speed 

is often constrained by the transport chosen and the terrain covered. Thus, 

density can be unavoidably overestimated due to animal movement. This 
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overestimation is not caused by counting the same animal more than once, but 

by more animals entering the transect from outside and recorded locations 

leading to a biased estimated detection function (Glennie et al. 2015). Surveys of 

mobile animals record greater numbers of unique individuals, compared to a 

hypothetically immobile population, and animals are recorded closer to the 

observer; both effects led to positive bias in density estimation (Glennie et al. 

2015). This calls into question inference drawn from surveys where animal 

movement is undeniable, and precludes the use of distance sampling on 

populations of fast-moving animals and on studies where transects are surveyed 

over a long time period. 

Previous work has considered only how movement affects the number of animals 

seen, not where they are seen (Yapp 1956). Random encounter models (Lucas 

et al. 2015), where animals are assumed to move in randomly-orientated straight 

lines at constant speed (Hutchinson and Waser 2007), can provide estimates of 

density, corrected for movement, given the count of animals seen and an 

independent estimate of animal speed. A detection probability can also be 

included, but must be ascertained independently. An advantage of distance 

sampling is that the detection probability can be estimated from the data. Yet, 

this probability, when movement is admitted, depends on the entire path the 

animal has travelled whilst the transect is surveyed. This path, other than the 
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single location observed when the animal is detected, is unobserved. Thus, any 

estimation of detection probability that accounts for animal movement must 

include a continuous space-time hidden process to describe the animal’s 

trajectory. Furthermore, to calculate the proportion of animals never seen, the 

method must average over all possible animal trajectories. This can be achieved 

by specifying an explicit model for the encounter process (Gurarie and 

Ovaskainen 2012). 

Hidden Markov models (HMMs) (Zucchini et al. 2016) are used for time series 

data that arise from an unobserved (or partially observed) stochastic process. In 

particular, HMMs are used to analyse animal telemetry data (Pedersen et al. 

2011), animal locations recorded over time, where the paths taken by animals 

between recorded locations are averaged over according to the movement model 

specified. Distance sampling observations consist of a single such recorded 

location where the animal’s movement prior to detection is unobserved; thus, if 

independent information on animal movement is collected, distance sampling can 

be viewed as a HMM, where animal paths are a hidden process and detection is 

the observed process. Tagging and tracking of animals is becoming more 

common as the technology reduces in price and size. HMMs can allow this 

auxiliary information to improve distance sampling estimation. Pedersen et al. 

(2011) developed a spatial HMM with an unobserved, diffusive movement 
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process which is described by a stochastic partial differential equation. The 

intractable likelihood in continuous space and time is approximated by 

discretising space into a large number of spatial cells (Eydeland 1994); the 

computations involved are costly, constraining the level of discretisation 

attainable. 

Here, a spatial HMM that incorporates animal movement into distance sampling 

using independently obtained animal movement data is presented. The likelihood 

is formulated in continuous space-time and a discrete approximation is then 

described. A simulation study compares this method to conventional distance 

sampling, and the method is applied to a line transect survey of spotted dolphins 

(Stenella attenuata attenuata) in the eastern tropical Pacific (ETP) (Gerrodette 

and Forcada 2005, Gerrodette et al. 2008). 

 

2 Methods 

Suppose n animals are detected in total over the survey. The goal is to estimate 

the total abundance in the survey region, N. In distance sampling surveys, 

observers search transects and record the location of any animal they encounter. 

In line transect sampling, the perpendicular distance from the line to each 

encounter is recorded; in point transects, the radial distance is recorded. Use of 
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two-dimensional location data, forward distance on line transects and angle of 

detection on points, is seldom used (Borchers and Cox 2017). Furthermore, the 

time of a detection, though routinely recorded, is not used. Here, a model is 

developed that uses both pieces of information: for the 
th

i  detected animal, let i
x

 

be the two-dimensional location of the animal when detected and ti be the time 

between the observer beginning to survey the transect that animal i was seen on 

and the time animal i was detected. 

Recording the single location an animal is encountered provides no information 

about how the animal moves: independent data is required on animal movement. 

Suppose m animals are tracked or tagged and their movement paths recorded 

over time. It is assumed the movement of these tagged animals is representative 

of the movement of any animal in the study area. Note it is not required that the 

tagged animals be members of the surveyed population. 

 

2.1 CDS Model 

In conventional distance sampling (CDS), the probability density function (PDF) 

of the recorded animal locations is estimated. A detection function, g(x), is 

defined as the conditional probability an animal is detected given it resides at 

distance x. For line transects, distance is defined as the perpendicular distance 
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the animal is from the line; for point transects, it is defined as the radial distance 

from the point. The probability density of the observed distances is then given by 

( ) ( )
( )

( ) ( ) d

g x x
f x

g x x x







 

where  is the set of all possible animal locations and λ is the probability density 

function of the animal’s location. CDS makes the design-based assumption that 

transects are placed according to a randomised scheme. This implies for line 

transects that λ is the density of a uniform distribution over  and for point 

transects a triangular distribution over . In short, λ is known and g is to be 

estimated. 

A convenient functional form is chosen for the detection function and its 

parameters estimated by maximum likelihood. This form is chosen ad hoc to be 

half-normal or exponential with some trigonometric or polynomial adjustments. 

Alternatively, an explicit model for the detection process can be specified by a 

two-dimensional hazard-rate function ( , )h x t  (Borchers and Cox 2017, Skaug and 

Schweder 1999), which describes the detection rate of an animal residing in 

location x  at time t. This is equivalent to a survival process where death is 

interpreted as detection and the detection intensity varies over time and space. In 

practice, CDS analyses do not use the time of detections. Instead, a detection 

function is derived from a given hazard by integrating over the time interval that 
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an animal is at risk of detection. Nonetheless, here, the term CDS is used to refer 

to 2D hazard models also. The hazard commonly depends on the radial distance 

between the observer and the animal, ( , )r x t , such that the hazard is infinite at 

zero radius and decreases with increasing radius. 

 

2.2 MDS Model 

In this paper, the movement with distance sampling (MDS) model is introduced 

and presented as an extension of the existing CDS approach, thereby 

incorporating animal movement modelling with distance sampling. 

Here, the recorded detection times and the two-dimensional recorded location 

are used to estimate the search process. Detection times are required since 

animals recorded at later times on the transect have had longer to move and so 

may have originated at a further distance. Rather than condition on the animal 

residing at a single fixed point, the detection probability is derived conditional on 

the animal travelling a fixed path over space. Given an animal travels a path x  

and is seen at location 
x
  at time τ, the conditional PDF is 

( , ) ( ) ( , )g S h x
 

 x x
 

where 
 

0

( ) ex p ( , ) d
t

t s
S h x s s  x

 is the probability of the animal eluding detection 
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until time t. Notice, detection probability now depends on time and the entire 

trajectory of the animal. 

Similar to CDS, if in place of assuming the distribution of animals, we assume the 

movement process is known, and in place of conditioning on the location of an 

animal, we condition on the path an animal has taken, the PDF of the observed 

encounter on a transect of duration T is given by: 

0

( , ) ( )
( , )

( , ) d d ( )
T

g
f

g t t


 
 

 

x x
x

y y

 (1) 

where Λ, with associated density λ, is the probability measure over all 

(measurable) paths, χ, that an animal could have taken. The denominator is the 

probability an animal is seen at some time on the transect and is required as we 

do not observe those animals that were never encountered. 

Yet, the paths of animals are unobserved and conventional distance sampling 

surveys provide no information on how animals move. Thus, independent animal 

movement data is required to determine Λ. Here, animal movement is described 

by Brownian motion with rate parameter ν. This makes Λ mathematically 

tractable: any set of observed locations on a movement path have a multivariate 

Gaussian distribution. For telemetry data, one can condition on the initial location 

of the animal and compute the likelihood,  , easily (Okubo and Levin 2013); for 
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distance sampling surveys, the initial locations are assumed to be independently 

distributed with respect to the transect. 

From the distance sampling survey, given animal i was recorded in location i
x

 at 

time τi, the likelihood for the detection parameters, θ , is obtained by averaging 

over all possible animal paths: 

1

( , ) d ( )
i

n
i

i i

g

p














x x

θ
 

where χi is the space of all measurable paths that pass through location i
x

 at 

time τi, and 
1 ( ) d ( )

i
i T

p S


   x x

 is the probability the encounter with animal i 

occurs at some time when the transect is surveyed for total time Ti. 

Assuming the distance sampling survey and the animal telemetry data are 

independent, the combined likelihood ,


θ λ θ λ  can be maximised to obtain 

maximum likelihood estimates, ( , )θ λ . Methods in section 2.3 describe the 

approximations used to compute the likelihood. Maximising the combined 

likelihood means that uncertainty in the movement parameters is propagated to 

the density estimation. Abundance can be estimated using either approach 

already available in distance sampling: a model-based estimator or a Horvitz-

Thompson-like estimator (Buckland et al. 2016). 
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The Horvitz-Thompson-like estimator of abundance is 

1

ˆ

ˆ

K

k

k

n
N

p







 

where K is the total number of transects, n is the number of animals seen, and 

ˆ
k

p
 is the estimated probability of detection on transect k. A sandwich estimator 

for the variance of N̂  can be derived analogously to the estimator used in CDS 

(Fewster et al. 2008). 

Alternatively, an explicit model for abundance can be integrated (Buckland et al. 

2016), for example, the Poisson process: 
( ) ex p ( ) / !

n

N en c en c
N p N p n 

 where penc 

is the probability of detection during the survey. This gives a model-based 

estimate of abundance by maximising the likelihood , , N N


θ λ θ λ . 

 

2.3 Computation 

The likelihood, formulated in continuous space and time, is analytically 

intractable. In this section, existing approximations to a similar type of model are 

adapted to this context to make the computations practical. The integral over all 

possible animal paths can be approximated by quadrature. A buffer region 

around each transect is discretised into K cells of length and width x  and time 
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is discretised into steps of duration t . Animal movement occurs at these time-

steps, thus animals are stationary within time-steps. 

Notice that all integrals to be approximated are of the form 
( ) d ( )

t
S



 x x

 for 

some time t. Approximating animal movement by jumps at each time-step, the 

function S can be separated into components: 

0 0 2 2
( ) ( ) ( ) ( ) ( )

t t t t t t t t t
S s x s x s x s x

       
 x  

where 
 ( ) ex p ( , ) d

l t

l
l

s x h x u u
 

  
 is the probability of eluding detection during a 

single time-step given the animal is at location x . Assuming animals are 

stationary within time-steps, 
( )

l
s x

 can be computed analytically within each time-

step, accounting for the continuous movement of the observer, thus only animal 

movement is discretised. Let t
P

 be a K × K diagonal matrix with 
th

k  diagonal 

( )
t k

s y
 where k

y
 is the centre location of spatial cell k. 

The integration over all paths is replaced with a sum over all paths on the 

discrete grid. When discretised, Brownian motion can be approximated by a 

continuous-time Markov chain (Pedersen et al. 2011). Pedersen et al. (2011) 

derive the transition rate matrix, G, using a finite difference approximation to the 

Fokker-Planck equation (Okubo and Levin 2013, Mitchell and Griffiths 1980). By 
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taking the matrix exponential, the transition probability matrix for a given time 

step t  can be computed, ex p ( )t G  (Moler and Van Loan 2003). 

The integral is approximated by a spatial HMM likelihood (Zucchini et al. 2016, 

Pedersen et al. 2011): 

0 0
( ) d

t t t
S




   X p P P P 1    (2) 

where 0
p

 is 1 K  row vector representing the initial distribution of animals on the 

grid with respect to the transect and 1  is a 1K   column vector of ones. 

In distance sampling surveys, the range of detection distances can be small 

compared to the distances an animal can travel during a survey period. The 

former makes it necessary that x  be adequately small while the latter requires 

the buffer around the transect, and so the grid, to be large. Ultimately, K is large. 

This makes the matrix calculations in equation (2) computationally demanding. 

The sparse structure of G can be exploited to accelerate computations using the 

Krylov subspace approximation (Hochbruck and Lubich 1997) and, when 

movement is isotropic and G block-Toeplitz, the 2D discrete Fourier transform 

(Lee 1986). For spatial HMMs, there is no analytical bound on the error of this 

approximation. Practical advice is to reduce the discretisation until the path 

integral’s value no longer significantly changes, e.g., in relative percentage. 
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2.4 Simulation study 

A simulation study is conducted to demonstrate the performance of MDS 

compared to CDS for two particular distance sampling surveys. The magnitude of 

the bias in CDS depends on the relationship between relative animal speed, 

transect width, and the shape of the detection function (Glennie et al. 2015). This 

simulation study considers the effect of animal speed when all other factors are 

fixed. The simulation was conducted using the moveds 0.1.0 package within 

the R programming environment (R Core Team 2017). The code to perform these 

simulations is included in the supplementary materials. 

A study population of 100 animals in 100 square kilometres is simulated. Animals 

move according to Brownian motion with average rate changing for each 

simulation scenario. The independent animal telemetry data required was 

simulated from Brownian motion, recording the location of ten tagged animals 

every minute for one hour. 

Two distance sampling surveys were simulated on this population: a line transect 

study and a point transect study. The line transect survey consists of 50 

transects of length 1 kilometre; the observer traverses each line at speed 1 metre 

per second. For these simulation scenarios, animals moved at speeds covering 

50% to 300% the speed of the observer. For the point transect survey, 100 points 
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were surveyed, each for 5 minutes, with animals speeds from 0.5 metres per 

second to 4.0 metres per second. 

In both surveys, the hazard of detecting an animal at a radial distance r is given 

by 

( 1 )d

r

s

 

 
 
 

 for scale parameter s > 0 and shape parameter d > 0 (Hayes and 

Buckland 1983, Borchers and Cox 2017). Detection parameters were chosen as 

s = 5, d = 2, such that for a hypothetically immobile animal population, the 

effective area searched was approximately 0.015 square kilometres. This 

corresponds to a line transect with half-width 30 metres and point transect with 

radius 100 metres. 

One hundred simulations were performed. A distance sampling model with no 

animal movement was fit to each simulated data set. For fair comparison, a two-

dimensional hazard was used in this model also, unlike CDS models where a 

one-dimensional hazard is commonly used. An MDS model, as presented in this 

paper, was fit to each data set with the auxiliary movement data using a grid size 

of 2.5 metres and a time-step of 1 second. The relative bias, mean square error 

and confidence interval coverage was estimated for each scenario, with and 

without movement incorporated. 

2.5 Application: spotted dolphins 

Acc
ep

te
d 

M
an

us
cr

ipt



The presented method is applied to shipboard line transect surveys conducted in 

the eastern tropical Pacific on spotted dolphins in 1999, 2000, 2003, and 2006. 

Here, the abundance within the core area, as defined by Gerrodette and Forcada 

(2005), is estimated. 

Dolphin schools are treated as the individual unit of detection and group size 

estimated separately. This is a standard approach in CDS; however, 

incorporating movement makes the approach more questionable. In particular, 

we assume that schools do not fuse or break-up during the time the observer 

surveys each transect. Furthermore, we assume the movement model, informed 

by tags on single individuals, describes the movement of a school as a whole. 

Independent tag data was collected on nineteen spotted dolphins (Scott and 

Chivers 2009) providing fixed locations at approximately 15 minute intervals over 

1–2 days. 

The radial distance and angle to each detected spotted dolphin school was 

recorded. Only sightings in Beaufort state 3 or less were retained, as in the 

higher Beaufort states detectability declines more rapidly with distance. The 

location of the ship was recorded every ten minutes. It is assumed the ship 

travels in a straight line at a constant speed between these records. The 

movement model does not account for movement caused by ocean current; it is 
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assumed that the animals and ship are drifting in the same direction and at the 

same rate, thus this movement has no effect on their relative positions. 

Three methods were applied to the data: 1D conventional distance sampling 

(CDS1D), 2D conventional distance sampling (CDS2D), and 2D distance 

sampling with movement (MDS2D). CDS1D is the standard modelling framework 

used for distance sampling analysis; it was applied to these data using the R 

package Distance 0.9.7 (Miller et al. 2019). The two-dimensional models 

were fit using the R package moveds 0.1.0 with a grid size of 0.2 kilometres 

and time-step of 10 minutes. Only the hazard-rate model with no trigonometric or 

polynomial adjustments was considered for the CDS1D model as then the same 

hazard is assumed for all three methods: 

( 1 )d

r

s

 

 
 
 

 with parameters , 0s d  . A 

truncation distance of 5.5 kilometres was used, as used in Gerrodette and 

Forcada (2005), as this is the maximum distance a sighting could occur for 

confirmed species identification. Dolphin school abundance is estimated using 

the Horvitz-Thompson-like estimator given above. Goodness of fit is evaluated 

using a Cramér-Von-Mises test (Cramér 1928), comparing the expected 

distribution of perpendicular distances to the observed (Buckland et al. 2005). 

 

3 Results 
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3.1 Simulation study 

3.1.1 Line transect simulation 

The CDS estimator of abundance had bias 1 0 %  when animal speed exceeded 

1.25 metres per second and CDS overestimated abundance by 1 0 0 %  for 

speed > 3.0 metres per second. In contrast, MDS led to 5 %  bias for all 

scenarios (Figure 1). Mean square error (MSE) for CDS estimators was 

dominated by their bias; MDS showed constant MSE across all animal speeds. 

Confidence interval coverage across all parameters for CDS was less than 40% 

for speeds over 1.0 metre per second and fell to 0% for speeds over 2.0 metres 

per second. MDS coverage was nominal within 1% for all parameters and across 

all simulation scenarios. 

3.1.2 Point transect simulation 

CDS point transect sampling behaved similarly with bias 1 0 %  for animal speed 

> 2 metres per second and bias reaching 90% for speed around 4 metres per 

second. Incorporating movement reduced bias to 5 %  across all scenarios and 

mean square error varied negligibly. CDS 95% confidence interval coverage was 

poor ( 4 5 % ) for all parameters when animal speed exceeded 2 metres per 

second, while coverage was nominal for all parameters when movement was 

incorporated. 
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3.2 Application: spotted dolphins 

Estimated abundance of spotted dolphin schools in the core area, as defined by 

Gerrodette and Forcada (2005), differed substantially between models with and 

without movement (Table 1). One and two dimensional CDS models led to 

similar estimates of abundance. Incorporating movement reduced the abundance 

estimate by approximately 21% on average across the years. The coefficient of 

variation (CV) for the abundance estimator was similar between the two-

dimensional models. The average speed of the ship was 17km/h; the estimated 

average speed of each spotted dolphin was 7.4km/h. The large reduction in the 

abundance estimate indicates that even though the dolphins move relatively 

slowly compared to the ship, bias can be substantial, because, whilst being 

surveyed, they can move a large distance compared to the width of the transect. 

This highlights the danger of assessing whether movement is a problem based 

solely on relative animal speed; MDS can account for the interdependent effects 

of animal speed, transect width, and detection function shape. 

For comparison, the expected number of sightings within each 0.5 kilometre from 

the transect line was calculated (Figure 3). CDS1D, CDS2D, and MDS2D models 

all had similar goodness-of-fit (Cramer-von-mises p-value > 0.05); however, the 
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estimated detection function differs considerably when animal movement is 

included (Figure 4). The CDS1D and CDS2D estimated detection functions 

decline more rapidly with distance than the MDS2D function indicating that 

animal movement has caused negative bias in the estimation of detection 

probability. This effect, together with the greater number of animals that move 

into the transect and are seen, causes abundance to be overestimated. Note, 

these deficiencies do not result in CDS models failing a test of goodness-of-fit to 

the observed data, but has an important effect on the final abundance estimate. 

 

4 Discussion 

Distance sampling surveys on mobile animal populations should not ignore 

animal movement. The simulation study demonstrates the remarkable bias that 

non-responsive animal movement can cause. Incorporating this movement into 

distance sampling can mitigate this bias and remove the subjective judgment of 

when movement bias may have occurred and to what extent. 

The application to spotted dolphin surveys of the Eastern Tropical Pacific (ETP) 

further shows that abundance estimates can be biased by around 20% when 

movement independent of the observer is not accounted for. Since 2006, there 

have been no further National Marine Fisheries Service surveys, and so the 
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abundance estimates from the surveys considered here (1999–2006) provide the 

most recent information on the population dynamics of this dolphin population; 

these abundance estimates are used to estimate mortality rate and by-catch from 

the tuna fisheries industry (Gerrodette and Forcada 2005). Lennert-Cody et al. 

(2019), in response to the growing need to gather more up-to-date information on 

these populations, present a review of current methodology and survey methods 

possible for future ETP surveys where they identify ship-based surveys as the 

most viable immediate option; significantly, the review also highlights the 

presence of bias due to independent animal movement and the need to apply 

methods that can account for it. 

The cost of this improvement in estimation is the need for additional information 

on animal movement. The expense and practicality of collecting such data 

depends on the species to be surveyed. For example, tag data on cetaceans, 

ungulates, and seabirds is becoming more common. When no such data is 

available, a ‘plug-in’ estimator of the movement parameters could be used, 

similar to the multipliers used in CDS. Accounting for movement on expert, 

though imperfect, knowledge may be better than ignoring it completely. The 

movement information need not come from animals in the same population as 

that surveyed by distance sampling, nor be collected in the same time period. 

Nevertheless, it is assumed tagged animals behave as representative members 
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of the study population; thus, it is recommended that movement information be 

collected around the same time the distance sampling survey is conducted and 

on animals that are members of the study population. 

Estimating a detection process that depends on time necessarily requires 

detection times be recorded. In practice, this information is often recorded in the 

field, but not used in CDS models. Here, this information is essential and any 

application of the model would require this data to be collected. Records of the 

observer’s location over time must also be kept. Furthermore, the location of 

detected animals should be recorded relative to the observer; this is contrary to 

practice in CDS where measurements are made relative to the transect. Also, 

animal location must be recorded in two-dimensional space. 

The main obstacle to this method is the computational burden. The case study 

shows that the approximations presented allow for real survey data to be 

analysed in a practical time; however, the computational demand may limit 

application when surveyed transects are large compared to the scale of detection 

or when survey times are long. An alternative to the quadrature-based approach 

presented here is to simulate: animal paths are simulated and the average 

likelihood taken as a Monte Carlo estimate of the marginal likelihood, averaged 

over all paths. The appendix to this paper compares simulation to the 
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quadrature-style approach and highlights the problems to be tackled in future 

work. 

 

Assumptions 

The assumptions made in the theory presented are synonymous with those 

made in CDS (Buckland et al. 2015). Violations of these assumptions will cause 

bias in the inference obtained. Good survey design and protocol can be used to 

reduce the extent to which assumptions are violated, see Buckland et al. (2015). 

As with the assumption of no animal movement in CDS, there exist analytical 

methods that remove other necessary assumptions of distance sampling, often 

with the requirement that additional data be collected. MDS, as an extension of 

the CDS framework, can accommodate these theoretical extensions when the 

assumptions below are not adequately met. 

1. The path an animal travels is independent of the observer: animals do not 

respond to the observer and their movement is independent of the 

transect placement, that is, surveying does not preferentially take place in 

areas animals would avoid or be attracted to. 

2. Animals at zero radius are detected: this assumption can be violated for 

animals that are not always available for detection, for example, a diving 
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cetacean can be missed by an observer in a ship directly above it 

(Langrock et al. 2013, Borchers et al. 2013). 

3. Location measurements are exact: this assumption applies to observed 

locations of animals on the distance sampling survey and the recorded 

locations of tracked animals. Observation error in animal telemetry data is 

common and can be accounted for (Johnson et al. 2008). Models for 

measurement error in distance sampling can also be incorporated 

(Marques 2004). 

4. Animal movement is diffusive: the simple model that animal movement is 

a spatially-invariant, isotropic diffusion process is violated by many animal 

populations; more realistic movement models can be considered. No 

matter what movement model is incorporated, one assumes that all 

animals in the survey move according to the specified model. Departures 

from the movement model could cause detection probability to be biased. 

In particular, underestimating or overestimating animal speed will lead to 

overestimating or underestimating density, respectively. Glennie et al. 

(2015) also shows that if animal movement is less tortuous than assumed 

under Brownian motion, then assuming a Brownian motion movement 

model will lead to overestimation in abundance; however, this 

overestimation will be reduced compared to CDS. 
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5. Sampling is representative and independent: for the distance sampling 

survey, this assumption requires transects be placed according to a 

randomised design, that transects be independent, and that animals be 

independent. For animals that travel in groups, treating groups as the 

independent unit to be sampled may be a better choice. For the 

movement model, it is assumed that tagged animals move independently 

and that the sample of tagged animals be representative of the surveyed 

population. One can use telemetry from tagged animals who are not 

members of the surveyed population, but only with the assumption these 

animals exhibit movement patterns similar to those animals surveyed by 

distance sampling. Despite this, due to the heterogeneity of animal 

behaviour, it is best to collect auxiliary movement data on the same 

population being surveyed and at the same time the survey takes place. 

 

Model extensions 

The model formulation is flexible and can include existing extensions of 

conventional distance sampling. Here, only a hazard that depends on radial 

distance was considered. A hazard that depends on angle and radius could be 

used. For point transects, any detection function can be used to define a hazard 
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(Borchers et al. 2015). Yet, for line transects, the method relies on an analytical 

form for St: observer movement makes integration of the hazard more 

complicated. This could be avoided by discretising observer movement similarly 

to animal movement, that is, the observer only moves at time-steps and not 

within time-steps; however, this can introduce significant bias when discretisation 

is rough and often requires much lower levels of discretisation than otherwise 

necessary. 

Another popular extension is multiple-covariate distance sampling (Marques and 

Buckland 2003). Including covariates in the detection process could be handled 

similarly with this model where parameters in the hazard can depend on 

environmental conditions over space and time. Given this, it is important to 

highlight that any covariates included would need to be known for each time and 

each location in space. This may require one to assume that covariates are 

constant in the time between their recording. Additional information on the 

movement of detected individuals can also be incorporated. Observed locations 

or observed directions of travel can be used to improve estimation of the 

unknown path each animal took. Furthermore, responsive movement could be 

accounted for if the response, how an animal’s location changes over time with 

respect to the observer, is recorded for one or more focal individuals. 
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Including covariate information in the movement model is more computationally 

demanding. The HMM computational algorithm used depends on the block-

Toeplitz structure of the transition rate matrix, G. A block-Toeplitz structure is 

equivalent to assuming that the transition rates are spatially invariant. Relaxing 

this assumption increases computation time and limits the level of discretisation 

that can be practically obtained. 

Additionally, this assumption limits the range of possible movement models that 

can be considered. Bias in density estimation from animal movement is at its 

worst when animal movement is persistent in a single direction. A movement 

process with persistent movement would require the discretisation of a 4-

dimensional space: location and velocity. Given current computational resources, 

it is likely any practical discretisation of this space would be too coarse to provide 

good estimators of detection parameters. Nevertheless, for many taxa, animal 

movement is more complex than can be described by a diffusion process, and so 

extending MDS to include advection-diffusion or Ornstein-Uhlenbeck animal 

movement models could improve the inference obtained. 

Finally, the methods presented can be extended to double-observer distance 

sampling, where two observers survey the transect simultaneously. If multiple 

sightings of an individual by different observers can be matched together, then 

only animal paths that pass through these multiple observed locations need be 

Acc
ep

te
d 

M
an

us
cr

ipt



considered, providing information on animal movement directly from the distance 

sampling data and improving the estimation of each animal’s detection 

probability. 

Conclusion 

Animal movement can be incorporated with distance sampling. The presented 

theoretical framework provides a basis for further development and the 

computational approach discussed makes the method applicable. Accounting for 

animal movement can mitigate the bias it causes in the surveys where distance 

sampling is applied, and it can widen the application of distance sampling to 

animals whose movement has so far prohibited its use. 

 

SUPPLEMENTARY MATERIAL 

S1 Comparison of simulation-based and quadrature-based computation of the 

path integral. (pdf) 

S2 R code to conduct point transect and line transect example MDS analyses 

and simulation studies using moveds R package. (zip) 

moveds 0.1.0 R package that implements the movement with distance sampling 

methods (GNU zipped tar file)
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Fig. 1 Percentage relative bias in estimated density for conventional distance 

sampling (solid line) and distance sampling with movement incorporated (dotted 

line) against animal speed (as % of observer speed) estimated from 100 

simulations of a line transect survey of 50 transects with truncation width 30 

metres and observer speed 1 metre per second. Animals move according to 

Brownian motion. Shaded region marks 5 %  relative bias. 
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Fig. 2 Percentage relative bias in estimated density for conventional distance 

sampling (solid line) and distance sampling with movement incorporated (dotted 

line) against animal speed estimated from 100 simulations of a point transect 

survey of 100 transects with truncation width 100 metres, surveyed for 5 minutes. 

Animals move according to Brownian motion. Shaded region marks 5 %  relative 

bias. 
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Fig. 3 Observed number of spotted dolphin schools sighted in each 0.5 km 

perpendicular distance from the transect line (shaded bars) with expected 

number of sightings from conventional distance sampling model for 1D (solid 

lines) and 2D (dashed lines) models and distance sampling with movement 

model (dotted lines). 
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Fig. 4 Estimated detection function for a hypothetically immobile spotted dolphin 

population for conventional distance sampling, in one (solid line) and two 

(dashed line) dimensions, and distance sampling with movement (dotted line) 

Acc
ep

te
d 

M
an

us
cr

ipt



Table 1 Maximum likelihood estimates (Est.) of spotted dolphin school density 

(per 
6 2

1 0 k m ) with associated percentage coefficient of variation (CV) and 95% 

confidence interval (CI) for conventional distance sampling in one (CDS1D) and 

two dimensions (CDS2D), and distance sampling with movement in two 

dimensions (MDS2D) 

 CDS1D CDS2D MDS2D 

Yea

r 

Est.  CV  95% CI  Est.  CV  95% CI  Est.  CV  95% CI  

199

9 

107

3  

22

% 

(700, 

1644)  

116

6  

18

% 

(750, 

1581)  

918  18

% 

(588, 

1248) 

200

0 

947  23

% 

(601, 

1493)  

999  19

% 

(627, 

1372)  

787  19

% 

(492, 

1082) 

200

3 

151

8  

19

% 

(1053, 

2189) 

155

0  

15

% 

(1087, 

2013) 

122

3  

15

% 

(854, 

1592) 

200

6 

121

3  

24

% 

(755, 

1947)  

134

2  

20

% 

(809, 

1874)  

105

9  

20

% 

(636, 

1481) 
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