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Abstract 15 

Surface gravitational acceleration (surface gravity) on Mars, the second-smallest 16 

planet in the Solar System, is much lower than that on Earth. A direct consequence of 17 

this low surface gravity is that lithostatic pressure is lower on Mars than on Earth at any 18 

given depth. Collated published data from deformation experiments on basalts suggest 19 

that, throughout its geological history (and thus thermal evolution), the Martian brittle 20 

lithosphere was much thicker but weaker than that of present-day Earth as a function 21 

solely of surface gravity. We also demonstrate, again as a consequence of its lower 22 

surface gravity, that the Martian lithosphere is more porous, that fractures on Mars 23 

remain open to greater depths and are wider at a given depth, and that the maximum 24 

penetration depth for opening-mode fractures (i.e., joints) is much deeper on Mars than 25 

on Earth. The result of a weak Martian lithosphere is that dykes—the primary 26 



mechanism for magma transport on both planets—can propagate more easily  and can 27 

be much wider on Mars than on Earth. We suggest that this increased the efficiency of 28 

magma delivery to and towards the Martian surface during its volcanically active past, 29 

and therefore assisted the exogeneous and endogenous growth of the planet’s enormous 30 

volcanoes (the heights of which are supported by the thick Martian lithosphere) as well 31 

as extensive flood-mode volcanism. The porous and pervasively fractured (and 32 

permeable) nature of the Martian lithosphere will have also greatly assisted the 33 

subsurface storage of and transport of fluids through the lithosphere throughout its 34 

geologically history. And so it is that surface gravity, influenced by the mass of a 35 

planetary body, can greatly modify the mechanical and hydraulic behaviour of its 36 

lithosphere with manifest differences in surface topography and geomorphology, 37 

volcanic character, and hydrology. 38 
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Research highlights 44 

 45 

 The Martian lithosphere was thicker but weaker than Earth’s throughout its 46 

geological history due to differences in surface gravity 47 

 The lower Martian surface gravity allows fractures to be open at greater depths 48 

and wider at a given depth, relative to Earth 49 

 Dyking—the principal mode of magma migration—is thus more efficient on 50 

Mars than Earth, manifest as differences in volcanism and surface topography 51 

 A porous and fractured Martian lithosphere, relative to Earth, will enhance 52 

groundwater storage and circulation 53 



 54 

1. Introduction 55 

Despite their similar bulk composition (McSween et al., 2009) and proximity in 56 

the Solar System, there are significant differences between present-day Earth and Mars. 57 

First, although the water-carved Martian landscape suggests that large bodies of liquid 58 

water existed on Mars in the geological past, water on the now dusty Martian surface 59 

(Wang and Richardson, 2015) is largely restricted to polar ice (Carr and Head, 2010; 60 

2015) and seasonal brines (Martín-Torres et al., 2015; Ojha et al., 2015). By contrast, 61 

two-thirds of the surface of Earth is covered by liquid water. The surface atmospheric 62 

composition (Owen et al., 1977), atmospheric pressure (Tillman et al., 1993), and 63 

average temperature (Kieffer et al., 1977) of Earth and Mars also differ substantially. 64 

Further, the surface of Mars exhibits a hypsometric distribution with a substantially 65 

higher mean and variance than Earth (Smith et al., 1999; Zuber et al., 2000; Aharonson 66 

et al., 2001): west of the Tharsis volcanic plateau lies the tallest known volcano in the 67 

Solar System, Olympus Mons (with 22 km of relief; Plescia, 2004), and there is a marked 68 

contrast (~5.5 km) between the average elevation of the northern and southern 69 

hemisphere of Mars, known as the Martian dichotomy (McGill and Squyres, 1991; Smith 70 

and Zuber, 1996; Watters et al., 2007). There are several pronounced differences in the 71 

volcanic character of Mars and Earth (Carr, 1973; Greely and Spudis, 1981; Wilson and 72 

Head, 1983; 1994; Wilson, 2009). The most noteworthy difference is that although 90% 73 

of magmatism on Earth occurs along the curvilinear belts that define plate tectonic 74 

boundaries (Crisp, 1984; Cottrell, 2015), Mars is a one-plate planet (Solomon, 1978) and 75 

therefore magmatism on Mars is almost exclusively defined as intra-plate (Wilson, 76 

2009). However, the stagnant-lid tectonic regime on Mars prohibits the formation of the 77 

volcanic island chains that typify intra-plate volcanism on Earth (e.g., Hawaii; Morgan, 78 

1972). 79 



The considerable present-day differences between Earth and Mars are a 80 

reflection of their very different geological histories. Although the reasons for such 81 

contrasts are many, we explore here the contribution of one of the most striking 82 

differences between Earth and Mars: their considerable difference in radius, and 83 

therefore mass. Specifically, we tackle the influence of the resultant difference in surface 84 

gravitational acceleration gravity (hereafter called surface gravity) on the mechanical 85 

and hydraulic behaviour of the Martian lithosphere. To do so, we interrogate the wealth 86 

of published experimental rock deformation data on basalt (and diabase), a database 87 

that has increased greatly over the last decade. With these data, we discuss the 88 

implications of the low Martian surface gravity for surface topography and 89 

geomorphology, volcanic character, and hydrology. We restrict our discussion to 90 

differences between Earth and Mars, but the implications discussed herein also apply to 91 

a wide range of planetary bodies in the Solar System and beyond with a basaltic (or 92 

mechanical cognate) primary crustal lithology (from small planetary bodies with a low 93 

surface gravity such as the Moon to telluric super-Earths with very large surface 94 

gravities).  95 

 96 

2. The influence of surface gravitational acceleration 97 

The surface gravity g of a planet plays a controlling role in the magnitude of 98 

lithostatic pressure at a given depth. Because of the low surface gravity of Mars with 99 

respect to Earth (9.807 m/s2 and 3.711 m/s2, respectively), the pressure at a given 100 

depth on Mars will be substantially lower than on Earth. For a constant bulk density 𝜌 of 101 

2900 kg/m3, the lithostatic pressure 𝑃 at a depth 𝑧 of 1000 m is ~28 and ~11 MPa for 102 

Earth and Mars, respectively, where P = ρgz. Importantly, lithostatic pressure exerts a 103 

first-order control on the mechanical and hydraulic behaviour of rock. First, low 104 

lithostatic pressure favours a brittle mode of failure (Paterson and Wong, 2005; Wong 105 

and Baud, 2012); lower surface gravity will therefore increase the depth of the brittle–106 



ductile transition (BDT) (i.e., it will increase the thickness of the brittle lithosphere). 107 

Second, the strength (i.e., the resistance to failure) of rock in the brittle field is reduced 108 

as lithostatic pressure decreases (Paterson and Wong, 2005). For example, the 109 

compressive strength (i.e., the maximum compressive stress 𝜎𝑝 a rock sample can 110 

withstand before macroscopic failure; see Figure 1) of low-porosity basalt from Mt Etna 111 

(Italy) is 504 MPa at an effective pressure of 50 MPa, which corresponds to a depth of 112 

~2 km on Earth and ~5 km on Mars; this strength is reduced to 291 MPa at an effective 113 

pressure of 10 MPa, a depth of ~0.4 km on Earth and ~1 km on Mars (Heap et al., 2011). 114 

Next, the fracture density and the average fracture aperture will be greater at lower 115 

lithostatic pressures because micro- and macrofractures readily close as lithostatic 116 

pressure increases (Vinciguerra et al., 2005; Nara et al., 2011). Crucially, an increase in 117 

fracture density (Mitchell and Faulkner, 2012) and/or aperture (Zimmerman and 118 

Bodvarsson, 1996) can greatly increase rock permeability, a material property that 119 

plays a fundamental role in the distribution and magnitude of pore pressures within the 120 

lithosphere (David et al., 1994). Finally, Griffith failure theory predicts that the 121 

maximum depth of downward-propagating opening-mode (i.e., Mode I) fractures will 122 

increase as surface gravity decreases (Gudmundsson, 2011). We discuss these 123 

consequences in turn below. 124 

 125 

2.1 Influence of surface gravity on the depth of the brittle–ductile transition (BDT) 126 

Many laboratory deformation experiments have shown that pressure and 127 

temperature can modify the failure mode of material. Low and high pressure and/or 128 

temperature are typically synonymous with brittle and ductile behaviour, respectively 129 

(Evans et al., 1990; Paterson and Wong, 2005; Wong and Baud, 2012). Since the majority 130 

of the Terran and Martian lithospheres are basaltic in composition (McSween et al., 131 

2009), we have compiled published high-temperature experimental rock deformation 132 

data for basaltic rocks (including diabase) over a wide range of pressures (Table 1), with 133 



which we then use to provide an approximate depth interval for the BDT on Earth and 134 

Mars. We interpret the BDT as a purely mechanical boundary that can be estimated by 135 

observing the failure mode (brittle or ductile) of rock during deformation experiments. 136 

A limitation of this approach is that laboratory strain rates (~10-5 s-1) are much higher 137 

than typical real-world strain rates (strain rates on Mars are typically considered to be 138 

between 10-19 and 10-16 s-1; McGovern et al., 2002; Wilkins et al., 2002). However, we 139 

note that (1) experiments already classed as ductile at laboratory strain rates will 140 

remain ductile at lower strain rates and, (2) lowering the strain rate at low-pressure and 141 

low-temperature will reduce rock strength—due to the increased time available for 142 

subcritical crack growth (Brantut et al., 2013)—but may not necessarily promote 143 

ductility. For example, the experiments of Heap et al. (2011) show that basalt can 144 

deform in a brittle manner at a strain rate of 10-9 s-1. Additionally, although the failure 145 

mode of volcanic rocks with a significant glass phase is sensitive to strain rate at 146 

temperatures above their appropriate glass transition temperature (Lavallée et al., 147 

2013), basalts (that typically contain a subordinate glass phase) are much less sensitive 148 

to such changes. 149 

The compiled rock deformation experiments (Table 1) were performed on 150 

cylindrical samples (typically between 20 and 50 mm in diameter) in either a triaxial 151 

(i.e., with a confining pressure) or uniaxial (i.e., without a confining pressure) 152 

deformation apparatus. Samples were deformed in compression in all cases. Although 153 

most experiments were conducted at a constant strain rate (in which an axial piston 154 

moves at a constant displacement rate to deform the sample), typically between 10-6 and 155 

10-4 s-1 , select experiments were performed under an imposed constant stress (creep 156 

tests) (e.g., Mackwell et al., 1998; Heap et al., 2011). Samples in the elevated-157 

temperature experiments were deformed inside a tube furnace. Most of the experiments 158 

were performed on nominally dry samples, but some samples were saturated with a 159 

fluid phase (distilled water or argon gas) and thus were subject to a pore fluid pressure. 160 



We consider here a simple effective pressure law where the effective pressure Peff is 161 

equal to the confining pressure Pc minus the pore pressure Pp, and we adopt the 162 

convention that compressive stresses and strains are positive. 163 

We classified the failure mode of the deformed experimental samples as either 164 

brittle (i.e., the mechanical data show a large stress drop and/or the sample displayed a 165 

throughgoing fracture) or ductile (i.e., no large stress drop in the mechanical data 166 

and/or no evidence of strain localisation) (see Rutter, 1986). We use these definitions 167 

here to describe deformation on the sample lengthscale. Exemplary mechanical data  168 

showing typical brittle and ductile behaviour are shown in Figure 1 (data from Violay et 169 

al., 2012). Of note, we have not considered here either instances of ductility as a result of 170 

microcracking or cataclastic pore collapse (Shimada, 1986; Shimada et al., 1989; 171 

Adelinet et al., 2013; Zhu et al., 2016) or experiments performed under uniaxial 172 

conditions and at room temperature (e.g., Al-Harthi et al., 1999; Heap et al., 2009). 173 

Each experiment was performed at a constant effective pressure (Table 1). To 174 

plot a lithospheric failure mode map for Earth and Mars, we must convert this pressure 175 

to a depth. To perform this conversion, we determined pressure (lithostatic minus 176 

hydrostatic) gradients for Earth and Mars. The lithostatic and hydrostatic pressure 177 

gradients for Earth and Mars were calculated with 𝑃 = 𝜌𝑔𝑧, where we assume a 178 

constant 𝑔 = 9.807 and 3.711 m/s2 for Earth and Mars, respectively. The hydrostatic 179 

pressure gradient was determined using a constant density 𝜌 of 1000 kg/m3  for both 180 

Earth and Mars (i.e., liquid water). This yields pore pressure gradients of ~10 and ~3.7 181 

MPa/km for Earth and Mars, respectively. The density 𝜌 of the Terran and Martian 182 

lithosphere, required for the calculation of their lithostatic pressure gradients, was 183 

determined using the following relation (Wilson and Head, 1994): 184 

 185 

𝜌(ℎ) =
𝜌∞

[1+{𝑉0−(1−𝑉0)}exp(−𝜆𝜌∞𝑔𝑧)]
     (1), 186 

 187 



where 𝜌∞ (the density of porosity-free rock) is taken as 2900 kg/m3, 𝑉0 is the void space 188 

fraction (i.e., total porosity) at the surface (assumed here to be 0.25; see Wilson and 189 

Head, 1994), and constant 𝜆 is assumed to be 1.18 × 10- 8 Pa-1 (Head and Wilson, 1992). 190 

Equation (1) predicts that the density of the lithosphere increases (or porosity 191 

decreases) at a greater rate as depth increases on Earth than on Mars (up to a maximum 192 

density of 2900 kg/m3; Figure 2). 193 

The experimental data were plotted (indicating the failure mode) on graphs of 194 

temperature versus depth for Earth (Figure 3a) and for Mars (Figure 3b). The Terran 195 

thermal gradient was assumed to be 25 K/km (Figure 3a). For Mars, we used a range of 196 

Martian thermal gradients, from 5 to 40 K/km (Figure 3b), chosen to reflect the range of 197 

thermal gradients expected for Mars throughout its thermal evolution (Ruiz et al., 2011). 198 

The average surface temperature of Earth and Mars was taken as 288 K and 253 K, 199 

respectively. By following a particular thermal gradient on Figure 3, one can estimate 200 

the depths at which brittle and ductile behaviour are encountered on Earth and Mars 201 

using the failure mode of adjacent experimental datapoints. 202 

These data predict a switch from brittle to ductile behaviour at a depth of ~25 203 

km for Earth (Figure 3a), consistent with the broad (~10–40 km) depth predicted for 204 

basaltic oceanic lithosphere on Earth estimated with strength envelopes (Kohlstedt et 205 

al., 1995). The same data suggest that the transition from brittle to ductile behaviour on 206 

Mars would lie between 30–40 km for a thermal gradient of 25 K/km (Figure 3b). 207 

Therefore, all else being equal,  the BDT on Mars is deeper than on Earth solely as a 208 

function of surface gravity. The data suggest that the Martian lithosphere would remain 209 

brittle until the liquidus of basalt (Green and Ringwood, 1967) is reached at ~20–25 km 210 

for the highest thermal gradient of 40 K/km and an astonishing depth of >100 km is 211 

predicted for the BDT when the thermal gradient is as low as 5 K/km (Figure 3b). Our 212 

analysis therefore provides an additional technique to characterise how the Martian 213 

lithosphere thickened as Mars cooled over time (see also Baratoux et al., 2011).  214 



The inversion of present-day tectonic features, corresponding to the final state 215 

of lithospheric deformation in response to vertical loading, has been used to provide 216 

estimations for the depth of the BDT on Mars (Solomon and Head, 1990; Schultz and 217 

Watters, 2001; Montési and Zuber, 2003; Wilkins and Schultz, 2003; Grott et al., 2007; 218 

Ruiz et al., 2008). The BDT is defined in these studies as the depth to a temperature at 219 

which ductile behaviour replaces brittle behaviour, and is taken to be equal to the 220 

thickness of the elastic lithosphere. Solomon and Head (1990) reported BDT values of 221 

18–26 km beneath Arsia, Ascraeus, and Pavonis Montes, 54 km under Elysium Mons, 222 

110–230 km for beneath Olympus Mons, and depths greater than 100 km for the Isidis 223 

mascon and the Tharsis rise. Additional estimates of the Martian BDT have been 224 

reported as 25–35 km for Amenthes Rupes (Schultz and Watters, 2001; Ruiz et al., 225 

2008), 21–35 km beneath the southern Thaumasia region (Grott et al., 2007), 30–50 km 226 

under Solis and Lunae Plana (Montési and Zuber, 2003), and 60–100 km for the 227 

northern lowlands (Montési and Zuber, 2003). Additionally, penetration depths of 228 

between 60 and 75 km have been estimated for normal faults within Valles Marineris 229 

(Wilkins and Schultz, 2003). The calculated thermal gradients corresponding to the BDT 230 

depths derived by these studies are in agreement with those we find through our 231 

approach (Figure 3b). For instance, for a thermal gradient of 10 K/km, the data show 232 

that the BDT on Mars is ~70 km (Figure 3b). This prediction is consistent with BDT and 233 

calculated thermal gradient for Elysium Mons (BDT = 48–110 km; thermal gradient = 6–234 

14 K/km; Solomon and Head, 1990 and references therein). The data and experimental 235 

approach adopted here could therefore act as an independent and useful method with 236 

which to estimate thermal gradients and the depth of the BDT on a planetary body with 237 

a basaltic (or mechanically cognate) primary crustal lithology (including the Moon, 238 

Mars, Venus, and telluric super-Earths). 239 

However, thermal gradients calculated with estimates of the BDT from tectonic 240 

features on the surface of Mars likely underestimate the Martian thermal gradient 241 



during the Noachian and early Hesperian when the Tharsis Montes and Olympus Mons 242 

were volcanically active (Hauck and Phillips, 2002; Ruiz et al., 2011; Ruiz, 2014). We 243 

also note that hydrothermal alteration during the Noachian would have required a 244 

thermal gradient in excess of 20 K/km (McSween et al., 2015). We include a (perhaps 245 

unrealistically) high thermal gradient of 40 K/km for this reason (Figure 3b). The data 246 

suggest that brittle behaviour would persist to a depth of ~20–25 km (i.e., similar to that 247 

estimated for  present-day Earth; Figure 3a) on Mars even if the thermal gradient was as 248 

high as 40 K/km (Figure 3b). 249 

The data shown in Figure 3 assume a hydrostatic pore pressure. However, large 250 

channels within areas of chaotic terrain on Mars are thought to be the consequence of 251 

erosion by water released from high-pressure aquifers (Carr, 1979). The surface of Mars 252 

is replete with examples of large erosional valleys and channels and, although most of 253 

these features were formed during the Hesperian, there are examples of more recent 254 

Amazonian channels (Carr and Head, 2010 and references therein). As a result, pore 255 

fluid pressures in the Martian lithosphere may have exceeded hydrostatic pore pressure 256 

for a large portion of its geological history. We therefore provide an additional failure 257 

mode map for Mars assuming a pore pressure twice that of the hydrostatic (~7.4 258 

MPa/km) (Figure 4). A higher pore pressure increases the depth of the BDT for thermal 259 

gradients between 5 and 15 K/km (Figure 4). For example, the BDT increases in depth 260 

from ~70 to ~80 km when the thermal gradient is 10 K/km. However, the depth of the 261 

BDT remains largely unchanged for higher thermal gradients (25–40 K/km). When the 262 

thermal gradient is 40 K/km, for example, brittle behaviour is still expected until the 263 

liquidus of basalt is reached at ~20–25 km (Figure 4). 264 

To conclude, an analysis of experimental rock deformation data (Figures 3 and 265 

4; Table 1) suggests that the brittle lithosphere can be much thicker on Mars than on 266 

Earth as a result of surface gravity alone. To emphasise this point, our analysis shows 267 

that the depth of BDT on Mars can be deeper even when the thermal gradient is about 268 



twice that of present-day Earth (Figures 3 and 4). However, more experimental data, 269 

particularly at low temperatures and high pressures, are now required to develop such 270 

predictions. 271 

 272 

2.2 Influence of surface gravity on the strength (resistance to failure) of the brittle 273 

lithosphere 274 

An increase in lithostatic pressure reduces the ease with which fractures can 275 

nucleate and propagate (Jaeger et al., 2007). As a result, the brittle strength of rock 276 

increases as lithostatic pressure increases (Paterson and Wong, 2005). Here, we once 277 

again utilise published experimental data (acquired under various pressures and 278 

temperatures) for the compressive strength of basalts in the brittle field (Table 1) to 279 

derive strength profiles for the Terran and Martian lithospheres. As before, we excluded 280 

some published data from our analysis: in this case only experiments performed under 281 

uniaxial conditions. The experimental effective pressures were converted to depths as 282 

described above.  283 

We provide here lithospheric strength profiles for the hydrostatic case (Figure 284 

5a) and, as above, a scenario for which the Martian pore pressure gradient is twice that 285 

of the hydrostatic (Figure 5b). A limitation of this approach is that brittle strength is 286 

both time- and scale-dependent. Strength in the brittle field is known to exhibit a time-287 

dependency due to subcritical crack growth (Brantut et al., 2013). Since the majority of 288 

the compiled experiments were performed at strain rates that greatly exceed real-world 289 

strain rates (Table 1), the strengths provided here are likely overestimated. For 290 

example, the strength of basalt was reduced from 375 to 304 MPa when the strain rate 291 

was reduced from 10- 6 to 10-9 s-1 (Heap et al., 2011). Brittle strength is also scale-292 

dependent (Schultz, 1993; 1995) and therefore the strength values for initially intact 293 

rock likely overestimate the strength of a rock mass (i.e., at fracture lengthscales greater 294 

than the macrofracture spacing). Estimates of rock mass strength can be provided using 295 



fracture criteria such as the Hoek–Brown criterion (Hoek and Brown, 1980) that ultilise 296 

rock mass classification schemes such as the Rock Mass Rating system (RMR) 297 

(Bieniawski, 1989) or the Geological Strength Index (GSI) (Hoek, 1994). These 298 

techniques have been previously employed to offer insight into the stability of rock 299 

slopes (Neuffer and Schultz, 2006; Okubo et al., 2011), plantery contraction (Klimczak, 300 

2015), and planetary ring formation (Black and Mittal, 2015).  However, such criteria 301 

require an estimation of the degree of fracturing (using, for example, the RMR or GSI 302 

classification scheme) and the selection of a representative basalt. Owing to the 303 

difficulty in selecting a basalt that best represents the Terran and Martian lithospheres 304 

(where strength depends very much on the physical attributes of the basalt, which could 305 

vary considerably), we choose here to show the intact strength for all of the compiled 306 

data to simply understand whether (and to what degree) the Martian lithosphere is 307 

weaker than the Terran lithosphere at a given depth as a function of surface gravity 308 

alone. We emphasise that rock mass strength analysis would reduce the Terran and 309 

Martian strength profiles equally, thereby maintaining the lithospheric strength 310 

discrepancy, or exacerbate the difference if the Martian lithosphere is more fractured. 311 

GSI estimates for the Martian lithosphere have been found to be similar to rock masses 312 

on Earth (Klimczak, 2015). 313 

The data show that, for a given depth, the strength of the Martian lithosphere is 314 

considerably lower than that of Earth (Figures 5a and 5b). Although there is scatter in 315 

these data (due to variations in experimental temperature and rock attributes including 316 

porosity and pore size, amongst others; Table 1), a line of best fit indicates that, at a 317 

depth of 10 km, the difference in compressive strength of the Terran and Martian 318 

lithosphere is substantial when the pore pressure is hydrostatic (~900 and ~350 MPa, 319 

respectively; Figure 5a). This strength discrepancy becomes greater when we assume a 320 

Martian pore pressure gradient twice that of the hydrostatic (Figure 5b). In this 321 

scenario, brittle strength at 10 km depth on Mars is reduced from ~350 to ~200 MPa 322 



(Figure 5). An interrogation of experimental rock deformation data (Figures 5a and 5b) 323 

therefore suggests that the brittle lithosphere is much weaker on Mars than on Earth for 324 

a given depth due to surface gravity alone. 325 

If we assume a constant bulk density for the Terran and Martian lithospheres of 326 

2900 kg/m3, we can compare these intact compressive strength data with those 327 

predicted for sliding on a pre-existing discontinuity using Byerlee’s rule (Brace and 328 

Kohlstedt, 1980; Kohlstedt and Mackwell, 2010; Klimczak, 2015): 329 

 330 

𝜎1  ≅ 5𝜎3     for 𝜎3 < 110 MPa 331 

(2) 332 

𝜎1  ≅ 3.1𝜎3 + 210     for 𝜎3 > 110 MPa, 333 

 334 

where 𝜎1 and 𝜎3 are the greatest and least principal stresses, respectively. We note that 335 

Byerlee’s rule (Byerlee, 1978) is essentially independent of rock type. Although 336 

Byerlee’s rule predicts unrealistic values for near-surface strength, values at depth do 337 

not depend on selecting a representative basalt, as would be the case for the Coulomb 338 

criterion for frictional sliding. The modelled curves are plotted alongside the intact 339 

compressive strength data for the hydrostatic case in Figure 5c. Of interest, the the 340 

lithospheric strength profiles predicted using Byerlee’s rule follow similar trends to 341 

those found using the compiled intact strength data (Figure 5c). 342 

We note that the propagation of dykes—and thus the transport of magma—is 343 

more directly determined by the tensile strength of basalt, rather than their 344 

compressive strengths (shown here). However, laboratory tensile strength data for 345 

basalt are rare and, to our knowledge, only collected under ambient laboratory 346 

conditions (Schultz, 1993; 1995; Apuani et al., 2005). Since the tensile strength of a 347 

given rock type is typically about a twelfth of its compressive strength (Jaeger et al., 348 



2007), we expect that the tensile strength of basalt will follow a similar trend to 349 

compressive strength profiles shown in Figure 5.  350 

 351 

2.3 Influence of surface gravity on the aperture of fractures within the brittle lithosphere 352 

Beyond increasing the difficulty at which fractures can nucleate and propagate, a 353 

higher lithostatic pressure will serve to reduce the aperture of pre-existing extension 354 

fractures or joints (i.e., “opening-mode” or Mode I fractures). For example, the 355 

permeability of micro- and macrofractured basalt dramatically decreases as confining 356 

pressure (i.e., depth) increases (Vinciguerra et al., 2005; Nara et al., 2011). This 357 

reduction in permeability is the result of the closure of fractures, which are readily 358 

squeezed shut with increased confining or lithostatic pressure. The lower surface 359 

gravity of Mars will therefore allow fractures to remain open to greater depths than on 360 

Earth (thereby increasing the fracture density) and fractures to be wider at a given 361 

depth, on Mars than on Earth. 362 

 363 

2.4 Influence of surface gravity on the maximum depth for downward-propagating 364 

extension fractures 365 

Downward-propagating extension fractures or joints will resolve a shear 366 

component (i.e., the fractures will transition to normal faults) once the following 367 

relation has been satisfied (Mège and Masson, 1997; Gudmundsson, 2011): 368 

 369 

𝑑𝑚𝑎𝑥 =  
3𝜎𝑡

𝜌𝑔
     (3), 370 

 371 

where dmax is the maximum penetration depth,  𝜎𝑡 is the tensile strength of the rock, and 372 

𝜌 is the bulk rock density. If we assume a constant bulk density (𝜌 = 2900 kg/m3) and 373 

tensile strength for basalt (𝜎𝑡 = 12 MPa for intact basalt; Schultz et al., 1995), the 374 

difference in surface gravity on Mars (𝑔 = 3.711 m/s2) and Earth (𝑔 = 9.807 m/s2) 375 



results in a maximum propagation depth for extension fractures (i.e., joints) of ~3.3 and 376 

~1.3 km, respectively. Using values estimated for the tensile strength of a fractured 377 

basaltic rock mass (𝜎𝑡 = 1 MPa; Schultz et al., 1995), these propagation depths would be 378 

reduced to ~280 and ~100 m for Mars and Earth, respectively. Nevertheless, all else 379 

being equal, joints on Mars will penetrate farther into the lithosphere than those on 380 

Earth. However, although downward-propagating extensional fractures or joints can be 381 

deeper on Mars than on Earth, displacement–length scaling relations for faults (with 382 

normal and reverse senses of displacement) are consistently smaller, also interpreted as 383 

a consequence of the low surface gravity of Mars (Schultz et al., 2006). 384 

 385 

3. Implications for Martian volcanism, topography, and groundwater storage and 386 

circulation 387 

 We have shown here, with published experimental data (Table 1), that the lower 388 

surface gravity on Mars compared with Earth can serve to (1) increase the depth of the 389 

BDT, (2) reduce the strength of the brittle lithosphere at a given depth, (3) increase the 390 

porosity of the lithosphere, (4) increase the average fracture aperture at a given depth, 391 

(5) increase the depth at which fractures can remain open (and therefore fracture 392 

density), and (6) increase the maximum propagation depth for opening-mode fractures. 393 

The differences between Martian and Terran volcanism (Carr, 1973; Greely and 394 

Spudis, 1981; Wilson and Head, 1983; 1994; Wilson, 2009) have been attributed at least 395 

in part to the lower surface gravity on Mars (Wilson and Head, 1994). Amongst other 396 

contributing factors, the lower surface gravity of Mars is expected to result in (1) a 397 

lower density for buried rock at a given depth, thus increasing the depth at of the 398 

neutral buoyancy zone (i.e., the depth at which magma stalls and coalesces as magma 399 

chambers), (2) a greater depth for gas nucleation and fragmentation for volatile-bearing 400 

magmas, and (3) a greater run-out distance for cooling-limited lava flows (Wilson and 401 

Head, 1994 and references therein). However, the influence of the lower Martian surface 402 



gravity on the mechanical behaviour of its lithosphere has received sparse attention. For 403 

example, the ease of dyke propagation—the principal mode of magma transport in the 404 

lithosphere (Rubin, 1995; Gudmundsson, 2006)—is likely enhanced by the weak 405 

Martian brittle lithosphere relative to Earth (Figure 5). Further, the Martian lithosphere 406 

can host wider dykes than on Earth for a given depth (see also Wilson and Head, 1994 407 

and references therein). Although these factors are likely to assist surface magma 408 

delivery, magma on Mars may have to travel farther due to the increased depth of the 409 

neutral buoyancy zone (itself a function of surface gravity; Wilson and Head, 1994) and 410 

many dykes may arrest before reaching the surface (Gudmundsson, 2002). Indeed, there 411 

is evidence to suggest that a large proportion of dykes within the Tharsis and Syrtis 412 

regions of Mars never broke the surface (Lillis et al., 2009; Black and Manga, 2016). 413 

Nevertheless, we expect that a weak Martian lithosphere that can host wide dykes 414 

greatly assisted magma delivery to the surface during volcanically active phases in the 415 

planet’s past. We therefore contend that the lower surface gravity on Mars supports the 416 

high magma discharge rates inferred for the planet during the Noachian and early 417 

Hesperian (e.g., Cattermole, 1987; Wilson et al., 2001; Fuller and Head, 2003; Head et al., 418 

2006; Hopper and Leverington, 2014), and thus the voluminous lava flows and 419 

enormous volcanoes observed on its surface (Greely and Spudis, 1981; Tanaka, 1986; 420 

Plescia, 1990; McEwen et al., 1999; Wilson and Head, 1994), relative to Earth. We 421 

further note that enhanced endogenous growth—intrusive–extrusive ratios predicted 422 

for the Tharsis and Syrtis regions are higher than most volcanic centres on Earth (Black 423 

and Manga, 2016)—could also help explain why volcanoes can be larger on Mars than 424 

on Earth, facilitated by a weak lithosphere/volcanic edifice (Figure 5). The enormous 425 

height of the volcanoes of Mars are supported by the planet’s thick, brittle lithosphere 426 

(Figures 3 and 4): the ability of the lithosphere to support topographic loads without 427 

deflection increases as its rigidity (effectively its thickness) increases (Turcotte et al., 428 

1981; Byrne et al., 2013). The support of tall structures provided by the thick Martian 429 



lithosphere may help explain the Martian topographic dichotomy (McGill and Squyres, 430 

1991; Smith and Zuber, 1996; Watters et al., 2007). 431 

Prolonged impact bombardment (MacKinnon and Tanaka, 1989; Rodriguez et 432 

al., 2005) and lithospheric loading (Solomon and Head, 1982; Zuber et al., 2000; Phillips 433 

et al., 2001) has left the Martian lithosphere substantially fractured. We suggest here 434 

that these fractures within the thick Martian lithosphere (Figures 3 and 4) are abundant 435 

and pervasive, facilitated by the lithosphere’s low strength (Figure 5). The strength of 436 

the Martian crust may be further compromised by extensive weathering (Wyatt and 437 

McSween, 2002) and hydrothermal alteration (McSween et al., 2015), which is known to 438 

reduce the strength of rock (Pola et al., 2012; Wyering et al., 2014). Fractures at all 439 

scales will serve to increase the permeability of the lithosphere (Nara et al., 2011; Heap 440 

and Kennedy, 2016). Further, our analysis also suggests that fractures on Mars will be 441 

wider at a given depth than on Earth. The permeability of a fracture depends heavily on 442 

its aperture, eloquently demonstrated by the exact solution for a fracture containing 443 

smooth, parallel walls (Zimmerman and Bodvarsson, 1996): 444 

 445 

𝑘𝑓 =  
ℎ2

12
,     (4) 446 

 447 

where 𝑘𝑓 is the permeability of the fracture and ℎ is the fracture aperture. It follows 448 

therefore that subsurface fluids will be more mobile through the lithosphere on Mars 449 

than on Earth. Note, aqueous fluids have been observed to have remained static within 450 

the Earth’s lithosphere for almost 2 Ga (Holland et al., 2013). A highly permeable 451 

lithosphere will assist the crustal-scale movement of groundwater from the poles to the 452 

equator, inferred to play a key role in the geomorphic evolution and long-term cycling of 453 

H2O between the Martian atmosphere, polar caps, and near-surface lithosphere 454 

(Clifford, 1993).  455 



The storage capacity of the Martian lithosphere will also be greater relative to 456 

that of Earth’s due to its greater thickness, a greater abundance of wide fractures, and 457 

the slower rate of porosity decrease as depth increases (Figure 2; Wilson and Head, 458 

1994). A high lithospheric storage capacity could help provide the high volumes invoked 459 

to explain, for example, catastrophic flooding events on Mars (Carr, 1979; MacKinnon 460 

and Tanaka, 1989; Baker et al., 1991; Baker, 2001; Plescia, 2003; Head et al., 2004; 461 

Rodriguez et al., 2005; Coleman et al., 2007; Warner et al., 2009). A porous and 462 

permeable lithosphere is also consistent with the notion that the absence of surface 463 

runoff following bolide impacts could be a function of ground infiltration and subsurface 464 

water sequestration, rather than a climate too cold for substantial precipitation (Carr, 465 

2000). 466 

And so it is that surface gravity, influenced by the mass of a given planetary 467 

body, can greatly modify the mechanical and hydraulic behaviour of its lithosphere, with 468 

attendant implications for its surface topography (Mars has the capacity to build and 469 

maintain enormous volcanoes, for example) and geomorphology, volcanic character, 470 

and groundwater storage and circulation. These inferences can be tested by data 471 

returned by the upcoming InSight mission to Mars (Banerdt et al., 2013), due to reach 472 

the Red Planet in 2018. 473 
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Figure captions 483 

 484 

Figure 1. The mechanical behaviour of rock in compression. Examples of brittle and 485 

ductile stress–strain curves for basalt deformed at a confining pressure of 300 MPa and 486 

a temperature of 650 °C (brittle test) and 850 °C (ductile test) (data from Violay et al., 487 

2012). Inset shows cartoons depicting post-failure samples typical of brittle 488 

(throughgoing shear fracture) and ductile (distributed deformation) deformation. 489 

 490 

Figure 2. The evolution of bulk density (a) and porosity (b) as a function of depth on 491 

Earth (blue curves) and Mars (red curves). Curves calculated using Equation (1) (see 492 

also Wilson and Head, 1994). 493 

 494 

Figure 3. Depth of the brittle–ductile transition (BDT) for hydrostatic conditions. Depth 495 

against temperature for Earth (a) and Mars (b) populated with experimental data from 496 

triaxial deformation experiments on basalt (and diabase) performed at different 497 

pressure and temperature conditions (Table 1). These experiments were classed as 498 

either brittle or ductile (see Figure 1 for details of failure mode classification). The 499 

Terran geotherm (25 K/km) and a range of Martian thermal gradients (from 5 to 40 500 

K/km) are shown on panels (a) and (b), respectively.  501 

 502 

Figure 4. Depth of the brittle–ductile transition (BDT) on Mars assuming a pore 503 

pressure gradient twice that of the hydrostatic. As per Figure 3, the experimental data 504 

(Table 1) are plotted on a graph of depth against temperature and a range of Martian 505 

thermal gradients are provided (from 5 to 40 K/km).  506 

 507 

Figure 5. Brittle lithosphere strength profiles. (a) Depth against brittle strength for 508 

Earth (blue squares) and Mars (red circles) assuming hydrostatic conditions. (b) Depth 509 



against brittle strength for Earth (blue squares) and Mars (red circles) assuming that the 510 

pore pressure on Mars is twice that of the hydrostatic. Experimental data were taken 511 

from triaxial deformation experiments performed on basalt (and diabase) at different 512 

pressure and temperature conditions (Table 1). Average strength profiles for Earth and 513 

Mars are simply linear fits to the experimental data. (c) Depth against brittle strength 514 

for Earth (blue squares) and Mars (red circles) assuming hydrostatic conditions (the 515 

same plot as in panel a), together with the lithospheric strength profiles predicted using 516 

Byerlee’s rule (Equation (2); see text for details).  517 



Table 1. Summary of the experimental conditions for the rock deformation experiments 518 

used in this study (for the construction of Figures 3, 4, and 5). Pc = confining pressure; 519 

Pp = pore fluid pressure; Peff = effective pressure; T = experimental temperature; 𝜎𝑝 = 520 

peak differential stress (see Figure 1). In some cases, failure mode classification differs 521 

from that stated in the original publication. Data not included in this compilation are 522 

uniaxial experiments conducted at room temperature and instances of non-viscous 523 

ductile deformation. 524 

 525 

Reference Pc 
(MPa) 

Pp 
(MPa) 

Peff 
(MPa) 

T (°C) σp 
(MPa) 

Failure 
mode 

Notes 

Griggs et al. 
1960 

500 0 500 25 1668 Brittle Basalt 

Griggs et al. 
1960 

500 0 500 300 1390 Brittle Basalt 

Griggs et al. 
1960 

500 0 500 500 1080 Brittle Basalt 

Griggs et al. 
1960 

500 0 500 700 - Ductile Basalt 

Griggs et al. 
1960 

500 0 500 800 - Ductile Basalt 

Caristan 
1982 

0 0 0 950 199 Brittle Maryland diabase; strain rate = 
10-3 s-1 

Caristan 
1982 

0 0 0 970 223 Brittle Maryland diabase; strain rate = 
10-5 s-1 

Caristan 
1982 

0 0 0 995 193 Brittle Maryland diabase; strain rate = 
10-3 s-1 

Caristan 
1982 

30 0 30 1000 370 Brittle Maryland diabase; strain rate = 
10-3 s-1 

Caristan 
1982 

50 0 50 1000 440 Brittle Maryland diabase; strain rate = 
10-3 s-1 

Caristan 
1982 

150 0 150 810 780 Brittle Maryland diabase; strain rate = 
10-6 s-1 

Caristan 
1982 

150 0 150 970 385 Brittle Maryland diabase; strain rate = 
10-6 s-1 

Caristan 
1982 

150 0 150 994 535 Brittle Maryland diabase; strain rate = 
10-3 s-1 

Caristan 
1982 

150 0 150 1000 566 Brittle Maryland diabase; strain rate = 
10-4 s-1 

Caristan 
1982 

150 0 150 1000 561 Brittle Maryland diabase; strain rate = 
10-5 s-1 

Caristan 
1982 

150 0 150 1000 573 Brittle Maryland diabase; strain rate = 
10-5 s-1 

Caristan 
1982 

350 0 350 1000 - Ductile Maryland diabase; strain rate = 
10-5 s-1 

Caristan 
1982 

400 0 400 1000 - Ductile Maryland diabase; strain rate = 
10-4 s-1 

Caristan 
1982 

425 0 425 1000 - Ductile Maryland diabase; strain rate = 
10-4 s-1 

Caristan 
1982 

425 0 425 1000 - Ductile Maryland diabase; strain rate = 
10-5 s-1 

Caristan 
1982 

425 0 425 1000 - Ductile Maryland diabase; strain rate = 
10-6 s-1 

Caristan 
1982 

450 0 450 1000 - Ductile Maryland diabase; strain rate = 
10-5 s-1 

Shimada and 
Yukutake 

1982 

57 0 57 25 400 Brittle Yakuno basalt; Porosity = 0.07; 
strain rate = 10-5 s-1 

Shimada and 107 0 107 25 415 Brittle Yakuno basalt; Porosity = 0.07; 



Yukutake 
1982 

strain rate = 10-5 s-1 

Bauer et al. 
1981 

50 0 50 25 540 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 25 400 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 600 300 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 600 340 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 700 300 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 940 125 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 940 200 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 1000 100 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

100 0 100 700 465 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

100 0 100 900 240 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

100 0 100 950 110 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

100 0 100 1000 180 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

100 50 50 820 180 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Shimada 
1986 

57 0 57 25 410 Brittle Yakuno basalt; Porosity = 0.07; 
strain rate = 10-5 s-1 

Duclos and 
Paquet 1991 

0 0 0 300 399 Brittle Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 600 430 Brittle Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 700 445 Brittle Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 750 430 Brittle Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 800 - Ductile Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 900 - Ductile Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 1000 - Ductile Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Hacker and 
Christie 1991 

1000 0 1000 675 - Ductile Tholeiitic basalt; partially 
glassy; 0.5 wt.% water added; 

strain rate = 10-4 – 10-7 s-1 
Hacker and 

Christie 1991 
1000 0 1000 725 - Ductile Tholeiitic basalt; partially 

glassy; 0.5 wt.% water added; 
strain rate = 10-4 – 10-7 s-1 

Hacker and 
Christie 1991 

1000 0 1000 775 - Ductile Tholeiitic basalt; partially 
glassy; 0.5 wt.% water added; 

strain rate = 10-4 – 10-7 s-1 

Hacker and 
Christie 1991 

1000 0 1000 825 - Ductile Tholeiitic basalt; partially 
glassy; 0.5 wt.% water added; 

strain rate = 10-4 – 10-7 s-1 
Hacker and 

Christie 1991 
1000 0 1000 875 - Ductile Tholeiitic basalt; partially 

glassy; 0.5 wt.% water added; 
strain rate = 10-4 – 10-7 s-1 

Schultz 1993 0 0 0 450 210 Brittle Estimated strength value taken 
as 80% of the average uniaxial 

compressive strength for basalt; 
see Schultz (1993) for details 

Mackwell et 
al. 1998 

400 0 400 1000 - Ductile Dehydrated Maryland and 
Columbia diabase; creep test; 

strain rate = 10-5 – 10-7 s-1 
Mackwell et 

al. 1998 
400 0 400 1050 - Ductile Dehydrated Maryland and 

Columbia diabase; creep test; 
strain rate = 10-5 – 10-7 s-1 

Mackwell et 
al. 1998 

400 0 400 1050 - Ductile Dehydrated Maryland and 
Columbia diabase; creep test; 

strain rate = 10-5 – 10-7 s-1 



Mackwell et 
al. 1998 

450 0 450 970 - Ductile Dehydrated Maryland and 
Columbia diabase; creep test; 

strain rate = 10-5 – 10-7 s-1 
Mackwell et 

al. 1998 
450 0 450 1000 - Ductile Dehydrated Maryland and 

Columbia diabase; creep test; 
strain rate = 10-5 – 10-7 s-1 

Mackwell et 
al. 1998 

450 0 450 1050 - Ductile Dehydrated Maryland and 
Columbia diabase; creep test; 

strain rate = 10-5 – 10-7 s-1 
Mackwell et 

al. 1998 
500 0 500 1000 - Ductile Dehydrated Maryland and 

Columbia diabase; creep test; 
strain rate = 10-5 – 10-7 s-1 

Rocchi et al. 
2004 

0 0 0 300 89 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

0 0 0 300 104 Brittle Etna “core” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 300 35 Brittle Etna “crust” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 600 96 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

0 0 0 600 105 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

0 0 0 600 103 Brittle Etna “core” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 600 181 Brittle Etna “core” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 600 40.5 Brittle Etna “crust” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 700 33 Brittle Etna “crust” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 800 42 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

0 0 0 800 43 Brittle Etna “core” basalt; strain rate = 
10-4 s-1 

Rocchi et al. 
2004 

0 0 0 800 25 Brittle Etna “core” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 800 17 Brittle Etna “core” basalt; strain rate = 
10-6 s-1 

Rocchi et al. 
2004 

0 0 0 800 20 Brittle Etna “crust” basalt; strain rate = 
10-4 s-1 

Rocchi et al. 
2004 

0 0 0 900 50 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-4 s-1 

Rocchi et al. 
2004 

0 0 0 900 38 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

0 0 0 900 29 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

0 0 0 900 31 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-6 s-1 

Rocchi et al. 
2004 

5 0 5 25 108 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

10 0 10 25 104 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

10 0 10 300 101 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

10 0 10 300 88 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

10 0 10 600 116 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

10 0 10 916 62 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

12 0 12 25 93 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

15 0 15 25 101 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

17 0 17 25 100 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

20 0 20 25 109 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

20 0 20 300 95 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

20 0 20 300 91 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 



Rocchi et al. 
2004 

20 0 20 600 118 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

30 0 30 25 112 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

30 0 30 25 103 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

30 0 30 300 105 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

30 0 30 300 87 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

30 0 30 600 104 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

30 0 30 604 79 Brittle Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Rocchi et al. 
2004 

0 0 0 900 - Ductile Etna “crust” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 912 - Ductile Etna “core” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 1001 - Ductile Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Apuani et al. 
2005 

4 0 4 25 98 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

4 0 4 25 72 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

4 0 4 25 67 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

8 0 8 25 88 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

8 0 8 25 99 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

12 0 12 25 104 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

12 0 12 25 109 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

16 0 16 25 54 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

16 0 16 25 62 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

16 0 16 25 87 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

16 0 16 25 94 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

20 0 20 25 56 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

20 0 20 25 109 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

20 0 20 25 178 Brittle Vigna Vecchia basalt (Stromboli) 

Benson et al. 
2007 

60 20 40 25 475 Brittle Etna basalt; porosity = 0.04; 
strain rate = 10-6 s-1 

Ougier-
Simonin et al. 

2010 

15 0 15 25 370 Brittle Seljadur basalt; porosity = 0.05; 
strain rate = 10-6 s-1 

Heap et al. 
2011 

30 20 10 25 291 Brittle Etna basalt; porosity = 0.4; 
strain rate = 10-5 s-1 

Heap et al. 
2011 

50 20 30 25 287 Brittle Etna basalt; porosity = 0.4; 
strain rate = 10-5 s-1 

Heap et al. 
2011 

70 20 50 25 504 Brittle Etna basalt; porosity = 0.4; 
strain rate = 10-5 s-1 

Heap et al. 
2011 

50 20 30 25 375 Brittle Etna basalt; porosity = 0.4; creep 
test; strain rate = 10-6 s-1 

Heap et al. 
2011 

50 20 30 25 357 Brittle Etna basalt; porosity = 0.4; creep 
test; strain rate = 10-7 s-1 

Heap et al. 
2011 

50 20 30 25 329 Brittle Etna basalt; porosity = 0.4; creep 
test; strain rate = 10-8 s-1 

Heap et al. 
2011 

50 20 30 25 304 Brittle Etna basalt; porosity = 0.4; creep 
test; strain rate = 10-9 s-1 

Violay et al. 
2012 

100 0 100 400 1002 Brittle Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 400 902 Brittle Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 



Violay et al. 
2012 

100 0 100 600 854 Brittle Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 700 508 Brittle Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 800 462 Brittle Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 800 446 Brittle Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 900 355 Brittle Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Violay et al. 
2012 

300 0 300 600 749 Brittle Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Violay et al. 
2012 

300 0 300 700 755 Brittle Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Violay et al. 
2012 

300 0 300 800 518 Brittle Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Violay et al. 
2012 

50 0 50 600 - Ductile Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 
Violay et al. 

2012 
70 0 70 600 - Ductile Porphyritic basalt; partially 

glassy; porosity = 0.02; strain 
rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 500 - Ductile Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 
Violay et al. 

2012 
100 0 100 600 - Ductile Porphyritic basalt; partially 

glassy; porosity = 0.02; strain 
rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 600 - Ductile Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 
Violay et al. 

2012 
100 0 100 700 - Ductile Porphyritic basalt; partially 

glassy; porosity = 0.02; strain 
rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 800 - Ductile Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 
Violay et al. 

2012 
100 0 100 800 - Ductile Porphyritic basalt; partially 

glassy; porosity = 0.02; strain 
rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 800 - Ductile Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 
Violay et al. 

2012 
100 0 100 900 - Ductile Porphyritic basalt; partially 

glassy; porosity = 0.02; strain 
rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 900 - Ductile Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 900 - Ductile Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 
Violay et al. 

2012 
250 0 250 650 - Ductile Porphyritic basalt; partially 

glassy; porosity = 0.02; strain 
rate = 10-5 s-1 

Violay et al. 
2012 

300 0 300 600 - Ductile Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 
Violay et al. 

2012 
300 0 300 700 - Ductile Porphyritic basalt; partially 

glassy; porosity = 0.02; strain 
rate = 10-5 s-1 

Violay et al. 
2012 

300 0 300 750 - Ductile Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 

Violay et al. 
2012 

300 0 300 800 - Ductile Porphyritic basalt; partially 
glassy; porosity = 0.02; strain 

rate = 10-5 s-1 
Violay et al. 

2012 
300 0 300 800 - Ductile Aphanitic basalt; porosity = 

0.02; strain rate = 10-5 s-1 

Violay et al. 
2012 

300 0 300 850 - Ductile Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Violay et al. 300 0 300 900 - Ductile Aphanitic basalt; porosity = 



2012 0.02; strain rate = 10-5 s-1 
Violay et al. 

2012 
300 0 300 900 - Ductile Porphyritic basalt; partially 

glassy; porosity = 0.02; strain 
rate = 10-5 s-1 

Benson et al. 
2012 

0 0 0 200 143 Brittle Etna basalt; porosity = 0.04 

Benson et al. 
2012 

0 0 0 500 156 Brittle Etna basalt; porosity = 0.04 

Benson et al. 
2012 

0 0 0 750 153 Brittle Etna basalt; porosity = 0.04 

Benson et al. 
2012 

0 0 0 900 156 Brittle Etna basalt; porosity = 0.04 

Benson et al. 
2012 

0 0 0 950 187 Brittle Etna basalt; porosity = 0.04 

Violay et al. 
2012 

300 0 300 950 - Ductile Aphanitic basalt; porosity = 
0.02; strain rate = 10-5 s-1 

Adelinet et 
al. 2013 

10 5 5 25 120 Brittle Reykjanes basalt; porosity = 
0.08; strain rate = 10-6 s-1 

Adelinet et 
al. 2013 

80 76 4 25 118 Brittle Reykjanes basalt; porosity = 
0.08; strain rate = 10-6 s-1 

Violay et al. 
2015 

130 30 100 600 877 Brittle Aphanitic basalt; porosity = 
0.03; strain rate = 10-5 s-1 

Violay et al. 
2015 

130 30 100 650 834 Brittle Aphanitic basalt; porosity = 
0.03; strain rate = 10-5 s-1 

Violay et al. 
2015 

130 30 100 700 792 Brittle Aphanitic basalt; porosity = 
0.03; strain rate = 10-5 s-1 

Violay et al. 
2015 

130 30 100 750 699 Brittle Aphanitic basalt; porosity = 
0.03; strain rate = 10-5 s-1 

Violay et al. 
2015 

130 30 100 800 717 Brittle Aphanitic basalt; porosity = 
0.03; strain rate = 10-5 s-1 

Violay et al. 
2015 

130 30 100 900 382 Brittle Aphanitic basalt; porosity = 
0.03; strain rate = 10-5 s-1 

Violay et al. 
2015 

130 30 100 1050 - Ductile Aphanitic basalt; porosity = 
0.03; strain rate = 10-5 s-1 

Schaefer et 
al. 2015 

0 0 0 935 167 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.02; strain rate = 10-

1 s-1 
Schaefer et 

al. 2015 
0 0 0 935 162 Brittle Pacaya (Guatemala) basalt; 

porosity = 0.05; strain rate = 10-

1 s-1 

Schaefer et 
al. 2015 

0 0 0 935 126 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.06; strain rate = 10-

5 s-1 

Schaefer et 
al. 2015 

0 0 0 935 59 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.19; strain rate = 10-

1 s-1 

Schaefer et 
al. 2015 

0 0 0 935 49 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.16; strain rate = 10-

5 s-1 

Schaefer et 
al. 2015 

0 0 0 935 93 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.19; strain rate = 10-

1 s-1 

Schaefer et 
al. 2015 

0 0 0 935 44 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.19; strain rate = 10-

5 s-1 

Schaefer et 
al. 2015 

0 0 0 935 75 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.23; strain rate = 10-

1 s-1 

Schaefer et 
al. 2015 

0 0 0 935 64 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.21; strain rate = 10-

5 s-1 

Schaefer et 
al. 2015 

0 0 0 935 28 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.32; strain rate = 10-

1 s-1 

Schaefer et 
al. 2015 

0 0 0 935 16 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.31; strain rate = 10-

5 s-1 

Zhu et al. 
2016 

20 10 10 25 281 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

20 10 10 25 240 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 20 10 10 25 221 Brittle Etna basalt (EB_I); porosity = 



2016 0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
20 10 10 25 327 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

30 10 20 25 329 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

30 10 20 25 361 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

40 10 30 25 399 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

50 10 40 25 403 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

60 10 50 25 500 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

60 10 50 25 493 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

60 10 50 25 561 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

80 10 70 25 563 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

90 10 80 25 560 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

90 10 80 25 574 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

90 10 80 25 655 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

110 10 100 25 658 Brittle Etna basalt (EB_I); porosity = 
0.04; strain rate = 10-5 s-1 

Zhu et al. 
2016 

160 10 150 25 753 Brittle Etna basalt (EB_I); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

60 10 50 25 365 Brittle Etna basalt (EB_II); porosity = 
0.08; strain rate = 10-5 s-1 

Zhu et al. 
2016 

90 10 80 25 349 Brittle Etna basalt (EB_II); porosity = 
0.08; strain rate = 10-5 s-1 

Zhu et al. 
2016 

20 10 10 25 224 Brittle Etna basalt (EB_III); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

60 10 50 25 434 Brittle Etna basalt (EB_III); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

90 10 80 25 543 Brittle Etna basalt (EB_III); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

110 10 100 25 640 Brittle Etna basalt (EB_III); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

160 10 150 25 798 Brittle Etna basalt (EB_III); porosity = 
0.05; strain rate = 10-5 s-1 

  526 
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