La and Ca-Doped A-site Deficient Strontium Titanates Anode for Electrolyte Supported

Direct Methane Solid Oxide Fuel Cell

Pankaj Kr. Tiwari^a, Xiangling Yue^b, John TS Irvine^b, Suddhasatwa Basu^a*

^a Department of Chemical Engineering, Indian Institute of Technology Delhi

New Delhi 110016, India

^b School of Chemistry, University of St. Andrews, Fife KY16 9ST, Scotland, UK

*Corresponding author, email: sbasu@iitd.ac.in; Tel. 91 11 26591035

Abstract

Nickel-yttria stabilized zirconia (Ni-YSZ) cermet anodes for solid oxide fuel cells (SOFC)

possesses excellent catalytic properties and stability for H₂ oxidation but not for hydrocarbons

as it results in fast carbon deposition in absence of excess steam. In the present work, A-site

deficient porous LSCT_A- (La_{0.2}Sr_{0.25}Ca_{0.45}TiO₃) anode has been fabricated using the

environment friendly, aqueous tape casting method followed by the same procedure for the

dense YSZ electrolyte and YSZ porous scaffold as cathode matrix. The anode, electrolyte, and

porous cathode matrix have been laminated together and sintered up to 1350 °C. After sintering,

nitrate precursors of La, Sr, Co and Fe are infiltrated inside the porous YSZ cathode matrix to

form the perovskite phases of La_{0.8}Sr_{0.2}CoO₃ (LSC) and La_{0.8}Sr_{0.2}FeO₃ (LSF). The as fabricated

electrolyte supported SOFCs have been tested in H₂ and CH₄ fuel at 800 °C. The electrolyte

supported cell 15%LSF-5% LSC-YSZ/YSZ/4%Ni-6 %CeO₂-LSCT_A. gives maximum power

density of 328 mW cm⁻² for 3 h in H₂, but in CH₄ the performance decreased to 165 mW cm⁻²

even though a sustained open circuit voltage of ~1V obtained during H₂ and CH₄ operation.

The morphology of the anode before and after cell testing has been analyzed using scanning

electron microscope followed by X-ray diffraction studies to understand phase changes during

fabrication and testing.

Key Words: A-site deficient SrTiO₃, Direct Methane SOFC, LSCT_A. anode.

1

Introduction

Sintering of nickel (Ni) particles at elevated temperature and coke formation in hydrocarbon fuels restrict the application of nickel-yttria stabilized zirconia (Ni-YSZ) composite anode matrices in a solid oxide fuel cell (SOFC). The development of anode catalyst for direct hydrocarbon SOFC with improved electrochemical properties and durability remains as a major concern towards its commercialization. Alternative anode materials such as copperceria-YSZ have been developed, which significantly reduces coke formation¹⁻³. Thermal instability and poor electrochemical activity of copper-ceria-YSZ anodes at the SOFC operation temperature (>700 °C) necessitates the use of new strategies to improve the performance of anodes fed with hydrocarbon, e.g., methane, n-propane and n-butane directly ⁴⁻⁸. Earlier it was shown that Ni coarsening can be prevented due to sintering by using strong metal support interaction between Ni and other transition metal oxides (TMO) e.g., TiO₂, CeO₂, Nb₂O₅ ⁹⁻¹². Strontium titanate (SrTiO₃) has been proven to be a potential alternative to Ni based anode as it possesses desirable thermal and chemical stability and shows mixed ionic and electronic conducting (MIEC) behavior at low oxygen partial pressure as well as restricting coke formation¹³⁻¹⁵. SrTiO₃ perovskite structure has stability and flexibility to incorporate cations with variable oxidation states, which in turn provides enhanced electrocatalytic property and electronic conductivity. Ti⁴⁺/Ti³⁺ redox couple in the reducing atmosphere can accept electrons from hydrocarbon or H₂ and promote dissociation. Oxygen-2p orbital and the empty conduction band from titanium-3d orbitals constitute the electronic energy band of SrTiO₃. Doping with trivalent atoms such as La³⁺ and Y³⁺ in place of Sr²⁺ makes it n-type semiconductor having higher electrical conductivity than the pure SrTiO₃ (ST). In order to maintain the electroneutrality, the substitution of Sr²⁺ with La³⁺ can be compensated by introducing the extra oxygen beyond the ABO3 stoichiometry under oxidizing conditions, defined as 'oxygen excess' La_xSr_{1-x}TiO_{3+x/2} or creating A-site vacancies, as La_xSr_{1-3x/2}TiO₃,

'A-site deficient'. Lanthanum is an appropriate donor dopant because its ionic radius is similar to that of Sr^{2+} . Doping at A-site or B-site in $SrTiO_3$ improves the electrical and ionic conductivity of the system¹⁶. It has been reported that reduced $La_{0.2}Sr_{0.7}TiO_3$ (LST_{A-}) gives high electronic conductivity of 39.75 S cm⁻¹ at 700 °C¹⁷. It may also be noted that lanthanum and yttrium-doped $SrTiO_3$ do not undergo solid state reactions with YSZ even after sintering at 1450 °C¹⁸ and hence suitable to use as an anode with YSZ as the electrolyte.

The introduction of calcium (Ca) into LST_A- decreases the unit cell volume and facilitates the reduction of fuel¹⁶. Calcium doping also helps in lowering the sintering temperature of LST_A-backbone. It has been reported that Ca doped LST_A- (La_{0.20}Sr_{0.25}Ca_{0.45}TiO₃) gives maximum electronic conductivity of 27.53 S cm⁻¹ at 900 °C. Moreover A-site lanthanum doping improves the electronic conductivity but shows low ionic conductivity and poor catalytic activity. Low catalytic activity can be improved by infiltration of various transition metal and metal oxides such as Cu, Ni and CeO₂^{16, 19, 20}. It is shown that presence of Ni and CeO₂ in LSCT_A- backbone decreases the polarization losses and provides the stable performance of the cell during redox cycling²¹.

In the present work, using environment friendly, aqueous processes, an A-site deficient LSCT_{A-} anode backbone is fabricated, characterized and used in YSZ electrolyte supported SOFC. Co-sintering of LSCT_{A-} and dense YSZ has successfully done and as fabricated electrolyte and electrodes layers is perfectly adhered to each other after sintering at 1350 °C. The aqueous tapecasting along with co-sintering is the novelty of the present work towards direct methane SOFC operation. Aqueous tapecasting is an environment friendly technique as it does not require any toxic solvent. LSCT_{A-} backbone is impregnated with nitrate precursors of Ni and/or CeO₂ to increase the catalytic activity and the cell performances have been determined in H₂ and dry CH₄ at 800 °C. As discussed earlier that YSZ electrolyte does not

react with LSCT_A- under normal co-sintering. To avoid reaction between cathode and electrolyte during sintering of fabricated cell, the cathode is impregnated with the catalyst in pre-sintered YSZ porous scaffold. A 15% LSF-5%LSC-YSZ cathode has been used in all the cells ²¹. Finally, current-voltage characteristics obtained is analyzed using anode morphology, structure and electrochemical impedance spectroscopy. The current work explores the potential of La and Ca co-doped A site deficient SrTiO₃ anode for direct methane SOFC.

Experimental

Button SOFC cells were fabricated by an environment friendly aqueous tape casting and cosintering of dense YSZ electrolyte, porous electrodes of LSCT_A- anode and YSZ porous scaffold for cathode ¹⁶. The LSCT_A- (Topsoe fuel cells) powder for the anode or YSZ powder for cathode were mixed with graphite and milled for 24 h by adding de-ionized water as solvent and hypermer KD 6 as a dispersant. Subsequently, poly(ethylene glycol) and glycerol as plasticizer, polyvinyl alcohol and ethoxylated 2,4,7,9-tetra ethyl 5 decyn-4,7-diol as defoamer were added to the slurry and milled further for 24 h. The suspension was de-aired and cast to produce the green tape. In a similar way, dense YSZ green tapes were fabricated without the addition of graphite. After drying, green tapes were laminated all together to produce porous YSZ/denseYSZ/porous LSCT_A- green tape. The green tapes were cut into the appropriate size and co-sintered at 1350 °C for 4 h in air. The active area of the cell was measured to be 0.5 cm². The sintered anode was reduced in H₂ atmosphere at 950 °C and the color of LSCT_Aanode changed from light yellow to bluish black. The YSZ porous scaffold for cathode was impregnated with nitrate precursors of La, Sr and Fe (for La_{0.8}Sr_{0.2}FeO₃, LSF) and La, Sr and Co (for La_{0.8}Sr_{0.2}CoO₃, LSC) successively and calcined at 500 °C in air. The final loading in cathode matrix was 15 wt % LSF and 5 wt % LSC. One of the perovskite phase matched with JCPDS file #48-0124, which corresponds to La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-δ}. It might be possible that infiltrated LSF and LSC precursors formed La_xSr_{1-x}Co_yFe_{1-y}O₃ perovskite phase during heat

treatment. Further, the peak at 2θ angle of 25° corresponds to La(Co_{0.42}Fe_{0.58}O₃) as reported in JCPDS file # 01-074-9369. CeO₂ and/or Ni catalyst were impregnated in LSCT_A- porous anode matrix using Ce(NO₃)₃.6H₂O and Ni(NO₃)₂.6H₂O solution²². Multiple impregnation and calcination at 500 °C were carried out to get appropriate loading. Silver wires, used as current collectors, were connected to both the electrodes using silver paste. The cell was sealed onto a ceramic tube keeping anode towards the inner side of the tube with the help of Aremco, Ceramabond 552. Reduction environment, 5% H₂-95% N₂ gas mixture was fed into the anode chamber till the operating temperature reached (800 °C) then pure H₂ or dry CH₄ was supplied with a flow rate of 40-50 mL/min. In cathode side, atmospheric air was used as the oxidant. The current-voltage characteristics followed by impedance studies were done using potentiostat/galvanostat (Autolab, Metrohm). The frequency range for impedance spectroscopy was 0.01 Hz to 1 MHz at open circuit voltage (OCV). The microstructure, morphology and elemental mapping of the anode before and after cell operation had been analyzed by scanning electron microscope (SEM) and energy dispersive x-ray spectroscopy (EDX) using Zeiss EVO 50. The particle size and selected area diffraction patterns were observed using high resolution transmission electron microscope (HR-TEM) by Technai G² 200 KV, FEI. The phase purity and crystallite size of a constituent of the electrode had been analyzed using X-ray diffraction (XRD) (PW 2040/60, X'Pert PRO, Netherland) before and after cell testing.

Results and Discussion

Physical Characterization of LSCT_A- Anode

The sintered LSCT_A- anode pellet analyzed using SEM is shown in fig. 1 (a-d). It is observed in fig. 1a that LSCT_A- pellet has well-sintered grains with sufficient porosity (33%). The porosity value of 30-40% in anode is sufficient to provides high contact surface between the gas phase and anode-electrolyte material as well as shorten the diffusional length²³. In the

present case the porosity is \sim 33%, which is estimated using Archimedes' principle after sintering of the anode.

Terrace like feature is observed in fig. 1 (b), which is the characteristics feature of A-site deficient SrTiO₃ perovskites²⁴. Average particle size is found to be ~5 µm. Morphological and elemental analyses of LSCT_A anode pellets reduced at 800 and 950 °C are presented in fig. 1 (c-d). SEM analyses show well patterns LSCT_A- backbone grains with sufficient porosity and structural stability. The average particle size of reduced LSCT_A- is ~5 μm. Terrace like pattern, which is observed in unreduced LSCT_A- (fig. 1b) pellet, is still present in reduced LSCT_Apellet. Fig. 2 presents SEM and corresponding elemental mapping through EDX of reduced LSCT_A- anode pellet. Elemental mapping shows a uniform distribution of constituents throughout the LSCT_A- backbone structure. Further, EDX analysis confirmed the presence of La, Sr, Ca, Ti and O in the backbone structure. HR-TEM of reduced LSCT_A- pellet is shown in fig. 3 (a-b). Fig. 3a shows HRTEM of LSCT_A- at lower magnification. In fig. 3a the surface of LSCT_A- can be seen and inset of fig. 3a shows grains of LSCT_A-. Fig. 3b is the magnified view of fig. 3a, where fringes correspond to LSCT_A- is observed. The homogenous lattice patterns in the HRTEM and the regular crystal diffraction pattern in the selected area electron diffraction (SAED) seen in inset of fig. 3b indicate the crystalline nature and regular shape of LSCT_A- particles.

Fig. 4 shows XRD pattern of unreduced and reduced sintered LSCT_A- pellets. Most of the diffraction peaks correspond to cubic symmetry. Positions of all the peaks are almost unchanged in reduced and unreduced samples, which indicate that composition retained its perovskite structure and no extra peaks are observed. It has been observed that A-site deficient La_{0.2}Sr_{0.7}TiO₃ exhibits cubic symmetry ^{16, 25} but Ca²⁺ doping to lanthanum strontium titanates reduces the symmetry from cubic through tetragonal to orthorhombic. The replacement of larger Sr²⁺ (1.44 Å) with smaller size Ca²⁺ (1.35 Å) is likely to increase the distortion of

perovskite structure by decreasing the tolerance factor from 0.948 to cubic LSCT_A- to 0.932 for orthorhombic LSCT_A- 16 . The peak at 38.4 (121) indicates the structure change from ideal cubic to lower symmetry. During reduction of Ti^{4+} (0.60 Å) to Ti^{3+} (0.67 Å) removing oxygen anions from the lattice could result in the decrease of the lattice parameter.

Cell testing

Electrolyte supported cell (15%LSF-5%LSC-YSZ/YSZ/LSCT_{A-}) with LSCT_{A-} anode is tested in H₂ and CH₄ fuels at 800 °C for 7 h to assess the electrocatalytic activity of LSCT_A-. Fig. 5 shows the impedance analysis of the cell. Initially, at 800 °C, the cell shows 0.76 and 0.26 ohm cm² ohmic and polarization resistances in H₂. A decrease in polarization loss at OCV is observed with cell operation time. Impedance analyses at OCV suggest that as exposure to H₂ increases, the resistance decreased and resulted in improved performance. Initially, the cell is operated in H₂ fuel at 800 °C for 3 h. The improvement in cell performance indicates that the reduction of LSCT_A- is still going on in H₂ atmosphere giving an enhanced catalytic activity of anode. To distinguish the impedance spectra, plots correspond to cell run between 0-3 h in H₂ is shown in inset of fig. 5b. After 3 h in H₂, dry CH₄ is supplied as fuel to the anode side. After the cell is operated in dry CH₄ for 3 h at 800 °C, CH₄ is replaced by H₂. Coking did not affect the cell performance. Although the ohmic resistance in dry CH₄ is comparable to that H₂ atmosphere but polarization losses are almost doubled. After testing in CH₄, improvement in performance is observed in H₂ at 7 h of operation. The ohmic resistance is unchanged but the polarization resistance has been reduced from initial value 0.26 to 0.16 ohm cm². The polarisation resistance in the present study is 0.20 ohm cm², which is much lower than the reported value 1.86 ohm cm² ^{22, 26}. It can be inferred from above mentioned analyses that LSCT_A- is catalytically not very active for methane decomposition but it does not promote the coke deposition during operation as evident from the stable performance after dry CH₄ exposure for 3 h. The low CH₄ fuel utilization i.e. 2 % in case of complete oxidation and 8 %

in case of partial oxidation at 800 °C in SOFC test condition is observed. Therefore the porous LSCT_A- anode is impregnated with an active material to increase the catalytic activity in CH₄ fuel and they are discussed below.

To enhance the catalytic activity in CH₄, 6% CeO₂ is impregnated to porous LSCT_A- anode and tested in electrolyte supported cell (15%LSF-5%LSC-YSZ/YSZ/6%CeO₂-LSCT_A-) in H₂ and dry methane at 800 °C. It is observed from impedance analyses at OCV, shown in fig 6, that ohmic (0.69 to 0.72 ohm cm²) as well as polarisation resistance does not change significantly in H₂ between 0-3 h, which might be due to the better interconnection between CeO₂ particles on LSCT_A- backbone. The presence of CeO₂ enhances the ionic conductivity in anode backbone. After 3 h of operation in dry CH₄, ohmic resistance increased to 0.77 from 0.69 ohm cm² in H₂ fuel at 7 h of cell operation. The lower performance of the cell in CH₄ is due to sluggish reaction associated with the dissociation of CH₄. The polarisation resistance at 0 h and 3 h are 0.13 and 0.12 ohm cm² and even after 3h of CH₄ exposure the polarisation resistance in H₂ at 7 h is only 0.14 ohm cm². Negligible loss (0.01 ohm cm²) in polarisation resistance indicates that performance degradation under dry CH₄ is not drastic after CeO₂ is added to LSCT_A. Impedance spectra correspond to cell run in H₂ before and after CH₄ exposure is presented in inset of fig. 6.

Morphological and elemental analysis of the cell after 7 h of operation is presented in fig. 7(a-d). The thickness of the anode, electrolyte and cathode are 100, 300 and 100 μm, respectively, as shown in fig 7a. The electrolyte is dense and adhered properly to both the porous electrodes and no delamination or cracks have been observed. The uniform distribution of CeO₂ particles on LSCT_A. backbone is seen from fig. 7b. The presence of a constituent element is confirmed by EDX analysis of anode matrix after the operation as shown in fig 7c. Proper adherence between cell components as shown in fig. 7a as well as stable electrodes presented in fig. 7b and 7d after cell testing indicate that aqueous tapecasting and co-sintering method provide

robust structure, which can sustain CH₄ exposure during accelerated testing at 800 °C. It may be noted that porosity and morphology can be controlled using aqueous tapecasting. The presence of some cobalt is observed, which may be due to spillover from cathode matrix during impregnation. In present work the spillover of Co from cathode side to anode is too low to affect the performance. The role of Co in anode is not studied but it is reported that infiltration or doping of Co enhance the performance of Ni based anode ²⁷⁻²⁸. The presence of carbon on LSCT_A- backbone is due to the decomposition of dry CH₄ during cell operation (fig. 7 d). The uniform distribution of constituent elements in anode matrix is noted from the SEM and elemental mapping presented in fig. 7d.

To increase the performance of catalytic activity of LSCT_A- anode matrix further 4% Ni is impregnated along with 6% CeO₂. The current-voltage performance of the electrolyte supported cell (15%LSF-5%LSC-YSZ/YSZ/6%CeO₂-4%Ni-LSCT_{A-}) at 800 °C in H₂/CH₄ and impedance analysis are shown in fig. 8 (a-b). The maximum power density obtained is 310 mW cm^{-2} (636 mA cm^{-2}) initially, which increases up to 328 mW cm^{-2} (652 mA cm^{-2}) in H₂ at 3 h of cell operation due to continuous reduction of anode active material. The improvement in performance indicates that the Ni particles in the presence of CeO₂ are not agglomerated due to sintering at elevated temperature. This may suggest strong metal support interaction (SMSI) between Ni and CeO₂ preventing coarsening of Ni ²⁹. A similar behavior between Ni and TiO₂ on YSZ backbone has been reported earlier 9-10. After cell operation in H₂, dry CH₄ fuel is fed into the anode chamber. The maximum power density obtained is 250 mW cm⁻² (495 mA cm⁻¹ ²) in CH₄, which is less than that of the performance shown in H₂. The performance of the cell degraded significantly in 3 h of operation in dry CH₄ exposure. The maximum power density reduced to 165 mW cm⁻² (309 mA cm⁻²) after 3 h of cell testing in dry CH₄, which is half of the performance shown by the cell in H₂. The degradation in performance is due to the coke deposition in active sites (Ni) of the anode. The degradation in performance may be arrested if humidified CH₄ fuel is used. It is observed from impedance plot in Fig 8b that between 0-3 h of cell operation in H₂, the ohmic resistance is almost constant whereas polarization resistance at OCV reduces with time. The ohmic resistance in the presence of dry CH₄ decreased to 0.56 ohm cm² from that of 0.62 ohm cm² in H₂ after 3 h of operation. With the increase in operation time, the ohmic resistance increases in dry CH₄ but still lower than that obtained in H₂. The decrease in ohmic resistance may be due to deposition of carbon in the interstices of anode particles. In inset of fig.8b impedance corresponds to operation in H₂ is presented to distinguish the spectra.

Figure 9 (a-d) represents the morphology, EDX and elemental analyses of the cell components after 7 h operation. Well-connected fine particles of LSF and LSC cathode catalysts in pores of YSZ are observed from SEM micrographs in fig. 9a. The average particle size in the cathode is ~100 nm. SEM micrograph (fig. 9b) shows the dispersed Ni/CeO₂ in the pores of LSCT_A-anode. It is difficult to distinguish between Ni and CeO₂ but from earlier observation, it may be inferred that visibly significant presence of crystal particles represents Ni. The average particle size of Ni/CeO₂ impregnated LSCT_A- anode catalyst is between 100-200 nm and there is no agglomeration of Ni is observed. The constituents of Ni/CeO₂ impregnated LSCT_A- anode matrix is confirmed by the EDX analysis as shown in fig. 9c. The elemental mapping confirmed the uniform distribution of different elements throughout the anode matrix (Fig. 9d).

After cell operation Ni-CeO₂-LSCT_A- anode is separated out and a suspension of particles is prepared in isopropanol to carry out HR-TEM analysis. HR-TEM, EDX and SAED patterns of anode after cell operation are presented in fig. 10(a-c). No change in morphology of the anode material is observed after cell operation. A well-dispersed Ni/CeO₂ particles in LSCT_A- is observed in fig. 10a. The diffraction pattern corresponding to crystalline nature of LSCT_A- is shown in the fig. 10b. EDX confirmed the presence of La, Sr, Ca, Ti, O, Ni and Ce in the anode (fig. 10c). The peak corresponds to Cu is due to the Cu-grid used during analysis. By comparing

SAED of fig. 3b and fig. 10d, it is observed that other than regular crystal diffraction pattern, a separate pattern correspond to Ni/CeO₂ is also present. XRD pattern corresponds to Ni/CeO₂ impregnated LSCT_A. anodes have been shown in fig. 11. The peaks correspond to LSCT_A-, CeO₂ and Ni/NiO are identified. No alloy formation between impregnated catalysts and LSCT_A- is observed. The unique perovskite structure of LSCT_A- remains intact with no change in impregnated CeO₂ and Ni/NiO after cell testing. A small shift in peaks position towards lower angle and additional peaks of Ni have been observed in anode after SOFC operation, which may be due to change in microstructure during reduction at elevated temperature. The average crystallite size of LSCT_A- anode estimated using scherrer formula ($t = K\lambda/\beta\cos\theta$, where t is the crystallite size, K is the dimensionless shape factor, λ is the wavelength of Cu K α , 1.54 Å, β is the full width at half maxima and θ is the bragg angle in degrees) is 65 nm.

Conclusion

Environment friendly aqueous tapecasting followed by co-sintering of green tape has been successfully implemented to fabricate button cells. Aqueous tapecasting provided porous and stable LSCT_A- electode and dense YSZ electrolyte. Electrolyte supported solid oxide fuel cell with LSCT_A- anode is tested in H₂ and dry CH₄ fuel. LSCT_A- works reasonably well in H₂ fuel but exhibited low performance in dry CH₄. However, 6% CeO₂ impregnated in the LSCT_A-backbone anode shows significant improvement in performance of the electrolyte supported cell in H₂ and CH₄ at 800 °C. It is observed that coke deposition in 6% CeO₂ impregnated in the LSCT_A- anode is not detrimental to CH₄ oxidation. In order to improve the performance of the cell in dry methane, 4% Ni is infiltrated in 6% CeO₂-LSCT_A- anode. Although performance improved from 194 to 328 mWcm⁻² at 800 °C for H₂, a similar improvement in performance is not observed in dry CH₄. Initial performance in dry methane is 250 mW cm⁻², which reduces to 165 mW cm⁻² in 3 h. Ni may have accelerated the coke deposition at the active sites resulting

loss in performance. Nevertheless, a maximum power density of 165 mW cm⁻² is maintained even after 3 h of operation in dry CH₄. It may be noted that the performance of the cell is reasonably good for a cell with electrolyte thickness of 300 µm. Thus, 4% Ni in combination with 6% CeO₂ enhances the cell performance and the catalytic activity of LSCT_A- anode towards oxidation of CH₄ can be recommended as active anode catalysts for direct CH₄ SOFC.

Acknowledgement: Authors would like to thank UKIERI and DST for financial help during execution of the project.

References

- 1. R. J. Gorte and J. M. Vohs, J. Catalysis, **216**, 477 (2003).
- 2. R. J. Gorte, S. Park, J. M. Vohs and C. Wang, Adv. Mater., 12(19), 1465 (2000).
- 3. H. Kim, S. Park, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 148(7), A693 (2001).
- 4. H. Kim, C. Lu, W. L. Worrell, J. M., Vohs and R. J., Gorte, J. Electrochem. Soc., **149**, A247 (2002).
- 5. S. K. Lee, A. Kipyung, J. M. Vohs and R. J. Gorte, Electrochem. and Solid-State Letters, **8**, A48 (2005).
- 6. G. Kaur and S. Basu, J. Power Sources, **241**, 783 (2013).
- 7. G. Kaur and S. Basu, Fuel cells, **14**(6), 1006 (2014).
- 8. G. Kaur and S. Basu, Int. J. Energy Res., **39**, 1345 (2015).
- 9. C. A. Singh, L. Bansal, P. Tiwari and V. V. Krishnan, ECS trans., 25(2), 897 (2009).
- 10. P. Tiwari and S. Basu, Int. J. Hydrogen Energy, **38**, 9494 (2013).
- 11. P. Tiwari and S. Basu, J. Solid State Electrochem., 18:805 (2014).
- 12. P. Tiwari and S. Basu, ECS Trans., **57**(1), 1545 (2013).
- 13. C. Sun and U. Stimming, J. Power Sources, 171, 247 (2007).
- 14. S. Tao and J. T. S. Irvine, J. Mater. Chem., 12, 2356 (2002).

- 15. S. W. Tao and J. T. S. Irvine, Chemical Record, 4(2), 83 (2004).
- 16. A. D. Aljaberi and J.T.S. Irvine, J. Mater. Chem. A, 1, 5868 (2013).
- 17. C. D. Savaniu and J.T.S. Irvine, Solid State Ionics, **192**, 491 (2011).
- 18. P. Tiwari and S. Basu, ECS Trans., 68 (1), 1435 (2015).
- 19. A. Yaqub, C. D. Savaniu, N. K. Janjua and J. T. S Irvine, J. Mater. Chem. A, 1, 14189 (2013).
- 20. P. Tiwari, J. T. S. Irvine and S. Basu, ECS Trans., **78** (1), 1195 (2017).
- 21. M. C. Verbraeken, B. Iwanschitz, A. Mai and J. T. S. Irvine, J. Electrochem. Soc., 159 (11), F757 (2012).
- 22. L. Lu, M. C. Verbraeken, M. Cassidy and J. T. S. Irvine, ECS Trans., 57(1), 1415 (2013).
- 23. W.Z. Zhu and S.C. Deevi, Mater. Sci. and Engin., A362, 228 (2003).
- 24. D. Neagu and J. T. S. Irvine, Comprehensive Inorganic Chemistry II, 397 (2013).
- 25. C. D. Savaniu and J.T.S. Irvine, J. Mater. Chem., 19, 8119 (2009).
- 26. L. Lu, C. Ni, M. Cassidy and J.T.S. Irvine, J. Mater. Chem., 4, 11708 (2016).
- 27. T. Guo, X. Dong, M. M. Shirolkar, X. Song, M. Wang, L. Zhang, M. Li, and H. Wang, Appl. Mater. Interfaces 6, 16131 (2014).
- S. H. Cui, J. H. Li, X. W. Zhou, G. Y. Wang, J. L. Luo, K. T. Chuang, Y. Bai and L. J. Qiao, J. Mater. Chem. A, 1, 9689 (2013).
- 29. J. Qiao, K. Sun, N. Zhang, B. Sun, J. Kong and D. Zhou, J. Power Sources, 169, 253 (2007).

List of Figures

- 1. Fig. 1 SEM micrographs (a) lower magnification, (b) higher magnification of unreduced LSCT_A- pellet sintered at 1350 °C in air; SEM micrographs of LSCT_A- pellet reduced in H₂ atmosphere at (c) 800 °C and (d) 950 °C.
- 2. Fig. 2 SEM, Elemental mapping and EDX of reduced LSCT_A- pellet.
- 3. Fig. 3 (a-b) HRTEM Micrograph and SAED of reduced LSCT_A- anode.
- 4. Fig. 4 XRD patterns of sintered LSCT_A- anode pellets.
- 5. Fig. 5 EIS characteristics at OCV of electrolyte supported SOFC (15%LSF-5%LSC-YSZ/YSZ/LSCT_{A-}) for 7 h.
- 6. Fig. 6 EIS characteristics at OCV of electrolyte supported SOFC (15%LSF-5%LSC-YSZ/YSZ/6%CeO₂-LSCT_{A-}) for 7 h.
- 7. Fig. 7(a) Fracture surface of the cell after operation (b) Morphology (c) EDX (d) SEM and Elemental mapping of LSCT_A. anode impregnated with 6%CeO₂ after cell operation of 7 h.
- 8. Fig. 8(a) i-V, i-P and (b) EIS characteristics at OCV of electrolyte supported SOFC (15%LSF-5%LSC-YSZ/YSZ/6%CeO₂-4%Ni-LSCT_{A-}) for 7 h.
- 9. Fig. 9 (a) SEM of porous YSZ cathode matrix impregnated with 15%LSF + 5%LSC, after cell testing (b) Morphology, (c) EDX and (d) SEM and Elemental mapping of LSCT_A- anode impregnated with 6% CeO₂-4% Ni after cell operation of 7 h.
- 10. Fig. 10 (a-d) HRTEM, SAED and EDX of LSCT_A- anode impregnated with 6%CeO₂-4% Ni after cell operation of 7 h.
- 11. Fig.11 XRD patterns of 6%CeO₂-4%Ni-LSCT_A. anodes (i) before and (ii) after cell testing.

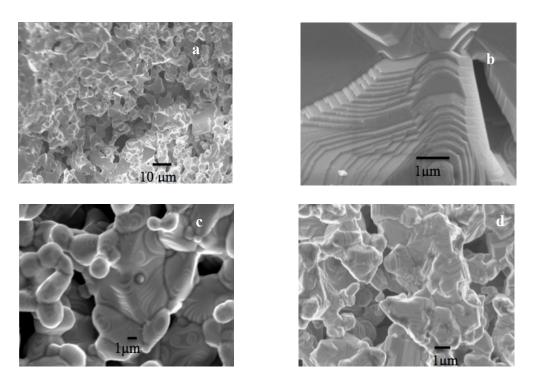


Fig. 1 SEM micrographs (a) lower magnification, (b) higher magnification of unreduced LSCT_A- pellet sintered at 1350 °C in air; SEM micrographs of LSCT_A- pellet reduced in $\rm H_2$ atmosphere at (c) 800 °C and (d) 950 °C.

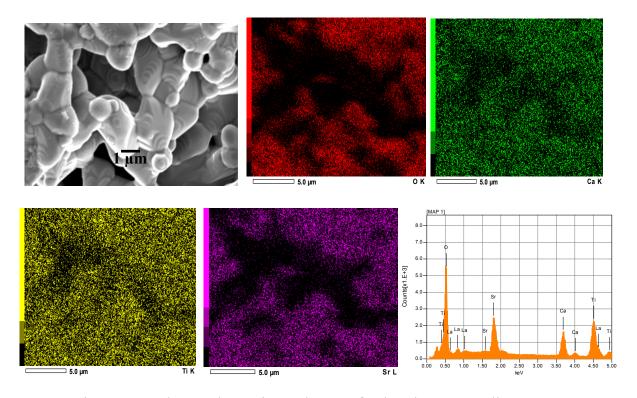


Fig. 2 SEM, Elemental mapping and EDX of reduced LSCT_A- pellet.

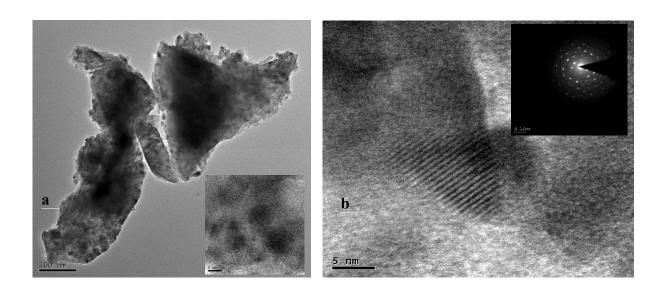


Fig. 3 (a-b) HRTEM Micrograph and SAED of reduced LSCT_{A-} anode.

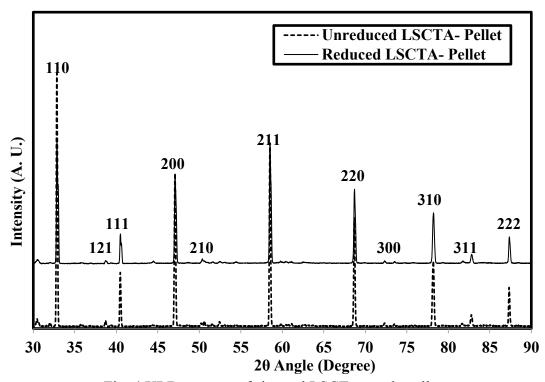


Fig. 4 XRD patterns of sintered LSCT $_{\!A^{\!\scriptscriptstyle -}}$ anode pellets.

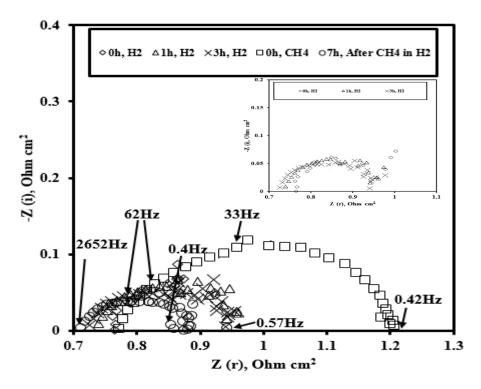


Fig.5 EIS characteristics at OCV of electrolyte supported SOFC (15%LSF-5%LSC-YSZ/YSZ/LSCT_A-) for 7 h.

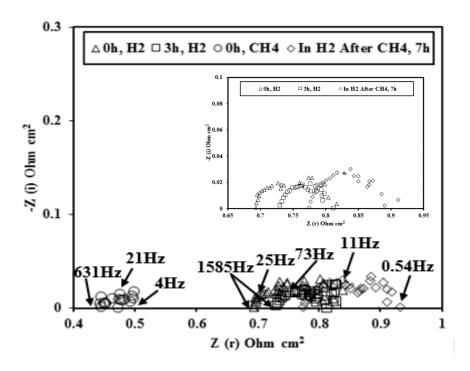


Fig. 6 EIS characteristics at OCV of electrolyte supported SOFC (15%LSF-5%LSC-YSZ/YSZ/6%CeO $_2$ -LSCT $_A$ -) for 7 h.

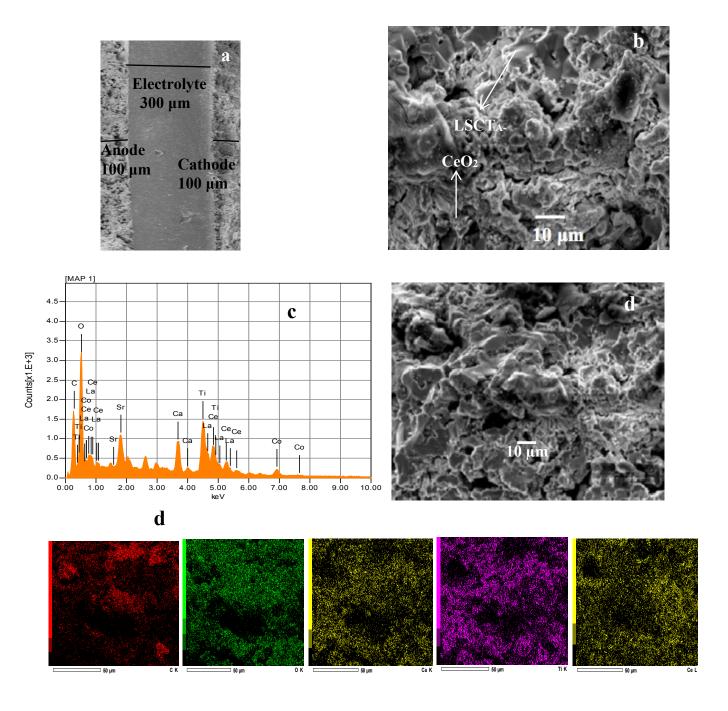
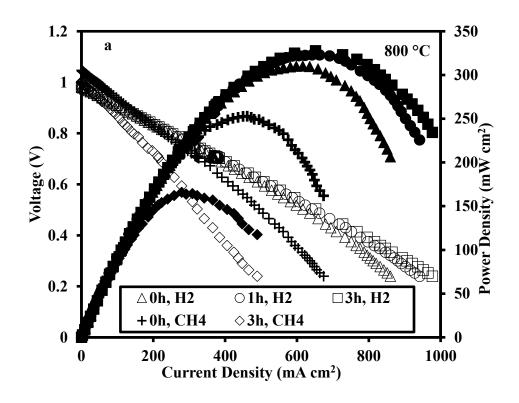



Fig. 7(a) Fracture surface of the cell after operation (b) Morphology (c) EDX (d) SEM and Elemental mapping of LSCT_A- anode impregnated with 6%CeO₂ after cell operation of 7 h.

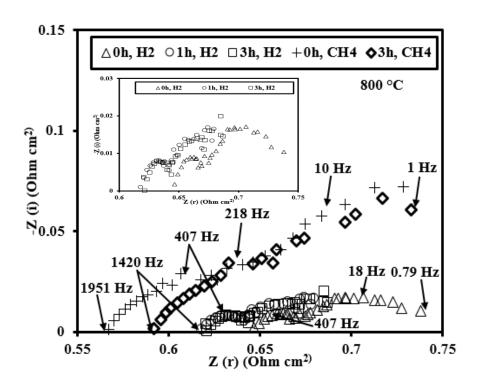


Fig. 8(a) i-V, i-P and (b) EIS characteristics at OCV of electrolyte supported SOFC (15%LSF-5%LSC-YSZ/YSZ/6%CeO₂-4%Ni-LSCT_{A-}) for 7 h.

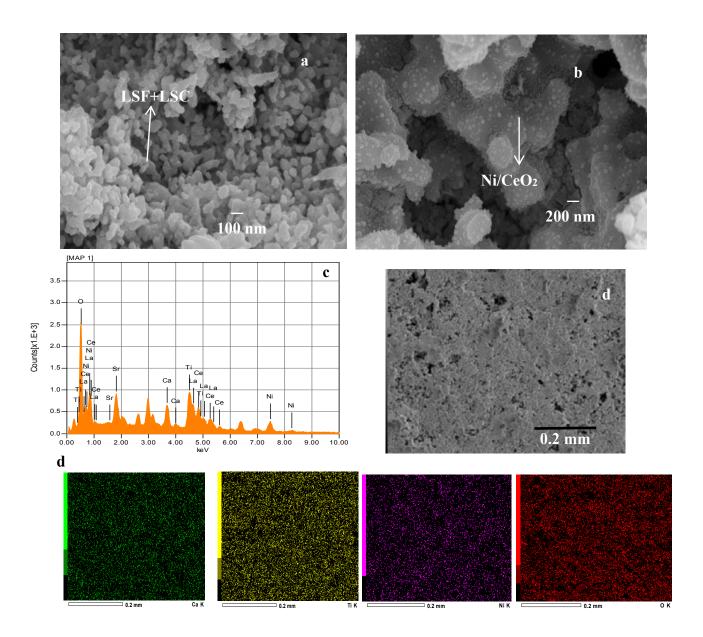


Fig. 9 (a) SEM of porous YSZ cathode matrix impregnated with 15%LSF + 5%LSC, after cell testing (b) Morphology, (c) EDX and (d) SEM and Elemental mapping of LSCT_{A-} anode impregnated with 6% CeO₂-4% Ni after cell operation of 7 h.

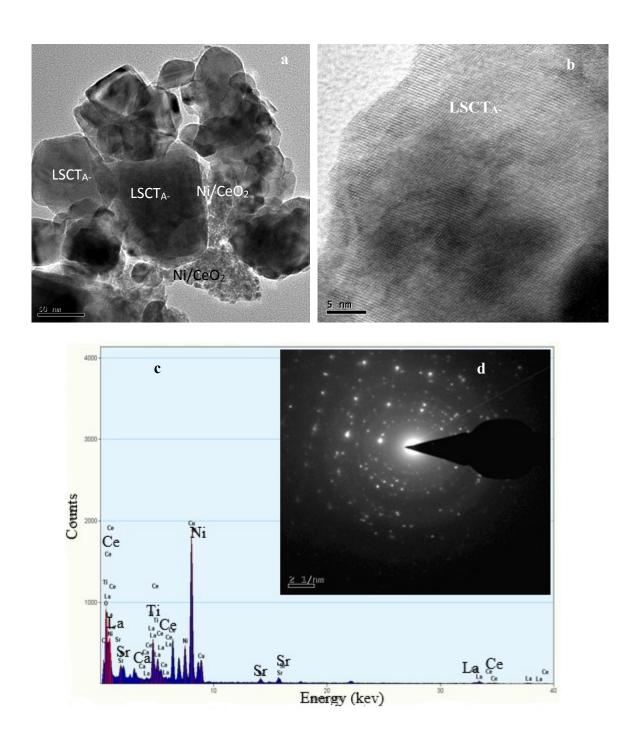


Fig. 10 (a-d) HRTEM, SAED and EDX of LSCT $_{\!\!A^{\!\scriptscriptstyle -}}$ anode impregnated with 6%CeO $_{\!\!2}$ -4% Ni after cell operation of 7 h.

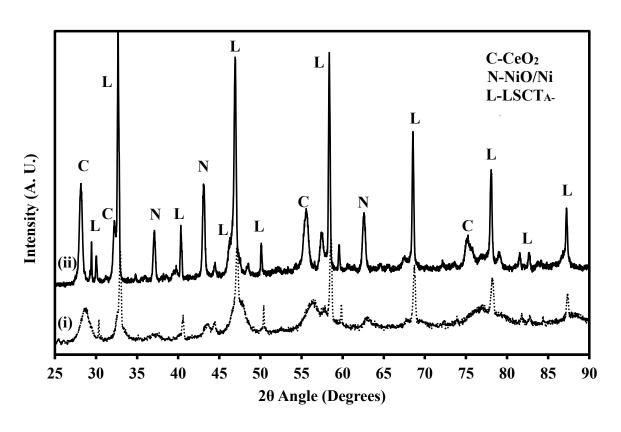


Fig.11 XRD patterns of $6\%CeO_2$ -4%Ni-LSCT_{A-} anodes (i) before and (ii) after cell testing.