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ABSTRACT

The Neoproterozoic Jiangnan orogenic belt delineates the suture zone between the Cathaysia and Yangtze blocks of
the South China Craton. The western part of the belt, in the Longsheng region, consists of a disrupted mafic-ultramafic
assemblage of pillow basalt, gabbro, diabase, and peridotite along with siliceous marble, ophicalcite, and jasper mixed
with basalt. Significant talc deposits occur on the margins of the ultramafic bodies as well as in the transition zone
between marble and basalt. Primary rock relations are largely overprinted by pervasive shearing, resulting in disruption
of the assemblage into series of discontinuous blocks within a phyllite matrix. West-dipping thrust faults mark the
eastern contact of blocks, and the overall succession has the appearance of a tectonic mélange. U-Pb zircon age data
from the gabbros and diabases yield crystallization ages of 867 + 10, 863 + 8, and 869 + 9 Ma, with positive ¢Hf(t)
values. The gabbro, basalt, serpentinite, and some talc samples display minor light rare earth element—enriched pat-
terns with obvious depletion of Nb and Ta, indicating a subduction-related setting. The tuffaceous phyllite shows sim-
ilar geochemical features. A few mafic rocks and the altered ultramafic rocks display mid-ocean ridge basalt (MORB)
affinity. Overall lithostratigraphic relationships, age data, and geochemical signatures suggest a forearc setting that was
imbricated and disrupted within an accretionary prism environment to form an ophiolitic mélange. The pillow basalt,
red jasper, and MORB-type mafic-ultramafic rocks within the mélange occur as exotic blocks derived from the sub-
ducting oceanic plate, whereas the arc-type mafic rocks occur as autochthonous blocks, which are all exposed in a matrix
of sandy and tuffaceous phyllite.

Online enhancements: supplemental tables.

Introduction
Ophiolites are generally formed in two tectonic set-  arc settings. The recognition of ophiolites in the rock
tings: suprasubduction zones (SSZ type) and mid-  record, often on the basis of integrated lithotectonic
ocean ridge spreading centers (MORB type), with sub-  and geochemical data, can provide important con-

sequent preservation in the rock record dependenton  straints on tectonic evolution and paleogeography.
a variety of emplacement mechanisms (Pearce 2003;  Ophiolitic mélange is a mixture of sedimentary rocks
Wakabayashi and Dilek 2003; Stern et al. 2012). The  and igneous rocks of different origins set in a matrix
majority of ophiolites are emplaced at convergent  of either shale-sandstone or serpentinite, with some
plate margins, including protoarc, forearc, and back-  igneous components derived from the ophiolite suite.
Exotic blocks of unknown provenances are common

within ophiolitic mélange. The formation of ophio-

Manuscript received October 17, 2015; accepted May 2, litic melange generally occurs at convergent plate
2016; electronically published August 16, 2016. boundaries involving either obduction (Gansser
* Author for correspondence; e-mail: Isshu@nju.edu.cn. 1974) or subduction (Williams 1977). In this article,
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we document an ophiolitic mélange from the west-
ern Jiangnan belt in South China and argue for its
emplacement at a Neoproterozoic convergent plate
margin.

The South China Craton is composed of the Yang-
tze block to the northwest and the Cathaysia block
to the southeast (fig. 1). In the Neoproterozoic, these
two tectonic units were assembled along the ENE-
WSW-trending Jiangnan orogenic belt (also called
the Sibao or Jinning orogenic belt; fig. 1), which can
be traced some 1500 km along strike and extends up
to 120 km across strike (Shu 2012). Neoproterozoic
arc and trench successions within and adjoining the
boundary zone were assembled in an accretionary
orogenic belt (fig. 1; Cawood et al. 2013). However,
the timing of formation of the trench-arc sequences
and the number and direction of subduction zones
involved in the assembly of the two blocks, as well
as the age and emplacement mechanism of ophiolite
suites or ophiolitic mélanges, are poorly constrained
(Shu 2012; Cawood et al. 2013; Wang et al. 2015;
Zhao 2015). Furthermore, the broader role and po-

sition of South China in the assembly of the Rodinia
supercontinent remains speculative (e.g., Li et al.
2008; Cawood et al. 2013; Wang et al. 2013).

The southwestern part of the Jiangnan belt in
northern Guangxi is the focus of this article (fig. 1).
Our study outlines field, geochemical, and isotopic
data on mafic-ultramafic and associated sedimen-
tary units around some of China’s largest talc mines
at Longsheng, northern Guangxi province (fig. 2).

Geological Setting and Sample Descriptions

Geological Setting. The Yangtze block is com-
posed of an Archean-Paleoproterozoic crystalline
basement surrounded by Neoproterozoic orogenic
belts (Zhao and Cawood 2012; Wang et al. 2013).
The Cathaysia block is composed predominantly of
a Neoproterozoic—-early Paleozoic assemblage of var-
iably metamorphosed sedimentary and igneous rocks
along with minor Paleoproterozoic igneous rocks
(Shu2012). In the early to middle Neoproterozoic, the
Cathaysia and Yangtze blocks were accreted along
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Figure 1. Geological sketch map of the Jiangnan orogenic belt, South China Craton. 1 = Shaoxing-Jiangshan-

Pingxiang-Shuangpai fault; 2 = Zhenghe-Dapu fault; 3 = Northeast Jiangxi fault; 4 = Jiujiang-Shitai fault; 5 = Tanlu
fault; SECCLMVZ = Southeast China costal late Mesozoic volcanic zone. A color version of this figure is available

online.
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Figure 2. A, Geological sketch map of the Longsheng area in the western Jiangnan orogenic belt, South China. ¢ =
Cambrian strata; Pt3d = middle Neoproterozoic Danzhou Group; Pt3s = early Neoproterozoic Sibao Group; Pt3z =
late Neoproterozoic Sinian system. B, Schematic cross section with sample locations. A color version of this figure is

available online.

the Jiangnan orogenic belt to form the unified South
China Craton (Shu 2012; Cawood et al. 2013; Wang
et al. 2013), with exposures of Neoproterozoic ophio-
lite in the east Jiangnan belt (Shu et al. 1994; Li et al.
1997; Shu 2012) and along the northwestern margin of
the Yangtze block (Sun and Vuagnat 1992).

At the Longsheng talc mines, the principal rock
unit within the Jiangnan orogenic belt is the meta-
morphosed Neoproterozoic volcano-sedimentary Si-

bao Group. Based on the ages of the youngest detrital
zircon grains from a number of samples, the maxi-
mum depositional age of the group ranges from
ca. 871 to 835 Ma (Zhou et al. 2014). This unit is
unconformably overlain by posttectonic, middle
Neoproterozoic—early Paleozoic strata, the oldest
unit of which is the Danzhou Group of the Nanhua
system (BGMRGX 1985; Zhao and Cawood 2012 and
references therein). The youngest detrital zircons
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from Danzhou Group samples range from ca. 819 to
731 Ma (Zhou et al. 2014, suggesting that the group
as a whole accumulated sometime after 730 Ma.
Mafic-ultramafic rocks occur throughout the Long-
sheng region, predominantly within thrust-bounded
regional anticlines (fig. 2a). Talc, a product of alter-
ation of the mafic-ultramafic rocks or metasoma-
tism between carbonate and basalt, is exposed in the
mines of the region (fig. 3a). To the northwest of

SEQ

Siliceous' marble

Phyllite

Longsheng, at Yuanbaoshan and Sanfang, gabbro in-
truding into or occurring as lenses within the Sibao
Group has been dated at ca. 855 (zircon U-Pb; Yao
et al. 2014) and 825 (zircon U-Pb; Li et al. 1999; Ge
et al. 2001) Ma. Zhou et al. (2004) and Yao et al.
(2014) proposed a subduction-related setting for these
mafic-ultramafic suites, whereas Li et al. (1999) and
Ge et al. (2001) suggested a plume setting related to
the breakup of Rodinia.

Figure 3. Representative field photos of samples analyzed in this study. A, Tectonic blocks in the talc mine. B, Red
jasper mixed with basalt. C, Isolated basalt blocks within enclosing phyllite in the talc mine. D, Basalt in the talc.
E, Ophicalcite. F, Basalt and overlying phyllite. A color version of this figure is available online.
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S-type peraluminous granitic plutons occur
throughout the northern Guangxi area and locally
intrude the mafic-ultramafic suite in the western
Yuanbaoshan (Yao et al. 2014). The granites are
sheared and yield ages ranging from ca. 830 to
800 Ma (Yao et al. 2014). They have been inter-
preted as either collision related (Yao et al. 2014) or
having formed in a rift setting related to a mantle
plume (Li et al. 2003).

Lithostratigraphic Relationships and Occurrence of
Mafic-Ultramafic Rocks and Related Rock Suites at
Longsheng. The Sibao Group constitutes the oldest
exposed rock unit in the Longsheng area (fig. 2a, 2b).
It consists of pelite, chert, volcaniclastic rock, mafic-
ultramafic suites, and siliceous marble (figs. 2b, 3).
Intermediate volcanic rocks and minor granodiorite
have also been reported (BGMRGX 1985). Although
lithostratigraphic principles have been applied to
the unit, the stratigraphic sequence is pervasively
sheared and consists of isolated blocks of basalt,
marble, phyllite, and ophicalcite enveloped by phyl-
lite and bounded by faults (figs. 2b, 3a). Mafic-
ultramafic bodies, which are generally serpentin-
ized, are up to 200 m thick and can be traced for up to
5 km. They are discontinuous both along strike and
at depth (on the basis of drillhole data; Xia 1984,
BGMRGX 1985). To the north of the talc mines, the
eastern contact of the west-dipping mafic and ul-
tramafic units and the chert and marble are delin-
eated by east-directed thrust faults, suggesting that
the succession is structurally imbricated (fig. 2a; Xia
1984; BGMRGX 1985). The unit is metamorphosed
to greenschist to amphibolite facies, with tremolite-
actinolite, talc, chlorite, and serpentine being com-
mon metamorphic minerals in the ultramafic rocks,
whereas tremolite-actinolite, albite, zoisite, and
chlorite are metamorphic minerals in mafic rocks.
The metamorphic minerals display an oriented tex-
ture, indicating that their growth was syndeforma-
tional.

Talc is developed within ultramafic rocks or at
contact zones between the mafic-ultramafic units
and adjoining lithologies (fig. 2b; Li 1979). Primary
stratigraphic relations are preserved in some tec-
tonic blocks, with siliceous marble overlying basalt
and with jasper (chert) overlying and intermingled
with basalt (fig. 3b). Pillowed and amygdaloidal
basalts are well developed in the mafic lithologies.
Previous age data for the region include single-grain
zircon U-Pb ages of ca. 837 Ma for lenticular mafic
rocks, but method and errors were not given
(BGMRGX 1985). Zhou et al. (2007) obtained a laser
ablation inductively coupled plasma mass spec-
trometry (LA-ICP-MS) zircon U-Pb age of 765 +
14 Ma from a late intrusive metadacite.
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The overlying Danzhou Group contains a series
of conglomerate, sandstone, siltstone, and mudstone
approximately 3500 m thick. The group is part of the
Nanhua system and constitutes a rift succession of
nonmarine to paralic clastic facies (Chen et al. 1997;
Wang and Li 2003) and regionally contains bimodal
volcanic rocks (Shu 2012). Rock units of the Nanhua
system extend across the Jiangnan belt and Cathay-
sia block and provide the first strata linkage between
the two. Further strata linkages occur in the Devo-
nian (Chen et al. 1997).

Sample Descriptions. In this study, we selected for
analysistwofoliated gabbrosamples (1402 and 1402-1;
GPS: 25°45919N, 109°50.071’E) and four gabbro
samples (1405, 1405-1, 1405-2, and 1405-3; GPS: 25°
40.259'N, 109°50.258'E) from near the town of San-
meng (fig. 2). Four gabbro and massive coarse-grained
samples (1414, 1414-1, 1414-2, and 1414-3; GPS: 25°
36.762'N, 109°49.238'E) were also collected from
the northern margin of the talc mine (fig. 2b). In
addition, onejasper(1411; GPS: 25°35.552'N, 109°48.
890'E), two serpentinite (1306-2 and 1306-2-1; GPS:
25°23.681'N, 109°06.208'E), four talc (1305 and 1305-1,
northern talc mine; 1306-1 and 1306-1-1, southern talc
mine; GPS: 25°35.714'N, 109°49.121’E), and two phyl-
lite (1407 and 1409; GPS: 25°35.993'N, 109°49.485E)
samples were collected from the Longsheng talc mines
(fig. 2b).

The gabbro samples 1402, 1402-1, 1405, and 1405-2
contain about 50% plagioclase, 30% augite, and 5%
opaque oxide phases (fig. 4) along with some 15%
chlorite, uralite, and calcite veins (the latter phases
after pyroxene). Gabbro sample 1414 contains 40 %-—
60% plagioclase, 8% olivine, 22% augite, 5% diop-
side, 5% actinolite, 5% chlorite, and 5% opaque ox-
ide phase. The serpentinite samples (1306-2 and
1306-2-1) are composed of 75% serpentine, 15% py-
roxene, 5% amphibole, and 5% accessory minerals.
The talc samples (1305, 1305-1, 1306-1, and 1306-1-1)
are composed mainly of talc and a minor amount of
antigorite (fig. 4). The ophicalcite sample (1306-5)
contains 85% calcite and 15% quartz veins. The
phyllite samples (1407 and 1409) are composed mainly
of quartz, feldspar, muscovite, and chlorite (fig. 4).
Gabbro and diabase samples 1402, 1405, and 1414
were selected for zircon U-Pb dating and Hf isotope
analysis, and the rest were analyzed for whole-rock
geochemistry.

Analytical Procedures

Zircons were separated from the crushed rocks us-
ing heavy liquid and magnetic techniques and then
handpicked under a binocular microscope. The zir-
con grains were mounted in epoxy resin, polished,
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Figure 4. Thin-section photomicrographs of samples analyzed in this study. A, Phyllite sample 1407 (crossed nicols).
B, Ophicalcite sample 1411 (crossed nicols). C, Talc sample 1305 (crossed nicols). D, Serpentinite sample 1407
(crossed nicols). E, Gabbro sample 1405 (crossed nicols). F, Gabbro sample 1414 (crossed nicols). Chl = cholerite;
Cpx = clinopyroxene; Mus = muscovite; Ol = olivine; Plag = plagioclase; Qz = quartz. A color version of this figure
is available online.
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and coated. Cathodoluminescence (CL) images of
the zircons were obtained using a Quanta 400 FEG
electron microscope equipped with Mono CL3+
(Gatan) at the State Key Laboratory of Continental
Dynamics at Northwest University.

Zircon U-Pb isotopic dating was carried out at the
State Key Laboratory for Mineral Deposits Research
at Nanjing University using an Agilent 7500a ICP-
MS connected to a New Wave 213-nm laser abla-
tion system. U-Pb fractionation was corrected using
zircon standard GEMOC GJ-1 with a 2°"Pb/?°Pb age
of 601 + 12 Ma, and accuracy was monitored by
using the zircon standard Mud Tank with an age of
735 + 12 Ma. The U-Pb ages were calculated from
the original signal data using the software Glitter,
and U-Th-Pb age data were plotted on concordia
diagrams using the Isoplot program (Ludwig 2003).
Zircons older than 1000 Ma have high contents of
radiogenic Pb; hence, the 2°’Pb/?°Pb age is more
reliable and is used to determine the crystallization
age. On the other hand, due to low content of ra-
diogenic Pb, the 2°Pb/***U age is more reliable for
zircons with ages younger than 1000 Ma.

Zircon HIf isotopes were analyzed using a Nep-
tune multicollector ICP-MS at the State Key Lab-
oratory for Mineral Deposits Research at Nanjing
University. Standard zircon 91500 was used for
external correction, with a Y°Hf/V"Hf value of
0.282300 + 8 (20). Initial Y°Hf/'""Hf values were
calculated on the basis of a Lu decay constant of
1.865 x 107! (Scherer et al. 2001). The Hf model
ages were calculated under the assumption that the
76Lu/'"’Hf value of the average crust is 0.015; the
176Hf/17’Hf and "°Lu/'"Hf ratios of chondrite at
the present time are 0.282772 and 0.0332, respec-
tively; and the Hf/"7Hf and °Lu/'"Hf ratios of
depleted mantle at the present time are 0.28325 and
0.0384, respectively (Blichert-Toft and Albarede 1997).

Whole-rock major element analysis was performed
using an ARL9800XP+ X-ray fluorescence spectrom-
eter at the State Key Laboratory for Mineral Deposits
Research at Nanjing University. The analytical pre-
cision is generally better than 2% for all elements.
Trace element abundances were measured using a
Finnigan Element I ICP-MS at the State Key Labo-
ratory for Mineral Deposits Research at Nanjing
University, which gives precision better than 10%
for most of the analyzed elements.

Analytical Results

Zircon U-Pb Dating. Zircons obtained from gab-
bro and diabase samples 1402, 1405, and 1414 are
euhedral prismatic grains or fragments of euhedral
grains. Most of the grains show banded zoning in CL
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images (fig. 5), typical of grains crystallized from
magmas. Core and rim structures indicative of mul-
tiple growth episodes were noted in a few zircon
grains (fig. 5).

Among 22 analyses from sample 1402, 14 con-
cordant analyses yield an age range of 886-853 Ma,
with a weighted-average 2°°Pb/?**U age of 867 =+
10 Ma (MSWD = 0.25; fig. 5). Twenty-six analyses
were conducted on zircons from sample 1405, with
10 grains yielding an age range of 871-857 Ma and a
weighted-average 2°°Pb/***U age of 867 + 10 Ma
(MSWD = 0.102). Nineteen grains from sample
1414 were analyzed, yielding a main age range of
996-861 Ma with nine concordant analyses giving a
weighted-average °°Pb/***U age of 869 + 9 Ma
(MSWD = 0.08; fig. 5). The Th/U ratios of zircons
from sample 1402 range from 0.5 to 3.0, whereas
those from samples 1405 and 1414 range from 0.4 to
2.62 and 0.1 to 1.98, respectively (table S1; tables S1-
S3 are available online). These weighted mean ages
are interpreted as the crystallization age of the gabbro
and diabase samples.

Six analyses from sample 1402 also yield Paleo-
proterozoic ages (2473-2262 Ma). Core and rim
structures indicative of multiple growth episodes
were noticed in these zircon grains (fig. 5). Zircons
with similar core and rim structures were also found
in samples 1405 and 1414, which yield ages of 2859—
1043 and 2726-1003 Ma, respectively. These zir-
cons yield variable Th/U ratios and are most likely
xenocrysts captured by the mafic magma.

Zircon Hf Isotopes. Zircons from samples 1402,
1405, and 1414 with age ranges of 860-880 Ma dis-
play mostly present-day 7*Hf/'""Hf ratios of 0.282401-
0.282618 and yield positive ¢Hf(t) values of 0.04-
9.64,1.89-7.21,and 1.61-8.52, respectively (table S2).
This equates to Hf model ages of 1.25-1.0 Ga (fig. 6),
suggesting the presence of latest Mesoproterozoic
juvenile mantle material in this region.

Older inherited grains within the three samples
display a range of ¢Hf(t) values: five early Paleopro-
terozoic (ca. 2262-2473 Ma) grains from sample 1402
have ¢Hf(t) values of 4.82 to —12.87, 957-2859 Ma
zircons in sample 1405 show ¢Hf{t) values of 15.35
to —16.15, and 15 zircons with ages in the range of
925-2726 Ma from sample 1414 display ¢Hf(t) values
of —20.43 to 9.54 (table S2).

Major and Trace Element Compositions. Major and
trace element analytical results are presented in ta-
ble S3. Given the low-grade alteration of the rock
sequence and the likelihood for mobilization of el-
ements with a large ionic radius to charge during
low-grade metamorphism, the following discussion
focuses on the so-called immobile elements and el-
ement ratios (Pearce and Cann 1978; Wood 1980;
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Figure 5. U-Pb concordia plots for zircons from gabbro from the Longsheng area in the western Jiangnan orogenic
belt, South China Craton. A color version of this figure is available online.
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Figure 6. A, Plot of ¢Hf(t) versus zircon U-Pb ages for the gabbro. B, Histogram of zircon Hf model ages for the gabbro.
CHUR = chondrite uniform reservoir; DM = depleted mantle. A color version of this figure is available online.

Wyman 1999). On the Zr/TiO,-Nb/Y diagram the
samples fall in the basalt field (fig. 7). The gabbros
and diabase have a wide compositional range for
TiO, (0.661%—1.742%), SiO, (47.2%-52.07%), and
Na,O (0.64%-5.49%) and a high Mg# of 47-51 (ta-
ble S3). The talc shows a compositional range of
60.99%-62.81% for SiO,, 28.33%-30.36% for MgO,
2.86%-5.01% for FeOt, and 3.71%-5.72% for loss on
ignition (table S3), whereas Al,Q; is largely depleted
(0%-0.07%). All gabbros and diabase display minor
light rare earth element (LREE)-enriched patterns
with (La/Yb)y ratios in the range of 2.8-17.9 and al-
most no Eu anomalies, with Eu/Eu” ratios of ~0.942—
0.75 (fig. 8). The serpentinite samples show features
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Figure 7. Zr/TiO, versus Nb/Y diagram of analyzed
mafic samples in this study. Alk = alkaline; Subalk =
subalkaline. A color version of this figure is available
online.

similar to those of the gabbro (table S3). On primi-
tive mantle-normalized plots the gabbros and dia-
bases display enrichment in large ion lithophile ele-
ments such as La, Ce, Cs, Pb, and Ba and variable
depletions in high field strength elements (HFSEs)
such as Nb, Ta, Pb, and Hf (fig. 8). Two talc samples
from the northern mine (1305 and 1305-1) display
LREE-enriched patterns with obvious Eu anomaly
and depletion of Rb, Ba, Nb, Ta, Pb, and Cs as well as
enrichment in Th, U, La, Ce, and Ti. The talc
samples from the southern mine (1306 and 1306-1)
display almost flat REE patterns with no Ce and Eu
anomaly and depletion of Rb, Ba, and Ti as well as
enrichment in Cs, Th, U, La, Ce, and Pb. The phyl-
lite samples have SiO, content of 67.59%-70.06%,
CaO content of 0.59%-1.04%, Na,O content of
1.97%-4.10%, and K,O content of 2.18%-3.05%,
with a K,0/Na,O ratio of 0.5-1.5 (table S3). The
phyllite samples display LREE-enriched patterns,
with depletion of Eu (Eu/Eu” ratios of ~0.72-0.79);
depletion of Ti, Sr, Nb, Ta; and enrichment of Th
also observed (fig. 8).

Discussion

Field Geology, Petrology, and Geochemistry. Neo-
proterozoic mafic-ultramafic rocks and marine sed-
imentary rocks are extensively exposed in the north-
ern Guangxi area. The mafic-ultramafic suites at
Longsheng are composed mainly of peridotite, py-
roxenite, pillow basalt, diabase, and gabbro. Other
lithologies include variably faulted ophicalcite, mar-
ble, jasper, and tuffaceous phyllite (figs. 3, 4). Mafic
and ultramafic rocks along with marble, ophical-
cite, and chert occur as isolated blocks within the
sheared phyllite. Red jasper is found in the inter-
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Figure 8. a, Chondrite-normalized rare earth element
patterns for analyzed samples (normalization values are
from Sun and McDonough 1989). b, Primitive mantle—
normalized incompatible element distribution spider-
grams for gabbro. ¢, Primitive mantle-normalized incom-
patible element distribution spidergrams for talc, phyl-
lite, and serpentinite. The normalization values are from
McDonough and Sun (1995). A color version of this figure
is available online.

stices of the basalt and overlying carbonate (fig. 2a),
which, together with the presence of pillow basalt
and ophicalcite, suggests that some of the investi-
gated blocks were formed in a deep marine envi-
ronment isolated from terrestrial input (e.g., Grenne

and Vokes 1990; Abdelsalam and Stern 1993). The
peridotite and pyroxenite are generally serpentin-
ized with greenschist to amphibolite facies meta-
morphism, and in the Longsheng area there are nu-
merous talc exposures at contacts with siliceous
marble and layered basalt as well as within the
blocks of ultramafic rocks (Li 1979; BGMRGX 1985;
fig. 2b).

Geochemical data, largely based on high field
strength and transition elements, suggest forma-
tion in a convergent plate margin setting but with a
few samples displaying MORB affinity. Most of the
studied gabbro and diabase samples show a deple-
tion in HFSEs such as Nb, Ta, and Zr compared with
their neighboring elements (fig. 8), consistent with
those of a typical volcanic arc setting (Wyman 1999).
Tuffaceous phyllite also yields similar subduction-
related geochemical signatures. The gabbro and ba-
salt samples from the Longsheng area display TiO,,
Ta, and Nb contents of 0.79%-1.75%, 10.14-0.52
ppm (<0.7 ppm), and 2.34-9.91 ppm (<12 ppm), re-
spectively. Furthermore, these rocks show Nb/La
ratios of 0.3-0.67 (<1), Hf/Ta ratios of 5.02-9.94 (>5),
La/Taratios of 25.9-43.8 (>15), Hf/Th ratios of ~0.78-
2.55 (<8), Th/YD ratios of 0.54-2.34 (>0.1), Th/Nb
ratios of 0.23-0.8 (>0.07), and Nb/La ratios of 0.3
0.37 (<0.8; table S3), similar to those of arc basalts,
and plot in the field of arc basalts (fig. 9; Condie
1989). A few gabbros plot in the MORB field on some
tectonic discrimination diagrams, with REE pat-
terns similar to those of enriched MORB. Repre-
sentative talc samples from the studied region show
very low trace element content and varied patterns.
Those from the northern mine (1305 and 1305-1),
which lie in the contact zone of marble and basalt,
display an LREE-enriched pattern with depletion in
Rb, Ba, Nb, Ta, Sr, and Pb and enrichment in Ti that
are of arc affinity (figs. 8, 9). Those from the southern
mine (1306 and 1306-1) display an almost flat REE
pattern, with enrichment in Cs and Pb and depletion
in Rb, Ba, and Ti. No Nb and Ta were observed. On
the basis of field contacts and mineral assemblages
within talc samples, we believe these geochemical
features suggest that there are two types of talc mine
in the Longsheng area. The northern mine was gen-
erated by metasomatism of marble and arc-type ba-
salt, which produce purer talc, whereas in the south-
ern mine the talc occurs within ultramafic rock of
MORSB affinity.

In summary, although the contacts between the
igneous and sedimentary rock units (peridotite, py-
roxenite, gabbro, basalt mixed with siliceous mar-
ble and jasper, and ophicalcite) are generally struc-
tural within a matrix of sandy and tuffaceous phyllite
and parts of the mafic-ultramafic assemblage are
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MORB; OIB = ocean island basalt; VAB = volcanic arc basalt; WPB = within-plate basalt. A color version of this figure

is available online.

strongly altered (serpentinite and talc), the overall
lithological assemblage, together with a magmatic
arc and reported MORB geochemical fingerprints, is
consistent with a disrupted ophiolitic mélange from
a forearc environment.

Tectonic Implications. Any tectonic model for the
Jiangnan orogenic belt must account for the fol-
lowing: (1) its position at the boundary zone be-
tween the accreted Cathaysia and Yangtze blocks,
(2) a lithologic assemblage within the belt domi-
nated by mafic igneous rocks and related units rang-
ing in age from ca. 990 to 860 Ma in the eastern
segment (Gao et al. 2009; Li et al. 2009; Shu 2012,

Yao et al. 2013, 2016) and from 860 to 830 Ma in the
central and western segments (Chen et al. 2014; Yao
et al. 2014; Zhang and Wang 2016), and (3) a consis-
tent convergent plate margin geochemical signature
throughout this time frame (Zhao and Cawood 2012;
Cawood et al. 2013; Yao et al. 2015). On this basis the
Jiangnan orogenic belt is considered part of an ac-
cretionary orogen (cf. Cawood et al. 2009) postdating
Rodinia assembly and located on its northern margin
(Cawood et al. 2013). We believe these age and geo-
chemical relationships argue against models sug-
gesting an internal setting within an assembled Ro-
dinia (e.g., Li et al. 2008).
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Features of the Jiangnan belt in the Longsheng
area—including the presence of blocks of a mafic-
ultramafic assemblage of both arc and MORB af-
finity within a phyllitic matrix, basalt overlain by
carbonate, and red jasper, along with blocks of var-
ied sedimentary units—enable refinement of the
SSZ setting. In particular, the extensive disruption
of the succession in which the more rheologically
competent units are sheared into discontinuous
blocks in a phyllitic matrix and the entire succes-
sion is imbricated along east-directed thrusts sug-
gests that the Longsheng area constitutes a tectonic
mélange within an accretionary prism (e.g., Cawood
1984; Wakabayashi and Dilek 2003). Furthermore,
the greenschist to amphibolite facies metamorphism
of mafic-ultramafic units, which is of higher grade
than that of phyllitic matrix, indicates a possible sea-
floor metamorphism of mafic-ultramafic units prior
to being incorporated into the tectonic complex.
Kinematic analysis in the eastern Jiangnan belt has
noted a similar pattern, with ductile southeastward-
directed thrusts in an overall northwest-dipping suc-
cession, and is related to northwestward subduction
of oceanic lithosphere beneath the southeast Yangtze
block (Shu et al. 1994; Charvet et al. 1996; Shu and
Charvet 1996).

U-Pb dating of the gabbroic rocks within the
Sibao Group in the Longsheng area yields ages in the
range of 870-860 Ma (fig. 5), coeval with ages con-
strained by detrital zircon U-Pb dating for the Sibao

West Jiangnan arc ca. 830-870 Ma

W Accretionary prism
. |

Group (Zhou et al. 2014). Mafic-ultramafic and in-
termediate suites in the Yuanbaoshan and Sanfang
regions, west of Longsheng, which include gabbro,
pillow basalt, and high-Mg andesite, are dated at
ca. 855-830 Ma and are related to a convergent
plate margin (Zhou et al. 2004; Zhao and Zhou
2013; Chen et al. 2014; Yao et al. 2014). Field re-
lations, rock suites, ages, and geochemical signatures
throughout the Jiangnan belt argue against models
suggesting an extensional setting for these mafic-
ultramafic units (Li et al. 1999; Ge et al. 2001). S-type
granites intrude the Sibao Group but are more com-
mon to the west of the study area at Yuanbaoshan
and Sanfang, where they have yielded ages of 830-
820 Ma (zircon U-Pb dating; Li et al. 2003; Yao et al.
2014). Field relations suggest that the granites in-
truded into predeformed phyllite and mafic-ultramafic
and intermediate suites of the Sibao Group (Ge et al.
2001; Chen et al. 2014; Yao et al. 2014). Elsewhere
within the orogen, S-type granites yield ages in the
range of 830-800 Ma and contain inherited early
Neoproterozoic and Mesoproterozoic grains, sug-
gesting anatexis of older basement lithologies, likely
representative of the Yangtze block (e.g., Li et al.
2003; Yao et al. 2014). These granitic intrusions have
been related to collisional assembly of the Yangtze
and Cathaysia blocks (Shu 2012; Yao et al. 2014).
Figure 10 presents a schematic tectonic model for
the formation of the disrupted ophiolitic mélange in
the Longsheng area of the western Jiangnan oro-

Sea level

Trench axis

Sea mount

Asthenosphere

Figure 10. Tectonic evolution model for the western Jiangnan orogenic belt, South China. A color version of this

figure is available online.
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genic belt within an accretionary prism environ-
ment. The trench is inferred to lie to the east, con-
sistent with the orientation and kinematics of the
observed thrust faults, as well as the previously
constrained subduction direction (Shu and Charvet
1996), while the magmatic arc to the accretionary
complex is inferred to lie to the west, consistent
with geochemical studies of volcanic arc succes-
sions in this and adjacent regions (Chen et al. 2014,
Yao et al. 2014). The presence of chert, carbonate,
and tuffaceous phyllite suggests that the sedimen-
tary units include sea-floor- and arc-derived volca-
nogenic successions. The geochemistry of the mafic-
ultramafic blocks, which predominantly include the
SSZ along with some of the MORB affinities, sug-
gests incorporation of parts of the magmatic arc (or
arc basement) as well as off-scrapped sea floor. The
overall structure and lithology resembles a forearc
ophiolitic mélange (Gansser 1974; Williams 1977).
Within this ophiolitic mélange, the arc components
are autochthonous blocks, whereas igneous blocks
of MORB ones and chert are exotic and derived from
the subducting plate. The higher metamorphic grade
of the mafic-ultramafic blocks relative to the ma-
trix lithologies suggests possible sea-floor metamor-
phism of the blocks prior to incorporation into the
accretionary prism or that they were subducted to a
deeper depth before exhumation and incorporation
into the mélange. The intermediate volcanic rocks
and granodiorite with arc geochemistry reported by
Xia (1984) and BGMRGX (1985) from the Longsheng
region coincide well with the tectonic model. The
inherited Proterozoic xenocrystic zircons in the ana-
lyzed gabbros of arc affinity (fig. 5) are related to in-
corporation of continental sediments and suggest
the presence of a possible continental arc.

The concordia age of ca. 865 Ma reported in this
study constrains the time of inferred ophiolitic
mélange. The ca. 765 Ma age reported for intrusive
metadacite in the Longsheng region (Zhou et al.
2007) likely represents the effects of subsequent
rifting tectonothermal activity related to the
breakup of Rodinia, which is widespread in South
China (Zhao and Cawood 2012 and references
therein). Backarc SSZ-type ophiolite suites as well
as forearc MORB type are also exposed in the east
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Jiangnan belt and dated at 900-1000 Ma (Shu 2012;
Wang et al. 2015). Ages of ophiolitic components
throughout the Jiangnan belt coincide with the
younging direction of arc and basement sequences
toward the western segment (Wang et al. 2014).
Ridge subduction-related ophiolite inferred from
geochemical data has also been proposed from the
eastern Jiangnan belt (Zhang et al. 2015). However,
without clear lithostratigraphic field data indicat-
ing that magmatic activity is emplaced into a re-
cently formed and unequivocal accretionary prism,
a ridge subduction model is difficult to justify. A
convergent plate margin setting for the western
Jiangnan belt at 860 Ma also argues against ca. 900
880 Ma collision and ca. 860 Ma rifting of the
western Jiangnan belt as well as the entire South
China Craton (e.g., Ge et al. 2001; Li et al. 2008).

Conclusion

The disrupted and pervasively sheared association
of mafic-ultramafic igneous rocks, together with
chert, siliceous marble, ophicalcite, and phyllite, in
the Longsheng area of the Jiangnan orogenic belt,
South China, is interpreted as an imbricated forearc
ophiolitic mélange. U-Pb zircon data indicate an age
of ca. 865 Ma for the gabbros and diabases of the
assemblage, and geochemical data constrain the set-
ting to an SSZ environment. The disruption and
thrust imbrication of the sequence is related to a
subduction complex.
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