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Abstract. Ancient coins are historical artefacts of great significance which
attract the interest of scholars, and a large and growing number of amateur
collectors. Computer vision based analysis and retrieval of ancient coins holds
much promise in this realm, and has been the subject of an increasing amount
of research. The present work is in great part motivated by the lack of system-
atic evaluation of the existing methods in the context of coin grade which is
one of the key challenges both to humans and automatic methods. We describe
a series of methods — some being adopted from previous work and others as
extensions thereof — and perform the first thorough analysis to date.

1 Introduction

The present is an exciting time for computer vision: the field itself has matured, the
hardware needed to support developed algorithms is affordable and pervasive, and
the potential user base is greater than ever owing to the increasing recognition of
the benefits that machine intelligence can offer. This technological and social climate
has opened a vast field of potential new applications for computer vision, with many
attractive and exciting problems emerging from its applications in arts and humani-
ties. In this work we are interested in the application of computer vision to ancient
numismatics.

1.1 Terminology

Considering the interdisciplinary nature of the present paper, it is important to ex-
plain the relevant numismatic terminology so that the specific task at hand and its
challenges can be clearly understood. A succinct summary is presented next.
Firstly, when referring to a coin, the reference is made to a specific physical object
i.e. a specimen. This is to be contrasted with a coin type. A coin type is a more abstract
concept which is characterized by the semantic features shown on both sides of the
coin (the obverse i.e. the “front”, and the reverse i.e. the “back”). Multiple coins of
the same type have the same visual elements e.g. the head or bust of a particular
emperor with specific clothing (e.g. drapery or cuirass, crowned or laureate) and
legends (textual inscriptions), a particular reverse motif etc. Notice that although the
visual elements on coins of the same type are semantically the same, their depictions
may differ somewhat. The reason lies in the fact that the same coin type was minted
using dies created by different engravers. For example, observe in Fig. 1 which shows
three specimens of the same type, that the spatial arrangements of the legend (by
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definition the same in all cases) is different between the very fine example in Fig. 1(b)
and the extra fine example in Fig. 1(c). In the former case the break (space) in the
legend is AEQVITA-SAVG, and in the latter AEQVI-TASAVG. Nevertheless the type
is the same.

Condition grades As noted previously, at the focal point of the present work is the
condition of a coin. Succinctly put the condition describes the degree of preservation
of a coin, or equivalently the amount of damage it suffered since it was minted.
The usual grading scale adopted in ancient numismatics includes the following main
grades: (i) poor, (ii) fair, (iii) good, (iv) very good, (v) fine, (vi) very fine, and (vii)
extremely fine. Virtually universally (i.e. save for extremely rare coin types) only the
last three are considered of interest to collectors, that is fine (F), very fine (VF), and
extremely fine (EF or XF). Note that less frequently used transitional grades can be
derived from the main seven by qualifiers e.g. near or almost fine (nF, aF), better
than fine (F+) etc.

An ancient coin in a fine condition displays all the main visual elements of the
type, as illustrated with an example in Fig. 1(a). A very fine coin also has more subtle
elements preserved such as clothing creases as exemplified in Fig. 1(b). An extremely
fine condition coin is in approximately the same condition in which it was when it
was minted, showing the entirety of the original detail, as can be seen in Fig. 1(c).

Miscellaneous In order to appreciate the challenge of the task at hand, it is im-
portant to recognize a number of factors other than the condition which affect the
appearance of a coin. These include die centring, surface metal changes (due to oxi-
dation or other chemical reactions), and die wear.

Die centring refers to the degree to which the centre of the die coincides with the
centre of the actual piece of metal against which it is struck to create the coin. A
coin with poor centring may have salient design elements missing e.g. a part of the
legend. An example of a somewhat poorly centred obverse can be seen in Fig. 1(c)
and of a reverse in Fig. 2(a).

Depending on the presence of different substances in a coin’s environment (soil,
air etc), the surface metal can change its colour and tone as it reacts with chemicals
it is exposed to. Observe the difference in the tone of the coins in Fig. 1 as well as of
those in Fig. 2.

Finally, it is worth noting that the appearance of a coin can be affected by die
wear. Just as coins experience physical damage when handled and used, repeated use
of a die in the minting process effects damage on the die. To a non-trained eye a coin
minted with a worn die can seem identical to a worn coin minted with an intact die.
However, a reasonably skilled (but not necessarily expert) numismatist can readily
make a distinction, as subtler patterns of damage in the two cases are quite unlike
one another. In addition, close inspection and the presence of oxidation or particles
in ridges can be used for conclusive verification.

1.2 Previous work

Most early and some more recent attempts at the use of computer vision for coin
analysis have concentrated on modern coins [1-3]. This is understandable considering
that modern coins are machine produced and as such pose less of a challenge than
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ancient coins. Modern coins do not exhibit variation due to centring issues, shape,
different depictions of semantically identical elements, etc. From the point of view
of computer vision, two modern coins at the time of production are identical. This
far more restricted problem setting allows for visual analysis to be conducted using
holistic representations such as raw appearance [4] or edges [5], and off-the-shelf
learning methods such as principal component analysis [4] or conventional neural
networks [6]. However such approaches offer little promise in the context of ancient
numismatics.

The existing work on computer vision based ancient coin analysis can be catego-
rized by the specific problem addressed as well as by the technical methodology. As
regards the former categorization, some prior work focuses on coin instance recogni-
tion i.e. the recognition of a specific coin rather than a coin type. This problem is
of limited practical interest, its use being limited to such tasks as the identification
of stolen coins or the detection of repeated entries in digital collections. Other works
focus on coin type recognition, which is a far more difficult problem [7-9]. Most of
these methods are local feature based, employing local feature descriptors such as
SIFT [10] or SURF [11]. The reported performance of these methods has been rather
disappointing and a major factor appears to be the loss of spatial, geometric rela-
tionship in the aforementioned representations [12,13]. In an effort to overcome this
limitation, a number of approaches which divide a coin into segments have been de-
scribed [14]. These methods implicitly assume that coins have perfect centring, are
registered accurately, and are nearly circular in shape. None of these assumptions
are realistic. The sole method which does not make this set of assumptions builds
meta-features which combine local appearance descriptors with their geometric rela-
tionships [9]. Though much more successful than the alternatives, the performance of
this method is still insufficiently good for most practical applications.

All of the aforementioned work shares the same limitation of little use of domain
knowledge. In particular, the general layout of the key elements of Roman imperial
coins is generally fixed, save for few rare exceptions. Hence it makes sense to try to
use this knowledge in analysis. The few attempts in the existing literature generally
focus on the coin legend [15]. In broad terms this appears sensible as the legend carries
a lot of information, much of which is shared with the coin’s pictorial elements. For
example, the obverse legend in almost all cases contains the name of the emperor
depicted, and the reverse the name of the deity shown. The denarius of Antoninus
Pius with Aequitas (goddess of justice and equality) in Fig. 1 illustrates this well,
the obverse legend being ANTONINVSAVGPIVSPPTRPCOSIII, and the reverse
AEQVITASAVG. However, in spite of this, methods such as that described in [15]
offer little promise for practical use. The key reason for this lies in the fact that
the legend, with its fine detail, is one of the first elements of the coin to experience
damage and wear. Coins with clearly legible legends are generally expensive and rare,
and thus of little interest to most collectors. They are also the easiest to identify, by
the very nature of their good preservation, and hence do not represent the target data
well. Consequently, this class of algorithms is not of interest in the present paper.

The main purpose of this work is to provide a clear picture of the performance of
existing methods on data representative of images likely to be used in practice. More-
over our aim is to provide the first systematic evaluation which looks specifically at
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the effects that coin grade has on coin type recognition accuracy. In particular, all
work to date has been highly unstructured and ad hoc in its evaluation methodology.
Some authors use data sets with coins in different conditions and unstated distribu-
tions thereof [9], and others very small data sets with coins in extremely rare, museum
grade [8]. Hence the current understanding of different methods’ behaviour is not very
well understood at all.

c¢) Extra fine

Fig. 1. Specimens of Antoninus Pius’s denarius (RIC 61) from our data set.

2 Data

As noted in the previous section, one of the key motivating factors for the present work
can be found in the lack of systematic evaluation of different algorithms described in
the literature with respect to the condition of the coins present in the specific data
sets used. Given that the condition of a coin by definition affects the visibility and
even the very presence of elements depicted on the coin, it is unsurprising that it is a
major factor which governs the ease (or lack thereof) that a human experiences when
attempting to identify a coin. Understanding the behaviour of different methods when
presented with this challenge, and in particular the effects of both the condition of
the query coin as well as of the distribution of coin conditions in the so-called gallery
corpus, should be a crucial consideration in directing future research efforts.

At this point in time there does not exist a data set structured in a manner which
allows for the analysis outlined above to be conducted: none of the corpora used in
previous work can be readily adopted for use to this end, nor are there any other
readily available sources, to the best of our knowledge. Hence we collected a novel
data set which we introduce for the first time in this paper — it will be made freely
available after anonymity is no longer needed.

We collected our data by searching for images of coins sold by well known auction
houses. In this manner we achieved two goals. Firstly, we could ensure that the images
are in the public domain and can thereafter be shared without restriction. Secondly,
having been put up for sale by well known auction houses, the coins have been graded
by professionals allowing us to associate reliable meta data with all images.

We collected 600 images in total. These represent 100 types of Roman imperial
denarii, with six exemplars for each type: two in fine condition, two in very fine, and
two in extremely fine. The period covered by the coins included in the data set starts
with the beginning of the Empire and the rule of Octavian in 27 BC and ends with
the end of the rule of Philip IT (Philip the Arab) in 249 AD when the denarius ceases
to be used due to economic and political crises. A few representative examples of
different coin types in different grades from our corpus are shown in Figs 1-3.
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(a) Fine (b) Very fine (c) Extra fine

Fig. 3. Specimens of Octavian’s denarius (RIC 102) from our data set.
3 Methods

This section describes the methods used in our evaluation.

3.1 Histogram distance measures

Given that all methods described in the sections that follow (and indeed most of the
methods in the existing literature on computer vision based ancient coin analysis)
employ histogram based representations, we start by detailing the histogram distance
measures used in our experiments.

For the sake of continuity with previous work, the first distance measure we adopt
is the standard Euclidean distance [16]. Given two Ls normalized histograms h; and
h,, defined over some vocabulary of size n, the Euclidean distance dg(h, hg) between

them is given by the following expression:
n

dp(hi,ho)® = [ (i) = ha(i))?, (1)
i=1
where h;(i) denotes the i-th entry in histogram h;.

Notwithstanding the widespread use of the Euclidean distance metric, a recently
proposed alternative which is based on Hellinger distance has universally been shown
to yield superior performance [17]. The metric is just as simple and efficient to evaluate
as the Euclidean one and is given by:

n 2
A (b, ho)? = 3 [V () — /Ao

i=1

2)
with an important difference that histograms should be L; normalized.

3.2 Baseline SIFT

The first algorithm we implemented and evaluated in this work is what we term
‘Baseline SIFT’ on the account of its widespread use in the existing literature [10,



6 Callum Fare and Ognjen Arandjelovié

18]. As different elements of this algorithm are employed by the other approaches we
also evaluated, we explain the key steps in some detail. In summary, Baseline SIFT
first creates a visual dictionary by clustering SIFT descriptors from the coin gallery,
uses the constructed dictionary to represent a single coin as a histogram of visual
words, and performs matching using one of the distance metrics described previously.

Visual dictionary construction Basline SIFT starts the construction of a visual
dictionary by detecting keypoints and extracting the corresponding SIFT descriptors
from all coin images in the gallery of ‘known’ coins [10]. The extracted descriptors
are then clustered using k-means clustering, with the parameter k set a priori (we
will discuss the choice of k shortly). Given the stochastic nature of k-means, in order
to obtain the best (most descriptive, for a set value of k) clustering, in this work we
perform several clustering attempts and of those choose the one with the least average
Lo error measured between individual descriptors and their assigned cluster centres.
The final k cluster centres are deemed the visual vocabulary which allows a single
image of a coin to be represented using a fixed length representation. In particular,
given the set of SIFT descriptors from a single coin, each descriptor is taken to be a
representative of the visual word given by the closest cluster centre, and the entirety
of the coin image represented by a histogram over the visual vocabulary.

On the choice of vocabulary size The choice of the visual vocabulary size k is an inter-
esting and practically important one. Two different views on the approach taken can
be put forward. A large value of k, commonly used in instance retrieval applications
[19], can be considered as a way of hashing and matching noisy descriptors. Alterna-
tively, smaller values of k, more often used for object class recognition, can be seen
as a means of generalization. Although this choice has not been explicitly discussed
in the existing literature of automatic ancient coin analysis, implicitly the latter view
seems to be dominant [9]. Considering the lack of systematic analysis to date, we take
no a priori stance and instead conduct experiments for a range of values of k.

3.3 Wedge SIFT

As discussed previously, Baseline SIFT and similar approaches suffer from a major
limitation caused by the loss of spatial information. A specific SIFT descriptor affects
the overall representation of the coin in the same manner regardless of its absolute
location or indeed location relative to other descriptor loci. A number of methods
in the literature attempt to address this problem by dividing a coin into segments.
Given the approximately circular shape of coins, a natural way of segmenting a coin
is into radial segments or wedges, constructing a histogram for each segment, and
concatenating these into a single, higher dimensional vector used to represent the
entirety of a coin [20]. We refer to this method as Wedge SIFT. An example is shown
in Fig. 4(a) which displays keypoint loci colour coded for the corresponding segments,
using four wedges.

3.4 Soft Wedge SIFT

All existing methods in the literature which attempt to combine sparse local feature
based appearance information with geometric information by segmenting a coin do
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Fig. 4. Different coin segmentation approaches used to incorporate geometric information
by grouping spatially related keypoints and the corresponding local appearance descriptors.

so using manually predefined segments and ‘hard’ segment membership i.e. a specific
keypoint and the corresponding descriptor are strictly considered either to fall within
a segment or not. Several problems emerge from this approach. Firstly, these methods
implicitly assume that coins are perfectly registered both in terms of their translation
and rotation. This is difficult to achieve by automatic means and indeed none of the
existing work discusses this challenge. Yet, to perform this manually defeats the very
premise of automatic coin analysis. What is more, the problem of exact rotational
alignment is not even well posed as it is not objectively clear what the precise ‘up’
direction is in the first place. The hard membership of features compounds this prob-
lem — even a slight misalignment, translational or rotational, can greatly affect feature
distributions in different segments. Hence in this work we also evaluate an extension
of the original method by allowing soft feature membership within a wedge. In par-
ticular, we apply weighting using a triangular fuzzy number function which reaches
its maximum value of 1 for a feature at the centre of a wedge (i.e. in the bisecting
direction from the centre of the coin) and its minimum of 0 at the centres of the two
neighbouring wedges [21, 22].

3.5 Wedge-Sector SIFT

The Wedge SIFT approach creates segments by diving the image of a coin (that
is, more precisely, the images of its obverse and reverse) using radial boundaries.
A complementary dividing methodology uses concentric circular boundaries using
different radii, creating sectors. Therefore this algorithm has two free parameters,
namely the number of radial boundaries n, and the number of circular boundaries
ne, thereby dividing a coin into n, X n. segments. An example of keypoint assignments
is shown in Fig. 4(b), for clarity using n, = 1 wedges and n. = 4 sectors.

3.6 Soft Wedge-Sector SIFT

The hard membership based Wedge-Sector SIFT segmentation suffers from the same
limitations as those highlighted in the case Wedge SIFT. Hence we apply the same
idea of soft membership of local features in Wedge-Sector SIFT by using weighting
both in radial and angular directions.

3.7 Local binary patterns (LBPs)

Most methods in the existing literature on computer vision based ancient coin analysis
rely on the use of sparse, local features. This is a reasonable choice given that the
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precise geometric layout between different elements of the same coin type can vary
considerably across specimens minted with different dies. However, state of the art
performance in problem domains where similar geometric flexibility is present, such
as face recognition, has been achieved with the use of dense local features in the form
of local binary patterns (LPBs) [23]. The LPB representation has proven to be very
effective across a range of applications, including texture and face recognition [24,
25], and numerous others.

The elementary local LBP descriptor considers an image patch of size 3 x 3 pixels.
By comparing the values of the 8 neighbouring pixels with the value of the central
pixel, the neighbourhood is mapped to a series of binary digits (0 or 1) depending on
whether a specific pixel has a smaller value than the central pixel or not, as illustrated.
The 8 bit sequence corresponds to an integer in the range [0, 127] and describes the
local appearance. The description of an entire image (or a region of interest within
it) is then obtained by creating histograms over local LBP descriptors within blocks
into which the image is divided (the number of blocks is a free parameter, examined
empirically in the next section).

3.8 Local ternary patterns (LTPs)

The thresholding of pixels at the heart of LBPs, similarly to the hard thresholding
in terms of the spatial layout of local features discussed previously, is vulnerable to
small perturbations when neighbouring pixels have values close to the central pixel.
A generalization of the LPB descriptor in the form of a local ternary pattern (LTP)
has demonstrated effectiveness in addressing this problem. In particular, instead of
mapping neighbourhood pixels to binary digits, to produce a LTP the mapping is done
to a ternary digit i.e. without loss of generality, to 0, 1, or 2. A pixel is mapped onto
0 or 2 respectively if its value is smaller or greater than that of the central pixel by at
least a certain amount (this threshold is a free parameter), and to 1 otherwise. The
latter, additional value can be seen as representing neighbourhood pixels sufficiently
similar to the central one. The remainder of the method, that is the aggregation of
local descriptors into histograms over blocks, and the concatenation of these to form
a holistic representation, is performed just as in the original LBP based method.

4 Experiments

In this section we present our experiments. Specifically, we begin with a summary
of automatic data preprocessing needed to prepare images for use in the algorithms
described in the previous section, go on to explain our experimental methodology,
and finally present and discuss our findings.

4.1 Automatic data preprocessing

The images in our database, being originally acquired for use at auctions, require ad-
ditional processing before they can be used by the methods described in the previous
section: their size is non-uniform, the photographs of a coin’s obverse and reverse are
shown within the same image and their locations are not in a priori known locations
within the image. Here we describe a series of automatic pre-processing steps which
normalize for these confounding sources of variation. In summary, we (i) detect and
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segment out image regions which correspond to the obverse and the reverse, (ii) esti-
mate the size of the coin in the segmented images, and (iii) perform image rescaling
to the canonical scale.

Obverse/reverse segmentation The first step of our pre-processing pipeline con-
cerns the separation of a coin’s obverse and its reverse. This is achieved by keypoint
localization using a Gaussian scale-space as described by Lowe [10], and then by clus-
tering the loci using k-means for k = 2. This process readily leads to the identification
of image areas which correspond to the two sides of a coin, as illustrated in Fig. 5.

o PG Fig. 5. Keypoint detection and cluster-
e T N .+ ing using k-means with kK = 2 read-
e g s oot f e, % ly allows the areas of the image which

IR T N el tT . ® - correspond to the two coin sides to be
o N oS LS T, separated. In this image keypoint loci
cw, T e ¥ PIPCA are colour coded by their final cluster

assignments.

Scale normalization The second pre-processing step we conduct concerns image
scale canonization i.e. rescaling to the uniform scale. This is needed because higher
resolution images tend to produce higher numbers of keypoints which can clearly affect
the representations described in the previous section. Following k-means clustering
of loci of keypoints detected in raw images, coin scale can be determined in a simple
manner. In particular we consider the median of the cluster to be the centre of the
coin and estimate the average diameter of the coin by computing the mean distance
of convex hull defining keypoints from this centre.

4.2 Experimental methodology

In order to facilitate as thorough understanding of the effects of coin grade on the
performance of different methods as possible, we conducted a series of experiments
which vary the grade of coins used as query and as gallery. In particular, we evaluated
all algorithms first using three experiments in which different coin grades (F, VF, or
XF) were used to query a gallery with all conditions of coins present in it, and then
three further experiments in which a query coin of a specific grade was matched
against a gallery which includes coins of that grade only.

4.3 Results and discussion

We began our analysis by looking at the simplest, Baseline SIFT method. The key
results using different parameter values (in particular, the visual vocabulary size) for
the two adopted histogram metrics are summarized in Tables 1 and 2. The first ob-
servation that emerges from the tables concerns the poor performance of the method
which correctly recognized no more than 5% of query coins in the best case. This is
consistent with previous reports in the literature [9], with the method showing any
promise only in the context of the far simpler problem of coin instance recognition.
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Table 1. Summary of results of the Baseline SIFT method (Euclidean histogram distance).

k All F VF XF
100 4.0% 3.1% 3.1% 2.7%
1000 3.1% 1.8% 2.1% 1.0%

10000 1.4% 1.1% 1.4% 0.8%

Table 2. Summary of results of the Baseline SIFT method (Hellinger histogram distance).

k All F VF XF
100 5.5% 3.4% 3.6% 3.6%
1000 3.4% 1.9% 2.6% 1.3%

10000 1.4% 1.0% 1.4% 0.6%

The second clear observation concerns the superiority of the Hellinger distance
based histogram metric as compared with the more conventional Euclidean distance.
This finding too is consistent with the reports in the literature on other recognition
problems [17]. Therefore henceforth we adopt the use of this metric exclusively.

Next, notice that in both Tables 1 and 2, the best performances were achieved us-
ing the smallest value of k. This supports the idea of using coarse feature discretization
as a means of providing generalization robustness, as discussed previously. Consider-
ing that the same trend was found in all experiments we conducted, henceforth all
reported results are for £ = 100.

As expected, results superior to those obtained with Baseline SIFT were attained
through the use of geometric information and the two variants of Wedge SIFT, as
illustrated in Tables 3 and 4. Nevertheless, on the absolute scale in the context of
practical applicability, the recognition rates remain poor, not exceeding 10%.

Unsurprisingly, recognition was worst when poorest condition coins (F) were used.
Interestingly though, in the case of the original Wedge SIFT, the use of the best
condition coins (XF) did not effect an improvement over medium grade coins (VF)
— rather, the performance worsened. A possible explanation for this may lie in the
greater number of keypoints and the corresponding features detected in extremely fine
coins. These features often correspond to idiosyncratic details specific to individual die
engravers, rather than discriminative features in the context of coin type recognition.
This is something that future research should bear in mind and which may be an
interesting avenue to explore in the analysis of engraving style patterns.

Table 3. Summary of results of the Wedge SIFT method, using the Hellinger histogram
distance metric and the visual vocabulary size k = 100 (see Table 2).

Ny All F VF XF
2 7.4% 6.6% 9.3% 6.2%
3 6.4% 7.7% 6.9% 4.8%
4 5.3% 5.6% 6.5% 3.8%

Finally, the results obtained using the two Sector SIF'T methods are summarized
in Tables 5 and 6. While both methods performed better than Baseline SIFT, their
recognition rates were lower than of Wedge SIFT and Soft Wedge SIFT. We expect
that the key reason lies in the weaker geometric constraint imposed by this repre-
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Table 4. Summary of results of the Soft Wedge SIFT method, using the Hellinger histogram
distance metric and the visual vocabulary size k = 100 (see Table 2).

n, All F VF XF

2 7.9% 6.6% 8.3% 8.7%
3 8.2% 6.4% 8.8% 9.1%
4 8.7% 6.1% 9.7% 10.1%

sentation — in the context of the problem at hand, angular displacement is more
informative than radial, as well as less sensitive to the precise localization of a coin’s
centre. Indeed, we highlighted the importance of the latter in our coverage of previ-
ous work, and the lack of consideration thereof in the previous work which proposed
methods predicated on this information.

Table 5. Summary of results of the Sector SIFT method, using the Hellinger histogram
distance metric and the visual vocabulary size k = 100 (see Table 2).

Ne All F VF XF
2 6.8% 5.6% 8.3% 6.2%
3 7.2% 6.1% 8.8% 6.7%
4 5.3% 71% 5.1% 3.8%

Table 6. Summary of results of the LBP based method.

ny All F VF XF
3 3.6% 3.6% 4.6% 2.4%
4 4.8% 4.6% 51% 4.8%
5 4.4% 4.6% 4.6% 3.8%

5 Conclusions and future work

In this paper we focused on the problem of recognizing Roman imperial denarii — a
difficult computer vision problem which is of much interest to communities interested
in ancient numismatics. In particular our work was motivated by the lack of systematic
evaluation of the effects that coin grade has on the performance of different algorithms.
We described a series of different methods, some adopted from previous work and
others proposed as extensions thereof, and performed the first thorough analysis in
the existing literature. Our findings demonstrate the difficulty of the problem and
suggest that the existing methods still perform very poorly on real world data. We
analysed and discussed the behaviour of different algorithms and their parameters,
and highlighted a series of observations which should guide future work. In particular
our results suggest a focus on the use of prior knowledge of the coin layout and line
or edge based features [26,27] rather than appearance.
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