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Abstract: As human activities expand beyond national jurisdictions to the high seas, there is an increasing
need to consider anthropogenic impacts to species inhabiting these waters. The current scarcity of scientific
observations of cetaceans in the high seas impedes the assessment of population-level impacts of these activities.
We developed plausible density estimates to facilitate a quantitative assessment of anthropogenic impacts on
cetacean populations in these waters. Our study region extended from a well-surveyed region within the U.S.
Exclusive Economic Zone into a large region of the western North Atlantic sparsely surveyed for cetaceans.
We modeled densities of 15 cetacean taxa with available line transect survey data and habitat covariates
and extrapolated predictions to sparsely surveyed regions. We formulated models to reduce the extent of
extrapolation beyond covariate ranges, and constrained them to model simple and generalizable relationships.
To evaluate confidence in the predictions, we mapped where predictions were made outside sampled covariate
ranges, examined alternate models, and compared predicted densities with maps of sightings from sources
that could not be integrated into our models. Confidence levels in model results depended on the taxon and
geographic area and highlighted the need for additional surveying in environmentally distinct areas. With
application of necessary caution, our density estimates can inform management needs in the high seas, such
as the quantification of potential cetacean interactions with military training exercises, shipping, fisheries,
and deep-sea mining and be used to delineate areas of special biological significance in international waters.
Our approach is generally applicable to other marine taxa and geographic regions for which management
will be implemented but data are sparse.
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Extrapolación de las Densidades de Cetáceos para Evaluar Cuantitativamente los Impactos Humanos sobre las
Poblaciones en Alta Mar

Resumen: Conforme las actividades humanas se expanden más allá de las jurisdicciones nacionales hacia
alta mar, existe una necesidad creciente de considerar los impactos antropogénicos sobre las especies que
habitan estas aguas. La carencia de observaciones cient́ıficas de cetáceos en alta mar impide la evaluación
de los impactos a nivel poblacional de estas actividades. Desarrollamos estimaciones plausibles de densidad
para facilitar una evaluación cuantitativa de los impactos antropogénicos sobre las poblaciones de cetáceos
en estas aguas. Nuestra región de estudio se extendió desde una región bien estudiada dentro de la Zona
Económica Exclusiva de los E.U.A. hasta una región en el oeste del Atlántico Norte con pocos censos sobre
cetáceos. Modelamos las densidades de 15 taxones de cetáceos con datos de censos con transecto de ĺınea
disponible y covariables de hábitat, y extrapolamos las predicciones a regiones poco estudiadas. Formulamos
los modelos para reducir la extensión de la extrapolación más allá de los rangos covariados y los restringimos
para modelar relaciones simples y generalizables. Para evaluar la confianza de las predicciones mapeamos
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2 Cetacean Densities in the High Seas

dónde las predicciones se hicieron fuera de las extensiones covariadas muestreadas, examinamos los modelos
alternativos, y comparamos las densidades pronosticadas con los mapas de los avistamientos a partir de
fuentes que no podı́an ser integradas a nuestro modelo. Los niveles de confianza en los resultados de los
modelos dependieron del taxón y el área geográfica y resaltaron la necesidad de censos adicionales en áreas
distintas ambientalmente. Con la aplicación de la cautela necesaria, nuestras estimaciones de densidad
pueden informar a las necesidades de manejo en alta mar, como la cuantificación de las interacciones
potenciales de cetáceos con los ejercicios de entrenamiento militar, embarcaciones, pesqueŕıas, y la mineŕıa
de aguas profundas; también puede usarse para delinear las áreas de importancia biológica especial en
las aguas internacionales. Nuestra estrategia es aplicable generalmente a otros taxones marinos y regiones
geográficas para las cuales el manejo va a ser implementado pero los datos son escasos.

Palabras Clave: cobertura de censo, extrapolación, modelos de densidad basados en el hábitat

Introduction

During the past century, technological developments
have allowed humans to exploit ocean waters farther
from shore. Offshore waters beyond national jurisdiction,
known as the high seas, are increasingly used for fishing,
shipping, military training, and other purposes (Ramirez-
Llodra et al. 2011). These activities can be incidentally
harmful to cetaceans, but cetacean abundance and
density data for the high seas are often very sparse; thus,
population-level impacts are poorly known.

Line transect surveys (LTSs) are frequently used to esti-
mate the abundance and density of cetacean populations.
Observers onboard a ship or aircraft record sightings with
a distance sampling protocol to control for the decrease
in detection probability as distance from the transect line
increases (Buckland et al. 2001). Line transect methods
are traditionally used to provide stratified estimates for a
surveyed area (e.g., Hammond et al. 2013) or to develop
habitat-based density models that relate cetacean den-
sities to environmental covariates (e.g., Ferguson et al.
2006). Modeled relationships can then be used to predict
cetacean densities in fine-resolution spatial grids span-
ning surveyed areas (Miller et al. 2013). Line transect
surveys have been conducted in the Exclusive Economic
Zones (EEZs) of many countries (extending 200 nautical
miles from shore), but comparatively few have occurred
in the high seas (Kaschner et al. 2012).

Density estimates may be derived for unsurveyed areas
by fitting habitat models in extensively surveyed areas
and extrapolating them (Conn et al. 2015; Mannocci et al.
2015). But extrapolation is inherently risky because of
the lack of observations for evaluating model predictions.
Extrapolation in geographic space (i.e., beyond surveyed
areas but within the sampled ranges of covariate values)
can lead to accurate predictions if relationships between
species densities and covariates hold in extrapolated ar-
eas (Wenger & Olden 2012). Extrapolation in environ-
mental space (i.e., beyond the ranges of covariate values
sampled in the surveyed areas) may lead to more specu-
lative predictions because relationships between species
densities and covariates are unknown in extrapolated ar-
eas (Elith et al. 2010).

Despite these risks, the spatiotemporal coverage of
LTSs for cetaceans is likely to remain patchy for the fore-
seeable future, owing to high logistical and financial costs
(Kaschner et al. 2012). As expanding use of the high seas
is negotiated, more decisions are likely to be based on
extrapolative models. We considered the development of
extrapolated density estimates to facilitate a quantitative
assessment of the impacts of naval training exercises on
cetacean populations.

Active sonar and other in-water devices used in mili-
tary training are of particular concern for cetaceans. The
intense sounds they produce can disrupt diving behav-
ior (DeRuiter et al. 2013), alter acoustic communication
(Henderson et al. 2014), and cause displacements from
productive habitats (Goldbogen et al. 2013). There is also
evidence of a link between military sonar exercises and
atypical mass strandings of cetaceans (Jepson et al. 2003).
In the United States, the Marine Mammal Protection Act
regulates the take (defined as “to harass, hunt, capture,
or kill, or attempt to harass, hunt, capture, or kill”) of
marine mammals by U.S.-based organizations anywhere
in the world, including the high seas. The U.S. Navy is
required to estimate incidental takes resulting from naval
training exercises and seek permits to conduct these ac-
tivities. To do so, the U.S. Navy developed a model that
simulates propagation of sound from planned exercises
across cetacean density maps and tallies the individual
cetaceans affected (Ciminello et al. 2013).

Using as our area of interest the U.S. Navy Atlantic
Fleet Training and Testing area, spanning large regions of
the western North Atlantic never surveyed for cetaceans,
we modeled densities of 15 taxa with available LTS data
and habitat-based covariates and extrapolated predictions
to unsurveyed regions. We formulated and constrained
models to reduce the chance of errant extrapolations
and evaluated confidence in the predictions.

Methods

Study Area and LTS Data

The spatial extent of our study corresponded to the U.S.
Navy Atlantic Fleet Training and Testing (AFTT) area. The
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AFTT area spans 11 million km2 of the western North
Atlantic Ocean, extending from the coast of North Amer-
ica to 45°W and from approximately 20°N to 65°N. It
includes the Gulf of Mexico and U.S. waters surrounding
Puerto Rico and spans 7 biogeographical provinces and 4
biomes (Longhurst 2007) (Fig. 1a). Major oceanographic
features include the Loop Current, Gulf Stream, Labrador
Current, and North Atlantic gyre (Fig. 1b). The study
area was projected to an Albers equal-area projection to
minimize spatial error and gridded into 10 × 10 km cells,
the requested spatial resolution for this management
application.

We considered LTSs that used 2 or more observers and
met the assumptions of the distance sampling methodo-
logy (Buckland et al. 2001). We included data from ship-
board and aerial surveys conducted from 1992 to 2014
along the U.S. East Coast (887,963 km of effort) and in the
northern Gulf of Mexico (194,715 km) by multiple U.S. or-
ganizations (details in Roberts et al. [2016]) and data from
surveys in the Caribbean, European Atlantic, and along
the mid-Atlantic ridge (Table 1). Incorporating surveys
from these other North Atlantic regions increased the
representativeness of biomes in the study area that were
poorly covered by U.S. surveys (Fig. 1a) and increased
sample sizes available for fitting detection functions and
developing density models.

Group size (number of sighted individuals), taxonomic
identification, perpendicular distance to sighted groups,
and the observer’s assessment of detection conditions
(e.g., Beaufort sea state) were available for all the sur-
veys. We divided survey transects into (approximately)
10-km segments following Roberts et al. (2016). This seg-
ment length corresponded to the requested spatial reso-
lution of predictions and was a reasonable compromise
between the resolutions of environmental data available
(4 km to 0.25°) (Supporting Information).

Environmental Covariates

To reduce the extent of environmental extrapolation, we
used covariates for which broad ranges of values were
sampled by the surveys. Hence, we excluded longitude,
latitude, distances to the shore, and ecologically rele-
vant isobaths. These covariates are commonly used in
cetacean habitat modeling (e.g., Ferguson et al. 2006),
but would result in extrapolating far beyond the range
of sampled values in the study area. To increase the suc-
cess of model transferability to new regions, we consid-
ered biological covariates expected to be related directly
to cetacean densities (Wenger & Olden 2012), namely
biomass and production of epipelagic micronekton and
zooplankton predicted with the Spatial Ecosystem and
Population DYnamics Model (SEAPODYM) (Lehodey
et al. 2010). Zooplankton and epipelagic micronekton
(i.e., squid, crustaceans, and fish) constitute potential

prey for many of the cetaceans we considered, in partic-
ular dolphins and mysticetes (Pauly et al. 1998). All these
covariates correlate with cetacean distributions (e.g.,
Ferguson et al. 2006; Doniol-Valcroze et al. 2007; Lambert
et al. 2014).

We derived covariates from remote sensing and ocean
models (Supporting Information) and projected them to
the 10 × 10 km grid of the study area. For dynamic
covariates, we prepared monthly climatologies by ag-
gregating and summarizing the available time series. Al-
though monthly climatologies smoothed out interannual
variations in oceanographic conditions, they successfully
captured important seasonal variations. We obtained co-
variate values for the survey segments by interpolating
the 10 × 10 km grid at the segment centroids. We used
ArcGIS (version 10.2.2) and the Marine Geospatial Ecol-
ogy Tools software (Roberts et al. 2010) to prepare all
covariates.

Detection-Function Fitting And Per-Segment Abundance
Estimation

We relied on a 2-stage density modeling approach (Hed-
ley & Buckland 2004; Miller et al. 2013) to extrapolate
densities of 15 cetacean taxa (comprising 12 species and
3 guilds) to unsurveyed regions in the western North
Atlantic.

We used the single-observer methodology to fit taxon-
specific detection functions (Buckland et al. 2001). For
each taxon, we pooled multiple surveys with similar ob-
servation platforms and protocols or used proxy species
with similar detectability to obtain sufficient sightings
(Roberts et al. 2016). Before fitting each detection func-
tion, we right-truncated the most distant sightings and
applied left truncation for aerial surveys that had an in-
adequate view of the survey track line (Buckland et al.
2001). We compared a number of detection-function
formulations with both conventional distance sampling
(Buckland et al. 2001) and multiple covariate distance
sampling (Marques & Buckland 2004) and selected the
model with the lowest Akaike information criterion (AIC)
(Roberts et al. 2016). We fitted all detection functions in
R using the mrds package (version 2.1.10) (Laake et al.
2014).

The probability of detecting an animal on the track
line, or g(0), is affected by both availability bias (i.e., ob-
servers fail to detect animals because they are submerged)
and perception bias (i.e., observers fail to detect animals
present at the surface) (Pollock et al. 2006). We corrected
for availability and perception bias by obtaining estimates
of g(0) from the literature that incorporated these biases.
We obtained separate g(0) estimates for aircraft and ship-
board platforms and, where possible, for different group
sizes (to account for large groups being easier to de-
tect than small groups) (Roberts et al. 2016). We then
scaled the estimated abundance of each sighting with the
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4 Cetacean Densities in the High Seas

Figure 1. Maps of (a) the North Atlantic basin showing the U.S. Navy Atlantic Fleet Training and Testing (AFTT)
area, line transect surveys for cetaceans included in this study, and Longhurst’s (2007) biomes (color-coded) and
biogeographical provinces within the study area(1, Caribbean; 2, North Atlantic tropical gyre; 3, North Atlantic
subtropical gyre; 4, Gulf Stream; 5, northwest Atlantic shelves; 6, Atlantic Arctic; 7, boreal polar) and (b) the North
Atlantic basin showing major surface currents. The AFTT area excludes territorial waters (<12 nautical miles
from shore) outside of the United States.
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Table 1. Line transect survey data incorporated in habitat-based density models of cetaceans.∗

Region Platform Surveyor Effort (km)
Number of
segments

Survey
years Reference

U.S. East Coast
(EC)

Shipboard
and aerial

NEFSC, NJDEP,
SEFSC,
UNCW,
VAMSC

887,963 89,426 1992–2014 Roberts et al. 2016
(contains
complete list)

Gulf of Mexico
(GOM)

Shipboard
and aerial

SEFSC 194,715 19,988 1992–2009 Roberts et al. 2016
(contains
complete list)

Caribbean
(CAR)

Shipboard SEFSC 8,975 914 2000, 1995 Swartz et al. 2002

Aerial University of La
Rochelle

15,289 1,528 2008 Mannocci et al.
2013

European
Atlantic (EU)

Shipboard Partners of the
CODA
Program

9,584 957 2007 Hammond et al.
2009

Mid Atlantic
Ridge (MAR)

Shipboard Partners of the
SCANS-II
Program

17,942 1,805 2005 Hammond et al.
2013

Shipboard Partners of the
MAR-ECO
Program

2,424 243 2004 Waring et al. 2008

TOTAL 1,136,892 114,861

∗
Surveyors: NEFSC, NMFS Northeast Fisheries Science Center; NJDEP, New Jersey Department of Environmental Protection; SEFSC, NMFS Southeast

Fisheries Science Center; UNCW, University of North Carolina at Wilmington; VAMSC, Virginia Aquarium & Marine Science Center; SCANS-II,
Small Cetacean Abundance in the North Sea and adjacent waters-II; CODA, Cetacean Offshore Distribution and Abundance in the European
Atlantic; MAR-ECO, Mid-Atlantic Ridge Ecology Program.

inverse of g(0) appropriate for that sighting based on the
platform and group size. Details on detection function
fitting and g(0) estimates are in Roberts et al. (2016).

For each taxon, we estimated the abundance in
segment j, N̂ j , by using the Horvitz–Thompson-like
estimator:

N̂ j =
R j∑

r=1

s jr/ p̂(zjr ), (1)

where Rj is the number of observed groups in segment j,
sjr is the size of the rth group in segment j, and p̂(zjr) is
the estimated probability of detection given observation
level covariates, zjr (Marques et al. 2007).

Generalized Additive Model Fitting, Predictions,
And Uncertainty

We fitted generalized additive model (GAMs) with the
following structure:

E
(
N̂ j

) = Aj exp

[
β0 +

∑
k

fk

(
zjk

)]
, (2)

where N̂ j is the response variable assumed to follow a
Tweedie distribution (e.g., Foster & Bravington 2013)
and E indicates expectation; Aj, the model offset, is the
area of segment j calculated as 2(wR − wL)l j , where wR

is the right-truncation distance, wL is the left-truncation
distance (0 if data were not left truncated), and l j is the

segment length; fk are smooth functions of the environ-
mental covariates zk; and β0 is the model intercept.

We considered survey segments from the U.S. East
Coast, Gulf of Mexico, Caribbean, mid-Atlantic ridge,
and European Atlantic to fit the models depending on
the taxon. When different density–environment relation-
ships were expected in different seasons (e.g., for baleen
whales that forage in summer and breed and calve in win-
ter) and there were sufficient sightings in each season,
we fitted separate seasonal models. Otherwise, we fitted
a year-round model. Modeling decisions for individual
taxon are detailed in reports available from the Ocean Bio-
geographic Information System Spatial Ecological Analy-
sis of Megavertebrate Populations (OBIS-SEAMAP) repos-
itory (http://seamap.env.duke.edu/models/AFTT-2015/).

Is it important to constrain model complexity based
on the study objectives (Merow et al. 2014). Con-
sistent with our objective of extrapolating cetacean
densities beyond surveyed areas, we developed sim-
ple habitat models that captured dominant cetacean–
environment relationships but did not reproduce details
present in the data (Elith et al. 2010). Simple models
(i.e., models characterized by few parameters and smooth
species–environment relationships) can achieve higher
transferability and are highly recommended for extrapola-
tion (Wenger & Olden 2012; Merow et al. 2014). Authier
et al. (2016) found that models with a large number of co-
variates lead to widespread environmental extrapolation.
In line with these findings, we considered models with
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6 Cetacean Densities in the High Seas

a maximum of 4 covariates (models including 5 or more
covariates led to an excessively large extent of environ-
mental extrapolation). We fitted GAMs with all possi-
ble combinations of 4 covariates, after eliminating the
pairs of covariates for which the Spearman’s rank cor-
relation coefficient (Hollander & Wolfe 1973) calculated
on segments was �0.6 or �−0.6. We used thin-plate
regression splines with shrinkage to allow smooth term
effects to be removed from the model during fitting.
To model simple density-environment relationships and
mitigate overfitting, which is known to limit model
transferability (Wenger & Olden 2012), we restricted
the basis size to 4 for each smooth term. We used
restricted maximum likelihood as the criterion for es-
timating smooth parameters because it penalizes over-
fitting and leads to more pronounced optima (Wood
2011). We selected the models with the lowest AIC as
the best models. Model selection based on AIC effec-
tively reduces overfitting by penalizing models with ex-
cessive complexity (Wenger & Olden 2012). We fitted
all GAMs in R with the mgcv package (version 1.8.4)
(Wood 2014).

We produced maps of mean predicted densities (in-
dividuals per 100 km2) by averaging monthly predic-
tions seasonally (if a seasonal model was fitted) or an-
nually (if a year-round model was fitted) on a per-cell
basis. To visualize parameter uncertainty from the spa-
tial part of the model, we produced maps of the mean
(seasonal or year-round) coefficients of variation (CVs)
for each cell in the prediction grid by applying the ap-
proach described in Miller et al. (2013) (details in their
Appendix S2).

Our inference was based on a single best supported
model; however, different models can lead to widely
different predictions beyond predictor ranges (Pearson
et al. 2006). We further assessed uncertainty in the model-
selection process by examining, in each of Longhurst’s
biogeographical provinces, mean densities predicted by
statistically supported models (sensu Burnham & Ander-
son 2002) (� AIC<2). (See reports available from the
OBIS-SEAMAP repository.)

Confidence in Extrapolations

For each taxon, we evaluated confidence in predictions
by examining maps of sampled covariate ranges (i.e.,
so-called environmental envelopes) to visualize where
the model was extrapolated and by comparing predicted
densities with maps of cetacean sightings available in the
OBIS-SEAMAP repository (Halpin et al. 2009) that could
not be integrated into our models (e.g., opportunistic
sightings, telemetry data). These results and a discussion
of our relative levels of confidence in extrapolations are
presented in the reports available from the OBIS-SEAMAP
repository.

Results

The most commonly selected predictors were depth,
distance to the nearest sea surface temperature (SST)
front, and production of epipelagic micronekton. Ex-
plained deviances ranged from 22.9% (fin whale [Bal-
aenoptera physalus]) to 57.2% (striped dolphin [Stenella
coeruleoalba]) (Table 2). The extent of extrapolation
beyond the sampled covariate ranges varied from 4%
(harbor porpoise [Phocoena phocoena]) to 50% (Globi-
cephala spp.) (Table 2). Extrapolation mostly occurred in
the westerlies biome (lower chlorophyll-a concentration,
lower zooplankton production, and larger distances from
SST fronts in summer) and in the polar biome (lower sea
surface temperature in winter). Extrapolations beyond
sampled covariate ranges (horizontal lines on Figs. 2, 3,
and 4) are largely speculative and should be considered
with due caution.

Overall, mean predicted densities in Longhurst’s bio-
geographical provinces based on statistically supported
models were not widely different. Notable exceptions
were mean predicted densities of sperm whale (Phy-
seter macrocephalus) in the Atlantic Arctic and boreal
polar provinces (differing by a factor of 5) and mean pre-
dicted densities of striped dolphin in the Atlantic Arctic
province (differing by a factor of 4.5) (see results and
discussions in taxon-specific reports).

We present density-modeling results for a migratory
mysticete (sei whale [Balaenoptera borealis]), a deep-
diving odontocete (Kogia spp., including K. sima and
K. breviceps), and an oceanic dolphin (striped dolphin)
representing 3 ecologically distinct cetacean families (Pri-
eto et al. 2012). Predicted density maps, CV maps, and
detailed modeling results for all taxa are freely available
from the OBIS-SEAMAP repository.

Sei Whale

Sei whale summer densities were predicted to increase
in deep, cold waters where mesoscale activity is low and
epipelagic micronekton production is high. To predict
densities in the entire study area, we extrapolated to
deeper waters in the North Atlantic gyre, to colder wa-
ters in the polar biome, and to a lesser extent to waters
of higher mesoscale activity in the Gulf Stream. These
extrapolations comprised 40% of the cells of the study
area (Table 2 & Fig. 2a). Sei whales were predicted to
occur in temperate and subpolar waters, primarily on
the continental slope and offshore. Predicted densities
were the highest on the continental slope north of Cape
Hatteras (U.S. East Coast) and in offshore waters of the
Labrador Current (Fig. 2a). Coefficients of variation were
the highest in waters of high mesoscale activity in the Gulf
Stream, shallow waters along the U.S. coast, and warm
waters in the North Atlantic gyre (Fig. 2b).
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8 Cetacean Densities in the High Seas

Figure 2. Maps of (a) mean summer
predicted densities (individuals per
100 km2) and (b) mean summer
coefficients of variation from the
spatial part of the density model for
sei whale (black horizontal lines,
extrapolations beyond the sampled
covariate ranges [these predicted
densities should be considered with
extreme caution]). An Albers
equal-area projection is used for the
study area.
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Figure 3. Maps of (a) mean
year-round predicted densities
(individuals per 100 km2) and (b)
mean year-round coefficients of
variation from the spatial part of the
density model for Kogia spp. (black
horizontal lines, extrapolations
beyond the predictor ranges [these
predicted densities should be
considered with extreme caution]).
An Albers equal area projection is
used for the study area.
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10 Cetacean Densities in the High Seas

Figure 4. Maps of (a) mean
year-round predicted densities
(individuals per 100 km2) and (b)
mean year-round coefficients of
variation from the spatial part of the
density model for striped dolphin
(black horizontal lines,
extrapolations beyond the predictor
ranges [these predicted densities
should be considered with extreme
caution]). An Albers equal area
projection is used for the study area.
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Kogia spp

Densities of Kogia spp. were predicted to increase in
warm waters of intermediate depth and high micronek-
ton production. To predict densities in the entire study
area, we extrapolated to colder waters in the polar biome
(9% of the cells) (Table 2 & Fig. 3a). Kogia spp. were
predicted to occur in tropical and warm offshore tem-
perate waters. Predicted densities were the highest on
the continental slope in the Gulf of Mexico and south of
Cape Hatteras (Fig. 3a). Coefficients of variation were the
highest in shallow waters on continental shelves, and in
cold waters throughout the polar biome (Fig. 3b).

Striped Dolphin

Striped dolphin densities were predicted to increase in
deep waters of high epipelagic micronekton production,
intermediate chlorophyll concentration (CHL), and near
SST fronts. In order to predict densities in the entire study
area, we extrapolated to lower CHL and further from
fronts in the North Atlantic gyre (these extrapolations
comprised 34% of the cells) (Table 2 & Fig. 4a). Striped
dolphins were predicted to occur in offshore waters
throughout most of the study area. Predicted densities
were the highest in the northern part of the Gulf Stream
(Fig. 4a). Coefficients of variation were the highest in
shallow waters of the continental shelves (Fig. 4b).

Discussion

Confidence in Extrapolations

Overall, we have a reasonable confidence in predictions
for tropical and warm-temperate taxa for which survey
data were available within most of the distributional
range (Atlantic spotted dolphin [Stenella frontalis], Ko-
gia spp., and bottlenose dolphin [Tursiops truncatus])
and a relatively lower confidence in predictions for cold-
temperate and subpolar taxa for which survey data cov-
ered only the southern part of their ranges (Atlantic
white-sided dolphin [Lagenorhynchus acutus], harbor
porpoise, and all species of mysticetes). Although the
models correctly predicted the occurrence of these taxa
in northern waters, predicted densities were largely spec-
ulative and should be interpreted cautiously. The incor-
poration of LTSs from Canada (Lawson & Gosselin 2009)
and Greenland (Heide-Jørgensen et al. 2007) would have
increased the reliability of these models. Unfortunately,
we were unable to obtain permission to incorporate these
surveys in the current models but we hope they will be
incorporated in future iterations. We call for increased
collaboration and data sharing in order to better model
cetaceans in international waters.

Caveats of the Approach

The geographical distribution of LTSs available for this
study was heterogeneous with the highest concentration
of effort in the U.S. EEZ. Despite our efforts to incorporate
surveys external to the study area to increase the cover-
age of the westerlies and polar biomes poorly covered
by U.S. surveys, these ecological biomes remained largely
underrepresented. In Supporting Information, we discuss
the sensitivity of density-modeling results to heterogene-
ity in survey coverage by splitting the available survey
data into 11 geographical regions, excluding each region,
and examining predictions of the resulting models. We
found that our models were generally capable of showing
overall interregional patterns in taxa distributions when
data from one region were withheld. This suggests that
predictions in underrepresented regions are overall plau-
sible, but we urge caution regarding the absolute accu-
racy of density estimates in certain situations.

Some unsurveyed regions (e.g., the Labrador Sea and
the North Atlantic gyre) have oceanographic condi-
tions that are very different from conditions in surveyed
regions despite some overlap with sampled covariate
ranges. Intercovariate correlations may also be expected
to differ between unsurveyed and surveyed regions.
Changing correlations between the sample and predic-
tion data sets may lead to unreliable predictions in areas
where they differ the most (Elith et al. 2010). In Support-
ing Information, we compared covariate correlations in
the sample and prediction data and found that covariates
that were moderately correlated in one direction in the
sample data were always correlated in this same direction
in the prediction data.

By design, our models were simple and not tightly fit-
ted to the data. Complex models do not transfer well to
new regions because species–environment relationships
apply specifically to the sample data but do not generalize
well (Elith et al. 2010; Wenger & Olden 2012; Merow
et al. 2014). In contrast, in a related study limited to U.S.
waters, we were less concerned with model transferabil-
ity and developed more complex models to accurately
map cetacean densities within extensively surveyed ar-
eas (Roberts et al. 2016). In our study, limiting the basis
size of smooth terms prevented overfitting and helped
model general relationships that likely transfer better to
unsurveyed regions. Of course, underfitting also limits
model transferability because it can lead to misunder-
standings of the drivers of species distributions and to
potentially biased predictions (Merow et al. 2014). To
ensure our models did not result in severe bias in extrap-
olation, we always assessed predictions against ecological
knowledge. However, bias in predicted densities beyond
predictor ranges cannot be ruled out, and we once again
urge caution in their interpretation.

It is important to monitor the shapes of fitted relation-
ships at the edges of sampled covariate ranges to prevent

Conservation Biology
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12 Cetacean Densities in the High Seas

spurious extrapolation (Elith et al. 2010; Merow et al.
2014). For thin-plate regression splines (Wood 2003),
fitted relationships outside the observed data tend to
extreme values as the distance from observed values
increases. Steeply increasing relationships may be partic-
ularly problematic because they result in unrealistically
high density predictions when extrapolated beyond the
sampled covariate ranges. Such situations did not occur
in our study, and the shapes of relationships at the edges
of sampled covariate ranges appeared ecologically plau-
sible. However, for some cold-water taxa (e.g., sei whale
and fin whale), the relatively steep decrease of densities
at the lower edge of the sampled sea surface tempera-
ture range may have resulted in an underestimation in
northern waters.

We advise caution when interpreting our maps of CVs
because they document a single source of uncertainty
(the spatial model) and do not reflect the uncertainty asso-
ciated with predicted densities beyond covariate ranges,
the detection functions, g(0) estimates, or model covari-
ates. Covariate uncertainty may be highest for biological
covariates derived from the SEAPODYM model. Thanks
to the incorporation of in situ acoustic data for parameter
optimization (Lehodey et al. 2014), SEAPODYM outputs
are becoming increasingly accurate, making their use
as covariates in cetacean extrapolation models promis-
ing. The development of statistical methods propagating
these various sources of uncertainty to final density esti-
mates constitutes an area of active research (e.g., Foster
et al. 2012).

Applications

Our results provide baseline density predictions for 15
cetacean taxa in a very large portion of the western North
Atlantic. Our confidence in the predictions depends on
the taxon and region. We strongly advise users of these
predictions to review taxon-specific supplementary re-
ports available from the OBIS-SEAMAP repository and
proceed with caution where indicated. In the future, the
predictions may be improved by incorporating new LTS
data in underrepresented regions. To facilitate this, we
call for expanded collaboration that would allow incor-
poration of extant data (e.g., Heide-Jørgensen et al. 2007;
Lawson & Gosselin 2009) and urge increased surveying
in underrepresented regions.

Beyond the example application of facilitating a quanti-
tative assessment of military training impacts on cetacean
populations, our density estimates can inform a variety
of management needs in the high seas. Management ap-
plications include quantifying the impacts of industrial
activities that generate underwater noise, including deep-
sea mining and seismic surveying; quantifying cetacean
interactions with offshore fisheries and transoceanic ship-
ping; and informing the delineation of areas of special
biological significance in international waters (e.g., the

Sargasso Sea, recently proposed as a potential UNESCO
World Heritage site). Finally, our approach is generally
applicable to other geographic regions, marine taxa, and
management needs in areas of sparse data.
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Kogia spp. assessed with a cross-validation approach (Ap-
pendix S2), and Spearman’s rank correlation coefficients
between covariates calculated on surveyed segments and
cells of the prediction area (Appendix S3) are available
online. The authors are solely responsible for the con-
tent and functionality of these materials. Queries (other
than absence of the material) should be directed to the
corresponding author.

Conservation Biology
Volume 00, No. 0, 2017



Mannocci et al. 13

Literature cited
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