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Abstract

We find transient transit-like dimming events within the K2 time series photometry of the young star RIK-210 in
the Upper Scorpius OB association. These dimming events are variable in depth, duration, and morphology. High
spatial resolution imaging revealed that the star is single and radial velocity monitoring indicated that the dimming
events cannot be due to an eclipsing stellar or brown dwarf companion. Archival and follow-up photometry
suggest the dimming events are transient in nature. The variable morphology of the dimming events suggests they
are not due to a single spherical body. The ingress of each dimming event is always shallower than egress, as one
would expect for an orbiting body with a leading tail. The dimming events are periodic and synchronous with the
stellar rotation. However, we argue it is unlikely the dimming events could be attributed to anything on the stellar
surface based on the observed depths and durations. Variable obscuration by a protoplanetary disk is unlikely on
the basis that the star is not actively accreting and lacks the infrared excess associated with an inner disk. Rather,
we explore the possibilities that the dimming events are due to magnetospheric clouds, a transiting protoplanet
surrounded by circumplanetary dust and debris, eccentric orbiting bodies undergoing periodic tidal disruption, or
an extended field of dust or debris near the corotation radius.
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1. Introduction

Upper Scorpius, hereafter Upper Sco, is the nearest OB
association (see Preibisch & Mamajek 2008 for a review). At
an age of 5-10 Myr, the association is at a critical stage of
planet formation, when most protoplanetary disks have
dissipated. Roughly 20% of the low-mass members of Upper
Sco host a protoplanetary disk, indicating that planet formation
is ongoing in the region (Luhman & Mamajek 2012).

Around young (<10 Myr) planet-forming stars, dimming
events of several tens of percent have been explained as
obscuration by a circumstellar disk (Cody et al. 2014). Indeed,
in Upper Sco itself, dozens of members exhibit such dimming
behavior (Ansdell et al. 2016). At the age of Upper Sco, it is
also possible to find fully formed planets at small orbital
separations, as evidenced by K2-33 b (David et al. 2016b;
Mann et al. 2016), a transiting, Neptune-sized, short-period
exoplanet around a low-mass member of Upper Sco.

Transit profiles that are asymmetric and variable in depth and
duration may be attributable to disintegrating planetary bodies
with trailing or leading tails (Rappaport et al. 2012, 2014;
Sanchis-Ojeda et al. 2015; Vanderburg et al. 2015), swarms of
rocky or cometary debris (Boyajian et al. 2016), circumplane-
tary rings (Mamajek et al. 2012), or a precessing planet
transiting a star with non-uniform surface brightness (Barnes

'l NSF Graduate Research Fellow.

et al. 2013). While this phenomenon has been documented
around mature stars and stellar remnants, due to, e.g., tidal
disruption or photoevaporation, periodic examples have not
been previously observed around a young star lacking a
protoplanetary disk. Here, we present evidence of a transient
transit-like signature, possibly due to a transiting cloud or an
enshrouded protoplanet, around the young star RIK-210.

In Section 2, we describe existing and new information about
the star. In Section 3, we present the K2 data and light curve
analysis. Archival and follow-up ground-based photometry in
multiple filters is presented in Section 4, time series spectrosc-
opy in Section 5, and high spatial resolution imaging in
Section 6. Section 7 discusses the physical interpretation of the
variable depth narrow flux dips in RIK-210, including stellar
surface activity and several orbiting planet/debris scenarios.

2. RIK-210

RIK-210 (also designated 2MASS J16232454-1717270 and
EPIC 205483258) was established as a low-mass member of the
5-10 Myr old Upper Scorpius OB association by Rizzuto et al.
(2015). Those authors assigned a 95% membership probability
on the basis of hydrogen emission and lithium absorption.
Proper motions from the UCAC4 catalog (Zacharias et al. 2013)
are consistent with membership (de Zeeuw et al. 1999; Lodieu
2013). We confirm the youth of the star spectroscopically and
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Table 1

System Properties of RIK-210
Parameter Value Reference
2MASS designation J16232454-1717270
EPIC designation 205483258
Spectral type M2.5 this work
d (pc) 145 £ 20 de Zeeuw et al. (1999)
Ay (mag) 0.6 +£ 0.2 this work
EW Ha (A) -3.51t0 —6.5 this work
EW He 1 5876 (A) —0.6to —1.2 this work
EW Li (;\) 0.54 £ 0.02 this work
log (Tt /K) 3.54 £ 0.01 this work
log Ly/L (dex) —0.70 £ 0.08 this work
M, (M) 0.53°513 this work
Ry (Ro) 1.247512 this work
v (kms") —4.63 £+ 0.07 this work
vsini (kms") 11 +1 this work
P,y (day) 5.670 £ 0.004 this work
Kp (mag) 13.7 EPIC
B (mag) 16.213 + 0.066 APASS DR9
V (mag) 14.630 £+ 0.137 APASS DR9
g’ (mag) 15.462 £+ 0.121 APASS DR9
r’ (mag) 14.093 £ 0.118 APASS DR9
i’ (mag) 12.862 + 0.099 APASS DR9
J (mag) 10.61 £+ 0.02 2MASS
H (mag) 9.85 + 0.02 2MASS
K (mag) 9.65 + 0.02 2MASS
W1 (mag) 9.55 £ 0.02 WISE
W2 (mag) 9.40 £ 0.02 WISE
W3 (mag) 9.19 £ 0.05 WISE
W4 (mag) 8.75 £ 045 WISE

through a precise determination of its systemic radial velo-
city (RV).

2.1. Stellar Properties

Observed and derived stellar properties for RIK-210 are
reported in Table 1. For all distance-dependent parameters we
assumed d = 145 + 20 pc, corresponding to the mean distance
to Upper Scorpius from Hipparcos trigonometric parallaxes of
the high-mass members and assuming an uncertainty compar-
able to the association’s width on the sky (de Bruijne 1999; de
Zeeuw et al. 1999). Our spectrum (Section 6) is consistent with
the previously reported spectral type of M2.5 (Rizzuto
et al. 2015). Assuming the spectral type and using empirical
calibrations valid for young stars (Pecaut & Mamajek 2013),
we derived the effective temperature, bolometric luminosity,
and visual extinction for RIK-210. We determined the stellar
radius from the temperature, luminosity, and the Stefan—
Boltzmann law.

The stellar mass was determined from the temperature and
luminosity, interpolating  between  solar  metallicity
(Z=0.0152) PARSEC vl.2s pre-main sequence models
(Bressan et al. 2012; Chen et al. 2014). Mass uncertainties
were estimated from Monte Carlo sampling assuming normally
distributed errors in log(Tys) and log(L/L.). We adopt
generous mass uncertainties (the boundaries of the 5% and
95% quantiles, see Table 1) due to the incompleteness of
models at low stellar masses to include important physics such
as the magnetic inhibition of convection (e.g., Feiden 2016).
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Figure 1. Spectral energy distribution of RIK-210 along with a NextGen stellar
atmosphere model (Hauschildt et al. 1999) normalized to the J-band point.
Including a small amount of reddening (black) improves the fit over the
unreddened model (green).

2.2. Activity and Possible Disk

RIK-210 shows modest chromospheric emission. Ha with a
classic double-horn profile, HG, He 5876 A, Nal D, the Canl
H&K doublet and the “infrared” triplet, and Fe 1 5169 A are all
seen in emission in our spectra (Section 6). The line strengths
are variable over our spectral time series, as discussed in detail
below.

Although the star is active, the spectrum indicates that it is
not currently accreting. Furthermore, the spectral energy
distribution (Figure 1) shows that it does not host a primordial
protoplanetary disk. However, there is marginal evidence for a
22 ym mid-infrared excess at the 40% level (detected at
SNR > 3.5), based on a model atmosphere fit to available
broadband catalog photometry. Typical dust masses of low-
mass stars with circumstellar disks in Upper Sco are in the
range of 0.2-20 My (Barenfeld et al. 2016). As RIK-210 lacks
any significant circumstellar disk, we assume the amount of
remaining dust in the system is likely below 0.2 M.

3. K2 Light Curve and Analysis

RIK-210 was observed for ~77 days at a =30 minute
cadence by the Kepler space telescope during Campaign 2 of
the K2 mission (Howell et al. 2014). Systematic artifacts in the
photometry due to spacecraft attitude adjustments were
corrected for wusing an established algorithm (Aigrain
et al. 2016) and the resulting time series is shown as the top
sequence in Figure 2. The deep dimming events are superposed
on the smooth rotation signature of the spotted star, apparently
in phase with the stellar rotation. Figure 3 highlights the
dimming events in the context of rotation pattern.

Our analysis and interpretation of the dimming events is
predicated on the following observations and assumptions, all
of which we develop in full below.
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Figure 2. K2 light curve of RIK-210 in 20-day segments (black points). The red curve indicates the iterative spline fit (variability fit A) used to remove the starspot
modulation pattern. Blue arrows indicate the approximate positions of shallow dimming events. Below the light curve we plot the residuals of the variability fit,
normalized to unity but shifted to a continuum value of 0.8 in this figure. A broad flux dip occurs near BJD-2454833 = 2087.8, indicated by the arrow and bar in the
second panel, however, the variability fit shown here passes through it and so it is not apparent in the residuals.

1. Dimming events of variable depth, duration, and morph-
ology occur every 5.6685 days, in phase with the stellar
rotation.

2. The dimming events are both deep (sometimes greater
than 15%) and short in duration relative to the rotational
period, and thus unlikely to be due to features on the
stellar surface.

3. The morphology of the dimming events is variable over
the 77 day campaign, while the starspot modulation
pattern remains stable over this time frame.

4. If the dimming events are due to an object or debris cloud
in a Keplerian orbit around the star, the transiting body
must be at or near the corotation radius.

5. Assuming the transiting material does not contribute
significant flux to the optical light curve, the depth of
each transit yields the approximate size of the occulting
body or bodies.

6. The facts that the dimming events are periodic yet narrow
in rotational phase indicates the occulting material is
azimuthally confined within its orbit around the star, else
if it is arranged in a torus-like structure its orbital plane is
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Figure 3. K2 light curve of RIK-210. In each panel, the point color indicates the relative time of observation (with red corresponding to earlier times). Upper left:
photometry folded on the rotational /orbital period of 5.67 day. Bottom left: same as above, showing an enhanced view of the dimming events. Middle: same as the
upper left, but with vertical offsets applied after each rotation of the star. Right: same as middle, showing an enhanced view of the dimming events. There is clear
evolution in the depth, duration, and overall morphology of the dimming events, a strong indication against a transit by or eclipse of a single solid body of any size.
Some flares appear to occur at approximately the same rotational phase, shortly after the transit events.

tilted and its distribution vertically above that plane is
inhomogeneous.

7. A purely gaseous cloud lacks the requisite opacity in the
Kepler bandpass to produce the observed transit depths.

3.1. Stellar Variability Fit

At several stages of our analysis, we consider a “flattened”
light curve, in which we attempted to remove the underlying
starspot modulations while excluding dimming events from the
fitt. We use two fits in this work. The first, which for
convenience we call variability fit A, was achieved using a
custom automated routine that iteratively fits the light curve via
a cubic basis spline, excluding 20 outliers upon each iteration
(for details, see David et al. 2016a). The second, which we call
variability fit B, also utilizes a cubic basis spline, though the
observations excluded from this fit were manually selected
through visual inspection in a cadence-by-cadence manner. We
note that fit A is used for quantitative analyses and fit B for
qualitative or illustrative purposes. The adopted fit and the
residual light curve are displayed as the middle and bottom
sequences in Figure 2.

3.2. Periodicity

A period of 5.670 + 0.004 days that we associate with the
rotation of the star was determined from a Lomb-Scargle
periodogram of the systematics-corrected light curve. We note

this rotation period is somewhat long for Upper Sco members
of comparable color but not outside the distribution, which
peaks at periods shorter than 1 day with a long tail out to tens
of days (L. Rebull 2016, private communication). The rotation
period uncertainty was estimated as AP = o0/2/M, where
o =dt/2 is half of the observing cadence and M is the
number of rotational cycles contained within the entire light
curve (Mighell & Plavchan 2013). Performing the same
periodogram analysis on only the in-transit observations, or
on only the out-of-transit observations, yields identical
periods within uncertainties. We conclude that the orbital
period is indistinguishable from the rotation period of the star,
indicating that the occulting material is orbiting at or near the
corotation radius.

The corotation radius is the separation at which an object in
circular orbit around a star has an orbital period equivalent to
the stellar rotation period, given by

Acorot = (M*/MG)1/3(Rot/year)2/3 au. (1)

For stars still hosting massive protoplanetary disks, theory
predicts truncation of the inner disk near the corotation radius,
where ionized material is dragged along magnetospheric field
lines and may be accreted onto the stellar surface (Konigl 1991;
Collier Cameron & Campbell 1993; Bouvier et al. 1997). For
the adopted stellar mass and the rotation period above, we find
Aeorot = 0.050 % 0.004 au, or approximately 9 R,.
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3.3. Ephemeris

From the K2 light curve, we determined an ephemeris for the
dips from 10° bootstrapping simulations of linear fits to the
times of minimum light, conservatively assuming 0.5 hr
uncertainties and Gaussian errors. The times of minimum light
are predicted by

1, = 2456896.1278(0.011) + n x 5.6685(0.0014) BID. (2)

Notably, the time of minimum light deviates from this linear
ephemeris within the K2 campaign, sometimes occurring
earlier or later by up to one hour. This is potentially due to
morphological changes of the obscuring body itself rather than
dynamical effects, as discussed in Section 3.8.

3.4. Durations

Figure 4 highlights the individual dimming events during the
K2 campaign. Assuming an edge-on and equatorial transit, the
transit duration of a massless, dimensionless particle orbiting
with circular velocity v and period P, at a distance a from a
star with mass and radius, M, and R, respectively, is given by

2R>(< _ 2R* _ R)rb&
Ve  (GMy/a)*  wm a’

Teross = (3)
For a particle on a circular orbit at the corotation radius, the
transit duration is

2Ry
G'/*(My/ P!/

For the stellar mass and radius adopted above and the
presumed orbital period, the expected transit duration is =5 hr,
i.e., slightly less than the minimum observed duration but about
three times shorter than the maximum observed duration. A
larger transiting object would produce longer durations, though
the variable transit duration, depth, and morphology are
inconsistent with eclipses by a single spherical body. We
conclude that the occulting material must be comprised of, at
least in part, an extended distribution of particles with small
individual size, but large collective size, relative to the star.

“)

Teross =

3.5. Size of Occulting Material

A spherical body of radius r transiting the equator of a star
with radius R, has a transverse velocity of
2(r + Ry)

V= —"

t

(%)
Idim
where t4;, is the duration of a transit or eclipse.
If the object is on a circular orbit, the transverse velocity is
the circular Keplerian velocity, and the size of the occulting
object is given by

_ 172
r = tdﬂ(%) — Ry. (6)
2 a

From Kepler’s third law, assuming the object in orbit has a
mass much smaller than the mass of the star, the radius of the
occulting body is then

Tatdim
r=—— — Ry 7
P * (N
For the range of dimming durations observed in RIK-210
(~6-18 hr), the radius of a putative occulting body would be in
the range of ~0.3-3 R, or ~3-30 Ry, assuming an equatorial
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orbit. However, we note that the dips with the longest observed
durations are always significantly asymmetric. A single,
spherical body produces a symmetric transit or eclipse profile
(in the absence of spot crossings or precession). Thus, the
larger end of the radii quoted above likely represents the size of
a putative debris stream or dust cloud rather than any individual
occulter.

If instead we assume the occulting material is distributed
azimuthally in orbit at the corotation radius around the star, we
can calculate its linear size from its arclength as implied by the
dimming durations,

g = 27a cortdim

s 8
H)rb ( )

from which we found s ~ 3-9 R, i.e., larger than the diameter
of the star itself. This would imply the dust or debris covers
~4%—13% of its orbit, or an angle of 0.3—0.8 radians, assuming
equatorial transits.

3.6. Dip Morphology

The dip morphology continually evolves throughout the K2
campaign (Figures 3 and 4). While no two dips have the same
morphology, there are common characteristics between all
events, which are evident in Figure 5. Notably, ingress is often
shallower than egress. Such dip morphologies may be produced
by a leading tail of debris surrounding a main transiting body,
or by a precessing body transiting a star of non-uniform surface
brightness. Additionally, the variance in the phase-folded light
curve shows a double-peaked profile, gradually increasing
through ingress before reaching a local minimum at the
expected time of mid-transit, a global maximum shortly after
the time of mid-transit, and then falling off steeply in egress.

In some individual dips, there are clearly two or even three
distinct minima, with the shallower minima always occurring
prior to the global minimum (Figure 4). Additionally, some
dips exhibit either ingress or egress morphologies that are
strikingly similar to the morphologies expected from transiting
comets (Lecavelier Des Etangs et al. 1999; Lecavelier Des
Etangs 1999).

3.7. Bursts, Flares, and Starspots

The out-of-transit light curve is dominated by a semi-
sinusoidal waveform of ~20% peak-to-trough amplitude,
which we interpret as rotational modulation of starspots. While
the starspot modulation amplitude is large even for a young
star, it is not unprecedented. For example, a spot modulation
amplitude of AV = 0.8 mag has been observed in the weak-
lined T Tauri star (WTTS) LkCa 4 (Grankin et al. 2008). The
brightness difference observed in RIK-210 suggests a ~5%
difference in the disk-averaged temperature (i.e., a few hundred
Kelvin) between the coolest and hottest hemispheres.

In addition to the flux decrements, there are several flares in
the light curve that are commonly observed in young low-mass
stars. There is marginal evidence that these flares are somewhat
confined in rotational phase (see the top-left panel of Figure 3).
There is also a large burst, approximately 12 hr in duration,
occurring at BJD = 2456909.78 (or BJD-2454833 = 2076.78,
as shown in Figure 2 for example). This burst is different in
morphology from the typical flare signature and could be due
to discrete accretion onto the star, possibly a low-level form of
the events illustrated in Cody et al. (2017) for actively accreting
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Figure 5. Top: phase-folded and binned K2 light curve of RIK-210 after
removing the starspot rotation signal via an iterative spline fit. Bottom: variance
in the phased and binned light curve. Variability fit B was used to make
this plot.

stars observed in the same K2 campaign. However, as noted
above, the star lacks both spectroscopic accretion indicators
and an infrared excess indicative of an inner disk. Notably, the
end of the burst feature is characterized by two consecutive
flare-like decays.

3.8. Light Curve Parameterization

We characterize the K2 dimming events in terms of eight
parameters: maximum depth, total duration, area (the time-
integrated extinction), time variation between predicted and
observed minimum light, the slopes of ingress and egress, and
the durations of ingress and egress (see Table 2).

All parameters were determined from the flattened light
curve, using variability fit A (Figure 2). No interpolation was
performed within individual transits, and as such, the maximum
depth and time of minimum light were simply determined by
the observation with the lowest flux. The total duration was
determined by finding the last cadence before mid-transit and
the first cadence after mid-transit to fluctuate above a median
normalized flux of unity. The slope of ingress and egress are
determined from the 6 hr preceding and 3 hr proceeding the
time of minimum light, respectively. Often the ingress clearly
has multiple minima, which informed the decision to measure
the slope for only a portion of ingress.

There is no observed correlation between the depths and
durations of dimming events, as was observed for the dips
ascribed to a transiting planet around the young star PTFO 8-
8695 (Yu et al. 2015). For a single spherical body transiting the
disk of a star, both the transit depth and duration depend on the
size of the occulting body. Alternatively, if dust is partially
contributing to the dimming events in RIK-210, the depths may
change independently of the durations due to changing optical
depths.
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However, there is a correlation between the slope of egress
and the timing variation, such that the later the time of
minimum light occurs, the steeper the egress (Figure 7). The
Spearman rank correlation coefficient is r = 0.617, with
p < 2%. The significance of this correlation increases
(r=20.65, p < 1.2%) if variability fit B is used to flatten the
light curve. From 10° bootstrapping simulations we estimate
the correlation to be significant at the ~2.2¢ level and estimate
the true correlation coefficient r to be between 0.4 and 0.7 at
95% confidence assuming 0.25 hr uncertainties in the timing
variations. We note that the correlation strengthens and
becomes more significant depending on how the egress slope
is measured, and the above estimates are somewhat
conservative.

To investigate the significance of the timing variations, we
measured the “transit” times using two methods: (1) Gaussian
fits to the deepest component of each dip, considering data
within 2.4 hr of the faintest cadence, using the Levenberg—
Marquardt algorithm, and (2) selecting the cadence with the
lowest flux value in each dip. We found that the timing
variations with respect to a linear ephemeris agree (in both
magnitude and direction) in most cases to within 0.25 hr,
regardless of the technique used to determine the individual
“transit” times.

Notably, there is no correlation between the slope of ingress
and the timing variation, nor is there one between the egress
duration and the timing variation. Timing variations are most
typically the result of gravitational interactions between
multiple orbiting bodies. However, given the the asymmetries
of the dimming events in RIK-210, it is also possible that the
observing timing variations are due to the occulting body or
bodies changing shape, e.g., variable extinction by a dust
cloud. Such a scenario could displace the time of minimum
light and mimic timing variations from gravitational
interactions.

One possible explanation for the timing variation-egress
slope correlation involves a collection of bodies that are
gravitationally interacting. A massive body in a trailing orbit
with respect to a less massive collection of bodies might pull
the leading bodies back in their orbit, causing the configuration
to become more spatially compact and delaying the transit
time. The more compact the configuration, the less dispersion
one expects in stellar disk-crossing times between component
bodies and the steeper egress will be. An issue with this
explanation is that one might also expect steeper ingress.
However, given that some component of the occulting material
may be dust, it is not evident whether the timing variations are
tracing dynamical evolution or morphological evolution (i.e.,
due to a variable dust cloud).

It is interesting to note that depth (and apparently
morphology) variations that correlate with stellar rotational
phase have been observed in the transits of the disintegrating
planet KIC 12557548b (Kawahara et al. 2013; Croll
et al. 2015). Additionally, Croll et al. (2015) found morpho-
logical variations that correlated with the transit timing
variations, such that late transits had shallower dips with a
more gradual egress relative to the early or on-time transits.
Both studies investigated the possibilities that the correlation
between transit depth and rotational phase is due to (1) spot-
crossing events by the cometary tail (which leads to anomalous
brightening if the tail occults a starspot, thereby changing the
transit morphology and inducing an apparent timing variation),
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Table 2
Parameters of the Transient Transit Signature
Timing
Event Tmin Depth Duration Area variation Ingress slope Egress slope Ingress duration Egress duration
BID (%) (hr) (% hr) (hr) (% /hr) (% /hr) (hr) (hr)
1 2456896.1242 8.80 14.22 50.76 0.24 —0.85 2.73 10.79 3.43
2 2456901.7838 10.89 14.22 56.16 0.03 —-1.22 3.29 10.79 3.43
3 2456907.4639 13.26 6.37 4247 0.30 —2.38 4.70 343 2.94
4 2456913.1440 14.78 18.14 76.21 0.57 —2.07 5.07 14.22 3.92
5 2456918.7627 10.74 9.81 41.99 —0.62 —1.87 3.11 5.39 441
6 2456924.4836 11.69 10.79 47.26 0.63 —2.08 4.04 6.37 441
7 2456930.1432 10.46 7.36 32.63 0.41 -1.91 4.01 4.90 2.45
8 2456935.8027 12.66 16.18 66.04 0.19 —-1.72 421 12.26 3.92
9 2456941.5032 12.73 12.26 63.32 0.95 —1.90 4.80 9.32 2.94
10 2456947.1831 14.65 13.24 63.33 1.23 —2.86 4.67 9.81 3.43
11 2456952.8427 14.40 12.75 83.37 1.01 —1.88 4.54 8.34 4.41
12 2456958.4819 12.33 12.26 67.52 0.30 —2.06 3.78 8.34 3.92
13 2456964.1414 18.44 11.28 88.17 0.08 —2.72 5.41 6.87 441
14 2456969.7806 12.97 14.71 84.57 —0.63 —-1.72 2.74 9.32 5.39
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Figure 6. Waterfall diagram of RIK-210. Colors represent the K2 light curve
intensity, with blue corresponding to higher flux and red to lower flux. The
primary dimming events that are the focus of this work are clearly seen as the
dark red stripe, which changes in intensity, duration, and timing. At the top left,
a series of light blue stripes between phases of 0.2 and 0.3 are observed to
apparently drift in phase over the first four cycles. These are some of the
shallow flux dips discussed in Section 3.9. Linear interpolation was performed
over data gaps where spacecraft thruster firings were excluded.

or (2) periodically modulated mass loss due to an active region
on the star with enhanced X-ray and UV flux.

For RIK-210, the obscuring material, if in orbit about the
star, has the same period as the stellar rotation. Thus, while
RIK-210 is heavily spotted, spot-crossing anomalies are not a
satisfactory answer for the transit variations, unless individual
spots are rapidly evolving or different regions of the stellar disk
are being occulted from one transit to the next (perhaps as a
result of an an obscuring cloud that is evolving in shape or
crossing different stellar latitudes as it transits the disk of
the star).

To qualitatively assess the similarity of individual dimming
events to solid-body transits, we performed Levenberg—
Marquardt fits to the observations using the JKTEBOP light

Timing variation (hrs)

Figure 7. Correlation between the dimming timing variations and egress
slopes. Ad hoc uncertainties of 0.25 hr in timing variation and fractional
uncertainties of 10% in slope are assumed.

curve modeling code (Southworth 2012, and references
therein). All fits presented here assumed a linear limb-
darkening coefficient of 0.6 for the primary star, allowing the
following parameters to vary: time of mid-transit, inclination,
ratio of radii, and the sum of the radii divided by the semimajor
axis. These fits typically favor low inclinations (~81°), a ratio
of radii of ~0.48, and a sum of fractional radii of ~0.22.
However, these parameters are degenerate and the resulting
values are not given significant weight in our interpretation of
the data. We also note the size ratio and sum of fractional radii
imply conflicting sizes of the occulter. Nevertheless, these
models are useful for assessing the symmetry and underlying
geometry of the occulting material.

The first dimming event is also the most shallow.
Interestingly, by fitting the deepest component of the first
dimming event (Figure 8) and subsequently fitting this model
to the rest of the K2 data (allowing only the ephemeris
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Figure 8. Composite of two independent JKTEBOP model fits to the two
minima in the first dimming event of RIK-210 in the K2 photometry. At least
some of the individual transits observed by K2 are reasonably well fit by one to
three spherical occulting bodies with large size relative to the star. The fit to the
deeper dip alone is referred to later as the “minimum obscuration fit.”
Variability fit B was used to make this figure.
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timebase, Ty, and period to vary), we find that essentially all
other observations fall below this model (Figure 9). One might
interpret this observation as evidence for a primary occulting
body surrounded by an evolving swarm of dust or debris. The
residuals of this “minimum obscuration fit” are quite often
double-peaked (Figure 10), perhaps suggestive of multiple
obscuring bodies or a single, clumpy occulter.

3.9. Short-Duration, Shallow Flux Dips

In addition to the main dimming events of several to ~20
percent depth, shallower transit-like dips are also apparent in
the K2 light curve (Figures 2 and 6). In general, these dips are
prominent in the beginning of the time series (when the primary
dips are generally shallower) and apparently absent by the end
of the campaign. These dimming events are typically ~5 hr in
duration, consistent with the expected transit duration for an
orbiting body at the corotation radius.

In the beginning of the K2 campaign, there is a grouping of
at least four consecutive dips, which persists to some extent for
the first four orbits /rotations (Figures 2 and 12). Over the next
four orbits, the spacing between prominent dips appears to
increase, somewhat suggestive of bodies that have departed
from the original periodicity of ~5.67 days. Finally, over the
remainder of the campaign, the number of shallow dips appears
to gradually decline. There is at least one dip present in each of
the last six orbits/rotations. However, because this dip is not
strictly periodic, it is not clear whether this feature is attributed
to the same body or multiple bodies at different semimajor
axes. If the former case is true, then the time variations between
transits (~0.6 day) would represent a fractional transit timing
variation of unprecedented amplitude.

In at least one case, a transit of ~0.7% depth appears to recur
with a period similar, but not equal to, the deep dimming events
(Figure 11). Some of the shallow transits appear to have a
characteristic trailing tail morphology, as opposed to the deep
dimming events that possess a morphology reminiscent of a
leading tail. As Rappaport et al. (2012) points out, in cases
such as these the transit depth does not simply reflect the
underlying planet size but also the size of a putative cloud of
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dust. Thus, the transit depth may be expressed as
5 TR\ | f(Mp/3My)' Pa 2 ©)
Ry Ry« '

where Ry is the planetary Hill radius, f is the fraction of the
Hill radius that is optically thick, and Mp is the planet mass.
Inverting the above equation, we can crudely approximate the
planet masses required to create a 1% transit. Assuming
a = 0.05au, the planet masses required are 2.6 My,, for
f=0.1,6.5 Mg for f= 0.5, or 1.6 Mg for f = 0.8.

It is worth noting that the initial grouping of four or more
dips are located near the light curve maximum and approxi-
mately 90° out of phase with respect to the primary dimming
events. By comparison, Trojans are concentrated around the L4
and L5 Lagrange points, 60°ahead and behind the primary
orbiting body, respectively. Trojan populations do have an
azimuthal distribution, and some of Jupiter’s Trojans do in fact
orbit 90° ahead or behind the giant planet. However, we also
note that a stable Trojan population would have the same
period as the main occulter, and this does not seem to be the
case for the shallow dips that do not exhibit strict periodicity.

In any event, the fact that these shallow dips are not strictly
periodic suggests that they are not due to features on the
surface of the star nor can they be due to material that is strictly
corotating with the star or stellar magnetosphere. We posit that
these shallow dips are likely related to the deeper dimming
events, and speculate that they are due to transiting material in
orbit about and nearly corotating with the star.

It is revealing to compare the behavior of these shallow dips
to the dips observed around the white dwarf WD 11454017
(Vanderburg et al. 2015). The current interpretation for that
system is of a large asteroid transiting a white dwarf and
orbiting near its Roche limit. As a result of tidal disruption,
fragments break off from the asteroid, producing distinct flux
dips in time series photometry which have been noted to “drift”
in phase relative to the transits of the parent body (Rappaport
et al. 2016).

4. Archival and Follow-up Photometric Monitoring

Given the variability in the depth, duration, morphology, and
timing of the dimming events observed by K2, we sought
auxiliary time series photometry to investigate changes over
longer time baselines. There is no archival light curve for RIK-
210 from HATSouth as that survey avoids crowded fields (G.
Bakos 2016, private communication). Fortunately, there are
more than 28,000 individual observations between 2006 and
2010 from SuperWASP-South (Figure 13), hereafter WASP
(Pollacco et al. 2006).

A coherent Fourier transform of all of the WASP data yields
a high-significance peak with only a small first harmonic,
indicative of sinusoidal behavior. The period favored by the
WASP data is P = 5.6665 £ 0.0012 days, within 1.60 of the
period determined from the K2 data (where o here represents
the uncertainties of the two periods summed in quadrature).
Thus, WASP clearly detected the rotation period of the star, but
there is mixed evidence regarding the presence of deep flux
dips in prior years. A notable feature of the combined WASP
light curve, presented in the left panel of Figure 13, is a broad
depression at phases earlier than the expected dip phase from
K2, seemingly suggestive that the dip was present in previous
years but drifted in phase, narrowed, or both. Upon first glance
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Figure 10. Evolution of the primary dips in the K2 light curve of RIK-210. In
both panels, the top row shows data from the first dip, proceeding
consecutively downwards to the bottom row, which shows the last observed
dip. Left: the “minimum obscuration fit,” obtained by fitting a model to the
deepest component of the first dimming event, with respect to subsequent
individual transits. Right: evolution of the residuals to the fits depicted on
the left.
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Figure 9. JKXTEBOP model (red) overplotted on the flattened K2 light curve of RIK-210 (black points). The model above was fit to the deepest component of the first
dimming event in the K2 campaign, then refit to the entire light curve allowing only the period and time of mid-transit to vary. Few observations lie above this fit,
perhaps suggestive of an underlying, spherical occulting body surrounded by a stream of dust or swarm of planetesimals. Variability fit B was used to make this figure,
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Figure 11. Example of shallow dimming events seen late in the K2 campaign.
Here we show two events (indicated by different colored points) separated by
5.888 days with consistent depth, duration, and morphology.

of the annual WASP light curves (right panel of Figure 13),
there appear to be some statistically significant dips in previous
years (e.g., near phase of 0.65 in 2008). However, further
inspection of the WASP data reveals that most of the dip-like
structures seen in prior years are the result of data acquired on
only one or two nights in that year. The most complete phase
coverage was achieved in both 2009 and 2010, but prominent
dips are not readily apparent. We conclude that there is no
strong evidence for dips in the 2006-2010 WASP data, and
suggest the broad trough in the combined light curve may be
the result of a spurious dip in 2006 and/or evolution of the spot
pattern.

We also acquired follow-up ground-based photometry of
RIK-210 in the Bessel V and Sloan i’ filters using the Las
Cumbres Observatory Global Telescope network, hereafter
LCOGT (Brown et al. 2013), between UT 2016-07-06 and
2016-08-10. Raw images were automatically processed using
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Figure 12. Flattened and median filtered K2 light curve of RIK-210. The data are phase-wrapped on the dip period of 5.6685 days. A grouping of shallow dips
preceding the main dip is prominent for the first four rotation periods of the campaign, then largely disappears. Variability fit B was used to make this figure.

the LCOGT BANZAI pipeline, which performs bad pixel
masking, bias and dark subtraction, flat-field correction, and
provides an astrometric solution. We performed differential
photometry from the reduced images with Astrolmagel]
(Collins et al. 2016), using 2MASS J16234525-1722086 and
2MASS J16230556-1716209 as comparison stars. The color of
RIK-210 in these bands is V — i/ = 1.77 + 0.17 mag (uncor-
rected for reddening, from APASS DR9). This is a bluer color
than expected given the M2.5 spectral type, and corresponds
more closely to a K9 type photosphere. However, this color
discrepancy is not apparent from the SED in Figure 1.
Conspicuously, observations from LCOGT at the predicted
time of the dimming events (phase = 0.5 in Figure 13) show
that no such dimming events are observed, at least not at the
~0.2 mag level observed by K2. The absence of a transit or
eclipse at the time predicted from a linear ephemeris based on
the K2 data is in tension with the explanation that the dimming
events could be due to a solid body with any substantial size
relative to the star. We note that because phase coverage is
sparse around the predicted time of the dimming events, and
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due to the precision of our ground-based photometry, we
cannot rule out the possibility that dimming events of a few
percent depth are still occurring.

The LCOGT photometry (Figure 13) confirmed that the
ephemeris of the stellar rotation has remained unchanged more
than two years after the K2 observations, though the amplitude
of variability in both the V and i’ bands is notably higher than
that observed by K2 (the Kepler bandpass corresponds roughly
to the V and R filters). Considering the WASP, K2, and
LCOGT data together (Figure 13), the amplitude of variability
due to spot modulation appears to have increased monotoni-
cally from 2006 to 2016.

The V — i’ color varies sinusoidally as a function of
rotational phase, with the star becoming bluer when brighter
and redder when fainter, as one expects from starspots. The
color as a function of rotational phase is used to estimate the
temperature contrast between the coolest and hottest hemi-
spheres of the stars. The peak-to-trough amplitude is ~0.2 mag,
corresponding roughly to the V — i color difference between a
single spectral type class for M-type pre-main sequence stars
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Figure 13. Left: phase-binned and averaged light curves of RIK-210 at three epochs from WASP, Kepler/K2, and LCOGT (in both V and i’ filters). Each light curve is
phase folded on the K2 dip ephemeris. A broad depression in the WASP data between phases 0.3 and 0.5 is suggestive that the dip may have been present in previous
years, but drifting in phase, becoming narrower, or both. However, inspection of the WASP data by year suggests this feature in the combined light curve may be due
primarily to a combination of a questionable dip in 2006 and evolution of the spot pattern, most notable in the 2008 data. Right: WASP data ordered by year, phase-
binned and averaged by weighting data points inversely to their photometric uncertainties. Data are offset vertically from the 2006 median value. Error bars
correspond to the standard deviation in a given phase bin. Only WASP data with photometric errors <0.4 mag were used. There are typically 2500-8000
measurements per year. Although there appear to be dimming events in prior years (e.g., at phases of 0.2 and 0.4 in 2006, phase 0.65 in 2008, or phase 0.45 in 2009),
further inspection of the data indicate that many of the narrow structures above result from only one or two nights of observations.

(Pecaut & Mamajek 2013). This corresponds to a temperature
difference of ~100-200 K, which is consistent with spot
temperature contrasts published for M-dwarfs of similar
temperatures (Andersen & Korhonen 2015). The temperature
ratio between the coolest and warmest hemispheres can also be
estimated from the peak-to-trough amplitude of the K2 light
curve and the Stefan—Boltzmann law:

Loin _ (h)m ~ 08,

Lmax Tmax

(10)
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consistent with the temperature difference estimated from the
V — i’ variability amplitude. We note for a given amplitude of
photometric modulation, the spot temperature and size are
degenerate parameters, but that the above considerations
indicate the difference between the average hemisphere
temperatures.

5. Spectroscopic Observations

We acquired multiple high-dispersion spectra of RIK-210
with Keck I/HIRES (Vogt et al. 1994), covering either
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~3600-8000 A or 4800-9200 A depending on the
spectrograph settings. These spectra were used to perform a
search for secondary lines due to a companion, measure the
projected rotational velocity, and monitor variations in the RV
and line profiles of RIK-210.

5.1. Secondary Line Search

A search for secondary lines in the spectrum of RIK-210 was
performed following the procedure of Kolbl et al. (2015). The
method involves fitting template spectra of >600 FGKM stars
(mostly dwarfs or subgiants) observed with Keck/HIRES to
the continuum-normalized spectrum of RIK-210, then fitting
the best-fit residuals to search for a putative secondary, taking
possible Doppler shifts into account at both stages. We detected
no companions brighter than 3% the brightness of the primary
with RV separations >30 kms ™' from the primary. In the RV
separation range of 10-30 kms~' our detection limits are less
robust, but we do not detect any companions brighter than 5%
the brightness of RIK-210. The secondary line search is blind
to companions with RV separations <10 kms™' from the
primary. For reference, a velocity separation of 30 kms ™'
approximately corresponds to a 0.15 M, companion at the
corotation radius.

5.2. Projected Rotational Velocity

The projected rotational velocity was inferred from rotation-
ally broadening the spectrum of GJ 408, an M2.5 dwarf with
vsini < 0.97 kms™' (Maldonado et al. 2016), to match the
spectrum of RIK-210 (Table 1). If the K2 photometric
modulation period is assumed to be the stellar rotation period
and differential rotation is neglected, an expression for the
stellar radius modulated by the sine of the inclination is given
by

Fot

27

Ry sini = X vsini. (11)

From this equation we find Ry sini = 1.23 + 0.12 R, in
excellent agreement with our radius determined from the
Stefan—Boltzmann law, which suggests that the stellar spin axis

is nearly perpendicular to our line of sight.

5.3. Radial Velocities

RVs were determined via cross-correlation (CCF) with RV
standard stars (Nidever et al. 2002) or by using the telluric A
and B absorption bands as a wavelength reference (Table 3).
For RVs measured via CCF, the mean velocity was determined
from cross-correlation in six different HIRES orders using
between three and six (depending on the epoch) M-type RV
standards, with the quoted error corresponding to the standard
deviation of these 18-36 measurements. Details of telluric-
based RV measurements with HIRES, and their uncertainties,
are described in Chubak et al. (2012). The quoted RV errors are
several times the theoretical best performance for HIRES,
which is expected based on the SNR of the data and the modest
vsini of the star.

We calculated the systemic RV, ~, from a weighted mean of
all measurements (Table 1). RV variations of >1.5 km s !
were observed among the HIRES spectra (Figure 14), with
variations of this amplitude observed on consecutive nights in
some cases. We consider the possibilities that the RV
variability is due to orbital motion of a companion, rotational

13

David et al.
Table 3
Keck I/HIRES Radial Velocities of RIK-210
UT Date JD RV ORY Method
(kms™h (km s~ 1)
2016 May 12 2457520.930 —4.31 0.30 telluric
2016 May 12 2457521.086 —3.86 0.30 telluric
2016 May 17 2457526.023 —5.84 0.37 CCF
2016 May 20 2457529.035 —5.47 0.24 CCF
2016 Jun 15 2457555.037 -3.99 0.20 CCF
2016 Jul 10 2457579.899 —5.57 0.30 telluric
2016 Jul 13 2457582.927 —4.87 0.30 telluric
2016 Jul 28 2457597.875 —5.00 0.30 telluric
2016 Jul 29 2457598.891 —3.24 0.30 telluric
2016 Jul 30 2457599.884 —4.58 0.30 telluric
2016 Jul 31 2457600.870 —4.84 0.30 telluric
2016 Aug 17 2457617.763 -3.75 0.30 telluric
2016 Aug 18 2457618.766 —6.47 0.30 telluric
2016 Aug 20 2457620.764 —4.78 0.30 telluric
2016 Aug 21 2457621.780 —3.62 0.30 telluric
of CCF |
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Figure 14. Median-subtracted radial velocities for RIK-210 phased on the
period of the K2 light curve. The dotted line indicates the approximate location
of the deep dimming events present in K2 photometry, but absent in ground-
based follow-up acquired closer to the time of spectroscopic observations. For
illustrative purposes we show redundant phases with lighter shaded points.

modulation of starspots, or some combination of the two
effects.

The number of measurements is not sufficient to detect a
period via Lomb-Scargle periodogram analysis, but the data
are used to constrain the masses of putative companions at a
range of semimajor axes (Figure 16). From a Fisher matrix
analysis of the RVs, we determined a 20 upper limit to the
mass of a putative companion on a circular orbit at the
corotation radius of m sini < 7.6 My,

The procedure for determining the upper limit to the mass of
a putative companion is described in Boyajian et al. (2016) but
we briefly summarize it here. Assuming a circular orbit, the RV
measurements were folded on 4 x 10° trial orbital periods
between 0.5 and 3000 day and then fit with a sine and cosine
term to represent the reflex motion and systemic RV. The
Doppler semi-amplitude, K, and its 20 uncertainty was
determined for each trial period from the fit, then converted
to a limit on m sini assuming the stellar mass of RIK-210. The
constraints are weakest at aliases of the observing cadence,
which gives rise to the peaks in the mass limits presented in
Figure 16. More stringent mass constraints can be determined
by imposing the time of mid-transit be a zero-crossing in the
RVs, but given the ambiguous nature of the flux dips and the



THE ASTROPHYSICAL JOURNAL, 835:168 (23pp), 2017 February 1

lack of photometric data concurrent with the spectroscopic
observations we elected not to impose such a restriction.

In a separate analysis, we placed constraints on putative wide
companions based on the maximum slope implied by the RVs.
The RVs cover a period of ~100 days, and consequently allow
for the detection of a long-term trend due to the gravitational
influence of a distant companion. From 10° bootstrapping
simulations, we determined a 3o upper limit to the acceleration
of RIK-210 of 4 < 2.2kms ' yr ', This limit rules out the
presence of additional companions more massive than 0.43 M,
interior to 5 au, or more massive than 0.15 M, interior to 3 au.
Of course, these limits do not apply interior to ~1 au, where the
orbital period of a putative companion is more than 25% the
baseline of our measurements. These limits are somewhat more
stringent than those implied by the Fisher matrix analysis in the
relevant orbital period range.

Spot-induced RV modulations of 21 km s~' have pre-
viously been observed in weak-lined T Tauri stars, or WTTS
(Huerta et al. 2008; Prato et al. 2008; Mahmud et al. 2011). The
effect of rotation and spots on RVs is somewhat analogous to
the Rossiter—McLaughlin effect, with the important caveats that
spots are luminous and can cover a significant fraction of the
star. As the most heavily spotted hemisphere rotates into view
we receive more flux from the receding hemisphere and we
should observe a net redshift. Conversely, as the most spotted
hemisphere rotates out of view, we should observe a net
blueshift. Given the highly spotted nature of RIK-210'?, it is
highly likely that the dominant component of the observed RV
variability is spot-induced. When phased to the rotation period,
however, the RVs appear to deviate slightly from the smooth,
semi-sinusoidal variation expected from spots (see, e.g., Huerta
et al. 2008; Mahmud et al. 2011).

In principle, RV variability from rotation of a spotted star
can interfere either constructively or destructively with the
reflex motion due to a putative companion at the corotation
radius, since both signals would have the same period, a
scenario noted by van Eyken et al. (2012).

To assess whether the observed RV variability is due to
stellar activity or orbital motion, we searched for wavelength-
dependent RV trends. RV variations due to surface features on
a star are chromatic, inducing apparent Doppler shifts only at
wavelengths where the features are optically thick. Doppler
shifts due to orbital motion, however, are achromatic. By
performing wavelength-restricted cross correlations over 31
orders in the HIRES spectra we find a maximum slope in the
RVs as a function of wavelength of +5 x 107® kms™' A™",
We note that v sini is only moderately larger than the spectral
resolution of our observations, and so detecting apparent
Doppler shifts due to line profile asymmetries is difficult (e.g.,
Desort et al. 2007).

Aigrain et al. (2012) developed a novel technique (the FF’
method) for calculating the expected RV variability due to
stellar surface features from a broadband light curve alone. We
explored modeling the expected RV variability based on the
phase-averaged K2 light curve, confirming in principle that
stellar RV variability can mask or enhance the Doppler signal
of a body at the corotation radius. We constructed model RV
phase curves based on a high-order polynomial fit to the phased

12 Spot filling factors in late type stars of up to 50% have been inferred from
high-resolution spectroscopy of molecular bands (O’Neal et al. 1998, 2004)
and in the case of the young weak-line T Tauri star LkCa 4 ~ 80% (Gully-
Santiago et al. 2016, submitted).
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K2 photometry with the flux dips removed, and subsequently fit
these models to the RVs allowing the fractional spot coverage
to vary. We did not find a good fit, but the ani , model implies
a spot-covering fraction of ~30%. We note, however, that an
additional free parameter in the FF' models is the baseline
stellar flux level in the absence of spots. This parameter is
essentially unknown, but we fixed it to be the maximum of the
K2 light curve.

To avoid overinterpreting the results of the FF' RV
modeling, we do not present it in any more detail here and
question its utility in this specific instance given (1) the
uncertainty in the spot-covering fraction, (2) the lack of
simultaneous photometry during the RV acquisition period, (3)
the apparent change in spot modulation amplitude from follow-
up photometry, and (4) the underlying requirement in the FF’
method that the spot-to-photosphere contrast ratio is not close
to one, which may not be true for RIK-210.

Ultimately, we conclude that spots induce most but possibly
not all of the observed RV variability. While the RVs do
exhibit very little scatter when phased to the rotation/orbital
period, they are not well fit by either a semi-sinusoidal model
(i.e., a sine curve plus harmonics) as one might expect from
spots or a Keplerian model. More complete phase coverage is
needed to adequately model the RVs, and simultaneous
photometric monitoring will greatly help in determining the
contribution of spots to the RV variability.

5.4. Line Profile Variations

The chromospheric emission spectrum of RIK-210 is
manifest at Ha (exhibiting a classic double-horn profile), Hf,
He 15876 A, Nal1D, the Call H&K doublet and the triplet, and
Fe15169 A, which are seen at all spectral epochs. All lines are
variable in strength over the time series, with the exception of
the Call triplet which remains constant. At the epoch of
strongest emission, Mg1b triplet and Fel 5018 A are also
observed.

For the Ha line, the measured line strengths range from
W, = —3.5to —6.5 A. A Gaussian fit results in a 1o line width
of 50 kms~!, while the full width at 10% of peak flux is 120
kms~'. There is a clear trend between the Ha equivalent width
and rotational phase, such that stronger Ha emission is
measured when the fractional spot coverage is highest which
occurs at the rotational phases where the sinusoidal component
of the K2 light curve is faintest (Figure 15). Despite the
significant change in line strength, there is no change over
phase in the violet-to-red symmetry.

The level of activity in RIK-210 is stronger than the typical
M2.5 field dwarf (e.g., Gizis et al. 2002). It is also higher than
generally observed for the well-studied active star AD Leo
(Wigo = —2.7 to —4.0 A), which was characterized as a high
pressure chromosphere by Short & Doyle (1998) based on
detailed radiative transfer modeling of various line species.
These activity comparisons are as expected given the youth of
the star.

6. High-resolution Imaging

Speckle imaging observations of RIK-210 were acquired at
Gemini South Observatory with the DSSI instrument (P.L
Steve Howell). The speckle observations revealed no compa-
nions with Am < 4 mag at separations between 0”1 and 1737.
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Figure 15. Variations of the Ha profile (colored curves) as a function of
rotational phase from the Keck I/HIRES spectra. The black line represents the
phase-averaged K2 light curve. We emphasize that follow-up photometry,
acquired around the same time as the spectra, did not show the ~20% dimming
at phase = 0.5 observed by K2.

Beyond 075, we obtained more stringent contrast limits of
Am < 4.8 mag at 692 nm, or Am < 5.4 mag at 880 nm.

We also obtained near-IR adaptive optics (AO) imaging for
RIK-210 on UT 2016 July 17 using NIRC2 (P.I. Keith
Matthews) with the Keck II Natural Guide Star AO system
(Wizinowich et al. 2000). We used the narrow camera setting
with a plate scale of 10 mas pixel ' This setting provides a fine
spatial sampling of the instrument point-spread function. The
observing conditions were good with seeing of 075. RIK-210
was observed at an airmass of 1.29. We used the Kj filter to
acquire images with a 3-point dither method. At each dither
position, we took an exposure of 0.25s per coadd and 10
coadds. The total on-source integration time was 7.5 s.

The raw NIRC2 data were processed using standard
techniques to replace bad pixels, flat field, subtract thermal
background, align and coadd frames. We did not find any
nearby companions or background sources at the 5o level. We
calculated the 50 detection limit following Wang et al. (2014).
We defined a series of concentric annuli centered on the star.
For the concentric annuli, we calculated the median and the
standard deviation of flux for pixels within these annuli. We
used the value of five times the standard deviation above the
median as the 50 detection limit. The 50 detection limits are
2.1 mag, 3.6 mag, 5.4 mag, and 5.9 mag for 0”1, 0”2, 0”5, and
170, respectively.

We combined our high-resolution imaging constraints with
the constraints from the secondary spectral line search and lack
of a significant RV trend to place limits on putative
companions to RIK-210. The combined constraints are
depicted in Figure 16. To convert imaging constraints from
A mag to companion mass we used the pre-main sequence
evolutionary models of Baraffe et al. (2015), using the
tabulated R and / magnitudes as proxies for the 692 and
880 nm speckle imaging constraints, respectively. In particular,
the / band constraints rule out companions down to 20-25 My,
between 60-200 au, and 25-40 Mjy,, between 15-60 au.

7. Discussion

Here, we discuss possible explanations for the K2 light curve
of RIK-210, in light of its previous and subsequent evolution as
observed with WASP and LCOGT, and the spectroscopic
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Figure 16. Constraints on the brightness (top panel) or mass (bottom panel) of
putative companions to RIK-210 from optical speckle imaging (blue and red
regions), NIRC2 adaptive optics imaging (gray dashed line in top panel, gray
region in bottom panel), a HIRES secondary spectral line search, and the RV
time series.

monitoring undertaken with Keck I/HIRES. We consider three
general classes of explanations: rotational modulation of stellar
surface features, corotating circumstellar gas and dust, and
phenomena associated with a young planetary system. In
Table 4, we present a broad overview of the most developed
theories.

7.1. Rotational Modulation of High-latitude Spots?

Given the youth of RIK-210 and the large amplitude semi-
sinusoidal variability, it is evident that the star is heavily
spotted. As the dimming events are essentially in phase with
the rotation period of the star, we consider the possibility that
the events are due to a spot pattern on the stellar surface. The
main difficulties facing a spot-based explanation are that the
dimming events are both deep and brief relative to the rotation
period. Variability due to any feature on the stellar photosphere
typically endures for half of the rotation period, while the
dimming events in RIK-210 are always <15% of the rotational
phase.

In principle, a surface feature can rotate into view for less
than half of the rotation period if the feature is confined to high
latitudes and the stellar rotation axis is tilted modestly away
from an equator-on orientation. Thus, a cool spot near the
poles, if the rotation axis is tilted slightly away from the
observer, could produce a dimming event that endures for less
than half the rotation period. Indeed, the existence of polar
spots on young, rapidly rotating stars has both theoretical (e.g.,
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Table 4
Proposed Explanations for the Transient Transits of RIK-210
Scenario Supporting evidence Conflicting evidence Plausibility
eclipsing binary or transiting deep, V-shaped dimmings inconsistent with RVs, archival/follow-up photometry ruled out

brown dwarf
high-latitude starspot
spotted star
high-latitude accretion hotspot
modest photometric burst
eclipses of prominences
magnetically active star
transits of magnetospheric
clouds
dipper

magnetically active star

events
transits of an enshrouded
protoplanet

tidal disruption of planetary or
cometary material
duration dips that appear to drift in phase

synchronicity between rotation and dip periods,
synchronicity between rotation and dip periods,
synchronicity between rotation and dip periods,
synchronicity between rotation and dip periods,

synchronicity between rotation and dip periods,
depths and variable morphologies of dimming

RV variability difficult to explain with spots alone

variable depths, durations, and morphologies of
dimming events, may explain shallow, short-

inter-rotation variations and combination of deep depths
with short durations

lack of spectroscopic accretion indicators or IR excess
associated with inner disk

depths are too deep

highly unlikely

highly unlikely

highly unlikely

does not readily explain the shallow, short-duration
flux dips

lack of spectroscopic accretion indicators or IR excess
associated with inner disk

most likely

highly unlikely

requires extended dusty tail or swarm of satellites to somewhat
explain long durations, in tension with archival/fol- plausible
low-up photometry, synchronicity between rotation
and dip periods not a requirement

does not readily explain synchronicity between rotation ~ somewhat
and dip periods, requires high eccentricities and/or plausible

very low densities of orbiting bodies

Schuessler & Solanki 1992; Granzer et al. 2000; Yadav
et al. 2015) and observational support (e.g., Hatzes 1995).
However, in this scenario it is still difficult to produce sudden
or “angular” flux dips because spots are subjected to limb
darkening and foreshortening.

The K2 observations seem to be in tension with a starspot
explanation, given how rapidly the depth, duration, and general
morphology changes from epoch to epoch. Meanwhile, the
globally averaged spot distribution appears to remain stable
throughout the K2 campaign and in fact the follow-up LCOGT
photometry confirms the ephemeris and general morphology of
the disk-averaged spot pattern more than two years later.
Moreover, spots or spot groups on T Tauri stars have measured
lifetimes of years or even decades (e.g., Herbst et al. 1994;
Bradshaw & Hartigan 2014).

The maximum depth of the dimming events is ~18%. The
depth of a dimming event due to starspots is determined by
both the opacity and size of the spot(s) at the observed
wavelength. The minimum spot size required to produce a
given flux decrement is set by the limiting case of a completely
opaque spot. In this scenario, the spot size is approximated in
the same manner as the size of a transiting planet. Namely,
Rpor /R>,< =6 , where ¢ is the depth of the dimming event.
The deepest dimming events observed in RIK-210 would
require a minimum spot or spot group size of ~0.4Ry or
~0.5 R. This minimum size is so large that it likely could not
be confined to the restricted range of latitudes required to get
dimming events so brief relative to the rotation period.
Furthermore, spots are not opaque and the observed contrasts
around M-type stars correspond to temperature differences of
only a few hundred Kelvin (Andersen & Korhonen 2015).

To have a spot or spot group of sufficient size, contrast, and
latitude to produce dimming events of 5%—15% for only ~15%
of the star’s rotational phase presents a fine-tuning problem and
is perhaps physically impossible. We conclude that, despite
being synchronized with the stellar rotation, the dimming
events observed by K2 are unlikely to be related to spot
behavior on the star.
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7.2. Eclipses of an Accretion Hotspot?

Although there is no evidence for ongoing accretion
analogous to that of classical T Tauri stars, given its youth,
RIK-210 could still be experiencing residual gas infall from
gaseous and dusty debris in an only recently dispersed
circumstellar disk. A star undergoing accretion may develop
a hotspot on its surface, as infalling material is deposited onto
the star. If the material falls in along magnetic field lines, it
should be deposited near one of the magnetic poles. If a star has
an accretion hotspot on its surface, the disk-averaged brightness
will decrease when the hotspot rotates out of view (see, e.g.,
Romanova et al. 2004). Moreover, the magnetic poles need not
be coincident with the rotational poles. As such, even a star
with its rotational axis aligned perpendicular to the observer’s
line of sight could host an extended hotspot that is in view for
more than half of the rotational phase. This scenario is
analogous to the cool starspot scenario, and was considered as a
possible explanation for the dimming events seen in PTFO 8-
8695 (Yu et al. 2015).

Following the methodology of those authors, one can
estimate the mass accretion rate from the depth of flux
decrements:

GMM

Ry

Liycc ~ 6Lb01a ( 1 2)

where M is the mass accretion rate and & is the depth of
dimming events. For dimming events of ~9%-18% and the
derived stellar parameters in Table 1, the scenario above would
require mass accretion rates of M ~ (1-3) x 107° M, yr L.
Despite the modest burst (with flare-like decays) observed in
the K2 light curve, we consider this scenario unlikely as the star
lacks both spectroscopic accretion indicators (the enhanced
hydrogen emission observed from the spectra is consistent with
chromospheric emission) and the infrared excess that would be
associated with an inner disk.
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7.3. Eclipses of Prominences?

Some rapidly rotating stars may be surrounded by dense
clouds of partially ionized gas (so-called slingshot promi-
nences) at a distance of several stellar radii and corotating with
the stellar magnetosphere. These clouds may have projected
areas as large as 20% of the stellar disk (Collier Cameron &
Robinson 1989a, 1989b; Collier Cameron et al. 1990). While
such clouds have been observed from absorption in the Balmer
and Call H & K lines, there is no appreciable continuum
absorption. Thus, transits of such clouds are not thought
capable of producing the deep dips observed in RIK-210.
However, if a large prominence contributes significant optical
flux relative to the star via Paschen-continuum bound—free
emission, it may be possible to produce broadband optical
dimmings of a few percent when such a prominence passes
behind the star. Nevertheless, the dip depths observed in RIK-
210 are significantly deeper than a few percent. We conclude
that eclipses of slingshot prominences cannot produce the 20%
dimmings observed in the Kepler bandpass.

7.4. Transits of Magnetospheric Clouds?

Transits by circumstellar, magnetospheric clouds have been
suggested as a source of photometric variability for high-mass
stars (Groote & Hunger 1982). In particular, the magnetic Be
star ¢ Ori E shows clear ~5% eclipses twice per rotation
period; these eclipses have been attributed to clouds of plasma
that are trapped in the magnetosphere and most dense at the
corotation radius (Townsend et al. 2013). The phenomenon of a
narrow flux dip in phase with, and superposed on, semi-
sinusoidal modulation has also been observed in the X-ray light
curve of the accreting white dwarf PQ Gem (Mason 1997;
Evans et al. 2006). In that case, the authors attribute the dip to
matter from an accretion disk being lifted up out of the plane
and into the line of sight by the leading edge of the magnetic
field lines.

Fully convective low-mass pre-main-sequence stars have
magnetic field strengths typically in the 0.1-1 kG range (e.g.,
Johns-Krull 2007; Donati & Landstreet 2009). Charged
material in orbit about the star may become trapped in the
magnetosphere at the corotation radius, where closed field lines
thread the orbital plane. Magnetized stars may also accrete
matter from a circumstellar disk via so-called funnel flows
(e.g., Romanova et al. 2002). Such accretion columns, if they
contain dust and transit the disk of the star, could lead to optical
extinction. Indeed, this idea underpins some explanations for
the dipper phenomenon discussed below.

Whether the magnetically entrained material is a cloud of
plasma analogous to those observed in high-mass stars, or a
dusty accretion column, this model could naturally explain the
synchronicity between the rotation period and the dimming
events, as the field lines, and thus flows, thread the equatorial
plane at corotation. Since the accretion timescale is expected to
be of order the free-fall timescale, i.e., much shorter than the
orbital period, this model might explain the variable depths and
morphologies of dimming events.

The most challenging observation to the accretion column
scenario is that RIK-210 lacks spectroscopic accretion
indicators. Perhaps we are witnessing the low-level end state
of accretion for a post T Tauri star. Calculations below show
that only a modest amount of dust is needed to produce the
deep dimming events observed with K2. The dust would have
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to be charged, or coupled to plasma, in order to be dragged by
the field lines. The source of such dust close to the star remains
a mystery. Moreover, the transient nature of the dimming
events would seem to suggest that the dust must be episodically
replenished. The modest amount of dust remaining in the
system at astronomical unit scales may spiral in via Poynting—
Robertson (P-R) drag, but if it is charged one might expect it to
be captured by the magnetosphere and subjected to an outward
magnetocentrifugal force prior to reaching the inner magneto-
spheric regions. Regardless of the actual source of the dust, if
this model is correct, it reveals a previously unappreciated
aspect of the early environments of close-in exoplanets.

We consider this theory quite plausible for the variability
observed in RIK-210, however, several unanswered questions
remain: in the absence of a tilt between the rotation and
magnetic axes, how does the cloud remain so compact as to
produce dips that are so narrow in rotational phase? How does
one explain the inter-rotation variability in morphology, depth,
and duration? Perhaps most importantly, the magnetospheric
model struggles to explain the short-duration, shallow dips or at
least implies that accretion of the material is clumpy rather than
smooth.

7.5. Obscuration by a Circumstellar Disk?

Variable obscuration due to a circumstellar disk has long
been an explanation for the photometric variability of some T
Tauri stars. For example, UX Ori is the prototype of what
Herbst et al. (1994) described as Class III variability within
early type T Tauri stars. At lower stellar masses, AA Tau is the
archetype for similar variability, which has been attributed to a
warped inner disk edge interacting with the stellar magneto-
sphere (Bouvier et al. 2003, and references therein).

Multi-wavelength observations of this phenomenon in Orion
support this hypothesis, showing that the dimming events are
deeper in the optical and shallower in the infrared, as one
would expect from extinction by dust (Morales-Calderén
et al. 2011; Parks et al. 2014). The advent of high-
cadence precision photometry using space telescopes has
revealed an unprecedented level of detail to this general class
of variable young stars now called “dippers” (Cody et al. 2014;
Stauffer et al. 2015; Ansdell et al. 2016).

In some cases where the stellar rotation is evident, such as
the case of Mon 21, the dimming events have been observed to
be synchronized with the stellar rotation period (Stauffer
et al. 2015). The coincidence between stellar rotation and the
orbital period of transiting debris in this model is a natural
consequence of disk-locking, where the inner disk edge is
truncated near the corotation radius due to interactions with the
stellar magnetosphere.

Dippers also exhibit variable depths, but often so variable
that the dimming events disappear entirely (EPIC 204137184 is
one such quasi-periodic example in Upper Sco). Ansdell et al.
(2016) classified the main morphological types of dimming
events seen in Upper Sco dippers as symmetric, trailing tail,
and complex. While some of the dimming events in RIK-210
might be classified as symmetric or complex, noticeably absent
in that list is the leading tail morphological class, which seems
most appropriate for RIK-210.

While some dippers show strong spectroscopic accretion
signatures from shocked gas falling onto the star, many exhibit
only weak accretion indicators such as those observed in RIK-
210. However, within Upper Sco, dipper stars typically have
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infrared excesses consistent with a protoplanetary disk
extending in to ~10 R, (Ansdell et al. 2016). By contrast,
RIK-210 has no evidence of an inner disk, yet the obscuring
material, if in orbit, rests at a distance of ~9 R,,. The essential
differences between RIK-210 and young dipper stars are that
the dimming events in RIK-210 are more constant in depth and
shorter in duration, while RIK-210 also lacks evidence for an
inner disk.

For the reasons discussed above, it is extremely unlikely that
RIK-210 belongs to the class of young dipper stars. However,
as we cannot completely exclude this scenario, we note that if
RIK-210 is indeed a dipper then it would be the first such
object with (1) no inner disk, (2) a light curve dominated by
rotational modulation of starspots rather than by dimming
events, and (3) a relatively high degree of both periodicity and
morphological consistency between dimming events.

7.6. A Corotating Dust Component?

In addition to gas phenomena, dust in the vicinity of the
stellar corotation radius could be responsible for the narrow
dips in RIK-210. Dimming events over ~15% of the rotational
phase could be explained by an extended structure of dust
obscuring the star and scattering starlight away from the line of
sight. If this is the case, the existence of such a significant
amount of dust close to the star must be explained. For
example, the dust could be primordial in origin (i.e., remnants
of the late stages of planet formation), the product of a recent
major collision, or from sublimation of volatile-rich bodies.

By equating the stellar luminosity with the luminosity of a
dust disk extending out to the corotation radius'’, the
temperature of dust at the corotation radius is estimated by

—1/3 1/2 —-1/6
Teoror = 0.34 Togy L & % . (13)
1 day Ro M

Using the Kobayashi et al. (2011) sublimation temperatures
for various grain compositions, we inverted the above equation
to find the minimum orbital period at which dust of a given
composition could exist in the solid phase (Figure 17). The
transiting debris around RIK-210 is safely outside the dust
sublimation radius for olivine, pyroxene, obsidian, and pure
carbon, though it is close to the sublimation radius for pure
iron. Note that this analysis assumes a circular orbit.

Dust in orbit about the star will be subjected to radiation
pressure and P-R drag. The minimum size of dust grains that
can survive on circumplanetary orbits is set by the balance of
these forces (Burns et al. 1979; Kennedy & Wyatt 2011).

From Lecavelier Des Etangs et al. (1999), the ratio of
radiation pressure to the gravitational force is given by

5 o L/l \(s -
A\My/Mo )\ pm )

where s is the grain size. For RIK-210, equilibrium between
gravity and radiation pressure is established for grain sizes of
0.075 pm. For smaller grains, radiation pressure dominates and
for larger grains, gravity dominates.

(14)

13 We note that this equation neglects scattering, self-shielding, or heating by
accretion. See Bodman et al. (2016) for details.
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Figure 17. Minimum orbital period for grains of varying compositions to exist
in the solid phase as a function of the central star’s effective temperature. Dust
sublimation temperatures are taken from Kobayashi et al. (2011) and the stellar
parameters needed to calculate the corresponding orbital periods are obtained
from the PARSEC v1.2s pre-main-sequence models (Bressan et al. 2012; Chen
et al. 2014). For each grain composition, the upper and lower boundaries of the
shaded regions are set by the 5 and 10 Myr isochrones, respectively. The
position of RIK-210 is shown by the black point. Dust grains with
compositions ranging from carbon to obsidian could exist in the solid phase
at the corotation radius, while iron grains may sublimate.

From Burns et al. (1979), the timescale for a dust grain to
spiral in to the star via P-R drag is

cr?

— 15
4GMy3 (1)

pRr(r) =

For the parameters of RIK-210, the P-R drag timescale is
approximately 2.5 years for 0.1 um grains or 25 years for
1.0 pm grains. Thus, if the K2 extinction events were due to
dust grains of 0.1 pm in size or smaller, it is plausible that the
majority of this dust has since spiraled into the star and thus
explain why no such dimming events were detected with
follow-up photometry.

One can calculate to first order the mass of dust, Mg, from
the maximum depth of a dimming event. From Lecavelier Des
Etangs et al. (1999), the maximum extinction due to a cloud of
grains is given by

(F) ~ exp
F* max

where s is the grain size, dn(s) is an analytic grain size
distribution, and p is the dust density. For the grain size
distribution adopted by Lecavelier Des Etangs et al. (1999) and
a grain density of 3gcc', we find that ~102 M. could
extinct RIK-210 by 20%.

Optical attenuation by a transiting dust cloud is primarily the
result of scattering of light away from the line of sight, rather
than absorption. Consequently, at particular orbital phases, a
dust cloud may forward scatter starlight into the line of sight
and contribute observable excess flux to the light curve
(Rappaport et al. 2012). For RIK-210, we do not see obvious
evidence for forward scattering. However, it is difficult to draw
conclusions because such evidence critically depends on how
well the stellar continuum level is fit. For example, transits 8
and 10 appear to show modest post-egress flux excesses

6Maus: [5°dn (s)
47mpR2 fs3dn(s) ’

(16)
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evocative of forward scattering (see Figure 4), though these
features may also be a result of improper continuum fitting. For
disintegrating Kepler planets on ultra-short-period orbits, the
effect of forward scattering is miniscule but statistically
significant because of the sheer number of transits over a
much longer time baseline.

If there is a significant amount of dust close to the star, the
dust will be heated by the star and re-radiate in the near-IR. In
Section 2.2 we showed that RIK-210 lacks warm dust, but there
is marginal evidence for cool dust at astronomical unit scales.
Thus, if corotating dust is responsible for the dimming events,
it must be scarce enough to avoid producing a detectable near-
IR excess. We estimated the dust-to-star flux ratio at 24 um,
where a putative excess would be most easily be detected,
using the following equation:

F24,dust — Adusl 7:iust (17)

Fou % Ay Ty

where Ay, is the total cross section of dust grains in the
obscuring region and Ty, is the dust equilibrium temperature
at corotation, here taken to be ~830 K. The implied excess
depends on the number of dust grains and their typical
geometric cross section. The number of grains, in turn, is
highly sensitive to the assumed geometrical distribution. The
total cross section of dust is estimated by
Agust = (T)Ageom = N (ms?), where (1) ~ 0.15 is the average
optical depth, Ageom is the geometrical area of the dusty region,
N is the number of grains, and s is the typical grain size. For
0.1 mm-sized grains, the implied 24 ;im dust-to-star flux ratio is
~0.3 assuming the dust is distributed over a thin cylinder
centered around the star with radius equal to the corotation
radius and height twice the radius of the star. However,
assuming the same dust properties, the flux ratio could be
doubled if the dust were spread out into an annulus at the
corotation radius, or an order of magnitude lower if the dust
were arranged in a thin strip as one might expect from an
accretion column. Thus, given the uncertainties in dust
properties and the geometric distribution of dust in the system,
it is difficult to know whether the proposed amount of dust
would have been detected in the near-IR. However, we argue
there are many plausible geometries and dust properties for
which such an excess would have evaded detection.

Dust provides a convenient explanation for the dimming
events in that (1) only a modest amount is required to produce
deep dimming events and (2) it can be evacuated somewhat
rapidly depending on its size and composition. However, as
mentioned at the beginning of the section, the source of such
dust must still be explained, given that the star apparently lacks
an inner disk. One possibility is a giant impact-type collision
between oligarchs.

Some theories predict that collisions between oligarchs on
closely packed orbits are a common occurrence in the late
stages of planet formation. For example, Chiang & Laughlin
(2013) showed that newly formed close-in super-Earths lack
the energy to scatter each other out of the parent star’s gravity
well, so planet—planet scattering events instead lead to mergers.
Perhaps the dimming events observed in K2 are the result of a
recent collision between two or more protoplanets, which could
release a profuse amount of planetary debris. Depending on the
energy of the collision, some fraction of material might escape
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the gravity of the protoplanets, while the remaining material is
retained within the combined Hill spheres of the protoplanets.
We note that scenarios invoking a collision may be inherently
unlikely based on timescale considerations.

Another possible source for dust is a comet or family of
comets. The idea of “falling evaporating bodies” has been
studied extensively, particularly in the context of the young star
0 Pic, which exhibits spectroscopic peculiarities ascribed to
evaporating exocomets (e.g., Kiefer et al. 2014, and references
therein). As we established, the required mass to create such
deep dimming events is quite modest, comparable to the mass
of Hale-Bopp. What could bring cometary material onto such a
short-period orbit around the star? One prediction of disk-
driven migration is that a migrating planet will trap
planetestimals (or comets) in mean motion resonance, allowing
them to reach stargrazing orbits (Quillen & Holman 2000;
Thébault & Beust 2001).

7.7. Boil-off of a Protoplanet Atmosphere?

Owen & Wu (2016) predicted that a highly inflated
protoplanet newly exposed to vacuum conditions after the
confining pressure of the protoplanetary disk has gone will
experience profuse atmospheric mass loss via a Parker wind.
This mass loss is catalyzed by stellar continuum radiation, as
opposed to the EUV /X-ray-driven photoevaporative mass loss
that becomes important at later stages. Those authors suggest
extraordinary mass-loss rates of ~0.01 M= yr ' may be
possible over characteristic timescales of O(103 year). Clearly,
this scenario presents a fine-tuning problem as it requires our
observations to be coincident with this relatively short-lived
phase of a planet’s evolution.

7.8. Tidal Disruption of a Planet?

The leading tail morphology of the RIK-210 dimming events
is somewhat suggestive of an orbiting body experiencing
Roche lobe overflow. For a body in a circular orbit, the
minimum period allowed before tidal disruption is given by
Equation (2) from Rappaport et al. (2013):

o Y
lgem™3 '

For typical planetary densities observed in the solar system
(~0.5-5 gcc™ ), this minimum period is on the order of hours,
i.e., much shorter than the period of dimming events around
RIK-210. In fact, for a body to undergo tidal disruption in a
circular orbit of period 5.67 days would require a density of
<0.01gcc'. This is an order of magnitude lower than the least
dense bodies in our solar system, including comets. Planets are
presumed to be less dense at young ages, as they are still
undergoing Kelvin—Helmholtz contraction, but models of, e.g.,
Jovian-mass planets at an age of 5-10Myr still predict
densities that are ~0.5 gcc™' (Baraffe et al. 2003; Spiegel &
Burrows 2012).

However, it is possible that a body or collection of bodies are
in an eccentric orbit with a close pericenter passage to the star.
In this scenario, the body or bodies undergo periodic tidal
disruption upon each crossing of the Roche radius, analogous
to the disruption of comets in the solar system. The pericenter
distance for an orbit of semimajor axis a and eccentricity e is

Poin >~ 12,6 hr( (18)
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Figure 18. Pericenter separation for a range of eccentricities assuming a
semimajor axis of 0.05 au (black line). The colored lines reflect the limiting
Roche radius for bodies of varying densities. Eccentricities greater than 0.4
would be required to bring a body interior to its Roche limit for any of the
densities plotted here.

given by

Aperi = a(l — e). (19)

The Roche limit for a self-gravitating, incompressible fluid
satellite is given by

1/3
ARoche 2.44R*(&) ) (20)

Ps

where R, and p, are the radius and density of the star,
respectively, and p; is the density of the satellite.

By setting the Roche limit equal to pericenter, we can
estimate the minimum eccentricity needed to bring a planet of a
given density interior to its Roche limit (Figure 18). For planet
densities >0.1 gcc ™', an eccentricity 0.6 is required. We note
that planets that are both massive and highly eccentric are
seemingly disfavored by the RV measurements that do not
exhibit a cusp or variability above the 2 kms ™' level.

An appealing aspect of this scenario is that it might naturally
explain the changing morphology between consecutive dim-
ming events, as the orbiting body or bodies are disrupted upon
each pericenter passage. It might also explain the apparent
vanishing of dimming events in follow-up photometry.
Complete disruption of a body or bodies could result in a ring
of material around the star that would then be subject to
radiation pressure and P-R drag. Nevertheless, we consider this
scenario unlikely given the high eccentricities and/or low
satellite densities required.

7.9. Transits of an Enshrouded Protoplanet?

Any planetary explanation for the dimming events faces the
challenge of accounting for the depths of the events. The loss
of light during a transit or eclipse depends on both the size ratio
and brightness ratio of the occulting body to the central star.
However, the secondary line search and RV time series suggest
it is quite unlikely that RIK-210 hosts a companion massive
enough to contribute significantly to the total flux received
from the system. Furthermore, we find no evidence of
secondary eclipses within the K2 photometry.

20

David et al.

Duration (hrs)

4 | | | |
40 60 80

Depth (%)

Figure 19. Expected depths and durations for equatorial transits of RIK-210 by
an optically thick Hill sphere for planets of various masses. Fiducial masses are
plotted as black points and annotated with text. However, the planet mass and
fraction of the Hill sphere that is optically thick is completely degenerate in this
plane. Thus, we show the effect of how these fiducial planet masses move
along this curve when only 90% of the Hill sphere is optically thick (open
circles). The gray shaded region indicates the range of depths and durations
observed in the K2 light curve.

100

The facts that the dimming events are deep and longer than
the expected transit duration for a point mass suggest an
occulting body (or collection of bodies) that is large relative to
the star. On the other hand, the fact that the events are
V-shaped, as opposed to flat-bottomed, suggests that if the
occulting body is completely opaque, it cannot have both an
impact parameter close to zero and a size larger than the star
itself, else it would produce a total eclipse. Of course, an
enshrouded protoplanet need not necessarily fill its Hill sphere
(Kennedy & Wyatt 2011), nor would the material filling such a
volume be completely opaque.

The Hill radius is approximately given by

a-ofm)"
ram~ a(l —e)|l —|
Hill M.

*

3y

where a is the semimajor axis, e is the eccentricity, and m,, /My
is the mass ratio between the planet and star. If a planet were
enshrouded in a dusty envelope, the Hill radius sets the
maximum extent of that envelope.

For planets in the mass range of 1 Mq—10 Mjy,, orbiting at
the corotation radius of RIK-210, the Hill radius is in the range
of 0.2-2.8 R.. We calculated the transit durations of objects in
this size range by inverting Equation (8). We find transit
durations of 5.8-16.6 hr, for an inclination of i = 90° and
impact parameter of b = 0. Of course, if the enshrouded planet
were at the high end of the mass regime above, the Hill radius
would be larger than the star itself, and the orientation
considered above would result in a total eclipse of the star if
the sphere were totally opaque.

A challenge presented to this scenario is accounting for both
the depths and durations simultaneously. The maximum
durations observed are so long as to require an object with a
size larger than the star itself. For example, the Hill radius of a
10Mjy,;, planet is approximately 2.8 R, If transiting the equator
of the stellar disk such an object could lead to the maximum
observed dimming duration of approximately 16 hr.

In Figure 19 we show the expected transit depths and
durations of an optically thick Hill sphere in orbit at the
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corotation radius of RIK-210. Points on the curve are
degenerate in the parameters of planet mass and the fraction
of the Hill sphere that is optically thick. Still, the figure is
useful for determining a lower limit to the mass of a
hypothetical transiting protoplanet in the scenario described
above. In the limit of a completely opaque Hill sphere, a planet
mass above ~10 M, is required. At high planet masses, a
meaningful limit cannot be placed since the fraction of the Hill
sphere filled with optically thick material can be arbitrarily low.
We note that if material were escaping a putative protoplanet, it
could of course occupy a larger volume than the Hill sphere
and thus lower planet masses may be plausible. In any event,
this model cannot explain the long durations of the dimming
events. An extended tail of optically thick material could be
invoked to reconcile this matter.

In this scenario, one must still explain the existence of such a
dusty envelope, and also the changing morphologies between
transits. If an enshrouded planet is surrounded by a highly non-
uniform distribution of dusty material or satellites, perhaps
gravitational interactions between the planet and clumps or
satellites are reconfiguring the spatial distribution of the bodies
on timescales shorter than its orbit.

There is now a wealth of literature on circumplanetary
swarms of dust and debris. Current research on this topic is
mainly theoretical or the result of numerical simulations and
much of it is motivated by the directly imaged planet
Fomalhaut b, which is apparently visible in the optical but
not the infrared due to scattering by a proposed cloud of dust
surrounding the planet (Kalas et al. 2008). Kennedy & Wyatt
(2011) predicted that circumplanetary swarms of irregular
satellites may be common around young exoplanets, and
proposed this as an explanation for Fomalhaut b. Nesvorny
et al. (2007) studied the capture of irregular satellites by Jovian
planets migrating within a planetesimal disk, finding many
hundreds of such satellites could be captured early in the planet
formation process. Additionally, the directly imaged proto-
planet LkCal5 b (Kraus & Ireland 2012; Thalmann et al. 2016)
appears to exhibit a tail-like structure, though we note that star
is much younger and the protoplanet resides on a much wider
orbit.

Finally, we note that the Darwin instability (Darwin 1879) is
a concern for corotational orbits. This occurs when the
rotational angular momentum of the primary exceeds one-third
the orbital angular momentum of the secondary, ultimately
leading to spiral in over the tidal decay timescale. We find for
RIK-210 that bodies above a few Earth masses are Darwin
stable in a corotational orbit.

7.10. Significance of the Corotation Radius

Conspicuously, the dimming events observed in RIK-210 are
essentially synchronous with the stellar rotation. Above, we
discussed why it is extremely unlikely that these dimming
events could be due to anything on the stellar surface from
empirical considerations. Here, we provide context, in the form
of recent observational and theoretical work, for why planets or
planetary material might be expected to be found near the
corotation radius around stars with ages approximately equal to
the disk dispersal time (<10 Myr). At these ages, the stellar
rotation period reasonably tracks the expected location of the
inner disk edge. At older ages, the star first spins up as it
contracts on to the main sequence (bringing the corotation
radius inwards), then spins down as it evolves on and away
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from the main sequence (causing the corotation radius to be
moved outwards).

In a protoplanetary disk, a low-density magnetospheric gap
extends from the stellar surface to the inner disk edge.
Theoretical investigations and numerical simulations of accre-
tion disks around magnetized stars find the inner disk edge is
truncated at the Alfvén radius, where the magnetic energy
density in the disk is equivalent to the kinetic energy density. In
practice, for T Tauri stars, the Alfvén radius is approximately
20%-30% interior to the corotation radius (Long et al. 2005).

Romanova & Lovelace (2006) found the effect of the
magnetospheric gap is to greatly reduce the rate of planetary
migration through disk interactions. Papaloizou (2007) also
studied the orbital evolution of a planet that has migrated
through the disk into the magnetospheric cavity, finding that
protoplanet interactions with the stellar magnetosphere should
not result in significant orbital evolution after entering the gap.
There is also observational support for truncation of the disk at
corotation. Meng et al. (2016) recently reported the first
measurement of the inner edge of a protoplanetary disk using
photo-reverberation mapping. Those authors found a value for
the disk edge that is consistent with expectations for the
corotation radius.

Of the confirmed or candidate exoplanets around T Tauri
stars discovered to date, all are on orbits near the presumed
corotation radius. David et al. (2016b) pointed out that K2-33 b
orbiting slightly interior to the corotation radius, with
Pyv/PBot =~ 0.86. The period of the candidate transiting planet
around the T Tauri star PTFO 8-8695, also known as CVSO
30, is essentially equivalent to the stellar rotation period (van
Eyken et al. 2012; Ciardi et al. 2015; Johns-Krull et al. 2016b).
Johns-Krull et al. (2016a) found a period ratio of
Py, /Boy = 1.23 for the candidate ~11-12 My, planet around
the T Tauri star CI Tau. Lastly, the planet V830 Tau b has a
period ratio of By, /By ~ 1.8 (Donati et al. 2016).

7.11. Uniqueness of RIK-210

Inspection of more than 1400 K2 light curves of secure or
likely members of Upper Sco has revealed 12 sources with
persistent or transient short-duration flux dips that in some
cases are apparently in phase with the stellar rotation (Stauffer
et al. 2017, submitted). It is possible that RIK-210 may belong
to this newly discovered class of stars, but we emphasize that
RIK-210 is an outlier from these stars in nearly every regard.
Namely, it has the longest rotation period by more than a factor
of two, it is two spectral classes earlier in type than any of the
other mentioned stars, and it has by far the deepest and most
variable dimming events. Furthermore, none of the above-
mentioned stars have demonstrated shallow, short-duration flux
dips that are seemingly out of phase, or drifting in phase with
respect to the stellar rotation.

Nevertheless, the physical scenarios explored in this work,
and their presumed likelihoods, apply equally well to the
population of variables identified in (Stauffer et al. 2017,
submitted). Namely, those stars also lack primordial proto-
planetary disks or spectroscopic accretion indicators. Those
authors conclude the most likely culprits for the variability
is material trapped in the magnetosphere or collisional
debris.
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8. Conclusions

We present evidence for transiting gas, dust, or debris
around the 5-10 Myr old star RIK-210. Speculative sources of
the obscuring material could be a magnetospheric cloud, an
accretion flow from residual (yet undetected) gas and dust,
remnants of the late stages of planet formation, the product of a
giant impact-type collision, an enshrouded protoplanet with an
extended tail, or one or more eccentric bodies undergoing
periodic tidal disruption upon each periastron passage.

The most important aspect of the dimming events, which
must be explained by any successful theory, is that they appear
in phase with the stellar rotation. Theories invoking material
tied to magnetic field lines at the corotation radius may explain
this behavior, but do not readily account for the sub-percent
dimmings seen elsewhere in the light curve that are not in
phase with the stellar rotation.

The dimming events are variable in depth, duration, and
morphology. The depths, while deep (~5%-20%), can be
produced by only a modest amount of dust. The durations are
long (~6-18 hr), though the minimum duration is only
somewhat longer than the expected transit duration at the
corotation radius. Nevertheless, the lengthy durations imply a
large size for the transiting cloud relative to the star. It is also
possible that the occulting material is distributed in a torus that
is tilted with respect to our line of sight, thereby producing
dimmings only when a vertically extended part of the torus
crosses the star.

Curiously, archival time series photometry from WASP
provide no clear evidence for dimming events in the past.
While some ~0.1-0.2 mag dimmings are present in previous
years they are not at a consistent phase and they are often the
result of only one to two nights of data in a given year. We
cannot conclusively ascribe these dimmings to the same events
observed by K2. Furthermore, follow-up photometry from
LCOGT indicates the dimming events are no longer occurring
at the level and phase expected from K2. However, our phase
coverage in follow-up photometry is rather incomplete.
Nevertheless, it is clear the transit signatures are transient in
nature.

Follow-up RV monitoring, a secondary spectral line search,
and high-resolution imaging place stringent limits on the
presence of any putative companions. RIK-210 is an apparently
single star, and the upper limit of a companion orbiting at the
corotation radius is ~8 Mjy,,. We note RV variability at the
level of ~2 kms ™', the dominant component of which is likely
induced by starspots. When phased to the K2 ephemeris, the
RVs show small point-to-point scatter in phase but do not
exhibit the sinusoidal variation expected for spot-induced
variability. It is possible that orbital motion due to one or more
companions may contribute to the RV variability.

RIK-210 is diskless, as implied by its SED and a lack of
spectroscopic accretion indicators. A modest amount of dust
may remain at astronomical unit scales, from a weak
22 pm excess. Close inspection of spectral line profiles reveal
a chromospherically active star. No spectroscopic peculiarities
are observed at the predicted phase of the dimming events, or
elsewhere, though it is not clear the dimming events were still
occurring at the time of our spectroscopic observations.

Continued photometric monitoring is needed to ascertain
whether the dimmings observed by K2 have changed depth.
High precision photometry is necessary in order to also detect
the small <1% dips. These small dips may hold the clue to the
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correct physical interpretation of the larger-scale variability.
We advocate for continuous or semi-continuous photometric
monitoring, not just at the predicted phase of the primary dip.

If the dimming events reappear, or evaded our detection in
follow-up photometry, a number of experiments may be
conducted to clarify their physical origin. Observations of the
Rossiter—McLaughlin effect would conclusively determine
whether the flux decrements in RIK-210 are due to material
in orbit around the star. For the depths observed by K2 (though
now presumed to be shallower or entirely absent) the expected
R-M amplitude is on the order of 1kms '. Multi-band
photometric monitoring can be used to test whether the dip
depths are wavelength-dependent; solid-body transits are
achromatic, while extinction by dust is less severe at redder
wavelengths. Finally, spectroscopic monitoring while the star is
known to be dimming can test whether there is enhanced
absorption by a gaseous cloud transiting the star.
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