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Abstract

The last twenty-five years have seen our understanding of the formation and abundance of

planets revolutionised, thanks to the first detections of debris discs, and, a decade later, of the

first extrasolar planets. Hardly a week now goes by without a planet discovery, and the range

of methods used to search for planets has expanded to include techniques that are efficient at

detecting different types of planets. By combining the discoveries of the various methods, we

therefore have the opportunity to build a picture of planet populations across the Galaxy. In

this thesis, I am presenting work done as a basis towards such an effort: first I present work

carried out to improve modelling methods for gravitational microlensing events.

Since the first microlensing observing campaigns, the amount of data of anomalous events

has been increasing ever faster, meaning that the time required to model all observed anoma-

lous events is putting a strain on available computational and human resources. I present

work to develop a method to fit anomalous microlensing events automatically and show that

it is possible to conduct a thorough and unbiased search of the parameter space, illustrating

this by analysing an event from the 2007 observing season. I then discuss the possible models

found with this method for this event and their implication (Kains et al., 2009), and find that

this algorithm locates good-fit models in regions of parameters that would have been very

unlikely to be found using standard modelling methods. Results indicate that it is necessary

to use a full Bayesian approach, in order to include prior information on the parameters. I

discuss the analytical priors calculated by Cassan et al. (2009), and suggest a possible form

of an automatic fitting algorithm by incorporating these priors in the algorithm used by Kains

et al. (2009).

Another topic with which this thesis is concerned is the evolution of debris discs around

solar-type stars. Late-type stars are expected to be the most numerous host stars of planets de-

tected with the microlensing technique. Understanding how their debris discs evolve equates

to understanding the earliest stages of planet formation around these stars, allowing us to

truly put our Solar System in perspective.

Using the analytical model of Wyatt et al. (2007a), I modelled the evolution of infrared

excess flux at 24 and 70µm using published data of debris discs around solar-type (spectral

v



types F, G and K) stars from the Spitzer Space Telescope. By comparing the results of this study

to an analogous study carried our for A stars by Wyatt et al. (2007b), I find that although best-

fit parameters are significantly different for solar-type stars, this may be due to the varying

number of inefficient emitters around stars of different spectral types. I suggest that although

effective properties are different by an order of magnitude or more, intrinsic properties, while

still different, are so by a much smaller factor. These differences may be due to the longer

timescales over which solar-type stars evolve, which allow for the formation of larger and

stronger planetesimals.
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1
Searching for other worlds

In the history of humanity, the past century and a half will no doubt be remembered as a

turning point in the development of scientific knowledge. In that short time, we discovered

that everything is made up of little things called atoms, that the Universe is expanding, that

genetic information is passed on in tiny double helices located in almost each cell of living

organisms, and countless other things which revolutionised our understanding of the Universe

and its origins. These are questions which have been pondered by humans for millennia, yet

in 150 years or so, more answers than ever before were found. But with these answers came

even more questions. In the mid-1990s, the first discovery of a planet outside our Solar System

provided the first glimpse of an answer to one of the most basic questions in science: is there

life beyond planet Earth? By allowing us to see how common or how rare planets like ours

are, we can perhaps understand just how special, or common, life on Earth is.

Since this first discovery of an exoplanet orbiting a main-sequence star in 1995 (Mayor

& Queloz, 1995), over 450 more extrasolar planets have been discovered, and new ones are

being found at an increasing rate, allowing us to slowly build an answer to that question, and
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to determine whether Earth-like rocky and cool planets are common, or if they are rare and

perhaps most planets are Jupiter-like gaseous giants. In essence, the fundamental question

extrasolar planet searches are trying to answer is How special are we?.

The first person to suggest that the planets of the Solar System might not be the only ones

in the Galaxy was Giordano Bruno, who realised that each of the stars in the night sky was in

fact not very different from the Sun. For this revolutionary belief, as well as his firm defense

of the Copernican heliocentric model, Bruno was declared a heretic by the Church and burnt

at the stake in 1600, a fate only narrowly avoided by Galileo and Copernicus. Just nine years

later, Galileo, using his refracting telescope, observed the Milky Way and found that it wasn’t

nebulous as previously thought, but that it was in fact made up of a myriad of stars, suggesting

that not only could there be planets orbiting other stars, but with stars being so numerous,

such planets could exist in high numbers in our Galaxy. Over the next few centuries, many

scientists and philosophers were to give serious consideration to the possible existence of

other worlds, some taking care to distance themselves from Bruno’s theories, either for fear

of landing in trouble with religious authorities, or from a desire to not be associated with

Bruno’s other ideas. In parallel to the debate on the plurality of worlds, the possible existence

of extra-terrestial life was also discussed by many thinkers, with Thomas Dick even going

so far as to estimate the population of the different planets in the Solar System, basing his

calculation on the population density of 18th-century England (Crowe, 2008). Four centuries

would see a complete paradigm shift from the ancient principles of Aristotelian cosmology to

a heliocentric view of the Solar System.

1.1 First detections and methods

Although some claims of planet detections were made from the middle of the 19th century,

mostly based on orbital anomalies of stars, the first hint that extrasolar planets could really

be detected came with the detection of the first circumstellar discs in the 1980s, around Vega

(Harvey et al., 1984) and β Pictoris (Smith & Terrile, 1984). The first serious planet discovery

is generally held to be that of planets around pulsar PSR 1257+12 Wolszczan & Frail (1992).

Three years later, in 1995, the first planet around a main-sequence star was detected around

51 Peg (Mayor & Queloz, 1995), opening the door to a complete revolution of our view of

planetary systems and indeed of our own place in the Universe. This discovery was made using

the radial velocity method, which measures Doppler shifts of stellar spectral lines to infer the
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presence of a secondary companion orbiting the star. To this day, this method accounts for

the largest number of planet discoveries, with over two thirds of all known exoplanets found

with this technique. Alongside this method, there are several other ways of finding extrasolar

planets. The transit method relies on a planetary companion causing a drop in the observed

brightness of its stellar host as the planet passes in front of it; astrometry planet searches

look for shifts in the position of stars as they orbit the centre of mass of a star-planet(s)

system. Direct imaging can lead to the detection of planets by looking at their infrared

radiation, while timing examines pulses of radio emission from rotating pulsars and other

suitable clocks, and looks for light travel time delays caused by the presence of planetary

companions to the pulsar.

Gravitational microlensing, the method with which this thesis is concerned, relies on

an effect predicted by general relativity: when a background source star passes behind a

foreground lens star, the light of the source is deflected by the gravitational field of the lens,

causing the latter to act a bit like a focusing lens in classical optics. The important difference

is that for a gravitational lens, light is bended more the closer it passes to the lens; this means

that a gravitational lens doesn’t have a single focal point, but rather a focal line. From an

observer’s point of view, this means that several images of the source are formed. Although

the separation is generally too small to be resolved with current technology (it is usually

∼ a few mas), one can observe the effect of the light deflection by monitoring the source’s

brightness. As the source, lens and observer move in and out of alignment, the source appears

to brighten and fade, peaking when the alignment is optimal. When the lens is made of more

than one object (e.g. in the case of a binary star or of a planetary system), the light deflection

is perturbed by the gravitational field of these additional objects. Monitoring the brightness

of the source star as it is being lensed by these systems, and careful modelling of the resulting

lightcurve, allows us to infer the presence of planets and to determine some of their properties.

Many of the different methods are complementary in their capabilities, with radial velocity

and transit searches being most sensitive to large planets with small orbital radii (so-called

Hot Jupiters), although recent missions, in particular the space telescope Kepler launched in

March 2009, will extend this sensitivity range down to smaller planets at larger orbital radii.

Astrometry is sensitive to large planets at large orbital radii, as is direct imaging, since the

infrared emission of a planet at a small orbital radius would be hard to detect due to the glare

of its host star. Gravitational microlensing, on the other hand, is currently the only method
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capable of detecting low-mass planets at large orbital radii from the ground. The limits and

complementarity of the various methods are obvious when looking at a plot of discovered

extrasolar planets (Fig. 1.1).

1.2 A brief history of microlensing

After initial work going back as early as Newton’s Opticks (1704), the deflection angle of

light due to the presence of a massive body on its path was first calculated by the German

physicist Johann von Soldner in the early 19th century (Soldner, 1804). Using Newtonian

mechanics and assuming that light was made of corpuscles, he obtained an expression for the

deflection angle in terms of the speed of light, the mass of the deflecting body and the impact

parameter. In 1911, Einstein derived the same expression using his theory of special relativity,

this time with no assumptions regarding the nature of light itself (Einstein, 1911). However

in 1916, in light of his recently developed theory of General Relativity, Einstein realised that

the deflection angle should be twice the value that he had found using special relativity, due

to the curvature of spacetime in the vicinity of a massive body (Einstein, 1916). This result

was famously confirmed by Eddington when he measured the positions of stars during a solar

eclipse. Subsequent work showed the variety of objects that could act as gravitational lenses,

from galaxies (Zwicky, 1937) to quasars and stars. In 1969, Byalko first suggested looking for

lensing of quasars by stars in the Milky Way (Byalko, 1969). However it was not until 1979

that the first observations of lensing effects occurred, with lensing of extra-galactic quasars

observed by astronomers at the Kitt Peak National Observatory (Walsh et al., 1979). It would

take another 10 years for the first Galactic lensing observations to be made.

Lensing of a star by another star was discussed as early as in 1920 by Eddington (1920),

and then by Chwolson (1924) and Einstein (1936) but Einstein concluded that the phe-

nomenon could never be observed due to the very small deflection angle that would be caused

by the lens star, meaning that the different images of the source star could not be resolved.

Although Einstein noted that lensing of the source star should lead to an observed magnifica-

tion of its luminosity, potentially allowing us to observe microlensing after all, he concluded

that the phenomenon still would never be observed because of the high degree of alignment

necessary for microlensing to occur (Einstein, 1936). What even Einstein did not foresee was

the extraordinary technological developments that would take place in the next few decades,

which would eventually allow us to observe microlensing despite the probability of the re-
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Figure 1.1: Extrasolar planet discoveries as of 11 March 2010, plotted in the (semi-major axis, mass)
plane. Planets discovered with the radial velocity (RV), transit, microlensing, imaging and pulsar
timing methods are plotted with different symbols and colours, detailed in the bottom right box. The
Solar System’s planets are plotted in blue and labeled with their initial. Method sensitivities are given
for the RV, transit and microlensing methods, with a distinction between space-based and ground-
based sensitivities for the latter two. Data from the Exoplanet Encyclopedia (http://exoplanet.eu),
sensitivities from Keith Horne (private communication).
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quired alignment occuring only being around one in a million: as technology developed, our

capability to monitor the brightness of tens of millions of stars meant that observing such

rarely-occurring events became possible. Chang and Refsdal observed the effect in 1979, the

first observation of a gravitational microlensing event (Chang & Refsdal, 1979).

1.2.1 The first microlensing campaigns

In 1986, Bohdan Paczyński proposed that microlensing be used to look for baryonic dark mat-

ter in the galactic halo (Paczyński, 1986). From this idea, two microlensing collaborations

were formed by astronomers and particle physicists: the French collaboration EROS (Expéri-

ence de Recherche d’Objets Sombres) in 1990 and the British-Australian collaboration MACHO

(Massive Compact Halo Objects) in 1991. Both collaborations observed the Magellanic Clouds,

the location of which, near the Galactic Halo, provided a good supply of source stars whose

magnification by MACHO lens objects could be detected. This led to the detection of three

microlensing events, reported separately by the two groups in Nature in 1993 (Alcock et al.

1993; Aubourg et al. 1993). In 1991, Mao & Paczyński showed that microlensing observations

could help detect low-mass objects such as brown dwarfs and extrasolar planets by monitor-

ing the Galactic Bulge (Mao & Paczyński, 1991). In 1992, Udalski founded the OGLE (Optical

Gravitational Lensing Experiment, Udalski et al. 1992) collaboration, which started routine

monitoring of the Galactic Bulge. MACHO also started observing towards the Galactic Bulge,

as did the DUO experiment (Alard et al., 1995) and EROS-II in 1995 and 1996 respectively.

Microlensing then appeared to be a good method to use to try to detect the first extrasolar

planet. Gould & Loeb (1992) described the potential of microlensing to detect extrasolar

planets and made estimates of the detection probabilities for different star-planet systems.

Their conclusions were encouraging enough to justify considerable efforts to find extrasolar

planets by microlensing. However, it was also clear that the ongoing microlensing monitoring

campaigns could not serve this purpose as they were, because of the high photometric accu-

racy and intensive observations needed to detect a photometric perturbation due to a planet

orbiting a lens star.

In order to solve this problem, it was decided in 1995 to use a number of small telescopes,

which would be located at different longitudes so as to enable continuous photometric obser-

vations, and in the Southern Hemishpere in order to observe fields in the Galactic Bulge. These

small photometric follow-up telescopes were to complement the wide-field alert telescopes,
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which were to monitor many stars and refer events of interest to the follow-up telescopes.

In this context, the PLANET (Probing Lensing Anomalies NETwork) and GMAN (Global Mi-

crolensing Alert Network) collaborations were founded in 1995, followed in 1997 by MPS

(Microlensing Planet Search), and the Japan-New Zealand collaboration MOA (Microlensing

Observations in Astrophysics) in 1998. Furthermore, µFUN (Microlensing Follow-Up Net-

work) was formed in 2001 after a schism within PLANET. At present, the OGLE and MOA

collaborations still lead the wide-field survey effort, while current follow-up teams include

PLANET and µFUN, the MiNDSTEp consortium, as well as the robotic telescopes of RoboNet

and LCOGT (Las Cumbres Observatory Global Telescopes Network).

The first extrasolar planet discovered using gravitational microlensing, a planet of 2.6±0.8

Jupiter masses, was found in 2003 (Bond et al., 2004). Since then, several planets have been

found using the method, including the first cool, rocky extrasolar planet ever found, with a

median mass estimate of 5.5 times the mass of the Earth, and a median orbital radius estimate

of 2.1 AU (Beaulieu et al., 2006). Other discoveries have included several sub-Neptune-mass

planets, and a 2-planet Jupiter/ Saturn analog (Gaudi et al., 2008).

These are exciting times for planet-hunting: during my Ph.D., the number of known ex-

trasolar planets has doubled, plans have been made for the deployment of several networks of

robotic telescopes, including LCOGT and KMTNet (Korea Microlensing Telescope Network),

the launch of planet-hunting space missions such as CoRoT and Kepler, and of The Herschel

Space Observatory, which is expected to revolutionise our view of the Solar System. Alongside

these missions, extrasolar planet research is coming of age, and the focus is slowly moving

from discovering single planets to using the information collected over the last fifteen years to

consider the bigger picture: understanding planet populations, and our place in the Universe.
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2
Microlensing formalism

2.1 The single-lens case

I start by deriving the main equations for a case where a single (source) star is lensed by

another (lens) star, leading in general to the formation of two images of the source. By using

the Schwarzschild metric to solve the Einstein Field Equations in a vacuum

ds2 = c2

"

1+
2φ

c2

#

d t2 −
"

1+
2φ

c2

#−1

dr2− r2dΩ , (2.1)

where φ is the Newtonian gravitational potential,

φ = −
GM

r
, (2.2)

one can derive the deflection angle due to light passing in the vicinity of a massive body.

In the weak-field, small angle limit, which is a good approximation in the framework of
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microlensing, the deflection angle α is found to be

α=
4GM

rminc2
=

2RS

rmin

, (2.3)

where RS =
2GM

c2 is the Schwarzschild radius, and rmin is the closest approach to the massive

body. A diagram of such a microlensing event is shown on Fig.2.1, with α, rmin and other

relevant quantities labeled. Using this diagram and simple geometrical considerations, along

with Eq.(2.3), we can write down the lens equation for a point-source-point-lens (PSPL) mi-

crolensing event, i.e. for the case where the light from one point-like object is deflected by the

gravitational field of one other point-like object. With the small angle approximation, valid

when α& π, we have

θDS = α(DS− DL) + βDS , (2.4)

where DS and DL are the distance to the source and the lens respectively, and the angles α,θ

and β are the angles labeled on Fig. 2.1.

Rearranging this equation, we find

β = θ −
"

DS − DL

DS

#

α , (2.5)

which we can in turn rewrite as

β = θ −
θ2

E

θ
, (2.6)

where we have used Eq.(2.3) and the relation rmin = θDL (Fig. 2.1). The angular Einstein

ring radius θE is then defined as

θE =

$

4GM

DSc2

DS − DL

DL

. (2.7)

If we then define the normalised image and source positions x and u as

10



2.1. The single-lens case
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Figure 2.1: Geometry of a point-source point-lens microlensing event. Labeled quantities are the
deflection angle α, the closest approach rmin, the angular closest approach on the lens plane θ , the
angular source position β , as well as the distances to the lens and to the source, DL and DS.
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Chapter 2. Microlensing formalism

x = θ/θE , (2.8)

u= β/θE , (2.9)

this is equivalent to considering the positions of the source and the images on the lens-plane

(defined on Fig.2.1). Eq.(2.6) can then be rewritten as

u = x −
1

x
. (2.10)

We can solve this equation to find the positions of the images produced by the lens. For

the case where u=0, i.e. when the source and the lens are both perfectly aligned with the

observer, we see that Eq.(2.10) becomes x − 1
x
= 0, which has the solution x2 = 1. This is

the equation of circle of radius 1, meaning that the image will be a circle of radius θE (since

x is normalised by θE), called an Einstein Ring. When the observer, lens and source are not

perfectly aligned, u'=0 and Eq.(2.10) can be rewritten as x2 − ux − 1 = 0 which has two

solutions, corresponding to the two image positions:

x± =
1

2

%

u±
&

u2 + 4

'

. (2.11)

The magnification of the source is the sum of the magnifications due to each separate

image, so A= A+ + A−. The magnification of each image is given by

A± =

(

(

(

(

x±

u

∂ x±

∂ u

(

(

(

(

, (2.12)

and hence the total magnification of the source is

A(u) =
u2 + 2

u
&

u2 + 4
. (2.13)

Since u ≡ u(t) as u describes the trajectory of the source in the lens plane with time, A(u)

describes the magnification of the source star changing over time with u. Indeed, u can be

written as

12



2.2. Multiple lens case
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Figure 2.2: The PSPL model parameter: the source takes a time tE to cross an Einstein ring radius θE,
while it reaches closes approach at time t0, at which point it is an angular distance u0 from the lens.

u(t) =

)

u2
0 +

"

t − t0

tE

#2

, (2.14)

where u0 is the angular separation of the source and the lens at closest approach in units of

θE , t0 is the time of closest approach and tE is the Einstein Ring radius crossing time (the

time it takes the source to move by an angular distance θE), which provides a characteristic

timescale for the event. These three parameters are illustrated on Fig. 2.2; they completely

describe the magnification of the source when its light rays are being deflected by the lens, as

they move in and out of alignment.

In order to translate this magnification, which depends only on the event’s geometry, into

an observed flux, one must take into account light contamination from neighbouring sources

(blending) by adding additional parameters. These will differ for each telescope tracking a

given microlensing event. The total measured flux at time t at a telescope i is then given by

F(t, i) = fs,i A(t) + fb,i, where fs,i and fb,i are the source and blend flux respectively.

2.2 Multiple lens case

2.2.1 Deriving the multiple lens equation

In the case of multiple lenses, it is convenient to use the complex formalism developed by

Witt (1990), which describes the whole microlensing event in the lens plane. The positions of

the images and source in the lens plane can then be expressed by complex numbers x and y

13



Chapter 2. Microlensing formalism

respectively. Schneider & Weiss (1992) derived the multiple lens equation by minimising the

Fermat potential,

φ(x;y) =
1

2
(x− y)2 −ϕ(x) , (2.15)

where ϕ(x) is the deflection potential, defined by its relation to the deflection angle at x,

α(x) =!ϕ(x). For a collection of N masses at position di of mass µi M , where µi = mi/M is

the fractional mass of the i th component of the lens, the deflection potential is

ϕ(x) =
N
∑

i=1

miln|x− di | . (2.16)

Using Eqs.(2.15) and (2.16), minimising the Fermat potential, in other words solving

(xφ(x;y) = 0, yields the multiple lens equation:

x− y−
N
∑

i=1

mi

x− di

|x− di |2
= 0 . (2.17)

Unilke the PSPL lens equation, in general this equation cannot be solved analytically.

There are various ways to solve it, including turning it into a complex polynomial equation.

This can be done by eliminating x∗, the complex conjugate of x, from Eq.(2.17), and keeping

the solutions of this equation which are also solutions of the lens equation. For a binary-lens

(N=2) case, this yields a fifth-order complex polynomial equation, as shown by Witt & Mao

(1994). In the PSPL case, the magnification could simply be calculated through Eq. (2.12),

and for multiple lenses, we can simply extend this to express the mapping between image and

source positions x and y. This is given by the Jacobi matrix, the elements of which are

Ji j =
∂ yj

∂ xi

, (2.18)

and the magnification An at image n located at xn is given by

An =
1

|Ji j(xn)|
, (2.19)

14



2.2. Multiple lens case

where |Ji j(xn)| is the determinant of the Jacobi evaluated at xn. The total magnification is

just the sum of the magnifications of each image,

Atot =

Ni
∑

n=1

An , (2.20)

where Ni is the number of images (see below). The main difficulty lies in calculating the

image positions, as this requires solving the multiple lens equation (Eq.2.17).

2.2.2 Critical curves and caustics

Looking at Eq.(2.19), it is clear that when the determinant of the Jacobi Ji j vanishes, the

magnification diverges. The loci of infinite magnification are called critical curves (in the lens

plane) or caustics (in the source plane). In the single lens case, we can see from Eq.(2.13)

that this happens when u = 0, so the caustic is a single point, and it corresponds to a perfect

alignment of the observer, the lens and the source. The critical curve is found by setting u = 0

in Eq.(2.11), which yields x2 = 1, meaning that the critical curve is the Einstein Ring in the

PSPL case.

In multiple lens cases, caustics and critical curves are much more complicated and are

essential to determining the features of the magnification curve of the source. They determine

the number of images of the source, which depends on the source’s position relative to the

region enclosed by the caustic curve. Witt (1990) showed that the number of images is

always odd and at most equal to N2 + 1 in the case of a lens with N components. There is

a large magnification gradient near the location of the caustic lines, meaning that a source

approaching or crossing a caustic will be highly magnified as it moves in the vicinity of the

caustics. In theory, since the magnification diverges near caustics, a perfect point source would

be infinitely magnified when it crosses a caustic line; in practice a source is never perfectly

point-like, and the magnification, while it can be high, is lessened due to finite source size

effects (see below).

Much work has been done on the topology and properties of caustics for the case of

a binary lens (i.e. the N=2 case), notably by Erdl & Schneider (1993), who studied the

different possible cases for caustics topology and determined the locus of separation between

the different regimes.
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Chapter 2. Microlensing formalism

Figure 2.3: Separation lines in the logarithmic (d,q) plane between the caustic regimes, after Erdl &
Schneider (1993). Each region is labeled with the corresponding regime name and number of caustics.

Caustics and critical curves produced by binary lenses can be described by the mass ratio

of the two lens components q and their separation d . Three regimes can be distinguished,

characterised by ranges of values for q and d: close, intermediate and wide binaries. Erdl

& Schneider (1993) derived expressions for the limiting values of d separating the different

regimes as a function of the mass ratio q:

d8
c =

(1+ q)2

27q
(1− d4

c )
3 , (2.21)

dw =

+

(1+ q
1
3 )3

1+ q
, (2.22)

where dc is the separation value between the close and intermediate regimes, while dw is the

separation value between the intermediate and wide regimes.

A plot of the separation lines between the different regimes (Eqs.2.21-2.22) is shown on

Fig. 2.3. The number of caustics, as well as their position, shape and size depends solely on

the values of d and q. An example set of caustics for each regime is shown on Fig. 2.4. In the

wide configuration, there are two caustics, both on the line joining the lens components; in

the intermediate configuration there is one caustic, while in the close regime, there are three

caustics: a central caustic and two secondary caustics off the lens system’s axis of symmetry.
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2.2. Multiple lens case

Figure 2.4: Caustic topology for the wide (upper panel), intermediate (middle panel) and close (lower
panel) regimes. The d and q values corresponding to each panel are inset in the top left corner. Crosses
indicate the position of each lens component, with the more massive component closer to the origin
(which corresponds to the centre of mass of the lens system).
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Figure 2.5: The trajectory angle parameter α, defined as the angle between the source trajectory and
the line joining the two lens components on the lens plane.

2.2.3 Final binary-lens parametrisation

So far we have encountered three PSPL parameters (t0, tE and u0) and two parameters used

to describe basic properties of binary lenses (d and q). In the case of multiple lenses, the

parameter u0 is the closest approach to the barycentre of the lens system (in the case of a

single lens, this is identical to the location of the lens). One more parameter is needed to

characterise a point-source binary-lens microlensing event: the source trajectory angle α (not

to be confused with the deflection angle α encountered previously), measured between the

source trajectory and the line joining the two lens components on the lens plane (see Fig. 2.5).

Therefore, if second-order effects such as finite source size effects, parallax and orbital

motion are ignored (see below), we can characterise a static binary-lens event by a set of 6

parameters: t0, tE , α, u0, d and q. This is the standard binary-lens parametrisation, and is

not without its problems, as will be discussed later. Example lightcurves described by this

6-parameter model are shown on Figs. 2.6-2.11. It is clear from the way these parameters

are defined that modelling lightcurves with these only will not yield direct properties of the

lensing system. Apart from q, the only other parameter that is directly related to physical

properties is tE, which is a degenerate function of DS, DL and M (see Eq. 2.7). However, this

degeneracy can be broken under certain conditions, namely when certain second-order effects

can be measured.
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2.2. Multiple lens case

Figure 2.6: An example point source-binary lens (PSBL) lightcurve, with parameters u0 = 0.04,α =
1.0, tE = 15, d = 0.7 and q = 0.1. The source crosses both the central and the upper secondary caustic,
leading to clear caustic-crossing magnification patterns.

Figure 2.7: An example point source-binary lens (PSBL) lightcurve, with parameters u0 = 0.3,α =
0.1, tE = 15, d = 0.7 and q = 0.1. In this case, the source approaches both the central and secondary
caustics without crossing them.

Figure 2.8: An example point source-binary lens (PSBL) lightcurve, with parameters u0 = 0.46,α =
1.3, tE = 15, d = 1.3 and q = 10−3. In this case, the source approaches a secondary caustic but doesn’t
cross it.
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Chapter 2. Microlensing formalism

Figure 2.9: An example point source-binary lens (PSBL) lightcurve, with parameters u0 = 0.02,α =
1.0, tE = 15, d = 0.8 and q = 0.1. The source crosses an elongated intermediate caustic, exits it and
crosses it again.

Figure 2.10: An example point source-binary lens (PSBL) lightcurve, with parameters u0 = 0.2,α =
1.6, tE = 15, d = 1.1 and q = 0.5. The source crosses an intermediate caustic.

Figure 2.11: An example point source-binary lens (PSBL) lightcurve, with parameters u0 = 0.2,α =
1.7, tE = 15, d = 0.5 and q = 0.1. The source approaches a central caustic, which results in a subtle
departure from the PSPL magnification pattern (shown as a dotted line here for comparison).
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2.3. Second-order effects

2.3 Second-order effects

Beside binary-lens effects when the source approaches caustics, the magnification pattern

can deviate from a PSPL-like pattern when it is affected by other second-order effects: finite

source-size effects, limb-darkening, parallax due to the orbital motion of the Earth, orbital

motion of the source (also called xallarap) and orbital motion within the lens itself, e.g. the

motion of a planet orbiting the lens star in a binary lens.

Source size effects

We can take the effect of having an extended source into account by adding a parameter

ρ∗ = θ∗/θE, i.e. the angular size of the source, θ∗, in units of θE. The result of this is that

the magnification will not tend to infinity when the source crosses a caustic, because in the

case of a finite source size, the magnification is found by integrating a differential version of

Eq.(2.19) over the source, and this integral will not diverge. In practice, this effect needs

to be taken into account when the source is located in the vicinity of a large magnification

gradient. This happens frequently when the source approaches caustics in binary-lens cases.

When this occurs, microlensing essentially allows us to spatially resolve stars in the Galactic

Bulge, a remarkable feat which means outdoing the best available telescopes by several or-

ders of magnitude. Taking finite source size effects into account is currently one of the main

computational issues in microlensing modelling, as integrating the differential equivalent of

Eq.(2.19) is extremely expensive computationally, despite the existence of several approxima-

tions designed to speed up calculations (e.g. Gould 2008). Moreover, for most anomalous

microlensing events, finite source size effects are so important that they must be taken into

account even in the early stages of modelling an event.

Source size effects are illustrated for a PSPL case on Fig. 2.12 and for a binary-lens case

on Fig. 2.13.

Limb-darkening effects

Limb-darkening, the radial decrease in intensity of a star as one moves away from the centre

of its disc on the sky, can significantly affect the photometry, and hence the modelling, when

the magnification gradient is large, i.e. when the source approaches caustics. Indeed, if

the source is not uniformly bright, then the differential magnification that takes place as the
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Chapter 2. Microlensing formalism

Figure 2.12: The effects of having an extended source in a single-lens model. The extended source-
point lens (ESPL) model is shown with a solid line, and the PSPL model is shown with a dotted line.
The ESPL model has a source size ρ∗ = 0.2, and both models have an impact parameter u0 = 0.02.

Figure 2.13: The source size effects for binary-lens models. Left: The source trajectory and caustics.
The positions of the lens components are indicated with crosses. Right: The resulting lightcurve. The
extended source-binary lens (ESBL) model is shown with a solid line, and the point source-binary lens
(PSBL) model is shown with a dotted line. The ESBL model has a source size ρ∗ = 0.04, and both
models have parameters u0 = 0.02,α = 1.0, d = 1.5 and q = 0.5.
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2.3. Second-order effects

source approaches the caustic is strongly influenced by the limb-darkening coefficients of the

source: clearly, for a star with significant limb darkening, when the edge of the source is

near the caustic, less light is being magnified than when the centre of the source approaches

it. For microlensing events, it is generally sufficient (Dominik, 2004) and most informative

(Kubas et al., 2005) to assume a linear limb-darkening law, which, for normalised flux can be

expressed as (Albrow et al., 1999)

I(r) =
1

π

,

1− Γ
"

1−
3

2

&

1− r2

#-

, (2.23)

where r is the fractional radius of the source (r ∈ [0,1]), and Γ is the linear limb-darkening

coefficient; this expression for I yields a flux of unity when integrated over a disc of unit ra-

dius. This has been used to measure linear limb-darkening coefficients for several stars, mostly

for giant stars located in the Galactic Bulge (e.g. Albrow et al. 2000a), but also several other

types of stars (e.g. Albrow et al. 2001). The effect of different limb-darkening coefficients on

a point-lens and binary-lens lightcurve is shown on Fig. 2.14.

Parallax and orbital motion

The parallax effect was first measured in a lightcurve by Alcock et al. (1995). The amplitude

of this effect depends on the length of the observed microlensing event, becoming more pro-

nounced when the timescale of the event is a significant fraction of the Earth’s orbital period;

it also depends on the position of the observed event in the sky. The net effect of parallax is

that the apparent relative trajectory of the source and the lens deviates from a straight line,

leading to additional variation in the observed lightcurve. The amplitude of the effect is given

by

πE =
(D−1

L − D−1
S )

θE

=
πLS

θE

, (2.24)

in other words, is equal to the lens-source relative parallax πLS = (D
−1
L − D−1

S ) in units of

θE. In addition to πE, a second parameter is needed to completely characterise parallax; this

second parameter, generally called ψ, is necessary to transpose the trajectory of the Earth’s

orbit into the source plane.

When possible, measuring both the source size and parallax allows us to calculate directly
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Chapter 2. Microlensing formalism

Figure 2.14: Top: the limb darkening law, showing the decrease in intensity as one moves away from
the centre of its disc, for different values of γ1(≡ Γ). The x-axis is the distance from the centre of the
source in units of the source radius. Bottom: the effect of an extended source having the different limb-
darkening coefficient γ1 shown in the top panel, in a single-lens model (bottom left) and on the shape
of the photometric signal of a caustic crossing (bottom right). The x-axis is the source-lens separation
in units of source radii. Taken from Cassan (2005).
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2.4. Extracting physical parameters from microlensing modelling

the lens mass. Indeed, measuring the source size allows us to determine the value of θE

(Gould et al., 1994; Nemiroff & Wickramasinghe, 1994; Witt & Mao, 1994). If θE is known,

we can use Eq. (2.7), re-expressed as

θE =

$

4GM

c2
πLS , (2.25)

to see that if the parallax parameter πE is measured as well, Eq. (2.25) can be rearranged to

obtain an expression for the mass of the lens M . This means that microlensing can be used as

a technique to measure the mass of single stars as well (e.g. Ghosh et al. 2004); this was first

achieved by Alcock et al. (2001).

Sometimes orbital motion of the source, also called xallarap, can mimic the effect of paral-

lax (e.g. Bennett 1998). When that is the case, one must check whether the detected xallarap

signal is consistent with the signal that could be produced by parallax for the event timescale,

and which effect results in a better fit to the available data (e.g. Poindexter et al. 2005).

Finally, one can also characterise a lensing system through the detection of orbital motion

of the lens, as suggested by Dominik (1998b); indeed this effect was first incorporated into

the modelling by Albrow et al. (2000b).

In general, with the exception of finite source size effects, I will ignore second-order effects

in this thesis, unless otherwise stated.

2.4 Extracting physical parameters from microlensing modelling

As discussed in the previous section, measuring both the parallax effect and finite source size

effects allows us to determine exact properties of the lensing system. This, however, can only

be done for very few events. In the vast majority of events for which this is not possible,

we can only derive probabilistic distributions of lens properties, based on a chosen Galactic

Model. One then has to make assumption about the location of the source (generally, this

is taken to be the Galactic Bulge), and to consider separately cases where the lens resides

in the Galactic Bulge or in the Disc. Using the distributions of stellar masses, velocities and

distances given by the Galactic models (e.g. Han & Gould 2003, Dominik 2006), we can then

derive corresponding probability density functions of the lens properties. Such an analysis

was performed for the modelling of OGLE-2007-BLG-472, for which only the source size was
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measured; this analysis is presented in Chapter 4.

2.5 Binary sources

Another potential cause for deviations from single-lens magnification patterns is multiple com-

ponents in the source system. It is estimated that roughly half the stars in our Galaxy are part

of a binary or multiple star system, yet few cases of lensing of binary stars, i.e. binary source

events have been reported in the literature (e.g. Gaudi & Han 2004; Collinge 2004; Jaroszyn-

ski et al. 2004). The reasons for this dearth of binary-source events have been the subjects

of several studies. Griest & Hu (1992) found that up to 95% of binary-source events have

a lightcurve which is affected by only one of the source’s compoents, a result confirmed by

Dominik (1998c), who found that most of the binary source events have lightcurves that can

be fitted with a PSPL model. Dominik (1998c) explained this by the fact that for a typical

binary source, the separation between the source components is large, resulting in a large

difference between the impact parameters of the two components. However, Han & Jeong

(1998) estimated that there should still be up to 8% of events in which the components have

a separation small enough that they would both affect the event’s lightcurve. They found that

more reasons contribute to the lack of detected binary-source events, including binary systems

in which one component is much brighter than the other, i.e. with a large flux ratio.

These events are particularly interesting in the context of planet searches, because binary

source lightcurves can sometimes mimic binary lens lightcurves, leading to an ambiguity in

the nature of an observed event, and most of the reported binary-source events can also be

fitted with binary-lens models (see Fig. 2.15). Gaudi (1998) presented a detailed discussion of

the ambiguity between high flux ratio binary-source and low mass-ratio binary-lens models,

and suggested taking a spectrum of the source while the event is ongoing, or very dense

photometric coverage, as a way to break this ambiguity. For the planetary event OGLE-2005-

BLG-390 (Beaulieu et al., 2006), dense data coverage indeed meant that the planetary model

was strongly favoured over the binary-source model.

During my Ph.D., I have developed a fitting algorithm for binary source - single lens events,

and worked on a method to resolve the ambiguity between some binary-lens and binary-

source lightcurves that would not require as much observational effort as is needed to obtain

dense photometric coverage or to carry out spectroscopy. The method is based on previous
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2.5. Binary sources

Figure 2.15: Top: the best-fit binary-source model for OGLE-2004-BLG-347, corresponding to a source
with a primary component ∼ 2 times brighter than the secondary. Bottom: the best-fit binary-lens
model (d ∼ 3,q ∼ 0.75) for that event. Neither model is significantly better than the other, so the
nature of this event is ambiguous.
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work by Dominis (2006), and relies on the fact that in most cases, binary source events are

chromatic, i.e. the total colour of the binary-source will change as each component is lensed,

whereas binary-lens events are not. This work, however is still in progress and is therefore

not part of this thesis.
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3
Markov Chain-Monte Carlo methods

This Chapter outlines the development of my Markov Chain-Monte Carlo (MCMC) algorithm

to fit microlensing events. I start by recalling the basic mathematical principles of MCMC

methods, and detail various issues associated with that class of algorithms. Finally, I describe

the algorithm I have produced, illustrating this with a few examples of event fits.

3.1 Motivation and Formalism

MCMC methods are a class of random walk algorithms that allow us to sample from an un-

known target distribution. This is made possible by the fact that the MCMC random walk

chain can generally be made to converge to a stationary distribution that is the desired target

distribution. In Bayesian terms, if the MCMC steps in the parameter space θ and we are trying

to model data y, the MCMC algorithm converges to the posterior distribution p(θ |y) for any

"reasonable" prior distribution. Several methods exist to construct MCMC chains, all of them

based on the work by Metropolis et al. (1953) and by Hastings (1970). From Bayes’ theorem,

given a prior distribution p(θ) and a likelihood p(y|θ), the posterior distribution is given by
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p(θ |y) =
p(y|θ)p(θ)

∫

p(y|θ)p(θ)dθ
. (3.1)

This posterior distribution can be used for Bayesian inference, e.g. to calculate the poste-

rior expectation value of a function of θ ,

Ep(θ |y)( f (θ)|y) =
∫

f (θ)p(θ |y)dθ . (3.2)

The difficulty lies in evaluating the integrals in Eqs. (3.1) and (3.2). One way to do this is

by Monte Carlo integration, of which MCMC is a class. Monte Carlo integration allows one to

draw a large number of samples θi from the posterior distribution p(θ |y) without the need to

know its exact form. This therefore allows us to approximate the integral on the right hand

side of Eq. (3.2) as

Ep(θ |y)( f (θ)|y)*
1

n

n
∑

i=1

f (θi) , (3.3)

i.e. by approximating the expected value as a sample mean. In the case of MCMC integration,

the key feature is that the generated samples form a Markov Chain, that is, each sample xi+1

that is generated depends on the current state of the chain xi. The corresponding equation to

Eq. (3.3) will have a denominator n−m, where m is the number of iterations needed for the

chain to reach the stationary distribution, starting from an initial point in parameter space;

the period during these m iterations is called the burn-in of the chain. This is illustrated on

Fig. 3.1 and Fig. 3.2. Since the burn-in points are not drawn from the posterior distribution,

they are not used to compute statistics such as the sample means, standard deviations or the

covariance matrix. Once the chain is past the burn-in phase, the ergodic theorem ensures that

the expectation value estimator converges to the real expectation value (Roberts, 1992).

Several different types of MCMC algorithms exist, characterised by the way the Markov

Chain is generated. The most general form of MCMC method is the Metropolis-Hastings

algorithm, in which we seek to generate, from a starting point x0, a chain of samples xi

from a target distribution p, using a proposal distribution q. This is achieved by drawing a

candidate point ξ from q, which then gets accepted or rejected with probability α(xi,ξ) where

30
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Figure 3.1: The value of χ2 against the number of iterations of the MCMC chain for a fit to a PSPL
microlensing event. The burn-in and stationary periods are labeled and a dotted line indicates where
the chain starts sampling for the posterior distribution.

Figure 3.2: Example pairwise correlations showing the progress of the Markov chain for four different
starting points (shown with filled circles). The chains take a few steps during the burn-in period before
converging to the stationary distribution (dense area in the middle of the plot).

31



Chapter 3. Markov Chain-Monte Carlo methods

α(xi,ξ) = min(1,
p(ξ)q(xi|ξ)
p(xi)q(ξ|xi)

) . (3.4)

If ξ is accepted, the chain moves on to that place in parameter space, i.e. xi+1 = ξ,

otherwise it remains where it was, i.e. xi+1 = xi. Remarkably, it has been shown that the

chain will converge to the target distribution for almost any form of the proposal distribution

q with only a few restrictions (Roberts, 1992). The transition kernel of the chain is defined as

P(ξ|xi) = q(ξ|xi)α(ξ, xi) and is a defining feature of a given MCMC algorithm.

When the proposal distribution q is symmetric, the method is known simply as the Metropo-

lis algorithm. Since in that special case q(x |y) = q(y|x), the acceptance probability α reduces

to

α(xi,ξ) = min(1,
p(ξ)

p(xi)
) . (3.5)

An important issue in MCMC algorithms is to decide when the chain has converged to the

target distribution, i.e. to determine the length of the burn-in period mentioned above. As

mentioned above, the samples drawn from the burn-in stage of the chain will clearly need

to be thrown out when using the output of an MCMC run, since they are not samples from

the posterior distribution. Factors that will affect the length of the burn-in period include

the choice of starting values of the chain and the proposal distribution q. If these are poorly

chosen, the burn-in time can be much increased, wasting computational time on irrelevant

regions of the parameter space. If starting values fall in a local minimum of the target distri-

bution, the chain will be stuck in the minimum for a long time, and the it will be said to be

poorly mixing as it will not be exploring the parameter space efficiently. Another important

factor is the size of the steps taken by the algorithm: if the steps are too large, too many

steps will be rejected and the chain will be inefficient, whereas if the steps are too small, the

chain will take too much time moving in the parameter space, or will only explore a small

region around the starting value. When the target distribution has many local minima, one

sensible option is to use scattered initial values for the parameters and to run many chains

in parallel, as described by Gelman & Rubin (1992). These show the importance of a good

choice of initial conditions for the MCMC algorithm. Most of the difficulty when using MCMC

algorithms resides in determining ideal starting values and proposal distributions in order to
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avoid wasting valuable computational time on the burn-in stages of MCMC runs.

Once the burn-in stage is passed, a number of different criteria for convergence can be

applied. Geweke (1992) devised a simple test: two subsamples are taken from the (post

burn-in) sample and the mean of parameters within these two subsamples is calculated. By

comparing these two numbers for each parameter, the convergence can be quantified: if they

are approximately equal (within a desired tolerance interval), then the chain has converged,

otherwise the sequence is still converging. Other convergence tests include those developed

by Hanson (2002) or Raftery & Lewis (1992).

3.1.1 Sample autocorrelation

Typically, the samples representative of the posterior distribution will be used to calculate the

standard error in a parameter. However, due to the Markov Chain nature of the process used,

successive samples will be correlated with one another. This can be quantified by evaluating

the (first-order) autocorrelation function ρ of the sample α,

ρi,i−1 =

∑Ns−1
i=1 (αi − ᾱ)(αi−1 − ᾱ)
∑Ns−1

i=1 (αi − ᾱ)2
, (3.6)

where Ns is the length of the sample. The standard error in the mean ᾱ of the sample is then

affected by the autocorrelation and is given by:

sᾱ =
σ
%

n

$

1+ρ

1−ρ
, (3.7)

where σ is the standard deviation of α calculated from the sample sample.

For high autocorrelation, ρ is close to 1 and the standard error is greatly increased com-

pared to the case where autocorrelation is not taken into account (ρ = 0). An efficient way

to reduce autocorrelation is thinning the sample, so that we only store one in every n points

of the chain (Walsh, 2002). This effectively reduces the autocorrelation by a factor ρn−1. In

order to minimise the effect of autocorrelation, I will also draw a random sample from the

final chain to derive statistics from the posterior distribution.
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3.2 Application to microlensing

When using an MCMC algorithm to fit a microlensing lightcurve to photometric data, as with

most other methods, the aim is to minimise the badness-of-fit of the model lightcurve, gen-

erally χ2. In the case of a microlensing model parametrised by n parameters, this means

exploring an n-dimensional parameter space to find the global minimum. An additional com-

plication comes from the fact that data are taken at various observing sites, which have dif-

ferent source and blending fluxes fS and fB . The flux measured at a telescope i is then given

by F i(t) = f i
S A(t) + f i

B. There are two ways to treat these two additional parameters: treat

them as free parameters like the other n parameters of the magnification model, or determine

their optimal value by linear regression for each new set of parameters. The former solution

means increasing the number of parameters by 2m, where m is the number of observing sites,

which rapidly becomes problematic in terms of computing time. Therefore we usually choose

the latter method.

For a data set consisting of N data points, the χ2 statistic for a given set of parameters is

defined as

χ2 =

N
∑

k=1

"

F(tk)−µ(tk)

σk

#2

, (3.8)

where tk is the time at which the kth data point was taken, F(tk) is the observed flux, µ(t) is

the theoretical flux at time t and σk is the size of the error bar for the kth data point. In order

to minimise the χ2 of the model fit, we choose a jumping distribution so that the acceptance

probability will be given by

α(xi, xi+1) = min(1, e−(χ
2
i+1−χ

2
i )) , (3.9)

that is, if the proposed step xi+1 corresponds to an increase in χ2, it will be accepted with a

probability e−∆χ
2

where ∆χ2 = χ2
i+1 − χ

2
i , while if a step goes toward a point in parameter

space corresponding to a lower χ2, it will always be accepted. The ability to move “uphill" in

the χ2 landscape ensures that the chain does not get trapped in local minima of the parameter

space, provided that the chain is long enough.
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3.3. Fitting lightcurves with MCMC

The chain is initialised at given starting values which only need to be "reasonable" to

achieve convergence to the posterior parameter distribution, as mentioned above, and I use

the convergence criterion of Geweke (1992).

Something that is obvious from Eq. (3.8) is the importance of the size of the error bars.

In particular, when there are data available from multiple sites, as is generally the case, it

is important not to give excessive or insufficient weight to data from a particular site, which

can happen if the size of error bars are under- or over-estimated. For this reason many people

rescale error bars by a site-dependent factor in order to obtain a final χ2 per degree of freedom

of 1 for the best-fit model. The models presented in this thesis are found without error bar

rescaling, unless explicitly mentioned.

One of the most interesting features of using an MCMC algorithm to fit data is that in

addition to a best-fit model, it computes the parameter covariance matrix, and values for the

error bars on parameters, at no extra computational cost. These features are examined in the

next section.

3.3 Fitting lightcurves with MCMC

3.3.1 PSPL events

Fits for two PSPL events are presented of Figs. 3.3 and 3.4, and their best-fit parameters as

well as the values published by the OGLE collaboration1 (for comparison) and MCMC output

data are given in Tables 3.1 and 3.2. The agreement in best-fit parameters is excellent, but

for OGLE-2006-BLG-397, the error bars found by the MCMC algorithm are significantly larger

than those reported by OGLE. Since it is not known (to the author) how OGLE error bars are

calculated, it is possible that this discrepancy is due to a difference in fitting methods.

Parameter MCMC best fit value OGLE published value Units

t0 78.178± 0.022 78.168± 0.025 HJD−2453800

tE 18.75± 0.48 18.456± 0.408 days

u0 0.378± 0.014 0.385± 0.014 −

Table 3.1: OGLE-2006-BLG-180: MCMC best fit parameters compared to the OGLE published values

1http://ogle.astrouw.edu.pl/ogle3/ews/ews.html
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Figure 3.3: MCMC fit and residuals for OGLE-2006-BLG-180

Figure 3.4: MCMC fit and residuals for OGLE-2006-BLG-397 (note the worse data quality than OGLE-
2006-BLG-180).
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Parameter MCMC best fit value OGLE published value Units

t0 50.494± 0.073 50.513± 0.073 HJD−2453900

tE 39.00± 1.98 33.265± 0.276 days

u0 0.174± 0.013 0.211± 0.002 −

Table 3.2: OGLE-2006-BLG-397: MCMC best fit parameters compared to the OGLE published values

3.3.2 Parameter correlations

In Sec. 3.1, we discussed factors that could make a MCMC algorithm slower or less efficient.

One of the main factors affecting the efficiency of a MCMC run exploring a parameter space

is strong correlations between the parameters. The correlations for one of the PSPL events

shown above, OGLE-2006-BLG-180, are shown on Fig. 3.5. While t0 is not strongly correlated

with any other parameters, we observe that all the other pairwise correlations are very strong.

This means that completely random steps are very unlikely to be accepted since one of the

parameters in these pairwise correlation plots will be likely to wander far off their "1-σ zone",

where it will cause the whole proposed parameter vector to be rejected.

One potential solution to this issue is to reparametrise the model used with uncorrelated

(or weakly correlated) parameters. One example of an attempt at such a reparametrisation is

shown on Fig. 3.6. This usesω= 1
u0 tE

, ε=
fs
u0

and the baseline flux f0 = fs+ fb. Although some

of the more severe correlations have become weaker, some strong correlations remain. In the

case of a complex parameter space it will be almost impossible to find such "replacement"

parameters with which the model can be re-expressed.

3.3.3 Orthogonalising the parameter space

A more complete solution to the problem of parameter correlations is to completely orthogo-

nalise the parameter space. One approach, using a Gram-Schmidt orthogonalisation process is

presented here. The idea is to "shear" the parameter space so that all the parameters become

mutually orthogonal. In a non-orthogonalised parameter space of a model µ, the steps for

each parameter αi are taken in the direction of the vector Pi =
∂µ

∂ αi
, which are not orthogonal

to one another.

With the dot product defined as

Pa · Pb =

N
∑

i=1

Pa(ti)Pb(ti)

σ2
i

= ‖Pa‖‖Pb‖cosθ , (3.10)
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Figure 3.5: Correlations between standard PSPL model parameters for OGLE-2006-BLG-180.

Figure 3.6: Correlations between t0,u0 and chosen model parameters ω, ε and f0 for OGLE-2006-
BLG-180.
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3.3. Fitting lightcurves with MCMC

where θ is the angle between the two vectors, we can use a Gram-Schmidt orthogonalisation

to construct orthogonal vectors Bi as

Bi = Pi −
i−1
∑

j=1

1

Pi · Bj

Bj · Bj

2

Bj , (3.11)

!
"
#$

"

!
%

$
%

Figure 3.7: Left: Schematic representation of the “shearing" of the parameter space for a pairwise
parameter correlation pattern, which becomes circular rather than elliptical, i.e. less correlated. Right:
Gram-Schmidt orthogonalisation for the first two vectors of an N-dimensional parameter space.

with B1 = P1. This operation is shown on Fig. 3.7 The vectors satisfy Bi =
∂ µ

∂ βi
for orthogonal

parameters βi. By defining the transformation matrices S and T as satisfying

Bi =

i
∑

j=1

Si j Pj (3.12)

Pi =

i
∑

j=1

Ti jBj , (3.13)

and comparing Eq. 3.13 to Eq. 3.11, we see that

Ti j =







Pi ·Bj

Bj ·Bj
i ≥ j

0 i < j ,

(3.14)

and noting that the diagonal elements of S and T are equal to 1 and that the two matrices

are lower triangular matrices, we can calculate all the other non-zero non-diagonal elements

of the transformation matrices by induction.

We start by rewriting Eq. (3.11) as
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Bi = Pi −
i−1
∑

j=1

Ti jBj , (3.15)

and by rewriting Bj in this equation in terms of components along Pk to obtain

Bi = Pi −
i−1
∑

j=1

Ti j

j
∑

k=1

SjkPk . (3.16)

Since Sjk = 0 for k > j,

Bi = Pi −
i−1
∑

j=1

Ti j

n
∑

k=1

SjkPk , (3.17)

and reversing the order of sums yields

Bi = Pi −
n
∑

k=1







i−1
∑

j=1

Ti jS jk






Pk . (3.18)

Since Sjk = 0 for j < k,

Bi = Pi −
n
∑

k=1







i−1
∑

j=k

Ti jS jk






Pk , (3.19)

and since j < i and Sjk = 0 for k > j, it follows that k < i, and therefore

Bi = Pi −
i−1
∑

k=1







i−1
∑

j=k

Ti jS jk






Pk . (3.20)

Therefore, by comparing this expression to Eq. (3.12), we find that the elements of S are

Sik =



















−
∑i−1

j=1 Ti jS jk i > k

1 i = k

0 i < k .

(3.21)

These matrices are then used to transform steps so that they match the correlation of
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parameters. For a random gaussian step ∆β j in the orthogonal parameter space, the corre-

sponding step for the i thα parameter is given by

∆αi =

i
∑

j=1

Si j∆β j . (3.22)

The n-parameter model can then be written as

µ = µ0+

n
∑

i=1

∆αi Pi = µ0 +

n
∑

i=1

∆βiBi . (3.23)

Given a dataset x , the best fit β̂ parameters and 1-σ error bars are then given by

β̂i =
x · Bi

Bi · Bi

(3.24)

σ2
β̂i
=

1

Bi · Bi

, (3.25)

with the random step ∆βi for each orthogonal parameter drawn from a gaussian distribution

with σ = σβ̂i
. Derivatives for Gram-Schmidt orthogonalisation can then be re-calculated as

the chain moves in parameter space.

The much weaker correlations between these β parameters are shown on Fig. 3.8, and

model derivatives for the PSPL case are shown for standard and orthogonal parameters on

Fig. 3.9.

3.3.4 Binary lens events

Fitting point source-binary lens (PSBL) events

As discussed in Chapter 2, the most demanding part in calculating binary-lens lightcurves

consists of evaluating extended source effects. In most cases, these effects are crucial to mod-

elling anomalous events, as they modify the magnification pattern significantly compared to

point-source models with other parameters being equal. In some cases, however, lightcurves

are not significantly affected by finite source size effects. Most of the time, this is true when

an anomalous event is ongoing before the source is close to caustics, where finite source size
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Figure 3.8: Correlations between orthogonalised parameters βi for OGLE-2006-BLG-180

effects are most important. This means that until this happens, we can approximate the true

lightcurve with a PSBL model. The advantage of this is obvious: while extended source-binary

lens (ESBL) models take hours to compute, or even days for high magnification events, PSBL

lightcurves generally take seconds to calculate, which allows us to extract information on

the nature of an event from its best-fit parameters even while the event is still ongoing. An

example of such a case is the partial PSBL fit of OGLE-2008-BLG-513 shown on Fig. 3.10.

Data taken after this fit was computed began to exhibit pronounced finite source size effects,

which, combined with a very high magnification event, made this event impractical to fit with

my algorithm and limited computational resources.

Using adaptive contouring to calculate finite-source effects

The procedure used here to calculate binary-lens model lightcurves for each set of parameters

in the MCMC relies on adaptive contouring to efficiently calculate lightcurves for extended

source cases (Dominik, 2007). Adaptive contouring works by building a grid of squares rep-

resenting the lens plane and using a ray-shooting approach to determine the corresponding

true source position (using the lens equation). According to whether the ray hits the source

or misses it, the grid is adapted to improve the determination of the source contour lines,

following a hierarchical set of rules Dominik (2007).
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Figure 3.9: Model derivatives for the PSPL case, with respect to standard parameters t0, tE,u0, fs and
fb (top panel) and the orthogonal parameter βi (bottom panel), for OGLE-2006-BLG-180 (Fig. 3.3).
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Figure 3.10: Incomplete PSBL fit to the anomalous event OGLE-2008-BLG-513. This fit was made
while the event was ongoing, but subsequent observations showed that the magnification pattern be-
came significantly affected by the finite source size. Because this event is also one in which the source
is highly magnified, this meant that modelling of this event could not be pursued with limited compu-
tational resources.
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For binary lens events, calculating lightcurves is much more computationally demanding

than for single lenses. This is mainly because the lens equation cannot be solved analytically

(as discussed in section 2.2.1) and therefore must be solved by numerical methods. For the

same reasons, orthogonalising the parameter space requires calculating numerical derivatives

of the binary-lens model, which is also computationally demanding. Using the Gram-Schmidt

orthogonalisation procedure is further complicated by the fact that some of the correlations

of the 7 binary-lens model parameters are highly non-linear, meaning that if the parameter

starting values of the MCMC run are too far off the best-fit values, so will be the derivatives,

and the stepping procedure will be too influenced by the geometry of the point in parameter

space where the derivatives are calculated. A way to minimise this issue is to run the chain

without orthogonalising the parameters until a set number nkeep of steps have been kept. The

derivatives can be recalculated as the chain moves in parameter space. In principle the chain

should then have moved closer to the global minimum, so the derivatives evaluated at this

point in parameter space can then be assumed to be roughly equal to those evaluated at the

best fit values. Of course this approach is only interesting if the chain is rapidly mixing and

nkeep can be set to be reasonably low. If nkeep needs to be large, the benefits of calculating

derivatives (higher acceptance rate and faster convergence to the target distribution) are lost

since the chain spends most of its time stepping in a non-orthogonalised parameter space.

Because calculating derivatives becomes impractical for complex cases such as binary-lens

events, we need to resort to other methods to minimise the effects of parameter correlations

on the modelling process. One such method is to diagonalise the covariance matrix, which

allows to rotate, rather than de-shear, the parameter space.

Diagonalising the covariance matrix

In this section, we outline a way of stepping from the current parameter vector α to the

proposed vector αp, taking the correlations into account to minimise their effect on the accep-

tance rate of proposed steps. This is similar to approaches detailed by Tegmark et al. (2004)

and Burke et al. (2007).

Any non-singular square matrix M can be decomposed in the form

M= PDP−1 , (3.26)
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where P is the square matrix formed by columns from the right eigenvectors of M, P−1 is the

matrix inverse of P, and D is a diagonal matrix with non-zero elements being the correspond-

ing eigenvalues of M.

Therefore any matrix M can be diagonalised through

D= P−1MP . (3.27)

We can use this to diagonalise the covariance matrix. The matrix P will then contain a set

of rotated axes for a new basis B in which parameters described by the covariance matrix are

orthogonal.

In order to take correlations into account when stepping in an MCMC algorithm, we can

simply transform the set of original parameters α we are stepping from into a new set of

decorrelated parameters β = P−1α. Since the covariance matrix is diagonal in B-space, and

the variances of the orthogonal parameters βi are simply given by the diagonal elements of the

diagonal covariance matrix (themselves the eigenvalues λi of the original covariance matrix),

we just take 1-σ Gaussian steps in B space to propose a parameter vector βp, the elements of

which are













β1 +∆β1

...

βn+∆βn













.

We can then transform these parameters back to the original parameter space, which has

basis vectors A, to calculate our model for the corresponding proposed parameter vector αp













α1 +∆α1

...

αn +∆αn













.

As when using Gram-Schmidt orthogonalisation, the n-parameter model µ can be ex-

pressed both in A and B space, since
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µ = µ0+

n
∑

i=1

αiAi = µ0+

n
∑

i=1

βiBi . (3.28)

Using the diagonalised covariance matrix to calculate steps in parameter space ensures

that the random steps are taken along parameter correlations. The effect of the diagonali-

sation process on the acceptance rate of the MCMC algorithm is shown on Fig. 3.11: after

diagonalisation, the acceptance rate increases significantly.

Figure 3.11: The effect of diagonalising the covariance matrix on the acceptance rate of the MCMC
algorithm. The burn-in and stationary phases are separated by a vertical dashed line, while a dotted
line shows where the covariance matrix is first diagonalised.

3.3.5 A test binary-lens event: OGLE-2005-BLG-390

OGLE-2005-BLG-390, an anomalous event observed in 2005, allowed the discovery of a plan-

etary companion to the lens, OGLE-2005-BLG-390Lb, which was at the time the first cool

Super-Earth (with a median mass of 5.5 M⊕) detected (see Beaulieu et al. 2006). I use this

as a test event for my binary-lens fitting algorithm. The best-fit model is shown on Fig. 3.12,

parameter correlations are plotted on Fig. 3.13, and Table 3.3 lists the best-fit parameters

produced by this algorithm and the published parameter values.

As is clear from Fig. 3.12 and Table 3.3, the model found by my algorithm is in excellent

agreement with the published model (Beaulieu et al., 2006). Over the past observing seasons,

I have used this algorithm to participate in real-time modelling of microlensing events, con-

tributing to inform observers as to the possible nature of some of these. In the next section,

we use this algorithm as a basis for conducting a systematic search of the parameter space for

a particular class of binary-lens microlensing events.
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Figure 3.12: MCMC fit and residuals for the planetary binary-lens event OGLE-2005-BLG-390. The
best-fit parameters are given in Table 3.3.

Parameter MCMC best fit value Published value Units

t0 3582.728± 0.007 3582.755± 0.006 HJD−2450000

tE 11.17± 0.10 11.03± 0.11 days

α 2.759± 0.003 2.756± 0.003 rad

u0 0.353± 0.004 0.359± 0.005 −
ρ∗ 0.0233± 0.0013 0.0255± 0.0009 −
d 1.599± 0.006 1.610± 0.008 RE

q (7.2± 0.3)× 10−5 (7.6± 0.7)× 10−5 −

Table 3.3: MCMC best fit parameters compared to the published values of Beaulieu et al. (2006); all
are in good agreement.
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Figure 3.13: Correlations between the 7 model parameters and 2 flux parameters (in this case for the
OGLE telescope) for the binary-lens event OGLE-2005-BLG-390.
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4
The basis for an automatic binary-lens fitting

algorithm

This chapter is based on Kains et al. (2009), MNRAS, 395, 2, 787-796

In this chapter, I outline a method for fitting binary-lens caustic-crossing microlensing

events based on the alternative model parameterisation proposed and detailed by Cassan

(2008). As an illustration of this methodology, I present an analysis of OGLE-2007-BLG-

472, a double-peaked Galactic microlensing event with a source crossing the whole caustic

structure in less than three days. In order to identify all possible models we conducted an

extensive search of the parameter space, followed by a refinement of the parameters with a

Markov Chain-Monte Carlo algorithm. We find a number of low-χ2 regions in the parameter

space, which lead to several distinct competitive best models. We examine the parameters for

each of them, and estimate their physical properties. We find that our fitting strategy locates

several minima that are difficult to find with other modelling strategies and is therefore a
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more appropriate method to fit this type of event.

The work I contributed to the paper on which this chapter is based consisted observing

(with Keith Horne), data reduction (with Michael Albrow, Pascal Fouqué), modelling and

discussion of results (with Arnaud Cassan). In particular, I received help from Arnaud Cassan

to implement the alternative binary-lens parameterisation in my MCMC algorithm.

4.1 Introduction

Anomalous microlensing events usually require very detailed analysis for a full characteri-

sation of their nature to be possible. This applies in particular to a class of microlensing

events which display caustic crossing features in their lightcurves. These events are of pri-

mary interest, because they account for around ten percent of the overall number of detected

microlenses, and they represent an important source of information on physical properties of

binary stars (Jaroszynski et al., 2006). However there exist several degeneracies that affect

the modelling of this type of event. Without a robust modelling scheme and a full exploration

of the parameter space, it is impossible to pin down the true nature of a given event. In ad-

dition to this, calculations of anomalous microlensing models for extended sources are very

demanding computationally.

Given these issues, brute force is not an option when modelling caustic-crossing events,

and one has to devise ways of speeding up calculations, for example by excluding regions of

parameter space which cannot reproduce features that appear in datasets. A way to achieve

this is to use a non-standard parameterisation of the binary-lens models that ties them directly

to data features, as proposed by Cassan (2008), which we recall below.

In this chapter, I present our method for exploring the parameter space, and describe our

approach to find all possible models for a given event (Sec. 4.2). We then use OGLE-2007-

BLG-472, a microlensing event observed in 2007 by the OGLE and PLANET collaborations, as

an illustration of our methodology applied to a binary lens event which intrinsically harbors

many ambiguities (Sec. 4.3). We finally discuss the implications of the individual competitive

models that we find in order to discriminate between realistic microlensing scenarios.
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4.2 Binary-lens events fitting scheme

4.2.1 Parameterisation of binary lens lightcurves

A static binary lens is usually described by the mass ratio q < 1 of the two lens components

and by their separation d , expressed in units of the angular Einstein radius (Einstein, 1936),

θE =

$

4GM

c2

"

DS − DL

DSDL

#

, (4.1)

where M is the mass of the lens, and DL and DS are the distances to the lens and the source

respectively. Such a lens produces caustics where the magnification of the source diverges

to infinity for a perfect point source. The positions, sizes and shapes of the caustics depend

on d and q. For the binary lens case, caustics can exist in three different topologies, as

was discussed in Chapter 2 usually referred as close, intermediate and wide, each of which

features caustics in different numbers and shapes. The limits between these configurations

are indicated as the dashed lines in e.g. Fig. 4.4 (see also Fig. 2.4).

The description of the lightcurve itself requires four more geometrical parameters in addi-

tion to d and q, as discussed previously. Finally for a uniformly bright finite size source star,

we add a further parameter, the source radius ρ∗ in units of θE. However, and as discussed

in Cassan (2008), this parameterisation is not well adapted to conducting a full search of

the parameter space, because the value of the parameters are not closely related to features

present in the lightcurve, namely caustic crossings for the type of event we are discussing in

this chapter. Consequently, most of the probed models in a given fitting process do not exhibit

the most obvious features in the lightcurve, leading to very inefficient modelling.

To avoid this drawback, Cassan (2008) introduced a new parameterisation in place of

α, t0,u0 and tE which is closely related to the appearance of caustic crossing features in the

lightcurve. The caustic entry is then defined by a date tin when the source center crosses

the caustic1 and its corresponding (two-dimensional) coordinate ζentry on the source plane.

However, since by definition this point is located on a caustic line, Cassan (2008) introduced a

(one-dimensional) caustic arc length s which locates the crossing point directly on the caustic,

so that ζentry ≡ ζ(sin). A given caustic structure is fully parameterised by 0 ≤ s ≤ 2. The

caustic entry is then characterised by a pair of parameters (tin, sin), and in the same way the

1Alternatively, any other point at a fixed position from the source center can be defined as a reference.
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Figure 4.1: The alternative binary-lens parameterisation used in this discussion. Top: The s coordinate,
which runs along the caustic folds from s = 0 to s = 2. Bottom: The source enters the caustic at time
t = tin; its location on the caustic fold at that time is s(tin) = sin. Similarly, the source exits the caustic
at t = tout, at which point it is located at s = sout. The example caustic used here is for parameters
d = 1.5,q = 0.5.

caustic exit by (tout, sout). This parameterisation is illustrated on Fig. 4.1 and Fig. 4.2. These

four parameters (in addition to d ,q and ρ∗) which describe the caustic crossings therefore

also define an alternative parameterisation of the binary lens, far better suited to describing

the problem at hand.

4.2.2 Exploration of the parameter space

We start by exploring a wide region of the parameter space with a (d ,q) grid regularly sam-

pled on a logarithmic scale. This choice comes from the fact that the size of the caustic struc-
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4.2. Binary-lens events fitting scheme

Figure 4.2: The relation between the s coordinate and the components of the source’s position ζ, x (top
left) and y (top right), as well as the derivatives of s with respect to each of these components (bottom
panels). These plots correspond to an intermediate caustic of a binary-lens with d = 1.1,q = 0.1,
which is plotted on Fig. 4.1.
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tures behave like power-laws of the lens separation and mass ratio, as do the corresponding

lightcurve anomalies. We fit for the remaining model parameters tin, tout, sin, sout and ρ∗,

with (d ,q) being held fixed. From this, we then build a χ2(d ,q) map that we use to locate

the best-fit (d ,q)-regions. In the wide and close binary cases and following Cassan (2008),

we study separately models where the source crosses the central or the secondary caustic by

building two χ2(d ,q) maps, corresponding to each configuration.

In order to sample efficiently and extensively sin and sout (which determine the source

trajectory), we use a genetic algorithm (e.g. Charbonneau, 1995) that always retains the

best model from one generation to the next (elitism). In fact, since we consider only models

displaying caustics at the right positions, there are a couple of local minima associated with

different (sin, sout) pairs. These would usually be missed by other minimisation methods, but

a genetic algorithm naturally solves this problem in an efficient way. However, since it is

difficult to make such an algorithm converge to the best model, we finally refine the model by

performing a Markov-Chain Monte-Carlo (hereafter MCMC) fit, using the algorithm detailed

in Chapter 3.

From the χ2 maps, we then identify all the local minima regions and use the corresponding

best models found on the (d ,q) grid as starting points to refine the parameters, including (d ,q)

that we now allow to vary. Since the fit is performed within a minimum χ2 region, the fitting

process is very stable and fast.

4.3 Application to OGLE-2007-BLG-472

4.3.1 Alert and photometric follow-up

On 19 August 2007, the OGLE Early Warning System (Udalski, 2003) flagged microlensing

candidate event OGLE-2007-BLG-472 at right ascension α2000.0 = 17h57m04s.34, and decli-

nation δ2000.0 = −28◦22′02′′.1 or l = 1.77◦, b = −1.87◦.

The OGLE lightcurve has an instrumental baseline magnitude I=16.00, which may differ

from the calibrated magnitude by as much as 0.5 magnitudes. Lensing by the star in the

point source-point lens (hereafter PSPL) approximation accounts for the broad rise and fall

in the lightcurve, peaking around MHJD2=4334.0 with an apparent half-width at half-peak

of about 10 days (Fig. 4.3). Although the observed OGLE flux rises only by 0.06 mag in the

2MHJD=HJD-2450000
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Figure 4.3: OGLE, UTas and Danish data sets for OGLE-2007-BLG-472. Data points are plotted with
1-σ error bars. The x−axis is time in HJD-2450000.

non-anomalous part of the lightcurve, the shape of the curve hints that blending is important

for this target, with only ∼ 12% of the baseline flux due to the un-magnified source.

On 19 August (MHJD=4331.5) an OGLE data point showed a sudden brightening of the

source, with subsequent PLANET (UTas Mt. Canopus 1.0m telescope in Tasmania and Danish

1.54m telescope at La Silla, Chile, where I was observing at the time) and OGLE data indicat-

ing what appears to be a fold caustic crossing by the source, ending with a PLANET UTas data

point on August 21 (MHJD=4334.1). The caustic entry is covered by a single OGLE point,

while the caustic exit is well covered by our UTas data set (Fig. 4.3). Treating the lightcurve as

the addition of an anomaly to a PSPL lightcurve, the underlying PSPL curve then apparently

reaches peak magnification on August 22 (MHJD=4335.45). Particularly crucial in our data

set is the UTas observation taken within a few hours of the caustic exit, which tightly con-

strains the position of the caustic exit on the lightcurve, and the size of the source. Although

V-band observations were taken, the V lightcurve of this event does not sample the time when

the source was magnified significantly, and therefore does not provide us with constraints on

the properties of the source.

4.3.2 Data reduction

We reduced the PLANET data for this event using the data reduction pipeline pysis 3.0 (Albrow

et al., 2009). This pipeline uses a kernel as a discrete pixel array, as proposed by Bramich

(2008), rather than a linear combination of basis functions. This has the advantage that it

removes the need for the user to select basis functions manually, which can lead to problems if

inappropriate functions are chosen. In addition to this, the pixel array kernel copes better with
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Table 4.1: OGLE-2007-BLG-472 datasets and error bar rescaling factors.

Telescope Data Error bar rescaling factor

UTas 1.0m 34 1.79

Danish 1.54m 84 1.55

OGLE 857 1.21

images that are not optimally aligned. The result of using this pipeline is a better reduction

than was obtained with other methods. We kept all points with seeing <3.5 arcseconds.

Although some dubious points remain with this simple cut, the size of their associated error

bars reflects their lack of certainty and ensures their weight in any modelling procedures is

appropriately reduced. Our final data set consists of 34 UTas data points, 84 points from the

Danish 1.54m telescope, and 857 points from OGLE (Table 4.1).

4.3.3 Modelling OGLE-2007-BLG-472

After a first exploration of the parameter space, we find a best model (close to model Cc,

see below) which we use as a basis to rescale our error bars. In fact, these can vary rather

widely from one telescope to another and are often underestimated by photometry software.

Ignoring this effect would misrepresent the relative importance of the datasets. From this

step, we choose the rescaling factors shown in Table 4.1, obtained by setting χ2/d.o.f.* 1 for

each data set. We then use the rescaled data to perform a new parameter space exploration.

We then apply the fitting scheme detailed in section 4.2 to our datasets. In particular,

we choose a spacing between the (d ,q) grid points of 0.070 in log d and 0.275 in logq. For

the genetic algorithm fit, we use a model population of 200 individuals evolving over 40

generations, which has proven to be enough to safely locate the regions of minimum χ2.

Finite source effects are computed using the adaptive contouring method of Dominik (2007).

The final χ2(d ,q) maps that we obtain are plotted in Fig. 4.4 for the intermediate and

central caustic configurations, and Fig. 4.5 for the intermediate and secondary caustic. The

red crosses show the underlying (d ,q) grid, and the blue shaded contours indicate values of

∆χ2 = 5, 20, 50, 100, 250, where the reference model is Cs, the global best-fitted model (as

obtained in Section 4.3.5).
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Figure 4.4: χ2(d,q) map for the intermediate and central caustic configurations. Contour lines and
minima regions (in blue shades) are plotted at ∆χ2 = 5,20,50,100,250. The two dashed curves are
the separation between the close, intermediate and wide regimes. The best-fit models are labelled and
marked with white filled circles.

Figure 4.5: Same as Fig. 4.4 for the the intermediate and secondary caustic configuration.
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Figure 4.6: Map of the value of tE in the (d,q) plane for converged models at each grid point,
superimposed on the χ2 map, zoomed in on the close regime part of parameter space. Contours
lines (orange) are labeled with their corresponding value of tE while χ2 contour lines are plotted at
∆χ2 = 5, 20, 50, 100, 250 and filled with gradual shades of blue. The dashed curve is the separation
between the close and intermediate regimes. The models of Table 4.2 are labelled and marked with
white filled circles.
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4.3.4 Excluding minima

Fig. 4.6 shows a zoom on the d < 1 region of the χ2 map for a source crossing a secondary

caustic, with an overplot of tE isocontours (orange lines) roughly equally spaced on a loga-

rithmic scale. With this fitting approach, we put no initial constraints on the Einstein time tE,

though it will always remain physical (tE > 0). Very good fits to the data are obtained with

values of tE > 300 days, which correspond to the minimum region in the left lower parts of

Fig. 4.5 and Fig. 4.6. Such long Einstein times are unlikely, and some of the values found

for t0 correspond to a lightcurve that reaches its peak well in the future; these are very un-

likely to be acceptable solutions. If we adopt the posterior tE distribution of Dominik (2006),

then tE > 400 days is well in the tail of the distribution. Thus in the following, we will not

consider solutions with tE greater than 400 days. This means that we will exclude the low-q

(q ∼ 0.001) minima in the following discussion.

Although a very well-covered lightcurve generally enables a good characterisation of the

deviation caused by the caustic approach or crossing, degeneracies make finding a unique

best-fitting model difficult. In particular, Griest & Safizadeh (1998) and Dominik (1999) iden-

tified a two-fold degeneracy in the projected lens components separation parameter d , under

the change d ↔ 1/d , when q & 1. Moreover, Kubas et al. (2005) showed that very similar

lightcurves could arise for a source crossing the secondary caustic of a wide binary system and

for the central caustic of a close binary system. These degeneracies cause widely separated χ2

minima in the parameter space, which must then be located by exploring the parameter space

thoroughly. In addition to these degeneracies, imperfect sampling can increase the number of

local χ2 minima; short events in particular are prone to under-sampling, leading to difficulties

in modelling. OGLE-2007-BLG-472 is an example of this, as shown in the next section.

4.3.5 Refining local minima

We see from Fig. 4.4 (intermediate and central caustic) that there are three broad local minima

in the region around the white filled circles marked as Cc, I and Wc (“I”, “C” and “W” for

intermediate, close and wide models respectively, and subscript “c” for central caustic). In

Fig. 4.5 (intermediate and secondary caustic), a best-fit region can easily be located around

the region marked Cs (subscript “s” for secondary caustic), besides region I .

Now allowing for the parameters d and q to vary as well, we use our MCMC algorithm

61



C
h
a
p
ter

4
.

T
h
e

ba
sis

for
a
n

a
u
tom

a
tic

bin
a
ry-len

s
fi

ttin
g

a
lgorith

m

Table4.2:Best-fittingbinarylensmodelparametersforOGLE-2007-BLG-472.Theblendingfactorg(I)=FB(I)/FS(I)isgivenfortheOGLEdata(I-band).
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ParameterModelCsModelCcModelIModelWcUnits

χ
2

(rescaledσ)949.00963.16972.48988.55−
∆χ

2
−13.223.539.8−

χ
2
UTas23.7924.8326.4128.86−
χ

2
Danish79.7779.6080.7588.93−
χ

2
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4.3. Application to OGLE-2007-BLG-472

Figure 4.7: Best-fitting binary lens model Cs with residuals and a zoom on the anomaly (left inset).
Data points are plotted with 1-σ error bars. The trajectory of the source in the lens plane with the
caustics is plotted as an inset in the top right corner of the figure, with the primary lens component
located at the coordinate system’s origin. Axes for the insets are x and y positions in the lens plane,
in units of the Einstein radius. Caustics are very small for the values of d and q of model Cs and are
difficult to see on the plot.

to find the best solutions in each of these local minimum regions. These are identified with

white filled circles on Fig. 4.4 and 4.5 and correspond to the models listed in Table 4.2, and

shown in Fig. 4.7, 4.8, 4.9 and 4.10. The best model lightcurve is dominated by strong

caustics, which all viable models must reproduce, with the low-magnification base PSPL curve

barely noticeable. All models have the first anomalous OGLE points on the descending side

of the caustic entry except for the worst model, model Wc, which has this OGLE point on the

ascending part of the caustic entry. Statistically, the former case is more likely to be observed

since the ascending part of the caustic entry happens much more rapidly than the descending

side.

Our best model, Cs, has χ2 = 949 for 975 data points, with the other competitive models

at ∆χ2 = 13.2 (model Cc), ∆χ
2 = 23.5 (model I) and ∆χ2 = 39.6 (model Wc).
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Figure 4.8: Same as Fig. 4.7 for model I .

Figure 4.9: Same as Fig. 4.7 for model Cc .
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Figure 4.10: Same as Fig. 4.7 for model Wc .

4.3.6 Parameter correlations

Fig. 4.6 shows that the models with a source crossing a secondary caustic have increasingly

large values of tE as they go towards lower values of the mass ratio. This is expected since

the time ∆t between tin and tout is fixed by the data. As the size of caustics scales with q1/2,

and tE ∼ ∆t/q1/2, the source must therefore cross the Einstein Ring over a longer timescale

as q is reduced, for ∆t to be conserved. In addition to this, blending decreases for decreasing

values of q , and therefore decreases with increasing tE, contrary to what might be expected.

Indeed, one would expect the blending factor g = FB/FS (where FB and FS are the blend and

source flux respectively) to increase with increasing tE in order to mask long timescales and

reproduce the observed timescale. However in this region of parameter space, the caustics

are weak, which means that too much blending would not allow models to reproduce the

observed rise in the source magnitude at the caustic entry and caustic exit. For a region

of parameter space to contain satisfactory models, there must therefore be a fine balance

between blending, timescale and mass ratio.

For models where the source crosses a central caustic, the impact parameter u0 must de-

65



Chapter 4. The basis for an automatic binary-lens fitting algorithm

crease with decreasing mass ratio, since the size of central caustic decreases with decreasing

mass ratio, and the range of allowed u0 decreases if the source must cross the caustic. This

means that for smaller mass ratios, blending will have to increase in order to mask the cor-

respondingly higher PSPL magnification of the source that results from the smaller impact

parameter.

4.3.7 Physical properties of the models

Source characteristics

A colour-magnitude diagram of the field (Fig. 4.11) was produced extracting 1497 stars

from I and V images at t = 4340.08 (I) and t = 4340.13 (V) taken at the Danish 1.54m

telescope. The combination of the source and the blend lies very slightly blueward of the red

giant clump, at (V − I)=2.43. All the models, however, are heavily blended (Table 4.2). The

source magnitude and blending magnitude for each model can be found using the equations

Is = Ibase + 2.5 log(1+ g) and Ib = Is − 2.5 log(g).

Using this equation, we find I-band source magnitudes ranging from 17.89 (model Cs) to

20.21 (model Cc) (see Table 4.2). Our V-band data set does not allow us to determine the

source’s colour, but assuming that the source is a main sequence star we use the calculated I

magnitude of the source for each model to estimate a colour, using the results of Holtzman

et al. (1998). This then enables us to estimate the source’s angular radius which we use in

Section 4.3.7 to compute probability densities of the lensing system’s properties.

We calibrate the baseline magnitude of our target (source and blend combined) using the

location of the red clump as a reference. We find Ibase = 15.61± 0.10, which is in agreement

with the OGLE value of Ibase = 16.00±0.50. Comparing this to the location of the red clump,

we can derive an estimate for the reddening coefficient AI. From Hipparcos results, Stanek

& Garnavich (1998) find an absolute magnitude for the red clump at MI,RC = −0.23± 0.03.

Using a distance modulus to the galactic centre of µ = 14.41± 0.09 (i.e. assuming DS = 7.6

kpc) (Eisenhauer et al., 2005), this translates to a dereddened magnitude for this target of

Ibase = 14.18± 0.09. Hence using the relation AI = Ibase − MI,RC − µ, we get a value for the

I-band reddening parameter of AI = 1.43± 0.13. Alternatively, fitting 2MASS isochrones to

our CMD, we obtain a value AI = 1.46±0.08 and E(V − I) = 1.46±0.11. We use these values

of reddening to determine dereddened magnitudes and colours for the source of each model.
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Figure 4.11: Colour - Magnitude diagram of the field. The target OGLE-2007-BLG-472 is shown as
a black triangle at (V − I , I) = (2.43,15.61). The position of the deblended source for each model
is labeled and indicated by a solid line and a coloured diamond, with the blend for each model also
plotted as a diamond in the same colour.
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These, together with the surface brightness relations from Kervella & Fouqué (2008), allow

us to calculate the apparent angular radius of the source θ∗ for each of the models, given in

Table 4.2.

Lens characteristics

Although the characteristics of any microlensing event depend on various properties of the

lensing system, including the mass of the lenses, the only measurable quantity that can be

directly related to physical properties of the lens is the timescale of the event tE. While the

physical properties of the lensing system can be fully constrained when the photometry is

affected by both finite source-size effects and parallax. When these are not measured, such

as is the case with our analysis OGLE-2007-BLG-472, we can still use Bayesian inference to

determine probability densities of physical properties of the lens, based on a chosen Galactic

model. We have chosen not to include parallax in our analysis because its effect would be very

small for such a low-magnification event; in addition to this, we are only seeking a first-order

analysis of binary-lens events with our current method, although second-order effects such as

parallax and lens rotation will be taken into account in future work.

We use our fitted value of the source size parameter ρ∗ to place constraints on the mass

of the lens, which can be expressed as a function of fractional distance x = DL/DS and the

source size ρ∗ as (e.g. Dominik 1998a)

M(x)

M2
=

c2

4GM2

DS θ
2
∗

ρ2
∗

x

1− x
, (4.2)

where M is the mass of the lens, θ∗ is the angular radius of the source, the value of which

is given in Table 4.2, and other quantities are defined as before. The mass-distance curve

showing constraints from this equation is plotted on Fig. 4.13.

Since we did not measure parallax for this event, we use a probabilistic approach following

that of Dominik (2006) to derive probability densities for physical properties of lens compo-

nents. The Galactic model used here is a piecewise mass spectrum (e.g. Chabrier 2003), two

double exponentials for the disc mass density and a barred bulge tilted at an angle of 20◦

with the direction to the Galactic centre (Dwek et al. 1995), and the distribution of effective

transverse velocities used in Dominik (2006).

Using this Galactic model, we infer properties for the lensing system, separating the cases
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Figure 4.12: Probability densities for the mass of the primary lens star and the fractional distance
DL/DS, for a lens in the disc (left side) and a lens in the bulge (right side). The values quoted in Tables
4.2 & 4.2 are the median value and the limits of the 68.3% confidence interval. On each plot, the
probability densities are plotted for model Cs (red), model Cc (green), model I (dark blue), and model
Wc (light blue).
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Figure 4.13: Mass-distance diagram showing the constraint on the lens mass from the source size,
given by Eq. (4.2), for each model. The curves are labeled with the name of the model to which they
correspond.

where the lens is in the Galactic disc and in the Galactic bulge. For a lens in the disc, we find

a primary mass 1.50+1.85
−0.58M2 and a secondary mass of 0.12+0.14

−0.05M2, at a distance of 1.00+0.95
−0.36

kpc with a lens velocity of 25+24
−9 km s−1. For a lens in the bulge, we find a primary mass

41+14
−14M2 and a secondary mass of 3.2+1.1

−1.1M2, at a distance of 6.7+0.4
−0.7 kpc with a lens velocity

167+10
−17 km s−1. These are the physical lens properties for the lowest-χ2 model (model Cs). The

values of these physical parameters for the other models are given in Table 4.2. Probability

densities of these properties for all models are plotted on Fig. 4.12.

Discussion

For our lowest-χ2 model, the parameters we find imply very unusual properties of the lensing

system. As discussed in Sec. 4.3.4, the fact that we find these types of models is a consequence

of the fitting approach we are taking. Traditional fitting methods would struggle to find these

minima, since most of them require a human modeller providing a starting point in parameter

space. This is an issue when solely using an MCMC algorithm to fit microlensing events:

although an MCMC run may be able to make its way through parameter space to find minima

reasonably far away from its starting point, it is highly unlikely that a chain will be able to

reach a minimum that has significantly different parameters from the starting point. As we

see from Fig. 4.6, there are minima in many parts of parameter space, with values of tE that

are different by almost two orders of magnitude. These parameters are non-intuitive, since
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they cannot be guessed only by looking at the lightcurve. As a result, it is improbable that this

kind of parameter will be used as starting points for "classic" fitting algorithms.

We solve this problem for the static binary-lens case by using the method described in

Sec. 4.2.2. Using this approach, we systematically locate minima throughout the parameter

space. However, we must then be careful with interpreting the significance of the obtained

model parameters. The shape of probability densities shown in Fig. 4.12 for model Cs indicates

that our value of tE pushes the lens mass towards the end of the adopted mass spectrum in

the Galactic model we have adopted. This results in the abrupt transitions seen on Fig. 4.12.

Similarly, the mass-distance curve for model Cs on Fig. 4.13 shows that the mass of the lens

rapidly becomes very large for lenses beyond ∼ 1 kpc. These unusual curves are caused by a

value of tE ∼ 200 days. Models with tE ∼ 3000 days (corresponding to the low-q minimum

visible on Fig. 4.5 & 4.6) are obviously not acceptable, but how can we formally reject them?

Finding these models from minima in the χ2 surface shows the limits of using χ2 as the sole

criterion for favouring models. A solution to this would be to use prior distributions on as

many of the parameters as we can. During the MCMC part of our fitting process, this would

mean that we obtain posterior distributions that are different from the ones obtained without

using prior distributions on the parameters, or, equivalently, assuming uniform priors for all

parameters. Such priors can be obtained in various ways, such as looking at the distribution of

timescales for past microlensing events or calculating these distributions from Galactic models

(e.g. Dominik 2006), or by using luminosity functions of the Galactic bulge to find a prior for

the blending factor g (e.g. Holtzman et al. 1998). Such work requires careful consideration

of which priors are most appropriate to use, and is discussed in Chapter 5. Using these priors

in combination with our method to find minima will lead to more robust determination of

minima by taking into account our knowledge of physical parameter distributions.

4.4 Summary and prospects

Our analysis of OGLE-2007-BLG-472 is a good illustration of the importance and power of

using parameters that are related to lightcurve features. Indeed, despite incomplete coverage

of the caustic entry and high blending, a few crucial data points and an appropriate choice of

non-standard parameters enable us to find several good binary-lens model fits to our data for

this event by exploring the parameter space systematically with a coarse grid. Some of the
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good fits that we identify have unphysical parameters, and we must then reject them. How-

ever, using this parameterisation allows us to be certain that the parameter space has been

thoroughly explored. We find four models with different parameters: two close binary models,

one intermediate configuration, and a wide binary model. The lowest-χ2 model corresponds

to a G dwarf star being lensed by a binary system with component masses M1 = 1.50+1.85
−0.58M2

and M2 = 0.12+0.14
−0.05M2, which are compatible with our blending values. However, it is ob-

vious from physical parameter distributions that using χ2 as a sole criterion for determining

the best model is insufficient, because it does not take into account our knowledge of the

distributions of physical parameters.

Since the approach presented in this chapter can form the basis for a systematic, wide

ranging exploration of the parameter space to localise all possible models for a given dataset,

it is particularly relevant to current efforts to automate real-time fitting of binary-lens events.

This could prove useful to provide faster feedback on events being observed, and prioritise

observing schedules, especially on robotic telescopes. Expanding robotic telescope networks

controlled by automated intelligent algorithms are expected to play an increasingly important

role in microlensing surveys in the coming years (e.g. Tsapras et al. 2009). Fitting methods

such as the one described in this chapter are essential for making sure any anomalies are

interpreted correctly, and that minima are located in as large a part of parameter space as

possible.
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5
Towards a full Bayesian approach for automatic

fitting of binary-lens events

5.1 Introduction

In the previous chapter, I showed that a parameterisation such as that formalised by Cassan

(2008) could be used to conduct a systematic search of the binary-lens microlensing param-

eter space. For this discussion, I used the special (but frequently occurring) case of caustic-

crossing events, analysing such an event from the 2007 observing season, OGLE-2007-BLG-

472 to illustrate the usefulness of the method (Kains et al., 2009). For that event, several

minima were found in the χ2 hypersurface, some of them corresponding to models with very

unusual parameters. The reason for this was discussed in the previous chapter: since we

are forcing the source to go through a caustic in order to reproduce the features seen in ob-

servational data, when caustics become very small, we are essentially forcing the source to

pass through the eye of a needle. Since the timing of the caustic crossing does not change,
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being well constrained by data, the only way to reproduce the observed lightcurve when the

source goes through a very small caustic with the correct timing is to make it move very slowly

through the caustic structure, in other words, to make the timescale tE of the event very long,

of the order of hundreds or even thousands of days.

In practice, however such long timescales are rarely observed in microlensing events,

because the relative velocity between source and lens is generally too fast to lead to events

lasting much longer than 100 or 200 days. Therefore we know that if an event is equally well

fitted by a model with tE = 500 days and a model with tE = 30 days, we can conclude that the

most likely model should be the latter. This information has to be quantified in some way; this

can be most easily achieved in the form of Bayesian priors. The aim of using Bayesian priors

on parameters is then to include as much prior information as we can without biasing our

modelling procedure unfairly. One of the virtues of using an MCMC algorithm as described in

chapter 3 is that it is straightforward to incorporate priors into it.

In this chapter, I discuss how priors affect the modelling process, starting from the analyt-

ical calculations performed by Cassan et al. (2009) in order to derive analytical forms for the

priors on his non-standard parameters from known information on standard parameters.

5.2 Analytical priors

The modelling of OGLE-2007-BLG-472, described in Chapter 4 was performed without taking

any prior into account. Equivalently, this means that priors were assumed to be uniform,

or non-informative for all parameters. In this section, we recall the main steps involved in

deriving priors on the Cassan parameters, following Cassan et al. (2009). Indeed, Kains et al.

(2009) assumed uniform priors on both the standard and non-standard parameters. This has

obvious problems: for example, since the curvature of the caustic folds which make up a

caustic structure is concave (see e.g. Fig. 2.4), a source cannot enter and then exit a caustic

along the same caustic fold. This needs to be reflected in suitable priors on the corresponding

parameters, in this example, on the parameter sin and sout, which define the locus of the

caustic crossings along the caustic folds.

Cassan et al. (2009) derived such priors, starting from the parameterisation of caustics

derived by Witt (1990):
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where z is a position on the lens plane, and φ is a parameter on the range [0,2π]. For

each value of φ, this equation can then be solved to find z, and the locations of the critical

curves. The lens equation is then used to find the corresponding points of the caustics ζ in the

source plane. After some algebra, one can derive a correspondance matrix between the sets

of standard and non-standard parameters, i.e. the Jacobian
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Because the standard parameters u0 and α depend only on sin and sout and not on tin and

tout, whereas t0 and tE each depend on all four non-standard parameters, using the parameter

φ instead of s, the Jacobian can be expressed as
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where φin and φout are the values of the parameterφ at the caustic entry and exit respectively.

After more algebra, one can work out the value of each component of the cross-product in

Eq. (5.3) to express it in terms of source plane positions ζ as
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where the “wedge" product ∧ for two complex numbers w and z is defined as

w ∧ z =ℜ(w)ℑ(z)−ℑ(w)ℜ(z) . (5.5)

Finally, as mentioned earlier, one must take into account the fact that an entry/exit pair

cannot occur on the same caustic fold, because of the concavity of caustic structures. To

include this, one must then check that for a given set of parameters, the trajectory of the

source at entry is indeed inward and similarly, at exit, the trajectory is pointing outward from
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the caustic. To verify that this condition is satisfied, Cassan et al. (2009) compute the dot

product of the source trajectory vector, Nt , with the outward vector normal to the caustic fold

at the entry/exit point, Nc. If this product is negative at entry, i.e. if Nc,in · Nt,in < 0, then the

entry is indeed an entry, that is, the source is indeed moving into the caustic. Similarly, for an

exit to be verified, the condition is Nc,out · Nt,out > 0. We then have

P(sin, sout) =







J if Nc,in ·Nt,in < 0 and Nc,out · Nt,out > 0

0 otherwise .

These are therefore analytical priors on sin and sout, assuming uninformative priors on all

standard parameters. Examples of such prior maps are plotted on Figs. 5.1 - 5.3. In the next

section, we discuss the effect on P(sin, sout) of adding priors on standard parameters.

The structure visible is explained as such: The caustics are evenly sampled in the s pa-

rameter, meaning that the cusps are located at varying intervals along the caustic arc length

parameter s. Because the caustic lines are concave, a source cannot enter the caustic between

two cusps and exit the caustic between the same two cusps, meaning that the prior distri-

bution has to be equal to 0 for these regions of the (sin, sout) plane. The high probability of

trajectories seen near the cusps is due to the fact that a trajectory entering a caustic near a

cusp is also likely to exit it near the cusp. Since the length of such trajectories inside caustics

are very short, the timescale of the event must be very long in order to reproduce the correct

time observed between caustic crossings. This is the origin of long-timescale models discussed

in Chapter 4, and, as mentioned in that discussion, these features need to be addressed by

useful informative priors.

5.3 Additional prior information

The priors shown on Figs. 5.1-5.3 can be modified to include information on parameters other

than sin and sout. In practice, we can obtain substantial additional information by looking at

Galactic models, including Galactic dynamics, and at distribution of observed parameters.

When using the latter, one must also be careful not to construct a prior that would reflect an

observational bias or selection effect, as this could exclude models on the grounds that the

type of events to which they correspond are not being observed. Cassan et al. (2009) used

two different priors on the parameter tE to illustrate their effect on P(sin, sout). One was a
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Figure 5.1: Prior maps P(sin, sout) and caustics for a close configuration (here d = 0.5,q = 0.1), with
an uninformative prior on all other parameters. Top: Prior map for the central caustic. Bottom: Prior
map for the (upper) secondary caustic (upper or lower secondary caustics have identical prior maps).
Whiter shades represent a higher prior probability density.
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Figure 5.2: Same as Fig. 5.1 for an intermediate caustics configuration (d = 1.1,q = 0.1).

distribution of event timescales observed in past microlensing seasons, and another was the

model distribution of Wood & Mao (2005). These two distributions are in fact in excellent

agreement with each other, as shown on Fig. 5.4.

The effect of adding this prior on tE is clear when comparing Figs. 5.1 - 5.3 to Figs. 5.5-

5.7: since the events with very large values of tE are suppressed by the priors, so are the

corresponding regions of the sin, sout plane which correspond to these long timescales. That

is, regions of sin, sout where the source enters and exit the caustic structure near cusps are

suppressed by this prior.

An interesting feature to note in the plot of P(sin, sout) is that the prior distributions maps

are divided into sub-boxes, only a few of which contain acceptable models. This leads us to

propose the modelling strategy outlines in the next section.

5.4 An exhaustive modelling strategy

In Chapter 4, I outlined a method to fit caustic-crossing events systematically. However, be-

cause no priors were used on any of the parameters, and we used standard parameters to

optimise the final best-fit models for each (d ,q) grid points, this was essentially equivalent
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Figure 5.3: Same as Fig. 5.1 for a wide caustics configuration (d = 2.0,q = 0.1). Top: Priors for the
central caustic. Bottom: Prior for the upper secondary caustic. The prior map for the lower secondary
caustic is identical.
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Figure 5.4: A histogram of microlensing event timescales for the OGLE 2006 and 2007 observing
seasons, with the model distribution of Wood & Mao (1995) shown as a solid black line. Taken from
Cassan et al. (2009).

to starting our modelling in one of the sub-boxes that can be seen in the prior maps (Figs

5.5-5.7). Therefore, it is possible that the global minimum might not have been found for

each (d ,q) pair in that search, since we did not carry out a thorough systematic search of all

sub-boxes. In order to be completely exhaustive, I therefore suggest adopting the following

modelling strategy.

We start by building a grid in (d ,q), regularly sampled in log(d) and log(q). For each

of these grid points, we must then consider separately the cases where the source crosses a

central caustic and the cases where it crosses a secondary caustic, and, in the case of close

caustics configurations, we must also consider separately the cases of the source crossing an

upper and lower secondary caustic. For each case, the prior map P(sin, sout) is then computed,

and divided into sub-boxes. The limiting values for each sub-box simply correspond to the

locations of the cusps on the caustic structures. For each sub-box in which P(sin, sout) is non-

zero at least somewhere within the box, we then compute the maximum of P(sin, sout). We

use the location of the maximum as the starting point of our MCMC algorithm, and optimise

parameters within the sub-box (using its boundaries as constraints on the parameter values);

we then repeat this for each of the prior map’s sub-boxes. When all sub-boxes have been

explored, we keep the best overall model(s). Finally, we repeat this for each central and

secondary caustic configuration(s) of the (d ,q) pair.
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Figure 5.5: Maps of the prior P(sin, sout), for close caustics (here d = 0.5,q = 0.1) with the prior on tE

advocated by Wood & Mao (2005). Top: Priors for the central caustic. Bottom: Prior for the secondary
caustic (upper or lower secondary caustics have identical prior maps). Whiter shades represent a
higher prior probability density.
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Figure 5.6: Same as Fig. 5.6 for an intermediate caustic configuration (d = 1.1,q = 0.1).

A flowchart of this method is shown on Fig. 5.8. Following this procedure over the whole

(d ,q) grid should ensure that no model can be missed by the fitting algorithm, and therefore

that we can truly identify all possible models for a given microlensing event. But is such

a procedure realistic, given the high demands of microlensing modelling on computational

resources?

Let us go back to the grid we used to analyse the event OGLE-2007-BLG-472 (see e.g.

Fig. 4.4). For this event, we used a 14× 12 grid, evenly spaced in log(d) and log(q), giving

a total of 168 grid points. Of these, 66 correspond to close caustic configurations, 46 to

intermediate caustics, and 56 to wide caustics. Using the maps plotted on Figs 5.5-5.7 as

representative of each caustic regime, we see that the regimes have non-zero prior sub-boxes

distributed as follows:

• Close caustics: 10 for central caustics and 6 for each of the secondary caustics

• Intermediate caustics: 28

• Wide caustics: 10 for central caustics and 12 for secondary caustics.

This means that the total number of MCMC runs needed to explore each sub-box of each

caustic configuration of each (d ,q) grid point once is equal to 66× (10+12)+46×28+56×

(10+ 12) = 3972 chains. If on average an optimisation run takes 6 hours of computing time

(a conservative estimate when finite source effects are being taken into account), this equates
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Figure 5.7: Same as Fig. 5.5 for a wide caustics configuration (d = 2.0,q = 0.1). Top: Priors for the
central caustic. Bottom: Prior for the secondary caustic.
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Figure 5.8: Flow chart of our proposed automatic fitting algorithm for caustic-crossing binary-lens
microlensing events. The example here is the flow for a close caustics case. Each caustic is explored
separately, and each sub-box of the P(sin, sout)map is labeled with a number (if the sub-box has regions
of non-zero prior), or N (if the prior is null everywhere in the sub-box). In this case, the central caustic
prior map has 10 non-zero prior sub-boxes, while the secondary caustic prior maps have 6.
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to roughly 1000 days of total computing time. This is obviously a problem, since this is for

analysing a single event. When dealing with simultaneous anomalous events, we are faced

with an obvious issue with computational resources. Therefore, when fitting events in real

time, we must find a balance between being thorough and efficient, so that when necessary,

we can extract useful information rapidly in order to provide feedback to observing telescopes.

The next step in developing efficient real-time modelling will need to address these issues.

Some possible solutions that could be explored would be to avoid fitting entire datasets when

a few additional observations have been made on an event, but instead to be able to build

on previous models to speed up calculations, or using pre-calculated magnification maps,

although this rapidly becomes impractical when dealing with such a complex parameter space.
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6
Modelling the evolution of debris discs around

solar-type stars

This chapter is based on Kains, Wyatt & Greaves (2010, submitted for publication).

In the paper on which this chapter is based, I contributed to the data reduction (with Jane

Greaves), modelling and discussion of the results (with Mark Wyatt and Jane Greaves).

6.1 Introduction

Since the first detection of infrared excess attributable to the presence of a circumstellar disc,

around the star Vega, by Aumann et al. (1984), hundreds more discs have been found around

main-sequence stars in our Galaxy. These discs sometimes bear signs of past or ongoing forma-

tion of planetary systems around their host stars. Understanding their evolution is therefore

crucial to improving our understanding of planet formation, and placing our own Solar Sys-

tem in perspective. Indeed the Solar System has its own debris disc, of which two components
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can be distinguished: the asteroid belt, located between Mars and Jupiter, and the Kuiper Belt,

located beyond the orbit of Neptune and extending for around 15 AU. The observation and

modelling of Solar System analogues, for which we can detect both a disc and a planetary sys-

tem, therefore provide us with important insights into the history and evolution of our own

debris disc.

The rapid development of observing methods and improvements in instruments over the

last 15 years has seen more and more discs discovered with increasingly accurate measure-

ments. Usually this discovery comes through measuring the spectral energy distribution (SED)

of a star and searching for the signs of infrared excess emission caused by circumstellar dust;

some discs have now also been imaged directly. Today, instruments such as the Spitzer Space

Telescope allow us to make high-accuracy observations of debris discs, both in terms of signal-

to-noise and spatial resolution, and to use these to test current models of disc evolution and

planet formation.

Most evolutionary models of debris discs present a simplified picture of debris discs. Dust

grains are usually assumed to be perfect blackbodies, which is a good first-order approxi-

mation (Hillenbrand et al., 2008). Investigating how debris discs evolve essentially means

investigating how their luminosity and temperature change with time, and therefore in ad-

dition to accurate flux measurements, good determination of the ages of disc host stars is

essential to using observations to constrain evolutionary models.

In this chapter, I present an analysis of debris disc data around Solar-type stars (spectral

types F0-K5) using the steady-state analytical model of Wyatt et al. (2007a). Models are fitted

to data from the FEPS (Formation and Evolution of Planetary Systems) and SIMTPF projects

taken with MIPS and IRAC on the Spitzer telescope at 24µm and 70µm, and compared to

a previously published analysis of debris discs around A stars using the same evolutionary

model. We find that the model reproduces most features found in the data sets, but suggest

that debris discs around solar-type stars have different effective properties from their coun-

terparts around earlier-type stars. However, we also hint that despite these differences in

effective values, intrinsic properties might not be significantly different. We also identify sev-

eral objects which are not fitted well by our models, including some which we classify as being

transient (i.e. not in steady state), including the first transient classification of HD 101259.
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6.2 Debris discs around solar-type stars

Recent surveys looking for excess emission around solar-type (F, G, K spectral types, hereafter

FGK) stars have found that over 15% of these objects are surrounded by debris discs (Bryden

et al., 2006; Beichman et al., 2006a; Moro-Martín et al., 2007; Trilling et al., 2008; Hillen-

brand et al., 2008; Greaves et al., 2009). Although these discs are believed to be analogues

of the Solar System’s asteroid and Kuiper belts, the infrared luminosity of most detected discs

around solar-type stars is usually around 100 times higher than that of the Solar System’s

debris structures (Greaves & Wyatt, 2010). This suggests that the Solar System may have un-

usually sparse debris, or that the detected discs around other stars are anomalously luminous,

perhaps as a result of recent collisions in their planetesimal belts, producing transient excess

dust. This may be caused by a process similar to the Late Heavy Bombardment (LHB) period

which occured ∼700 Myr after the formation of the Sun (Booth et al., 2009).

Among the sample of FGK stars with detected discs, several are known to harbour extra-

solar planets. Interestingly, searches for asteroid and Kuiper belts analogues around some of

the known extrasolar planetary systems orbiting solar-type stars, such as τ Boo, π Men (HD

39091), υ And, 55 Cnc and 51 Peg did not find detectable levels of dust (Bryden et al., 2009;

Beichman et al., 2006b), which could indicate that dust luminosity has fallen to near the lu-

minosity of the Kuiper and asteroid belts of the Solar System and that these systems are past

their own LHB equivalent. Booth et al. (2009), however, suggest that such events are rare,

and an alternative explanation could be that these systems might also have been born with

lower-mass planetesimal belts. Studying extrasolar systems therefore offers an important per-

spective for understanding the history of the Solar System. In particular, it is essential to gain

an understanding of how planetesimal belts evolve around their host stars, and which mech-

anisms affect their structure and their luminosity in order to be able to compare observed

extrasolar systems to the Kuiper belt.

Wyatt et al. (2007a) described a simple model of steady-state debris disc evolution, based

on an earlier model by Dominik & Decin (2003) by considering the collisional grinding down

of planetesimal belts. The basic features of this model are recalled in Sec. 6.3. In Sec. 6.4, we

outline our modelling procedure. In Sec. 6.5, we briefly describe the 24 and 70µm data we

use, taken from the studies of Trilling et al. (2008), Hillenbrand et al. (2008) and Beichman

et al. (2006a). In Sec. 6.6, we fit this data with our model and discuss our results in Sec. 6.7,
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comparing them to the results of the analogous study that was carried out for A stars by Wyatt

et al. (2007b). We also discuss the possible reasons for differences between the evolution

of debris discs around FGK stars and that of their earlier-type counterparts, and consider

individual systems that are not well fitted by our models. We conclude by looking at the

implications of our models for the properties of discs around FGK stars compared to those

around A stars.

6.3 Debris disc model

In this section we recall the main features of the analytical model derived by Wyatt et al.

(2007a) and revised by Wyatt et al. (2007b), as well as the assumptions made in applying

this model to populations of debris discs. We start with a planetesimal belt characterised by a

size distribution

n(D)∝ D−3.5 , (6.1)

where D is the diameter of the planetesimals; this is the distribution expected for a planetesi-

mal belt in collisional equilibrium (Dohnanyi, 1969). This distribution is assumed to be valid

from the largest planetesimals, of diameter Dc down to the blowout diameter Dbl, below which

particles are blown away by radiation pressure.

For a planetesimal belt at radius r, with a width dr, the fractional luminosity of the dust

emission, f = LIR/L∗ can be expressed in terms of the total cross-sectional area σtot as

f =
σtot

4πr2
. (6.2)

Given the size distribution in Eq. (6.1),σtot is proportional to Mtot through a constant that

depends on Dbl and Dc (Wyatt et al., 2007a).

Assuming the dust particles act as blackbody emitters, the blowout diameter is given by

Dbl = 0.8
L∗

M∗

2700

ρ
, (6.3)

where Dbl is in µm, L∗ and M∗ are in solar units, and ρ is the density of the dust particles in
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kg m−3. The temperature T of the dust at radius r is given by

T = 278.3

1

L∗

L⊙

20.25
% r

AU

'−0.5

. (6.4)

For blackbody emitters, we also know that emission from the disc at wavelength λ is

Fν ,disc = 2.35× 10−11Bν (λ, T )σtot d−2 , (6.5)

where d is the distance to the star in pc and Fν is in Jy if the Planck function Bν is in Jy sr−1.

Considering a collisional cascade in which the population within a given size range is

being destroyed in collisions with other members of the cascade, but is being replenished

by fragmentation of larger objects, the collision of the larger objects in the cascade solely

determine the long-term evolution of the population. Hence the long-term evolution depends

on the collisional lifetime tc of the planetesimals in the disc with size Dc. For the eccentricity

and inclination of the planetesimals’ orbits having e = I (which we will assume throughout

this chapter1), the expression for tc can be reduced to

tc =
3.8ρr3.5(dr/r)Dc

M0.5
∗ Mtot

@

8

9 G(Xc)

A

, (6.6)

where tc is in Myr, Dc is in km, Mtot is in units of M⊕ and the factor G(Xc) is defined in

Wyatt et al. (2007a). Xc is defined as Xc = Dcc/Dc, where Dcc is the diameter of the smallest

planetesimal that has sufficient energy to destroy a planetesimal of size Dc. This factor can

be calculated from the value of the dispersal threshold Q∗D, which is defined as the specific

incident energy required to catastrophically destroy a particle. It follows (Wyatt & Dent, 2002)

that with Q∗D given in J kg−1,

Xc = 1.3× 10−3

1

Q∗DrM−1
∗

2.25 e2

21/3

. (6.7)

Ignoring non-collisional processes, the time-dependence of the disc mass can be worked

out by solving the differential equation dMtot/d t = −Mtot/tc , yielding

1This assumption stems from a desire to simplify the full analytical expressions of Wyatt et al. (2007a); e = I was
also assumed by Wyatt et al. (2007b).
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Mtot(t) = Mtot(0)/[1+ t/tc(0)]. (6.8)

As noted by Wyatt et al. (2007a), the mass of the disc at t 8 tc does not depend on

the initial disc mass, since tc(0) depends on Mtot(0) (see Eq. (6.6)). As a result, at a given

age, there is a maximum mass that can remain after collisional evolution, and therefore a

maximum infrared luminosity fmax, given by (Wyatt et al., 2007a)

fmax =

,

10−6r1.5(dr/r)

4πM0.5
∗ tage

-@

4

3 G(Xc)

A"

Dbl

Dc

#−0.5

, (6.9)

for r in AU, Dbl in µm and tage in Myr.

For observations limited by a calibration limit expressed as a flux ratio Rdet(λ) = Fν ,disc/Fν ,phot,

the corresponding detection limit in terms of fractional dust luminosity, fdet, is given by

fdet = 6× 109 Rdetr
−2 L∗T

−4
∗ Bν (λ, T∗)/Bν(λ, 278.3L0.25

∗ r−0.5) . (6.10)

This is the threshold value we use to determine which model radii are detectable at given

wavelengths in the rest of this chapter. Finally, the limit at which Poynting-Robertson (PR)

drag becomes important, i.e. when radiation and gravitational forces become similar, is given

(Wyatt et al., 2007a) by

fPR = 50× 10−6 (dr/r)
&

M∗/r , (6.11)

for r in AU. That is, if a disc has an infrared flux f < fPR, then it is likely that it will be affected

by PR drag, which could mean that in such a disc the dust component of the disc becomes

spatially separated from the planetesimal belt.

6.4 Modelling procedure

As done by Wyatt et al. (2007b) for A stars, we apply this model to fit the flux evolution of

debris disc populations, assuming that all stars have a planetesimal belt which is undergoing

collisional processes as described by the above equations. This means that the initial state

of the belts is completely determined by the parameters r, dr,ρ, Dbl, Mtot(0), L∗ and M∗ (of
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6.4. Modelling procedure

which the latter two determine Dbl through Eq.6.3), while their evolution also depends on

Q∗D, e, Dc and I . We also set ρ = 2700 kg m−3, dr = r/2 and e = I = 0.05. Values of Q∗D and

Dc were then constrained by fits to observational data of debris discs.

To simulate a population of stars with debris discs, values of Mtot(0), r, L∗ and M∗ were

drawn from model distributions of properties of those stars and debris discs. We use a power

law distribution for disc radii, N(r)∝ rγ with γ and the limits of the radius distribution, rmin

and rmax, being treated as free parameters. The distribution of discs at both 24 and 70µm is

affected by strong observational bias, especially for solar-type stars, for which discs with radii

larger than ∼ 50 AU can only be detected at 24µm if they have a large fractional excess (e.g.

Fig. 6.6), meaning that there is an observational bias towards the detection of discs with radii

lower than ∼ 50 AU, and this must be accounted for by a satisfactory model. We constrain γ

by comparing the fit of the observed radius distribution to a fit to the subsample of the model

population which could be detected at 24 and 70µm. This comparison also yielded constraints

on rmin and rmax, although these parameters are also sensitive to the fraction of discs detected

in different age bins.

For the distribution of initial disc masses Mtot(0), we use the results of Andrews & Williams

(2005), who derived a lognormal distribution of dust masses centred on a value Mmid, with

a standard deviation of 0.8 dex, from submillimetre observations of protoplanetary discs in

Taurus-Auriga, i.e. for ∼ solar-mass stars. We use their value for the distribution’s dispersion

but fit Mmid as a free parameter. We choose this approach because their submillimetre data

do not detect all sizes of dust grains.

A spectral type was drawn at random on the range of spectral type F0 - K5, chosen to

correspond to the range observed by the various Spitzer programmes (Trilling et al., 2008;

Hillenbrand et al., 2008; Beichman et al., 2006a). This allowed us to determine a value of

Dbl for each spectral type, using corresponding values of L∗ and M∗ and Eq. (6.3). We also

assigned values to other parameters using the relevant distributions, determining the initial

conditions of each disc. It should be noted that this approach assumes that the mass and

radius of the disc are independent both of each other and of the properties of the star around

which they are located.

The systems were then evolved using Equations 6.6 and 6.8, and values were drawn at

random for the age and distance (for a constant volume) of each system between 0 and 10
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Gyr, and between 0 and 100 pc respectively (both chosen to cover the same ranges as the ob-

servational data used in this analysis), in order to determine its current "observed" properties.

Although we assign a distance to each system, its value has no impact on the flux statistics

on which the analysis presented in this chapter is based. This left Q∗D, Dc,γ, Mmid, rmin, rmax as

free parameters of the model. Finally, another constraint was that a good-fit model (based on

its χ2 statistic) was only retained if the parameter values were realistic, i.e. consistent with

ranges of values predicted by models of catastrophic collisions (Benz & Asphaug, 1999) and

planet formation (Kenyon & Bromley, 2002).

6.5 Data

A list of all stars with 70µm excess emission only in the sample we use in this chapter is given

in Table 6.1 (p.96), while a list of sources that show excess at both 24 and 70µm is given in

Table 6.2 (p.97). Stellar properties (L∗, M∗, d , tage) for these are published values resulting

from Kurucz model fits, or in cases for which these were not available, were computed using

Schmidt-Kaler relations (Aller et al., 1982). Using the 24− 70µm colour temperature of the

dust, and assuming that the dust acts as a blackbody, we also calculated a disc radius for the

discs in Table 6.2 with Eq. (6.4). We do not include the debris discs published recently by

Koerner et al. (2010) because they do not report stellar ages or non-detections in their data.

This sample would only add one disc detected at both 24 and 70µm, and therefore would not

influence our results significantly.

We made a cut in stellar age, excluding objects with an age below 30 Myr in order to

avoid protoplanetary discs affecting our statistics. We also excluded discs for which 1-σ error

bars were above a threshold of σ = 5 mJy. This threshold was chosen empirically to avoid

having noisy flux upper limits being wrongly counted as large excesses. These cuts affected

mostly the FEPS data (Hillenbrand et al., 2008), with 6 discs detected at both wavelengths

being removed from their published sample. The reason for this is the difference in the

observational approaches of the SIMTPF and FEPS observations: the observations of Trilling

et al. (2008) and Beichman et al. (2006a) at 70µm are calibration-limited while those of

Hillenbrand et al. (2008) are sensitivity-limited; at 24µm, all observations are calibration-

limited (see Table 6.2). The consequence of this is that most of the FEPS discs are very bright

discs, since these are the only ones for which good photometry could be obtained.
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6.5. Data

The resulting sample consists of 46 discs detected at 70µm only and 17 detected at both

24 and 70µm. Below is a short description of each subsample we used.

6.5.1 Trilling et al. (2008) sample

Trilling et al. (2008) collected a sample of 193 F, G and K stars observed with the Multiband

Imaging Photometer for Spitzer (MIPS). Together with data already published by Bryden et al.

(2006), the whole sample gives a view of debris discs around stars with masses and ages

similar to that of the Sun, covering a range of spectral types between F0 and K5. Their “solar

type" sample was selected using criteria on the spectral type (F5-K5) and luminosity class (IV

or V), as well as setting a minimum photospheric 70µm flux and signal-to-noise (S/N) ratio.

From the combined FGK sample, 27 show significant excess at 70µm, meaning an excess with

χ70 ≥ 3, where χ70 is defined as

χ70 =
F70− P70

σ70

, (6.12)

where F70 is the total 70µm flux measured, P70 is the predicted photospheric flux at 70µm,

and σ70 is the error bar associated with the flux measurement. On top of these 27 objects,

3 more are classified as excess sources for reasons detailed in Trilling et al. (2008), but one

is removed due to the stellar age not being determined, bringing the total number of excess

objects in the sample to 29. This includes 7 systems for which significant excess flux is detected

at both 24 and 70µm.

6.5.2 Beichman et al. (2006) sample

The sample of Beichman et al. (2006a) includes objects observed in the frame of other

projects, including radial velocity search teams, coronagraphy and interferometry missions.

As a result, it includes some low-mass close stars. They selected stars within 25 pc (with a few

exceptions for the earlier-type stars) and excluded targets with binary companions within 100

AU on the grounds that binarity might prevent the formation or long-term stability of plane-

tary systems. Their selected sample was then observed with MIPS at 24 and 70µm and four

stars were observed further with the Infrared Array Camera (IRAC) in order to help determine

their photospheric flux.

Based on the criterion expressed by Eq. (6.12), Beichman et al. (2006a) identify 12 stars
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Chapter 6. Modelling the evolution of debris discs around solar-type stars

Table 6.1: List of sources with 70µm excess only. Flux ratios and limits are given as total flux divided
by photospheric flux. R24 is defined as R24 = F24/F24∗, and similarly, R70 = F70/F70∗. C24 and
C70 are the 3−σ calibration limits at 24 and 70µm, defined as Cλ = 1+ 3σ∗,λ/F∗,λ.

Star name Sp. type d tage R24 C24 R70 C70

(pc) (G yr) (3σ) (3σ)

Trilling et al.

HD 1581 F9 V 8.6 3.02 0.98 1.10 1.4 1.3

HD 3296 F5 47 2.5 1.02 1.10 4.8 2.8

HD 17925 K1 V 10 0.19 1.05 1.10 3.4 1.7

HD 19994 F8 V 22 3.55 1.00 1.10 1.7 1.5

HD 20807 G1 V 12 7.88 1.04 1.10 1.8 1.5

HD 22484 F8 V 17 8.32 1.02 1.10 1.9 1.3

HD 30495 G1 V 13 1.32 1.06 1.10 5.5 1.6

HD 33262 F7 V 12 3.52 1.03 1.10 1.7 1.4

HD 33636 G0 29 3.24 1.00 1.10 7.0 2.2

HD 50554 F8 V 31 4.68 1.00 1.10 8.4 3.4

HD 52265 G0 28 6.03 0.99 1.10 4.8 2.9

HD 57703 F2 44 2.3 1.03 1.10 9.3 3.3

HD 72905 G1.5 V 14 0.42 1.06 1.10 2.3 1.5

HD 75616 F5 36 4.8 1.03 1.10 10 2.5

HD 76151 G3 V 11 1.84 1.03 1.10 2.4 1.6

HD 82943 G0 27 4.07 1.02 1.10 17 3.1

HD 110897 G0 V 17 9.7 0.98 1.10 4.3 1.9

HD 115617 G5 V 8.5 6.31 1.04 1.10 4.0 1.5

HD 117176 G5 V 18 5.37 0.98 1.10 1.8 1.3

HD 128311 K0 167 0.39 0.94 1.10 3.0 2.3

HD 206860 G0 V 18 5.00 1.03 1.10 2.3 1.5

HD 212695 F5 51 2.3 1.00 1.10 9.5 3.3

Hillenbrand et al.

HD 6963 G7 V 27 1.00 1.05 1.13 13 8.5

HD 8907 F8 34 0.32 1.05 1.13 46 12

HD 31392 K0 V 26 1.00 1.02 1.12 20 8.5

HD 35850 F7/8 V 27 0.03 1.14 1.14 4.9 3.9

HD 38529 G8 III/IV 42 3.16 0.96 1.12 4.3 3.1

HD 72905 G1.5 14 0.10 0.84 1.10 2.7 2.1

HD 122652 F8 37 3.16 1.08 1.13 24 10

HD 145229 G0 33 1.00 1.09 1.14 20 9.1

HD 150706 G3 V 27 1.00 1.05 1.13 8.7 6.4

HD 187897 G5 33 1.00 1.03 1.12 14 7.5

HD 201219 G5 36 1.00 1.07 1.13 18 11

HD 209253 F6/7 V 30 0.10 1.14 1.14 14 6.8

Beichman et al.

HD 38858 G4 V 16 4.57 1.00 1.30 10 3.0

HD 48682 G0 V 17 3.31 1.00 1.59 12 2.0

HD 90089 F2 V 21 1.78 1.00 1.59 2.3 1.7

HD 105211 F2 V 20 2.53 1.01 1.19 11 2.4

HD 139664 F5 IV-V 18 0.15 1.10 1.24 5.9 1.6

HD 158633 K0 V 13 4.27 0.90 1.53 18 2.0

HD 219623 F7 V 20 5.06 1.04 1.12 3.0 1.7

96



6
.5

.
D

a
ta

Table 6.2: List of sources with 24 and 70µm excesses. Flux ratios and limits are given as total flux divided by photospheric flux. R24, R70, C24 and C70 as
defined as in Table 6.1. Stellar properties are either published values found by fitting Kurucz models to the data when these were available, or calculated using
Schmidt-Kaler relations for main sequence stars.

Star name Sp. type d tage L∗ M∗ f r f / fmax f / fPR R24 C24 R70 C70

(pc) (G yr) L⊙ M⊙ (10−5) (AU) (3σ) (3σ)

Trilling et al.

HD 166 K0 V 14 5.0 0.42 0.79 5.9 9.1 1.23 8.0 1.14 1.10 6.9 1.8

HD 3126 F2 42 3.5 2.9 1.5 13 21.8 1.14 19.7 1.16 1.10 27 3.3

HD 10647 F9 V 17 6.3 1.8 1.1 34 21 3.66 75 1.21 1.10 51 2.1

HD 69830 K0 V 13 4.7 0.42 0.79 20 1.0 509 9.0 1.47 1.10 1.5 1.5

HD 101259 G6/8 V 65 11 0.74 0.89 6.0 0.98 544 2.5 1.25 1.10 1.6 1.7

HD 105912 F5 50 1.8 3.2 1.4 7.9 7.7 3.52 7.4 1.52 1.10 11 3.0

HD 207129 G0 V 16 5.8 1.5 1.1 12 15.3 2.10 18 1.17 1.10 16 2.8

Hillenbrand et al.

HD 25457 F7 V 19 0.10 2.4 1.3 10 17 0.04 14.8 1.31 1.16 18 5.0

HD 37484 F3 V 60 3.0 1.5 0.10 32 17 0.13 43.5 1.43 1.29 46 14

HD 85301 G5 32 0.79 0.92 1.00 13 8 1.1 14.8 1.36 1.17 13 8.4

HD 202917 G7 V 46 0.79 0.92 0.03 25 9 0.05 31.0 1.63 1.20 28 16

HD 219498 G5 150 0.79 0.92 0.32 20 31 0.03 46.4 1.29 1.15 25 14

Beichman et al.

HD 25998 F7 V 21 0.6 2.4 1.2 4.5 13 0.17 5.8 1.14 1.12 4.2 2.2

HD 40136 F1 V 15 1.3 4.3 1.6 1.9 5.9 1.4 1.5 1.13 1.12 1.6 1.5

HD 109085 F2 V 18 1.3 2.9 1.5 15 5.9 8.7 11.8 1.99 1.12 5.9 1.6

HD 199260 F7 V 21 3.2 2.4 1.2 3.3 14 0.59 4.4 1.11 1.12 3.5 2.0

HD 219482 F7 V 21 6.1 2.4 1.2 3.6 18 0.64 5.5 1.08 1.12 4.4 1.7
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out of the 88 in their sample to have a 70µm excess at the 3σ level or better. Amongst these,

5 also display significant excess at 24µm.

6.5.3 Hillenbrand et al. (2008) sample

Hillenbrand et al. (2008) presented data obtained using MIPS, IRS and IRAC, with most of

their systems observed at 3.6,4.5,8.0,13,24,33,70 and 160µm, as part of the FEPS program.

They report 25 systems with excess flux at 70µm and S/N70µm ≥ 3. Amongst this sample,

13 also have excess emission at 24µm. Since photospheric sensitivity at 70µm could not

be achieved without very long integration times except for the closest stars in the sample,

the sensitivity of their observations was determined by a target detection threshold of dust

emission, which they expressed relative to dust emission in a young Solar System model. For

most targets, the survey was sensitive to 5-10 times the dust emission predicted by the model.

The sample of Hillenbrand et al. (2008) is different from those of Trilling et al. (2008)

and Beichman et al. (2006a), as the former sample is age-selected, leading to an even dis-

tribution in logarithmic age bins, while the latter are volume-limited, leading to a linear age

distribution. This difference is taken into account in the analysis that follows, and the data

cuts we made were chosen to minimise the effect of poorly constrained photospheric fluxes in

the FEPS sample on our modelling of the statistics.

6.6 Best-fit models

6.6.1 Fit to the 70µm statistics

Following the procedure described in Sec. 6.4, we found best-fit values of Dc = 600 km and

Q∗D = 6000 J kg−1. These are consistent with models of catastrophic collisions (Benz & As-

phaug, 1999). We also found best-fit parameters for the radius distribution of rmin = 1 AU,

rmax = 120AU and γ = −1.5± 0.4 compared to γ ∼ −0.8± 0.3 for the A stars study (Wyatt

et al., 2007b); however the values of γ are within 2 σ of each other. Error bars were worked

out using uncertainties from blackbody fits to the 24 and 70µm data. These were obtained

using error bars on measured fluxes reported in the literature. A histogram of the distribution

of disc radii for the model and observed data is shown on Fig. 6.1. Our radius distribution ex-

tends to lower radii than the one found by Löhne et al. (2008), who used a value of rmin = 20

AU. However they limited their data sample to G stars, and their analysis used radius values
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Figure 6.1: Histogram for the distribution of disc radii of the combined observational samples (dia-
monds) for discs detected at both 24 and 70 µm, shown with

%
N error bars, and the distributions for

the entire model population (red, dashed line) and the model population that could be detected at 24
and 70µm (blue, dotted line).

calculated by assuming realistic grain emission rather than blackbody emission. The true ra-

dius distribution should be larger than the one we derive, as is discussed in Sec. 6.7.2. Finally,

we find a best-fit value for the median of the disc mass distribution of Mmid = 15M⊕, which

is consistent with results for the disc mass-stellar mass relation of Natta (2004), who find an

approximate range for solar-mass stars of −2.5< log(Mdisc/M∗)< −0.5.

The models found with these parameters are plotted on Fig. 6.2, and the statistics are

reproduced by the model convincingly, as they were as for A stars (Wyatt et al., 2007b); this

is shown on the bottom panel of Fig. 6.2. The flux ratio shows very slow evolution past the

earliest age bins, which is what is seen in the data as well. We use two excess categories,

small (R70< 15) and large (R70> 15). The threshold value R70= 15 was chosen empirically

to avoid upper limits contaminating the large excess sample. The large excess fraction makes

up ∼ 20% of excesses at early ages, falling to a few percent within ∼ 3 Gyr.

6.6.2 Fit to the 24µm statistics

Fig. 6.3 shows the model fit (with the parameter values given in the previous section) to the

observed 24µm statistics. The statistics both in the model and the data samples show that

24µm excess flux evolves on a timescale of ∼ 1.5 − 2 Gyr, similar to what was found by
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Figure 6.2: Top: total 70µm flux divided by the photospheric flux against age. The model population is
shown with small dots, and the observations of Trilling, Hillenbrand and Beichman are shown as filled
dots, triangles and squares respectively. Disks detected at 70µm with < 3σ confidence are shown with
open diamonds. Red symbols indicate disc emission detected at > 3σ at both 24µm and 70µm. The
horizontal dashed line separates the populations with small and large excess flux. Bottom: fractional
populations of stars with different flux ratios for different age bins (0.03−0.3 Gyr, 0.3−2 Gyr, 2−4 Gyr,
4− 10 Gyr). Small (R70 = F70,tot/F70,phot < 15) and large excesses (R70 > 15) are shown as crosses
and squares respectively. Model predictions are connected with lines and observed values (Trilling
et al., 2008; Hillenbrand et al., 2008; Beichman et al., 2006a) are plotted with

%
N error bars. On both

panels, the dotted vertical lines indicate the limits of the age bins.
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Figure 6.3: Top: total 24µm flux divided by the photospheric flux against age. Symbols are the same
as for Fig. 6.2. Horizontal dashed lines separate the populations with small and large excess flux.
Bottom: fractional populations of stars with different flux ratios for different age bins (0.03− 1 Gyr,
1−3 Gyr, 3−13 Gyr). Small (R24 = F24,tot/F24,phot < 1.25), and large excesses (R24 > 1.25) are shown
as crosses, triangles and squares respectively. Model predictions are connected with lines and observed
values (Trilling et al., 2008; Hillenbrand et al., 2008; Beichman et al., 2006a) are plotted with

%
N

error bars. On both panels, the dotted vertical lines indicate the limits of the age bins.
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Löhne et al. (2008), but slower than what is seen in the observations of Siegler et al. (2007)

and Meyer et al. (2008). 24µm statistics are well fitted by the model and are particularly

crucial in constraining the parameters which determine the evolution timescale of the models

(Q∗D, e, Dc , Mmid), as they show clearer time evolution than the 70µm data; this is clearly

visible on the top panel of Fig. 6.3. It is also clear from Fig. 6.3, however, that a number of

systems are not well fitted by our models. We discuss shortly the systems labeled on the plot:

HD 109085, HD 69830 and HD 10647, as well as HD 101259 (which is not shown on Figs.

6.2 and 6.3 because of its age of 10.96 Gyr).

The disc around HD 109085 was found by Sheret et al. (2004) to have a radius of ∼180

AU, compared to the blackbody radius of 6 AU used in this analysis. This system was also

reported to have 2 separate disc components: a component with r <3.5 AU (recent work also

shows that for this component r > 0.5 AU, e.g. Smith et al. 2009) and a cold component at

∼150 AU (Smith et al., 2008), with the middle region possibly cleared by a planetary system

(Wyatt et al., 2005). Our results suggest that the hotter disc component is transient, whereas

the cold component is evolving in steady state. HD 69830 has 3 known planetary companions

(Lovis et al., 2006), as well as an asteroid belt around 1 AU from the star (Beichman et al.,

2005; Lisse et al., 2007). Since a disc with such a small radius is expected to have processed

its material at 4.7 Gyr (the age of HD 69830), this system can be considered anomalous;

fitting it in our models would require unrealistic parameter values.

HD 10647 also has a known Jupiter-mass planetary companion and a large cold disc at

a radius of ∼ 300 AU has been detected at sub-millimetre wavelengths (Liseau et al., 2008);

this system has the largest 70µm excess in our whole sample. As for HD 69830, finding a

model that fits this object would require extreme parameter values, as it is unusually bright

compared to other discs of similar age and colour temperature. This could be caused by

the disc around HD 10647 having unusually strong planetesimals, or having been recently

stirred. It is also possible that a significant fraction of the 24µm excess emission comes from

an additional hot component of the disc.

Finally, we classify HD 101259 as transient. This is the first identification of this object

as an anomalous disc, and rests on the fact that its infrared luminosity is over 500 times the

maximum theoretical value for a steady-state disc. As mentioned before, this is due to the

fact that this is the oldest disc in our sample as well as that with the smallest radius, despite
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the fact that the smaller discs are expected to evolve faster. However there is a degree of

uncertainty as to the age of this system, as Takeda et al. (2007) report a best-estimate stellar

age for HD 101259 of 1.88 Gyr, while Valenti & Fischer (2005) only limit its age to be between

2.9 and 11.6 Gyr. A better age determination is needed to make strong conclusions as to the

transient nature of HD 101259, but our best-fit model implies that it is indeed anomalous if it

is older than ∼ 4 Gyr.

6.7 Discussion of results

6.7.1 Significance of best-fit parameters

The best-fit values we find for Q∗D and Dc (Q∗D = 6000 J kg−1, Dc = 600 km) are significantly

different from those found for the models of Wyatt et al. (2007b) for debris discs around A

stars. Both Q∗D and Dc are an order of magnitude larger (values for these parameters in the A

stars study are 150 J kg−1 and 60 km respectively). This could suggest either that our models

are incomplete and these parameter values compensate for the value of one of several other

free parameters being poorly chosen or fitted, or that the properties of debris discs around

later-type stars are actually different. Other regions of parameter space were also explored,

and our best fit constitutes the best minimum in the χ2 goodness-of-fit statistic which also

corresponds to realistic parameter values, as stated in Sec. 6.4. The difference in parameters

is illustrated on Figs. 6.4 and Fig. 6.5, which show the FGK observations with the best-fit

model found for A stars (Wyatt et al., 2007b) at 24 and 70µm respectively.

In comparison with the study of A stars, we find different values for rmin,γ, Mmid, Dc and

Q∗D (see Sec. 6.6). The most significant differences are the higher values of Q∗D and Dc,

although the exact values of the individual free parameters are poorly constrained and are

not as informative as combinations of these parameters. In this case, the values point to a

slower evolution of F70,tot/F70,phot and of F24,tot/F24,phot compared to models found for discs

around earlier-type stars.

Q∗D might vary because the composition of the disc may be different around later-type

stars, or the bodies making up the disc may be more compacted by previous collisions, making

them stronger and accounting for a higher intrinsic strength of the discs. The value of Dc

indicates an initial population made of large objects, up to Pluto-size asteroids rather than

smaller planetesimals, hinting at Kuiper-belt-like properties. However, the difference between
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Figure 6.4: Same as Fig. 6.2, but with the parameters found for A stars (Wyatt et al. 2007). This
illustrates the significant difference between the evolutionary timescales corresponding to the models
found in this analysis compared to those found for A stars; this significant time evolution is not seen in
observations of discs around FGK stars.
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Figure 6.5: Same as Fig. 6.3, but with the parameters found for A stars (Wyatt et al. 2007). This
illustrates the significant difference between the evolutionary timescales corresponding to the models
found in this analysis compared to those found for A stars; the lack of a significant time evolution, not
seen in observations of discs around FGK stars, is most obvious at 24µm, where no significant excess
is predicted beyond ∼ 500 Myr.
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solar-type and A stars results may also be due to inaccuracies in deriving the radius of discs

with the 24− 70µm colour temperature.

Because small grains are inefficient emitters, and we are assuming blackbody radiation

from all grains in the disc, the actual radii may be larger than the derived values. This is

confirmed by results of disc imaging which show that discs are generally 2-3 times larger than

the blackbody value (e.g. Maness et al. 2009). We therefore emphasise that in this analysis

we are finding an effective value for the parameters Q∗D and Dc, as was done for the A stars

study. The discrepancy in effective values between A and FGK stars could then be caused

by a dearth of small grains around A stars compared to solar-type stars. This is because the

blowout size of grains is larger around earlier-type stars (∼ 10 µm for A stars and ∼ 1µm for

a G0 star), meaning that with larger number of inefficient emitters, the emission is less well

described by blackbody emission for discs around FGK stars. Hence the ratio of real radius

to blackbody radius could be larger for solar-type stars than for A type stars. Despite effective

values being different, the real values of the planetesimal strength and largest planetesimal

size may therefore be similar for solar-type and A stars. In the next section, we discuss and

quantify this.

6.7.2 Effective and real parameters

Bonsor & Wyatt (2010) used grain modelling, taking into account the non-blackbody nature

of the grains and a realistic size distribution, to show that for A stars, real disc radii are

expected to be larger than radii derived by fitting blackbody curves to spectral energy distri-

butions (SEDs) by a factor of ∼ 2 (with some dependence on radius and spectral type), in

agreement with observations of resolved discs. They also derived scaling laws between real-

istic and effective values for parameters within the context of the modelling presented here.

Assuming that the real radii are larger by a factor Xr compared to blackbody radii, then the

real parameters can be calculated from parameters which were found using the blackbody as-

sumption, by making sure that all discs have the same luminosity evolution when the radii are

changed. In the following discussion we use a simplified notation so that M ≡ Mmid, Q ≡ Q∗D

and D ≡ Dc. Furthermore, we use the subscript r to denote a real value, while its absence

denotes an effective value: Qr refers to the real planetesimal strength, while Q refers to the

fitted (effective) parameter.

Bonsor & Wyatt (2010) find that discs start off with the same luminosity if
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Mr D0.5
r X−2

r = M D0.5 , (6.13)

from Eq. 3-4 of Wyatt et al. (2007b) (see also Eq. 16 of that paper), and discs evolve on the

same timescale if

Q5/6
r D0.5

r X 7/3
r = Q5/6 D0.5 . (6.14)

The real parameters for each population cannot be derived from the parameters of the

blackbody fit, because there are 4 free parameters and 2 constraints. However, it is possible

to compare the real parameters of the FGK and A star populations from their blackbody fits.

We rearrange Eq. (6.13) and (6.14) to derive expressions for Xr and Qr for the FGK stars

population in terms of the equivalent A stars parameters. We use the additional subscripts A

for A stars and F for FGK stars in the following comparison.

By rearranging Eqs. 6.13 and 6.14 for A and FGK stars, we find that the parameters for

the two populations are related through

Xr,F

X r,A

=

1

MF

MA

Mr,A

Mr,F

2−1/21
DF

DA

Dr,A

Dr,F

21/4

(6.15)

Qr,F

Qr,A

=
QF

QA

1

MF

MA

Mr,A

Mr,F

27/51
DF

DA

Dr,A

Dr,F

2−1/10

. (6.16)

If we assume that the strength of the planetesimals follows Qr ∝ D1.5
r (i.e. that the strength

of the planetesimals is mainly gravitational), and that planetesimals have the same compo-

sition around A and FGK stars, we can also rearrange these equations to find that, with the

parameter values found in this analysis and in Wyatt et al. (2007b) (QA = 150 Jkg−1, DA = 60

km and MA = 10 M⊕) as well as the value of Xr,A = 2 found for A stars by Bonsor & Wyatt

(2010),

Mr,F

Mr,A

* 18
Dr,A

Dr,F

, (6.17)

and using this to derive an expression for the scaling factor yields
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X r,F

X r,A

* 6.1

1

Dr,A

Dr,F

2−3/4

. (6.18)

We can expect Xr to be larger for FGK stars than for A stars for the reason mentioned

earlier that there are more inefficient emitters around FGK stars. Unfortunately the overlap

between the sample of discs resolved with Spitzer and the data sample used in this analysis

is too small for this to be useful to constrain Xr for FGK stars, although imaged discs such as

HD 181327 (Schneider et al., 2006) suggest that a value of ∼ 3 is a good estimate for Xr,F .

Using Xr,A= 2 (Bonsor & Wyatt, 2010), the value of Xr,F is consistent with the estimate of∼ 3

that is expected from imaged discs (e.g. Schneider et al. 2006) if the planetesimals around

FGK stars are larger than those around A stars by a factor of ∼ 6− 7. Putting this number

into Eq. (6.17), this means that the median disc mass around FGK stars is larger than for A

stars by a factor of ∼ 3. This is surprising, since earlier-type stars are expected to have more

massive discs (Natta, 2004). Further observations will allow us to better constrain the best-fit

parameters for FGK stars, test our finding that Mr,F > Mr,A, and possible reasons for this.

Finally, the values found for γ, rmin and rmax point to more numerous small discs for FGK

stars compared to their earlier-type counterparts. This, however, does not take into account

the possible systematic difference in actual disc radius contained in the scaling factor Xr,F ,

which may result in a similar size distribution to that found for the A stars.

6.7.3 Fractional luminosity vs. radius

Fig. 6.6 shows a plot of fractional luminosity f against disc radius, with the observed data

plotted over the model population. Also plotted are the detection limits at both 24 and 70µm,

given by Eq. (6.10), and the (dashed) lines of maximum fractional luminosity fmax at 2 and

10 Gyr, given by Eq. (6.9), for an F0 dwarf and the best-fit model parameters. The detection

thresholds are calculated assuming calibration limits of R24 = 0.11 and R70 = 0.5. In theory,

discs should lie on or below the line of maximum luminosity for their age and spectral type,

although as noted by Wyatt et al. (2007b), the precise location of these lines depends on

parameters which may vary between discs such as Q∗D, e, Dc, and the spectral type of the

disc’s host star. The sharp increase in the 24µm threshold for discs with radii larger than

∼ 50 AU means that the discs with larger radii, i.e. those discs which are expected to have

the strongest emission at 70µm will be more difficult to detect at 24µm as well as they will

require high fractional dust luminosity.
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Figure 6.6: Dust luminosity f = LIR/L∗ plotted as a function of disc radius Rdust. The top panel shows
the whole model population, while the bottom panel only has the model population that could be
detected at 24 and 70µm. The model population is shown with small dots, and data symbols are the
same as for Fig. 6.3. Detection thresholds at 24 and 70 µm for an F0 dwarf are indicated by solid lines.
Lines showing the maximum possible fractional luminosity for an F0 dwarf are shown as dashed lines
for 2 and 10 Gyr. The dotted line indicates the limit, given by Eq. (6.11), where Poynting-Robertson
drag becomes important for an F0 dwarf.
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Values of f / fmax for discs detected at 24 and 70µm are given in Table 6.2. Since fmax

depends on the disc radius2, a good estimate can only be made for those discs detected at

both wavelengths, so we do not include a value f / fmax for discs detected at 70µm only. Two

discs stand out in Table 6.2 and on Fig. 6.6: HD 69830 and HD 101259 (Trilling et al., 2008)

have luminosities f over 500 times the maximum theoretical value fmax for their age, radius

and spectral type. This comes from a very small disc radius combined with an old stellar age:

with an age of 10.96 Gyr, HD 101259 is the oldest star in the observed sample (although the

age of this object is poorly determined, a metallicity measurement of [M/H]=-0.6 reported by

Trilling et al. (2008) suggests that this system is old), yet the radius of its disc is the smallest,

with a disc radius calculated to be 0.98 AU. A fit to the model population yields f ∝ r0.56,

while a fit to the observed population of discs in the Trilling et al. (2008) and Beichman et al.

(2006a) samples, without these anomalously bright systems, gives a relation f ∝ r0.56±0.08,

in excellent agreement.

6.7.4 Fractional luminosity vs. age

Fig. 6.7 shows the fractional (disc/star) luminosity of discs as a function of age, as well as

theoretical evolution lines for discs of initial mass 3, 30 and 300 M⊕ of radii 10 and 100 AU.

The larger discs do not reach steady state in the timescale considered here, while the smaller

discs have reached their collisional equilibrium by ∼ 1 Gyr.

A fit to the model population gives the relation f ∝ t−0.50 while a fit to the observed

population yields f ∝ t−0.18±0.10, just outside 3 σ of the best-fit model. Fitting of the observed

discs is strongly affected by the low number of discs in our data set, especially by the relatively

few young discs (< 1 Gyr) in the sample, but one can conclude from Fig. 6.7 that the model

population is a good fit for the observed population. The validity of these fits will benefit

from additional observations, which will allow more significant conclusions to be drawn with

larger samples. Interesting to notice is the absence of a peak in excess flux analogous to the

one seen in the observed A star samples around 10-15 Myr (Currie et al., 2008).
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Figure 6.7: Dust luminosity f = LIR/L∗ plotted as a function of age. The model population is shown
with small dots, and data symbols are the same as for Fig. 6.3. For < 3σ detections, the fluxes plotted
are maximum values. Top: Entire model population, and all the 70µm excess detections, with objects
detected at both 24 and 70µm. Also shown are theoretical evolutionary tracks for discs of radii 10
(solid line) and 100 (dashed line) AU, and for initial disc mass of 3, 30 and 300 M⊕ (with the higher
masses corresponding to the lines with higher early-age fractional luminosities), around an F0 star.
Bottom: Same with only the populations that could be detected at both 24 and 70µm plotted. Also
plotted on the bottom panel are power-law fits to the model (dashed line) and the data (solid line).
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Figure 6.8: Disk radius plotted as a function of age. The model population is shown with small dots,
and data symbols are the same as for Fig. 6.3. Only the populations which could be detected at both
24 and 70 µm are plotted. Also shown are power-law fits to the model (dashed line) and observed
(solid line) populations.

6.7.5 Radius vs. age

Fig. 6.8 is a plot of disc radius as a function of age, for those discs that could be detected at

24 and 70µm.

A lower limit for detectable radii is visible in the model population, with this lower limit

increasing with age beyond ∼100 Myr. Older discs must therefore have larger radii to be

detected at both 24 and 70µm. This comes from the fact that discs with larger radii are

slower in processing their mass and can therefore remain above detection thresholds for a

longer time than discs with small radii. This radius increase with age is therefore only due

to detection sensitivity considerations. In fact, there is as yet no evidence for a correlation

between radius and age (Najita & Williams, 2005).

A fit to the model population confirms the apparent increase of disc radius with age, with

the relation r ∝ t0.34, while a fit to the observed population yields r ∝ t0.00±0.04. The fit to

the data is strongly influenced by the discs from the Hillenbrand et al. (2008) sample, which

consists of younger, and mostly larger discs. We also see a lack of observed small and young

2Note that the calculation of fmax is unaffected by the discussion in section 6.7.2 on the difference between real
and effective radius, as long as fmax is calculated using both effective parameters and blackbody radius (which
would give the same value that would be calculated from the real parameters and real radius).
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discs, which are predicted by the model. Although this could be evidence for rapid inner

clearing, the small number of discs of the observed sample makes it difficult to draw robust

conclusions as to the cause of this. Thus we note that it is worth scrutinising <300 Myr stars

to see if there really is an absence of <10 AU discs that would be the precursors of older

systems such as HD 40136 and η Corvi, and whether the radii derived from 24-70 µm colour

temperatures appear smaller than reality for a significant number of older discs, perhaps due

to the presence of both hot and cold dust (as is known to be the case for η Corvi; Wyatt et al.

2005), or due to the action of P-R drag (discussed later).

The observed discs HD 69830 and HD 166 (Trilling et al., 2008) appear on the plot where

the model predicts that no discs should be detected (bottom right corner of Fig. 6.8); HD

101259 does not appear on this plot due to its age of 11 Gyr, but it is also anomalous. For HD

101259 and HD 69830, we attribute this to an unusually high disc luminosity; indeed these

discs are found to have over 500 times the maximum theoretical luminosity for its radius,

age and the spectral type of their host, as was already mentioned in Sec. 6.7.3. HD 166

lies just outside the model population. Its disc is small for its age and its luminosity is just

over its maximum theoretical luminosity; the unusual brightness for a disc of this age and

colour temperature may mean that the disc around HD 166 has unusually strong or massive

planetesimals compared to its peers.

Dust might also find itself closer to the star than the planetesimal belt under the action of

Poynting-Robertson drag. This becomes important when P-R drag and collisional timescales

are comparable, or in terms of luminosity, when f < fPR, with fPR being given by Eq. (6.11).

This limit is shown on Fig. 6.6. From this plot, it emerges that discs with small radii could

be affected by PR drag, given the proximity of the limit for PR drag to the limit of detection

at 24µm for these discs. In our sample, no system has f / fPR < 1, meaning that PR drag is

not significant for the observed discs we are considering; the most likely system to be affected

by this effect is HD 40136. We also note that if the disc radius has been underestimated by a

factor Xr , then the limit at which P-R drag becomes important given in Eq. (6.11) should be

lower by a factor X−1/2
r . Therefore we do not expect P-R drag to have significantly influenced

the blackbody radius, derived from dust temperature, which is thus a good proxy for the

location of the planetesimal belt (with the caveats mentioned in Sec. 6.7.2).
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Figure 6.9: Histogram of the dust fractional luminosity for the observed population with an excess at
both 24 and 70 µm (solid line), the model population (dashed, red) and the model population with
a Gaussian smoothing of 1 dex (dotted, blue). Only the model population which could be detected at
both 24 and 70 µm is plotted.

6.7.6 Histogram of f / fmax

Fig. 6.9 shows a histogram of the quantity f / fmax, plotted for our data sets and for the model.

We also plot the model with an arbitrary Gaussian smoothing of 1 dex to account for variations

of disc properties between individual systems, which we have not considered in our model.

The range of fluxes is broader in the data, which, as stated by Wyatt et al. (2007b) can be

explained by the fact that we have assumed in our model that all the planetesimal belts have

the same properties, where in reality the values of parameters such as Dc, Q∗D and e are ex-

pected to vary from one belt to another. The parameters we used would then be correct as an

average over a whole population of stars, but not necessarily for individual debris discs. This

is particularly relevant when the sample of observed discs is as small as it is here. Although

our data set is small, main features are reproduced by the smoothed model. Disagreements

are obvious too, in particular the high proportion of low-luminosity discs in our data sample

compared to the model prediction. We attribute this to small statistics; future observations

will help build up more significant statistics.
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6.8 Conclusions

In this chapter, we showed that the main features seen in observations of debris discs around

FGK stars can be attributed to collisional grinding of planetesimals. We modelled data col-

lected by several teams with the Spitzer Space Telescope, and used 24 and 70µm colours to

derive simple properties of the discs for each of these systems. Our results are consistent with

models of planetesimal strengths and their size distributions, although we find parameters

corresponding to these properties to be an order of magnitude different from those found in

the study of A stars that was done using the same model (Wyatt et al., 2007b). We discussed

whether these values might be effective values due to differences in stellar environment, and

found that properties of discs around later-type stars may be somewhat different from those

around earlier-type stars, because they evolve on longer timescales and therefore have had

more time to form larger planetesimals, which are then also stronger if the strength is mainly

due to gravitational pull. Therefore planetesimals around FGK stars may be stronger and

larger than around A stars. We also find that discs around FGK stars are more massive than

those around A stars, by a factor of a few. Future observations to increase the sample of debris

discs detected at multiple wavelengths will allow us to test our assumption that the blackbody

disc radii underestimate the true radii of discs around FGK stars by a larger factor than for

those around A stars. Realistic grain modelling analogous to the work done for A stars by

Bonsor & Wyatt (2010) could also help constrain this factor.

Finally, we have also identified a potential transient candidate in HD 101259, for which

data suggest that its debris disc cannot be in steady state; however a better age determination

of that system is needed to confirm the dust emission from the disc as transient.
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7
Conclusions and outlook

My doctoral work has been concerned with two aspects of planetary systems, and with making

a contribution to understanding how the Earth and the Solar System fit in our Galaxy. Firstly,

by trying to detect and characterise extrasolar planets, and working on making the methods

used to model anomalous microlensing lightcurves more systematic, I aim to strengthen the

impact that microlensing observations has on our understanding of the make-up of planet pop-

ulations, as through the improvement of modelling techniques, we can extract more meaning-

ful information out of our observations. Secondly, I have also investigated the earliest stages

of planet formation, by attempting to determine which mechanisms dominate the evolution

of debris discs, the birth place of planets and how properties of discs vary around different

types of stars. In particular, I have modelled discs around stars of spectral type F, G and K,

“solar-type" stars, using data from the Spitzer Space Telescope. Working out how the early

stages of planet formation take place around stars similar to our Sun is essential to gaining an

insight into the origins of the structure of our own Solar System, including planets, as well as

the asteroid and Kuiper belts.
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Below, I include suggestions and an outline for possible future work. Much of this will

form the starting point of the work I intend to carry out as an ESO postdoctoral fellow.

7.1 Automatic fitting: the future for microlensing

As I have already briefly mentioned in the introduction and in Chapter 4, the next few years

should see the deployment of many robotic telescopes, increasing the amount of observing

time devoted to following microlensing events, and of data to be analysed. The current way

of modelling each individual microlensing event by hand will rapidly become impractical, con-

sidering that the current data flow is already stretching available human and computational

resources. Clearly, then, a more efficient approach needs to be taken.

The work I have presented in Chapters 4 and 5, in particular, constitute very promising

bases to develop a real automated binary-lens fitting algorithm. However, this work was

carried our for a special class of anomalous microlensing events, in which caustic crossings

are clearly visible in observational datasets. Although many anomalous events indeed fall into

that category, some important events do not- an example of this being the event through which

the first cool, rocky extrasolar planet was discovered, OGLE-2005-BLG-390 (Beaulieu et al.,

2006). We will therefore need to extend the parameterisation developed by Cassan (2008)

to include anomalies which are caused by sources approaching caustics but not necessarily

crossing them.

Once a working algorithm has been developed including priors, I aim to test it by re-

analysing OGLE-2007-BLG-472, which is the event used as an illustration in Chapter 4. Using

the same event will allow us to directly compare results of our algorithm with and without

priors. I then hope to develop a full algorithm with several collaborators, and to implement

it to fit events in real-time during the next observing season. This will allow us to take a

leading role in microlensing modelling, as well as to optimise the use of our observing time,

an essential step towards the long-term objective of obtaining a more robust and coherent

sample of detected planets.

7.2 Towards a census of debris discs around all types of stars

M stars are by far the most numerous types of stars in the Galaxy, with about 70% of its popu-

lation, yet very few discs have been detected around these objects, due in part to the difficulty
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of measuring accurate photospheric fluxes for these stars. Recent searches (e.g. Lestrade et al.

2009) have found the fraction of cold discs around M stars to be smaller than for A and FGK

samples, although these results are mitigated by their marginal statistical significance. Gath-

ering additional observational data of discs around M stars in future years will be crucial to

determining whether discs are really more scarce around these types of stars, and will also

allow us to conduct proper modelling of the discs’ evolution. This will enable us to draw

conclusions as to the correlation between evolutionary processes and timescales with spectral

type. Moreover, future observations will also help verify the findings made in this thesis, espe-

cially regarding the properties of discs around later-type stars. Even for FGK stars, the sample

of discs detected at multiple wavelengths is small, and additional observations, including with

missions and observing facilities like the Herschel Space Observatory and ALMA, will no doubt

prove crucial to strengthening or modifying the current understanding of the earliest stages

of planet formation.

7.3 Conclusion

The overall underlying motivation for my doctoral work has been to put the Solar System in

perspective. Twenty-five years ago, only a handful of debris discs and no extrasolar planets

had been detected. Some were even doubting that such objects would ever be found, hinting

that the corner of the Galaxy that we inhabit was rather lonely. Today offers a strikingly

different picture: hundreds of debris discs and extrasolar planets have been detected, and it

is surely only a matter of time until the first truly Earth-like planet residing in the “habitable

zone" of a star is found, i.e. a planet which might have the potential to sustain life as we know

it. Such a discovery will bring with it a plethora of questions, and challenge our understanding

of life itself; enough to keep astronomers busy and excited for decades to come!
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