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ABSTRACT

We describe the redmonster automated redshift measurement and spectral classification software designed for
the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV).
We describe the algorithms, the template standard and requirements, and the newly developed galaxy templates to
be used on eBOSS spectra. We present results from testing on early data from eBOSS, where we have found a
90.5% automated redshift and spectral classification success rate for the luminous red galaxy sample (redshifts
0.6 z 1.0). The redmonster performance meets the eBOSS cosmology requirements for redshift
classification and catastrophic failures and represents a significant improvement over the previous pipeline. We
describe the empirical processes used to determine the optimum number of additive polynomial terms in our
models and an acceptable cD r

2 threshold for declaring statistical confidence. Statistical errors on redshift
measurement due to photon shot noise are assessed, and we find typical values of a few tens of km s−1. An
investigation of redshift differences in repeat observations scaled by error estimates yields a distribution with a
Gaussian mean and standard deviation of μ∼0.01 and σ∼0.65, respectively, suggesting the reported statistical
redshift uncertainties are over-estimated by ∼54%. We assess the effects of object magnitude, signal-to-noise ratio,
fiber number, and fiber head location on the pipeline’s redshift success rate. Finally, we describe directions of
ongoing development.

Key words: methods: data analysis – surveys – techniques: spectroscopic

1. INTRODUCTION

Redshift surveys are a fundamental tool in modern
observational astronomy. These surveys aim to measure
redshifts of galaxies, galaxy clusters, and quasars to map the
three-dimensional distribution of matter. These observations
allow measurements of the statistical properties of the large-
scale structure of the universe. In conjunction with observations
of the cosmic microwave background, redshift surveys can also
be used to place constraints on cosmological parameters, such
as the Hubble constant (e.g., Beutler et al. 2011) and the dark
energy equation of state through measurements of the baryon
acoustic oscillation (BAO) peak, first detected in the clustering
of galaxies (Cole et al. 2005; Eisenstein et al. 2005). The first
systematic redshift survey was the CfA Redshift Survey (Davis
et al. 1982), measuring redshifts for approximately 2200
galaxies. Such early surveys were limited in scale due to single-
object spectroscopy. The development of fiber-optic and multi-
slit spectrographs enabled the simultaneous observations of
hundreds or thousands of spectra, making possible much larger
surveys, such as the DEEP2 Redshift Survey (Newman et al.
2013), the 6dF Galaxy Survey (6dFGS; Jones et al. 2004),

Galaxy and Mass Assembly (GAMA; Liske et al. 2015), and
the VIMOS Public Extragalactic Survey (VIPERS; Garilli et al.
2014), measuring redshifts for approximately 50,000, 136,000,
300,000, and 55,000 objects, respectively.
The Sloan Digital Sky Survey (SDSS; York et al. 2000) is

the largest redshift survey undertaken to date. At the conclusion
of SDSS-III, the third iteration of SDSS (Eisenstein et al.
2011), a total of 4,355,200 spectra had been obtained. Of these,
2,497,484 were taken as part of the Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013), containing
1,480,945 galaxies, 350,793 quasars, and 274,811 stars. The
“constant mass” (CMASS) subset of the BOSS sample is
composed of massive galaxies over the approximate redshift
range of 0.4<z<0.8 and typical signal-to-noise ratio (S/N)
values of ∼5/pixel. The automated redshift measurement and
spectral classification of such large numbers of objects presents
a challenge, inspiring refinements of the spectro1d pipeline
(Bolton et al. 2012). This software models each co-added
spectrum as a linear combination of principal component
analysis (PCA) basis vectors and polynomial nuisance vectors
and adopts the combination that produces the minimum χ2 as
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the output classification and redshift. PCA-reconstructed
models were chosen due to their close ties to the data, allowing
the PCA eigenspectra to potentially capture any intrinsic
populations within the training sample. This pipeline was able
to achieve an automated classification success rate of 98.7% on
the CMASS sample (and 99.9% on the lower-redshift, higher-
S/N LOWZ sample). However, the software was only able to
successfully classify 79% of the quasar sample, which resulted
in the need for the entire sample to be visually inspected (Pâris
et al. 2012).

The Sloan Digital Sky Survey IV (SDSS-IV; M. R. Blanton
et al. 2016, in preparation) is the fourth iteration of the SDSS.
Within SDSS-IV, the Extended Baryon Oscillation Spectro-
scopic Survey (eBOSS; K. S. Dawson et al. 2016, in
preparation) will precisely measure the expansion history of
the universe throughout 80% of cosmic time through observa-
tions of galaxies and quasars in a range of redshifts left
unexplored by previous redshift surveys. Ultimately, eBOSS
plans to use approximately 300,000 luminous red galaxies
(LRGs; 0.6< z< 1.0), 200,000 emission line galaxies (ELGs;
0.7< z< 1.1), and 700,000 quasars (0.9< z< 3.5) to measure
the clustering of matter.

The primary science goal of eBOSS is to measure the length
scale of the BAO feature in the spatial correlation function in
four discrete redshift intervals to 1%–2% precision, thereby
constraining the nature of the dark energy that drives the
accelerated expansion of the present-day universe. A set of
requirements for the redshift and classification pipeline was
established to meet these goals. As given in K. S. Dawson et al.
(2016, in preparation), these requirements are: (1) redshift
accuracy cσz/(1+z)<300 km s−1 for all tracers at redshift
z<1.5 and<(300+400(z−1.5)) km s−1 rms for quasars at
z>1.5; and (2) fewer than 1% unrecognized redshift errors of
>1000 km s−1 for LRGs and >3000 km s−1 for quasars
(referred to in this paper as “catastrophic redshift failures”).
Additionally, the pipeline should return confident redshift
measurements and classifications for >90% of spectra.

The higher-redshift, lower-S/N (typically ∼2/pixel for
galaxies) targets in eBOSS present a new challenge for
automated redshift measurement and classification software.
Initial tests with the spectro1d PCA basis vectors predicted
success rates of ∼70% for the LRG sample, which is well
below the specified science requirements. This is due, in part,
to the flexibility in fitting PCA components to a spectrum,
which allows non-physical combinations of basis vectors to
pollute the redshift measurements and statistical confidences
thereof. Additionally, while possible (e.g., Chen et al. 2012),
mapping PCA coefficients onto physical properties is a difficult
task. It requires the use of a transformation matrix, and
confidence in the results is, at best, unintuitive, and possibly
uncertain.

To meet these challenges, we have developed an archetype-
based software system for redshift measurement and spectral
classification named redmonster. We have developed a set
of theoretical templates from which spectra can be classified.
redmonster is written in the Python programming language.
The project is open source, and is maintained on the first
author’s GitHub account.15 The analysis performed in this
paper uses tagged version v1_0_0. The development of this
software was driven by the following goals:

1. Redshift measurement and classification on the basis of
discrete, non-negative, and physically motivated model
spectra;

2. Robustness against unphysical PCA solutions likely to
arise for low-S/N ELG and LRG spectra in eBOSS,
particularly in the presence of imperfect sky-subtraction;

3. Determination of joint likelihood functions over redshift
and physical parameters;

4. Self-consistent determination and application of hierarch-
ical redshift priors;

5. Self-consistent incorporation of photometry and
spectroscopy in performing redshift constraints;

6. Simultaneous redshift and parameter fits to each indivi-
dual exposure in multi-exposure data;

7. Custom configurability of spectroscopic templates for
different target classes;

8. Automated identification of multi-object superposition
spectra.

The software as described in this paper meets design goals 1,
2, 3, and 7. We have chosen to enumerate the full list of design
goals to provide a forward-looking vision of new and
interesting possibilities.
In this paper, we describe redmonster and its application

to the eBOSS LRG sample. The organization is as follows:
Section 2 describes automated redshift and classification
algorithms and procedures of redmonster. We include the
requirements and standardized format for templates and a
description of the eBOSS galaxy and star templates in
Section 2.1. The core redshift measurement algorithm is
described in Sections 2.2 and 2.3. Section 3 gives an overview
of the spectroscopic data sample of eBOSS and an analysis of
the tuning and performance of the software on eBOSS data,
including completeness and purity. Section 4 provides a
description of the classification of eBOSS LRG spectra,
including redshift success dependence, effects on the final
redshift distribution in eBOSS, and precision and accuracy.
Finally, Section 5 provides a summary and conclusion. The
content and structure of the output files of redmonster are
described in the Appendix.

2. SOFTWARE OVERVIEW

The use of physically motivated templates allows mapping
of physical properties from the best-fitting template onto the
model used to create the suite of templates. To better facilitate
the exploration of large, multi-dimensional parameter spaces,
spectral fitting is performed in Fourier space, allowing
redmonster to combine the speed of cross-correlation
techniques with the statistical framework of forward-modeling.
Additionally, significant effort has been made to write software
not specific solely to SDSS, but rather in a manner that
facilitates use in other redshift surveys, such as the Dark
Energy Spectroscopic Instrument (DESI; Levi et al. 2013). We
have also prioritized end-user customizability in the way the
software operates.
Informed by our design goal of developing survey-agnostic

software, the current version of redmonster requires only
the following data as input:

1. Wavelength-calibrated, sky-subtracted, flux-calibrated,
and co-added spectra, rebinned onto a uniform baseline
of constant Δlog10λ per pixel;15 https://github.com/timahutchinson/redmonster
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2. Statistical error-estimate vectors for each spectrum,
expressed as inverse variance.

While SDSS spectra are shifted such that measured
velocities will be relative to the solar system barycenter at
the mid-point of each 15 minute exposure, no such requirement
exists for redmonster input spectra. Redshifts will be
measured relative to a frame of the end-user’s choosing.

2.1. Templates

In order to make redshift and parameter measurements and
select among galaxy, quasar, and stellar (and possibly other)
object types with the highest statistical confidence, the pipeline
requires a set of templates that both spans the entire space of
object types within the survey and covers the full wavelength
range of the spectrograph over the redshift range of interest. To
this end, redmonster uses “archetype” template grids, where
“archetype” refers to single spectral templates that are not fit in
linear combination with any other templates, excluding low-
order polynomial nuisance vectors. A series of archetype
spectral templates spanning the relevant parameter space is
recorded in an ndArch.fits (signifying N-dimensional
archetypes) file. These ndArch.fits files conform to a
standard that requires a general form of template spectra written
by end users and ingested into the redshift software. The format
allows highly configurable spectroscopic template classes
without any re-coding of the low-level fitting routines. This
file standard is oriented toward the familiar units and
conventions of optical spectroscopic redshift measurement.
Reader and writer routines for ndArch.fits files conforming
to this standard are included in the redmonster package. A
brief description of the standard is given here, while full
documentation can be found in the software package.

The data contained in an ndArch.fits file consists of a
single multi-dimensional array that contains all possible
spectral templates for a class of object, containing flux
densities or luminosity densities in units of Fλ (power per unit
area per unit wavelength) or Lλ (power per unit wavelength).
The absolute normalization may be physically meaningful, but
is not required to be so. The first axis of the data array
corresponds to vacuum wavelength and is gridded in positive
increments of constant logλ.

There may be one or more axes in addition to the first axis,
up to the maximum number allowed by the FITS standard.
Each axis beyond the first will generally correspond to a
monotonically ordered physical model-parameter dimension
(age, metallicity, emission-line strength, etc.), but may also
correspond to an arbitrary labeled or unlabeled collection. The
archetype template vectors are assumed to have a uniform
resolution characterized by a Gaussian line-spread function
with a dispersion parameter σ equal to one sampling pixel.

Templates are segregated into template classes, with each
class corresponding to a single object type of interest and
contained in a single ndArch.fits file. These classes are used
by redmonster to classify the object type of a given
spectrum. Three template classes have been developed for use
in the eBOSS pipeline. Galaxy templates for LRG targets are
described in Section 2.1.1. Quasar and stellar templates have
been developed and are included with redmonster. Because
this paper focuses primarily on performance of redmonster
spectroscopic classifications on the eBOSS LRG target sample,
these templates function primarily to identify non-galaxy

objects that arise due to targeting impurities. As such, we
defer description of quasar and stellar templates to a later work.

2.1.1. Galaxy Templates

Our LRG templates are selected from the Flexible Stellar
Population Synthesis (FSPS) model suite (Conroy et al. 2009;
Conroy & Gunn 2010) with the Padova isochrones (Marigo
et al. 2008) and a Kroupa IMF (Kroupa 2001). The spectra
used in the models are custom high-resolution theoretical
spectra (C. Conroy et al. 2016, in preparation); the resulting
models are referred to as FSPS-C3K. The synthetic spectral
library was constructed with the latest set of atomic and
molecular line lists (courtesy of R. Kurucz) and is based on the
Kurucz suite of spectral synthesis and stellar atmosphere
routines (SYNTHE and ATLAS12; Kurucz 1970, 1993;
Kurucz & Avrett 1981). The grid of spectra was computed
assuming the Asplund et al. (2009) solar abundance pattern and
a constant microturbulence of 2 km s−1. For further details see
Conroy & van Dokkum (2012a). Table 1 lists the physical
parameters of the LRG template suite, their range, and the
frequency with which they are binned. All models are solar
metallicity. Several example templates are shown in Figure 1.
The templates have been vertically offset by 800, 600, 400,
250, and 100 for visual clarity. The wavelength range of the
BOSS spectrograph extends from 3600Å to 1.04 μm, while the
templates span the range 1525Å<λ<10852Å, allowing the
templates to span the redshift range 0<z<1.36 . These
templates will be extended further into the blue to cover the full
redshift range of the ELG sample in SDSS DR14.

2.1.2. Stellar Templates

Our stellar templates are synthetic spectra computed using
Kurucz ATLAS9 models by Mészáros et al. (2012) and the
radiative transfer code ASSòT (Koesterke 2009). The reference
solar abundances are from Asplund et al. (2005), with

Table 1
Galaxy Template Physical Parameter Dimensions and Sampling

Parameter Range Nsamples

log10 Age [−2.5, 1] Gyr 15
log10 σvel [2, 2.6] km s−1 4
Hα EW [0, 100] Å 5

Figure 1. Example LRG templates of various ages. The templates have been
vertically offset for increased visibility.
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enhanced α-element abundances, mimicking the trends found
in the Milky Way, and a constant micro-turbulence velocity of
2 km s−1. Continuum opacity is based on the Opacity Project
and Iron Project photoionization cross-sections, collected by
Allende Prieto et al. (2003) and Allende Prieto (2008), and line
opacities are based on data compiled by Kurucz,16 with updates
from Barklem et al. (2000). Line absorption coefficients for
Balmer lines are computed with the codes (HLINOP) provided
by Barklem & Piskunov (2015).

2.2. Spectral Fitting

The redmonster software approaches redshift measure-
ment and classification as a χ2 minimization problem by cross-
correlating the observed spectrum with each spectral template
in the ndArch.fits file over a discretely sampled redshift
interval. The algorithm is similar to the method described by
Tonry & Davis (1979). By default, pixels with S/N> 200
(which likely indicates a cosmic ray) or with fλ<−10σ
(unphysical negative flux at 10σ significance), are masked for
each observed spectrum. These values are configurable when
running the software. The spectrum is then fit with an error-
weighted least-squares linear combination of a single template
and a low-order polynomial across the range of trial redshifts.
The polynomial term serves to absorb Galactic and intrinsic
interstellar extinction, sky-subtraction residuals, and spectro-
photometric calibration errors not accounted in the templates.
By default, trial redshifts are separated by the spacing set by a
single pixel in wavelength, though this, too, is configurable.
For the eBOSS classifications, we have chosen to separate trial
redshifts by one pixel for stars, two pixels for galaxies, and four
pixels for quasars (∼69 km s−1, ∼138 km s−1, and
∼278 km s−1, respectively) to reduce computation time. A
redshift range must also be specified for each ndArch.fits
file being used; for the eBOSS data, we use −0.1<z<1.2 for
galaxies, −0.005<z<0.005 for stars, and 0.4<z<3.5 for
quasars. This fitting process results in a χ2 value for a spectral
template at a single trial redshift. Repeating this fit for all
templates within the ndArch.fits and across all trial redshifts
defines a c P z,2 ( ) surface, where P is a vector spanning the
parameter-space of the template class.

The software is able to explore large parameter spaces within
a template class by pre-computing some matrix elements in
Fourier space during the fitting process (see also Glazebrook
et al. 1998). In order to fit a set of data d with a set of n basis
vectors xk{ } in a minimum χ2 sense, the model m takes the
form

å=
=

m xa , 1
k

n

k k
1

( )

where, in the case of redmonster, xk{ } consists of a single
physical template and -n 1 polynomial terms. Thus, the χ2 of
the model relative to the data, assuming N data points, is

⎛
⎝⎜
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å
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where si
2 is the statistical variance of the ith pixel of d. We find

the jth maximum likelihood estimator, ajˆ , by minimizing c a2 ( )

with respect to aj. Here, aj is an arbitrarily chosen basis vector
coefficient from a, as the result is independent of our choice.
Solving c¶ ¶ =a 0j
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Because eBOSS spectra are binned linearly in log10λ, velocity
redshifts are uniform linear shifts in pixel space. Thus, fitting at
a trial redshift introduces a “lag” in pixel-space l of the basis
vectors relative to the data, after which estimators become a
function of l, and Equation (3) becomes
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This result can be cast in terms of matrices:
 =- -P N P a P N d 51 1( ) ˆ ( ) ( )

where P is an (N×n) matrix with each column a basis vector,
N is an (N×N) diagonal matrix with N ii=si

2, and â is the
vector of maximum likelihood esimators for which we wish to
solve. The product  -P N P1 is the correlation matrix of the
templates, with elements

 å
s
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=
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while the elements  -P N d jk
1( ) are given by the right-hand side

of Equation (4). Over a range of continuous l, these elements
are the discrete convolutions s * x x l1 j k

2( ) ( · )( ) and
s *d x lj

2( ) ( ), respectively, and may be computed as products
in Fourier space. Since the polynomial terms have no physical
meaning, they may remain fixed in the observed frame of the
data (i.e., have no l dependence), and it is possible to pre-
compute the fraction -n n1 2 2( ) of the total matrix elements
for a template class, greatly reducing computational
requirements.
One of the motivations for the development of red-

monster and its galaxy templates was the restriction that all
redshifts and classifications must be derived from physical
models. To that end, the resulting a lkˆ ( ) at each point in
redshift-parameter space is evaluated for physicality based on
the coefficient of the template component of the model. Fits
with a negative template amplitude are rejected, and that point
in the c P z,2 ( ) surface is assigned a value of cnull

2 , where cnull
2

is defined as the χ2 of the best-fit model where the amplitude of
the template coefficient is forced to 0 (i.e., a polynomial-only
model). Because the best-fit models produce the lowest
possible χ2 value at each point in redshift-parameter space,
and because the value of cnull

2 is a function only of the data
itself, the effect of this physicality constraint is to introduce a
flat “ceiling” in the c P z,2 ( ) surface, while maintaining
continuity.

2.3. χ2 Interpretation

After the computation of the c P z,2 ( ) surface for each
template class, the minimum χ2 in spanning all templates is
found at each trial redshift. The resulting series of best fits
defines a c z2 ( ) curve for each template class (similar to
Figure2 of Bolton et al. 2012). Interpolation over this curve is
then performed using a cubic B-spline (i.e., a C2-continuous16 kurucz.harvard.edu
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composite Bézier curve), through which all local minima are
identified. The N best redshifts for a particular template class
are defined by the N lowest minima of the χ2(z) curve. The
curve around each of these minima is then fit by a quadratic
function using the three points nearest the minimum. The
analytic minima of each quadratic fit are adopted as the
spectrum’s candidate redshifts. The statistical error on each
candidate is evaluated as the change in redshift ±δz for which
the χ2 of the quadratic fit increases by one from its minimum
value.

In the event the global minimum falls on the edge of the
explored redshift range, the Z_FITLIMIT bit is triggered
within the ZWARNING bit-mask, and both Z and Z_ERR are set
to −1. The definitions of all failure modes captured by
ZWARNING are shown in Table 2. Bit-masks 0-7 are identical
to those of spectro1d, although bits 3, 4 and 6 are not used
by redmonster and are retained only for consistency. Bit 4
(MANY_OUTLIERS) was found in SDSS-III to flag too many
good quasar redshifts. Bit 6 (NEGATIVE_EMISSION) has
been deprecated, allowing all spectra to be considered. The
NEGATIVE_MODEL bit (bit 3) is unnecessary as red-
monster restricts the template amplitude to be positive for
reasons of physicality. Bit 8 is new and is triggered in the rare
case of a template class having a χ2 surface with no local
minima. The output files are discussed in detail in the
Appendix.

Due to noise, some spectra can have multiple minima in the
vicinity of one another that are not statistically significant. For
all template classes, we ignore local minima that are separated
in redshift from a lower-χ2 minimum by less than a given
threshold, ΔV. Local minima separated by more than ΔV are
explicitly evaluated, since they constitute redshift failures if
they are statistically indistinguishable from one another. We
define a quantity, cD threshold

2 , as the minimum acceptable
c c cD = -red

2
2
2

1
2( ) dof, where c1

2 corresponds to the global
minimum and c2

2 corresponds to some secondary minimum.
The cD red

2 between two minima must be greater than this
threshold for statistical confidence to be declared. Values of
cD red

2 less than this threshold will trigger the SMALL_DEL-
TA_CHI2 bit in the ZWARNING bit-mask, indicating a lack of
statistical confidence. This process is illustrated schematically
in Figure2 of Bolton et al. (2012); example χ2(z) curves from
eBOSS spectra are shown in Figure 2.

The fits are then compared across template classes if multiple
ndArch files were used. The N best fits from each template
class are combined into a single set, and are then sorted in
ascending order of cred

2 . The N best fits from this combined set
are adopted as the best redshifts and classifications for
the object. These fits are re-evaluated for statistical confidence
and flagged according to the above criteria, although
cmin

2 separated by less than ΔV will no longer trigger the

SMALL_DELTA_CHI2 flag. Additionally, redshift differences
between two classes less than the quadrature sum of the error
estimates are not flagged even if the Δχ2 is below the
threshold, as the redshift, and not the class, is the primary
measurement being made. By default, the software keeps five
redshifts and classifications per spectrum (N= 5), but this is
user-configurable.
We note here that, strictly speaking, the use of minimium-χ2

regression should be limited to cases where the measurement
errors account for all of the statistical scatter and the model is
correctly specified (i.e., the template class is correct).
Otherwise, the parameter values and their confidence intervals
may not be scientifically meaningful. While the measurement
errors of eBOSS data do not account for all of the scatter and
the chosen template family is not a complete representation of
the galaxies present in the sample, we empirically calibrate the
robustness of our statistics through the use of repeat
observations, as discussed in Section 4.3.

3. OPTIMIZATION OF REDMONSTER PARAMETERS
FOR eBOSS LRGS

The main targets for eBOSS spectroscopy consist of LRGs at
redshifts 0.6<z<1.0 (Prakash et al. 2015), ELGs in the
range 0.6<z<1.1 (Comparat et al. 2015; T. Delubac et al.
2016, in preparation; Raichoor et al. 2016), “clustering”
quasars in the range 0.9<z<2.2, re-observations of faint
Lyα quasars in the range 2.1<z<3.5, and new Lyα quasars
at redshifts 2.1<z<3.5 (Myers et al. 2015). A selection of
example eBOSS spectra is shown in Figure 3. The spectral
classification and redshift software described here will be
applied to all spectra obtained with the BOSS spectrograph,
including targets outside the LRG, ELG, and quasar selection
algorithms. Here we demonstrate the tuning of redmonster
parameters and the performance of redmonster on the LRG
target sample from eBOSS.
The LRG target class consists of massive red galaxies that

have been color-selected using SDSS imaging (Gunn et al.
1998) in ugriz filters (Fukugita et al. 1996) and imaging from
the Wide-field Infrared Survey Explorer (WISE; Wright et al.
2010). These targets have a faint magnitude limit of i<21.8
(AB). A full investigation of the LRG selection is presented in
Prakash et al. (2015).
Spectroscopic data for eBOSS are obtained using the 2.5 m

Sloan Telescope at Apache Point Observatory (Gunn et al.
2006) with the BOSS spectrograph system. The BOSS
instrument is composed of two double-arm spectrographs fed
by 1000 optical fibers plugged into a drilled aluminum plate
that is positioned in the telescope focal plane. A summary of
this system is given in Table2 of Bolton et al. (2012) and a full
account is given in Smee et al. (2013). Each of the optical fibers
feeding the spectrographs is numbered with a FIBERID index

Table 2
redmonster ZWARNING Bit-mask Definitions

Bit Name Definition

0 SKY Sky fiber
1 LITTLE_COVERAGE Insufficient wavelength coverage
2 SMALL_DELTA_CHI2 χ2 of best fit is too close to that of second best (<0.01 in cr

2)

5 Z_FITLIMIT cmin
2 at edge of the redshift fitting range (Z_ERR set to −1)

7 UNPLUGGED Fiber was broken or unplugged, and no spectrum was obtained
8 NULL_FIT At least one template class had constant-valued χ2 surface
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ranging from 1–1000. Each physical plug plate is given a
unique PLATE number. Finally, because a given PLATE may
be observed more than once with different mappings between
FIBERID and target spectra, each plugging is given an MJD
number corresponding to the modified Julian date of the
observation. Thus, any combination of PLATE, MJD, and
FIBERID constitutes a unique eBOSS co-added spectrum.
Pluggings are observed in 15 minute exposures, which are co-
added during the data reduction process as described in
Dawson et al. (2013). The 1D spectral outputs of this
calibration, extraction, and co-addition process are stored in
the “spPlate” FITS files, which become the inputs to the
software described in this paper.

Two significant changes have been made to the spectral
extraction and co-addition of individual exposures for the
second data release (DR14) of SDSS-IV. These changes were
developed to improve classification of lower signal-to-noise
data in eBOSS. The first major change improves the way
atmospheric differential refraction (ADR) corrections are
applied to eBOSS spectra, and is described in T. Jensen et al.
(2016, in preparation). The improved ADR corrections are
similar to prior work (Margala et al. 2015; Harris et al. 2016)
and primarily improve flux calibrations for quasar spectra. The
second change corrects a known bias in the co-addition of
individual exposures. This correction has significant impact on
the classification of galaxy spectra; thus, we provide a
description below.

Individual exposures are initially flux calibrated with no
constraint that the same object has the same flux across
different exposures. Empirical “fluxcorr” vectors are broadband
corrections to bring the different exposures into alignment for

each object prior to co-addition. In DR13 and prior, these were
implemented for each spectrum by minimizing
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where fiλ is the flux of exposure i at wavelength λ, lfref, is the
flux of the selected reference exposure, and aiλ are low-order
Legendre polynomials. The number of polynomial terms is
dynamic, up to a maximum of five terms. Higher order terms
are added only if they improve the χ2 by five compared to one
less term. This approach is biased toward small aiλ since that
inflates the denominator to reduce the χ2.
For DR14, we solve the fluxcorr vectors relative to a

common weighted co-add Fλ which is treated as noiseless
compared to the individual exposures,
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We additionally include an empirically tuned prior that
~la 1i to avoid large excursions in the solution for very low

signal-to-noise data. Figure 4 shows the fluxcorr corrections for
five exposures of 155 LRGs. The left panel shows the DR13
corrections, which have a large scatter and average value less
than one due to biased fluxcorr. The right panel shows the new
algorithm in DR14, which reduces scatter and gives the
corrections a mean close to unity.
Due to the highly configurable nature of redmonster,

several input values must be determined for each unique data
set to optimize performance. In this section, we demonstrate the

Figure 2. Example χ2(z) curves from the fits to spectra of three different LRG targets. The spectra are labeled by PLATE-MJD-FIBERID. The dashed purple lines
show the value of cnull

2 . The c0
2 values shown are the χ2 of a 0 model (i.e., the (S/N)2 of the data). Note that the vertical axis shows raw χ2, and must be scaled by the

number of degrees of freedom (i.e., the number of unmasked spectrum pixels minus the number of components in the fit) for comparison with cD threshold
2 . The top

panel shows a z=0.802 galaxy with ZWARNING=0, indicating a confident redshift measurement and classification. The middle panel shows an LRG target with
statistically indistinguishable fits at z=0.738 and z=1.021, triggering the SMALL_DELTA_CHI2 flag (ZWARNING=4). The bottom panel shows an LRG target
with no χ2 minima separated from cnull

2 with significance greater than cD = 0.005threshold
2 .
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optimization of the most influential, interesting, and challen-
ging of those: cD threshold

2 and the degree of the polynomial,
npoly to be fit in linear combination with the templates. A third
important parameter to be determined is ΔV, the half-width of
the window around a χ2-minimum in which secondary minima
are ignored. This was chosen for eBOSS as 1000 km s−1 based
on clustering science requirements, and thus will not be
discussed here.
In order to explore the effects of these parameters and

quantify performance of the software on galaxy spectra, we
analyze the eBOSS LRG target sample, containing 99,449
unique observations of LRG targets. We use reductions
produced by the tagged version v5_10_0 of the idlspec2d
pipeline that will be released in DR14. Determination of the
configurable npoly is described in Section 3.1, and that of
cD threshold

2 in Section 3.2.

3.1. Determination of npoly

The number of additive polynomial terms fit in linear
combination with the template spectrum can have a large

Figure 3. Example eBOSS spectra. The data, smoothed over a five-pixel window, are presented in black, the best-fit model from redmonster is shown in cyan, and
the 1-σ error (as estimated by idlspec2d) is shown in red. Each spectrum has been labeled with its unique PLATE-MJD-FIBERID. The objects shown here are:
(a) LRG-target galaxy, z=0.664; (b) LRG-target galaxy, z=0.943; (c) ELG-target galaxy, z=0.891; (d) M-star; (e) quasar, z=0.978; (f) quasar, z=2.823.

Figure 4. Calibration corrections for five exposures of 155 LRG spectra on
plate 7898 (blue camera) in DR13 (left panel) and DR14 (right panel).
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impact on the quality of the fits and, thus, the failure rate
and redshift errors. Some polynomial terms are necessary to
absorb broadband spectrophotometric calibration errors and
astrophysical signal not reflected in the templates. Allowing too
much freedom to the polynomial terms (i.e., too high an order)
will allow them to fit real astrophysical features. Shifting the
quality of the fit to the non-physical components of the model
reduces the ability of the physical templates to provide
statistically distinguishable fits to the data, thus increasing
failure rates. In order to understand the effects of npoly, we
processed the LRG sample with redmonster four separate
times, using each of a constant, linear, quadratic, and cubic
polynomial, producing a unique output file for each.

First, we computed the failure rate for each degree of
polynomial. In all cases, the ZWARNING flag corresponding to
SMALL_DELTA_CHI2 dominates the redshift failure modes.
The failure rates for a constant, linear, quadratic, and cubic
polynomial were 9.5%, 20.9%, 14.2%, and 12.9%, respec-
tively. Additionally, we computed the distribution of cD 2 per
degree of freedom for each run, shown in Figure 5. The use of a
constant polynomial term stands out as having both the lowest
failure rate (∼9.5%), and a systematic shift in the Δχ2/dof
distribution toward higher values.

In order to understand how the order of the polynomial
affects our best-fit models and their distinguishing power, we
focus on the two candidates with the lowest failure rates—
constant and cubic.

Figure 6 shows object-matched comparisons of several
statistics of our fits for the constant- and cubic-order
polynomials. We have highlighted cases where one of the
models returned a successful measurement (ZWARNING=0)
while the other failed. The top panel shows the value cnull

2 of
each spectrum for both model types. All points lie to the right
of the dashed line, meaning the constant-polynomial model
absorbs less information from the spectrum than does the
cubic-polynomial model in every case. Further, the constant
polynomial has an rms of ∼37,000, roughly 6.5 times larger
than the rms of the cubic polynomial. The narrow range of
values around c = 4000 6000null,4

2 – suggests the cubic poly-
nomial is consistently absorbing most of the broadband
information, while the constant polynomial often cannot.
Meanwhile, the central plot, showing the minimum cred

2 for

both models, shows a similar range of values for each. Thus, in
the cases where the constant-polynomial component is unable
to fit broadband information, the templates effectively take a
significant fraction of the signal absorbed by the cubic
polynomial and transfer it to the physical template. The bottom
panel of Figure 6 illustrates this further. The data show a linear
relationship between the two values of cD dof2 with a slope
of <1. On average, cD red

2 is larger for the constant-polynomial
model than for the cubic-polynomial model, consistent with the
trend in Figure 5.
Figure 7 shows c c c-0

2
null
2

0
2( ) of both polynomial

choices for each object, where c0
2 is the χ2 of a zero model

(i.e., the (S/N)2 of the data); thus, this quantity may be
interpreted as the fraction of the total (S/N)2 of the data
absorbed by the polynomial. Note that all data points fall above
the unity relationship, meaning the cubic -polynomial always
absorbs more of the information in the spectrum than does the
constant. We have overlaid contours from a bivariate kernel
density estimate, which has a maximum at (0.573, 0.831). The
marginal plots show the univariate kernel density estimates for
the constant polynomial on the horizontal axis and cubic
polynomial on the vertical axis. The median values of the
constant and cubic are 0.553 and 0.787, respectively,
suggesting that, on average, the cubic polynomial and spectral
template absorbs ∼23% more, in absolute terms, of the
spectrum’s signal than does the constant polynomial and
spectral template.
As a final means of exploring the effects of changing the

order of the polynomial, we visually inspected spectra which
returned a successful measurement in one run but a failure in
the other. The visual inspections help us to develop a
qualitative understanding of the types of spectra or spectral
features that are handled successfully in one case and are
problematic for the other. Figure 8 shows a z=0.743 galaxy
from the LRG sample for which the constant-polynomial model
returned a successful redshift measurement and the cubic-
polynomial model returned a failure. This spectrum was chosen
as being representative of the typical behavior of models with
constant-success and cubic-failure. There is a clear unphysical
upturn in the noisy blue end of the spectrum due to calibration
errors, which happens occasionally among low-S/N eBOSS
spectra. The higher flexibility of the cubic-polynomial fit
allows the model to chase this upturn, which shifts power into
the non-physical component of the model and away from the
physical template. Because the long-wavelength corrections are
coupled to the short-wavelength corrections through the cubic
polynomial, this results in the suppression of the equivalent
width of narrowband features such as CaH&K at 3968.5 and
3933.7Å, respectively, Hβ at 4863Å, Mg I at 5175Å, and Na I
at 5894Å. In low signal-to-noise spectra, such as those of
eBOSS, it becomes difficult for the software to distinguish
between the model fitting a real narrowband feature and fitting
noise. In this case, the cubic-polynomial model does, in fact,
have the correct redshift, but due to reduced template amplitude
relative to the constant-polynomial model, lacks the statistical
confidence to declare a confident measurement.
On the other hand, for spectra with the largest broadband

deviations from the templates or deviations that extend beyond
the blue end (due to flux calibration errors, object super-
positions, etc.), the constant-polynomial model lacks the
flexibility to fit these features. In these cases, the χ2 is driven
by poor fitting of the broadband features, and the relative

Figure 5. Distribution of Δχ2 per degree of freedom of eBOSS LRGs for
several orders of polynomial terms. The dashed vertical line represents a
cD threshold

2 cutoff of 0.005.
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contribution from the astrophysical features is small. This
hinders the software’s ability to distinguish between models
with different physical parameters. The cubic polynomial, on
the other hand, has the flexibility to absorb these strong
broadband features, allowing the astrophysical features to
dominate the χ2, and the software is able to return a successful
measurement. An example of this type of spectrum is shown in
Figure 9, a z=0.513 galaxy in the LRG sample in which
broadband features extend across the entire range of the
spectrograph. The constant polynomial is unable to capture
this, forcing the fitter to choose a stellar template, despite clear
absorption features being visible from CaH&K around
6000Å, the G-band around 6500Å, Hβ around 7350Å, and
a less well-defined Mg I line around 7800Å. The cubic
polynomial was able to absorb the broadband features, meaning
the χ2 is dominated by the template’s fit to astrophysical signal
and a successful measurement was returned.
At this point, it is clear that a constant-polynomial term

produces lower failure rates, and is empirically the best choice
for our data set. Further, a qualitative understanding of the
failure modes of the two model types leads us to believe that, in
the presence of better flux calibration, the failure rates of a
constant polynomial are likely to decrease further. Thus, we use
a constant-polynomial model to classify the eBOSS LRG
sample and in all subsequent analyses.

Figure 6. Comparisons between several model-fit statistics on an object-by-object basis for a constant-polynomial (c ,1
2 ) and cubic-polynomial model (c ,4

2 ). The
salmon and teal points correspond to objects where only the constant-polynomial and cubic-polynomial model returned a successful measurement, respectively. The
dashed line shows the 1-to-1 line in each plot. Top: χ2 of polynomial-only model (i.e., no template component). Center: the χ2/dof of the polynomial + template
combination that produces the best fit to the observed spectrum. Bottom: difference in χ2/dof between best and second-best model.

Figure 7. Fraction of each object’s total (S/N)2 absorbed by the polynomial-
only model for a constant and cubic polynomial, with bivariate kernel density
estimate overlaid. The dotted line shows the unity relationship. Marginal plots
show univariate kernel density estimates for each axis.
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3.2. Determination of cD threshold
2

Decreasing the value of cD threshold
2 relaxes the requirement

for a declaration of statistical confidence, resulting in higher
redshift completeness rates. Doing so comes at the expense of
higher rates of catastrophic failures, as incorrect measurements
that would have been flagged at a higher threshold are allowed
through with no ZWARNING flag. Similarly, increasing the
value of cD threshold

2 decreases catastrophic failure rates as it
restricts statistical confidence to only the best of fits, but does
so at the expense of completeness rates, reducing usable sample
size and statistical power toward cosmology constraints. Thus,
determining a value of cD threshold

2 means striking an optimal
balance between completeness and purity while ensuring
science requirements are met. Here, we remind the reader that
cD threshold

2 is always scaled to the degrees of freedom to
account for possibly varying degrees of freedom between fits,
where the number of degrees of freedom is defined as the
number of unmasked pixels in the spectrum less the number of
template components (i.e., - +n n 1pix poly( )).

We first investigate the failure rate as a function of
cD threshold

2 , as shown in Figure 10. At cD = 0.01threshold
2 , the

value used by spectro1d, redmonster reduces the failure
rate from 24.3% to 16.3%. While significant, the failure rate is
still more than a factor of 1.5 times the desired �10% failure
rate for eBOSS science. To ensure sub-10% failure rates, the
ZWARNING flag for SMALL_DELTA_CHI2 would need to be
set at or below cD = 0.005threshold

2 .
While quantifying completeness is straightforward, doing so

for catastrophic failure rates is not. The eBOSS science
requirement for catastrophic failures is <1%. By definition,
catastrophic failures pass through the software unnoticed,
making identification difficult. We consider two tests to
characterize the rate of catastrophic failures.

We first asses the completeness of eBOSS sky fibers as a
function of cD threshold

2 as a proxy for catastrophic failures. Sky

fibers are those fibers that are not placed on any target, but
rather are intended to measure the sky emission, unpolluted by
astronomical objects, to aid in sky-subtraction. Roughly ∼10%
of the fibers on each eBOSS plate are placed as sky fibers.
While a small fraction of these will inevitably be placed over
real objects, the vast majority should contain no object at all.
These should trigger the softwares’ SMALL_DELTA_CHI2 flag
since there is no astronomical object; a confident redshift is
impossible. While the rate of false positives within this sample
is not a direct measurement of the catastrophic failure rate, it
does provide a testing ground for the software’s behavior in the
limit of low signal-to-noise. As signal-to-noise is the best
predictor of redshift measurement success, this sample is
informative of the true rates of catastrophic failures. The left
panel of Figure 11 shows the cumulative fraction of eBOSS sky
fibers above a given cD threshold

2 for redmonster and
spectro1d. At a given threshold, redmonster returns a
factor of seven fewer confident measurements. The increased
rigidity of modeling with a single, physically motivated
template over a set of PCA basis vectors reduces the ability
of redmonster to fit sky residuals and noise, greatly
reducing its rate of false positives. The eBOSS science
requirement for catastrophic failures is <1%, which we see
in redmonster at a cD threshold

2 value of ∼0.004. In
spectro1d, meanwhile, it does not reach sub-1% values
until ∼0.008.
We then assess the redshift differences between different

spectra of the same object, as in K. S. Dawson et al. (2016, in
preparation). First, we identified 2128 targets that were tiled on
more than one plate and, thus, have multiple independent
observations. We then compared redshift differences as a
function of Δχ2/dof, as shown in the right panel of Figure 11.
Assuming that, in the cases of discrepant redshifts, one redshift
is correct, the rate of catastrophic failures can be estimated by
counting objects with δz>1000 km s−1 and Δχ2/dof above

Figure 8. Example of an object (PLATE 7572 MJD 56944 FIBERID 515) in which a constant-polynomial model returned a successful measurement while the cubic-
polynomial measurement failed. The data are shown in black, and the best-fit model is shown in red.
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the threshold. For this sample, there are 12 catastrophic failures
out of 2520 confident measurements for cD = 0.01threshold

2 and
32 catastrophic failures out of 3270 confident measurements for
cD = 0.005threshold

2 , corresponding to catastrophic failure rates
of 0.48±0.14% and 0.98±0.22%, respectively. A similar
analysis for the spectro1d reductions yields failure rates of
0.35±0.11% and 0.92±0.16%.

In order to maximize completeness while maintaining an
acceptable catastrophic failure rate, we set cD = 0.005threshold

2

for all subsequent analyses. We also use cD = 0.01threshold
2 for

spectro1d when making comparisons, to ensure that the
catastrophic failure rate requirement is being met in both sets of
reductions. Among the full set of eBOSS LRG target spectra,
we find an automated completeness (ZWARNING==0) rate of

90.5%, with a catastrophic failure rate of 0.98%. Meanwhile,
spectro1d produces a completeness of 75.6% with a
catastrophic failure rate of 0.32%. Thus, redmonster
satisfies the requirements of completeness and purity, while
spectro1d does not. This improvement is illustrated by the
dashed lines in Figure 10.

4. CLASSIFICATION OF LRG SPECTRA FROM eBOSS

We made use of 99,449 eBOSS LRG targets reduced with
tagged version v5_10_0 of idlspec2d to demonstrate the
performance of redmonster. Galaxy redshift success
dependence is described in Section 4.1, the effect on the final
LRG sample redshift distribution is described in Section 4.2,
and galaxy redshift precision and accuracy in Section 4.3. A
description of composite spectra and the distribution of
physical galaxy parameters in the sample is given in
Section 4.4.

4.1. Galaxy Redshift Success Dependence

As in all redshift surveys, spectroscopic S/N is the primary
determinant of redshift success. In the eBOSS LRG sample,
95.4% of spectra with ZWARNING>0 are due solely to a
SMALL_DELTA_CHI2 failure. Figure 12 shows the depend-
ence of the LRG galaxy redshift failure rate as a function of the
median spectroscopic S/N over the SDSS r, i, and z bandpass
ranges. These represent the most relevant regions of the
spectrum for measuring redshifts of passive galaxies over the
redshift range of interest for the large-scale structure science in
eBOSS. Failure is defined in the sense of ZWARNING>0, so
that targets confidently identified as objects other than galaxies
are counted as a success for the pipeline. We see a decrease in
the failure rate as a function of r-band S/N up to S/N∼1.8,
where it becomes asymptotic to ∼3%. The i- and z-bands
behave in a more expected manner, with failure rate decreasing

Figure 9. Example of an object (PLATE 7575 MJD 56947 FIBERID 434) in which a cubic-polynomial model returned a successful measurement while the constant-
polynomial measurement failed. The data are shown in black, and the best-fit model is shown in red.

Figure 10. Redshift failure (ZWARNING>0) rate of redmonster and
spectro1d pipelines as a function of cD r,threshold

2 to trigger the
SMALL_DELTA_CHI2 bit. Dashed red and blue lines serve to visually
illustrate the failure rates of redmonster and spectro1d at cD r,threshold

2

values of 0.005 and 0.01, respectively.
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until S/N ∼4, where it reaches an asymptotic minimum
of ∼2%. The i- and z-band S/N is more predictive of redshift
success rate due to the 4000 Å break and the small number
of strong narrow absorption features (e.g., Ca H&K, Na I, etc.)
being located in those bands over the targeted redshift range.

Galaxy magnitude correlates strongly with spectroscopic S/N
and hence with redshift success; this is the motivation for the i-
band magnitude limit of <21.8 in the target selection algorithm.
To assess the dependence of redshift completeness on target
selection, the right panel of Figure 12 shows the LRG sample’s
redshift failure rate as a function of ifiber, defined as the i-band
magnitude in a 2″ diameter eBOSS fiber. At the formal eBOSS
LRG magnitude cutoff, the marginal failure rate is ∼11%.

Additionally, redshift success has a weak dependence on
fiber identification number along the spectrograph slit heads.
The left panel in Figure 13 shows this effect for eBOSS LRGs.
Upturns near fibers 1500 and 1000 are due to imperfections in
the camera optics near the edge of the spectrograph focal plane.
Narrow peaks, such as those around fibers 525–530, are due to
bad CCD columns. Fiber numbers below 500 show a higher
average failure rate (9.4%) than those above 500 (9.0%) due to
lower end-to-end throughput of spectrograph 1 relative to
spectrograph 2 (Smee et al. 2013).

Finally, we investigated the dependence of failure rate on the
location of the fiber on the plug plate. The right panel of
Figure 13 shows this relationship. The fibers within the central
region covering 50% of the total area show failure rates of
7.8%. However, near the edges and, particularly, the left and
right sides of the plate, failure rates spike to values of 25% or
greater. Plates are generally plugged in a counter-clockwise
direction, beginning in the first quadrant, meaning the right
edge of the plate contains fibers near 1 and 1000, while the left
edge contains fibers near 500; thus, the increased failure rates at
the extreme values of XFOCAL are primarily due to the
imperfect spectrograph optics described above.

4.2. Effect on Final Redshift Distribution
and Cosmological Projections

In order to quantify the effects of the redmonster spectral
classification on the survey’s expected cosmological con-
straints, we compare the resulting redshift distribution to the
predictions presented in K. S. Dawson et al. (2016, in

preparation). Those cosmological projections were based on
the redshift distribution derived from visually inspected
redshifts and classifications for 1997 LRG targets across 16
plates. Plates with deeper than average observations were
intentionally chosen to facilitate these visual inspections. These
spectra were processed using idlspec2d tagged version
v5_8_0, and were visually inspected by ten members of the
eBOSS team in August 2015. Each spectrum was manually
assigned a redshift and spectral classification, as well as a
confidence value qconf ranging from 0 (entirely uncertain) to 3
(entirely certain). A full qualitative description of all qconf
values is given in K. S. Dawson et al. (2016, in preparation). A
subset of plates was inspected by two people, providing a
degree of self-calibration of the results.
The survey science goals require a minimum of 40 deg−2

spectroscopically confirmed LRGs in the redshift range
0.6<z<1.0. To compensate for incomplete fiber assign-
ment, the LRG parent sample is selected at a surface density of
60 deg−2. Table 3 shows the estimated final tracer density of
the LRG sample, binned by redshift. We show the optimistic
(qconf>0) and conservative (qconf>1) scenarios from the
visual inspections alongside the redmonster and spec-
tro1d N(z) results using reduction versions v5_9_0 and
v5_10_0. The surface density of tracers is increased by
redmonster relative to spectro1d by 40.4% and 23.9%
in DR13 and DR14, respectively. While the improvements to
the reductions described in Section 3 increased the rate of
successful redshifts by spectro1d by 14.1%, the tracer
density for redmonster remained constant at 41.7deg−2.
Twenty-six percent of spectra that were previously failures
were reclassified by redmonster as stars in the improved
reductions. In the optimistic case using extra deep spectra, the
visual inspections report a failure of ∼6.7%, while red-
monster finds a failure rate of 7.4% on those same spectra.
This suggests redmonster is producing failure rates nearly
as low as what any software can achieve.
We use the final redshift distribution from redmonster to

predict changes to the cosmological projections given in K. S.
Dawson et al. (2016, in preparation). Those projections were
made using the conservative case (qconf>1) of the visual
inspections. The surface density of tracers using redmonster
is increased by 3.5% relative to those used in the projections.
Because the measurements of cosmological parameters are

Figure 11. Left: cumulative fraction of eBOSS sky fibers with confident redshift measurement and classification as a function of cD threshold
2 . Right: scatterplot showing

redshift difference (in km s−1) between independent observations of the same LRG target. The red and blue vertical lines represent cD dof2 thresholds of 0.005 and
0.01, respectively. The horizontal dashed line shows the limit of velocity difference to be considered a catastrophic failure.
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Poisson-limited, redmonster provides an additional 2%
margin on achieving the cosmological precision expected from
the eBOSS LRG sample.

4.3. Galaxy Redshift Precision and Accuracy

Redshift errors are calculated from the curvature of the χ2(z)
function in the vicinity of the value that is used to determine the
best-fit redshift measurement. To assess the precision of these
statistical error estimates, we used the same repeat spectra as
those used to assess catastrophic failure rates. We scaled the
redshift difference between the two observations by the
quadrature sum of the error estimates from the spectra from
each observation. We then assessed the full distribution of the
velocity differences and fit it with a Gaussian function. If the
estimated errors accounted for all the statistical uncertainty, the
fit would have a dispersion parameter of unity and a mean of
zero. Figure 14 shows the results of this analysis. The fitted
dispersion is σ=0.65 and the mean is μ=0.01. Thus,
redshift errors are overestimated by ∼54%, meaning that
redshift estimates are more precise than reported. A similar
analysis performed on the spectro1d reductions of the
SDSS-III CMASS (for “constant mass”) galaxy sample
(0.4z0.7) in Bolton et al. (2012) resulted in a fitted
dispersion parameter of σ=1.19.

Next, we examine the statistical redshift errordistributions
as a function of median S/N in the SDSS r-, i-, and z-bands,
and find a weak anti-correlation. This is as expected, and is
consistent with previous SDSS data sets. A summary of these
statistics is given in Table 4. Finally, for all LRG targets, we
also compute the distribution of estimated redshift errors as a
function of redshift. A summary of the statistics is given in
Table 5. In all cases, typical errors are a few tens of km s−1.
They should be reduced by an additional factor of 1.54 to
reflect the statistical scatter displayed in Figure 14. These errors
are well below the 300 km s−1 redshift precision requirement of
the eBOSS galaxy large-scale structure and redshift space
distortion science analyses.

4.4. Composite Spectra and Distribution of Galaxy Parameters

A primary advantage of redmonster over PCA-based
redshift classification techniques is the simple manner in which
the best-fitting template can be translated to physical
parameters. In this section, we briefly discuss two types of

analyses made possible by this parameterization. We seek only
to demonstrate these possibilities and defer analysis of the
results to a later work.
Stacking large numbers of spectra has become a widely used

technique in extragalactic physics and cosmology. We derive
composite spectra of high S/N to enable analysis of the quality
of our templates in relation to the true spectral features in
eBOSS galaxies. Previous work (e.g., Eisenstein et al. 2003)
concentrated on analyzing and averaging spectra based on
observed quantities, such as color or magnitude. The
physicality of the redmonster parameterization allows us
to separate and bin our galaxy sample based on quantities such
as age, velocity dispersion, emission line ratio and strength,
metallicity, and star formation history (SFH), as determined by
the best-fitting template.
We first binned a subset of the eBOSS galaxy sample based

on the age of the template that produced the best-fit model.
Objects were chosen with best-fitting templates of zero line flux
to identify a passively evolving sample. To derive meaningful
composites, these spectra then must be normalized. Due to the
relatively low signal-to-noise of eBOSS spectra, we cropped
the noisy blue- and red-end of each spectrum, and scaled the
spectrum such that the median of the pixels in the wavelength
range 4000<λ<9000 is unity. We scaled the template
corresponding to each bin to fit the composite spectrum.
Example composite spectra for observed spectra best fit by the
0.56Gyr, 1.0Gyr, 1.78Gyr, 3.16Gyr, and 5.62Gyr templates
are shown in Figure 15; they contain 412, 1486, 14,739,
22,288, and 11,134 unique galaxies, respectively. We stress
that these composites are selected only by template age;
metallicity is assumed to be solar (Asplund et al. 2009) and
velocity dispersion is assumed to be 250km s−1. An example
of fitting similar composites over the wavelength range
0.4–0.8 μm while allowing metallicity and velocity dispersion
to vary is given in Conroy et al. (2014). These eBOSS data will
allow a similar analysis to be extended to shorter wavelengths.
In general, the templates better describe the continuum in the

red than the blue. The templates systematically over-estimate
flux density between ∼2500Å and ∼3600Å. All three
templates have a broad feature at ∼2700Å that is exaggerated
relative to the composite spectra, likely due to missing atomic
opacities in the models. Discrepancies in the continuum may be
due to the effects of dust attenuation. In the core-fitting
algorithm, these effects can be accounted for by the polynomial

Figure 12. Left: redshift failure (ZWARNING > 0) rate of the eBOSS LRG sample as a function of median S/N in SDSS r-, i-, and z-bands. Right: redshift failure
(ZWARNING > 0) rate of the eBOSS LRG sample as a function of SDSS i-band magnitude. The dashed vertical line indicates the faint-magnitude limit of i=21.8.
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nuisance vectors; the models in this figure are scaled to the
composite spectra without any polynomial terms, allowing the
effects of dust in the data to appear as shortcomings in the
templates. On the other hand, the models are able to reproduce
the observed behavior of the narrow-band features. All five
composite spectra clearly display lines from the Mg II doublet
(2796Å and 2803Å), CaH&K(3934Å and 3968Å),
Hδ(4103Å), G-band(4307Å), and Hβ(4863Å) that are well
fit by the templates. The 0.56Gyr and 1.0Gyr composite
spectra have a well-fit Hγ line(4341Å) and more prominent
Balmer features, as expected from a younger stellar population.
Additionally, an Mg I line at 2852Å, a band of Mg I absorption
just blueward of CaH&K, and an Mg I line at 5175Å become
more prominent at older stellar populations.

Next, we evaluate the distribution of the physical parameters
across the galaxy sample. These distribitions are informative of
both the accuracy of the spectral features in the templates and the
targeting completeness and selection bias of the survey. As an
example, we again consider galaxy template age. We binned our
sample into four redshift bins and show the distribution of the
ages of the best-fit templates in Figure 16. The mean values of the
four redshift bins, 0.5<z<0.6, 0.6<z<0.7, 0.7<z<0.8,
and 0.8<z<0.9, are 4.9 Gyr, 4.3 Gyr, 3.9 Gyr, and 3.7 Gyr,
respectively. Assuming a ΛCDM cosmology with k=0,
H0=67.8 km s−1 Mpc−1, Ωm=0.308, and wΛ=−1 (Planck
Collaboration et al. 2015), the age of the universe at redshifts
z=0.56, z=0.65, z=0.75, and z=0.84, the sample mean in
each bin, is 8.18Gyr, 7.61 Gyr, 7.03 Gyr, and 6.57 Gyr,
respectively. A comparison with the median template age in
each bin reveals a galaxy sample that ages more slowly than the
universe. Due to not allowing metallicity and abundance patterns
to be fit as free parameters (as the templates in this paper use only
solar metallicity), it is likely not possible to meaningfully
interpret the ages. However, a more careful analysis could be
used to investigate targeting selection bias in the survey.

5. SUMMARY AND CONCLUSION

We have described the redmonstersoftware that pro-
vides automated redshift measurement and spectral classifica-
tion and its performance on the SDSS-IV eBOSS LRG sample,
comprising 99,449 spectra. This software provides a new
algorithm and new sets of templates that restrict all spectral

fitting to only physically motivated models. The advantages
over the current algorithm include robustness against unphy-
sical solutions likely to arise for low signal-to-noise spectra
(particularly in the presence of imperfect sky-subtraction),
determination of joint likelihood functions over redshift and
physical parameters, and custom configurability of spectro-
scopic templates for different target classes.
The redshift success rate of the redmonstersoftware on

eBOSS LRGs is 90.5%, meeting the eBOSS scientific
requirement of 90% and providing a significant improvement
over the previous redshift pipeline, spectro1d. The
improvement translates to a 23.9% increase in the surface
density of tracers that can now be used to constrain cosmology
through clustering measurements. We have shown catastrophic
failure rates for redmonster of 0.98%, in agreement with the
scientific requirements of <1%. The software also provides
robust estimates of statistical redshift errors that are Gaussian
distributed, typically a few tens of km s−1, well below the
specified maximum of 300 km s−1.
Looking forward, using cD = 0.0015threshold

2 would give
redmonster a completeness of 95.7% and a catastrophic
failure rate of 1.9%, which would very nearly meet the DESI
science requirements of at least 95% completeness and a
maximum of 5% catastrophic failures on eBOSS data. The raw
S/N in DESI will be comparable to that in eBOSS, though the
image quality in eBOSS two-dimensional spectra is degraded
relative to the image quality we expect in the bench-mounted
DESI system. eBOSS also shows a failure rate that increases to
∼25% near the edges of the focal plane. This is imperfect
optics toward the edges of the spectrographs, which will be less
significant in DESI. Therefore, we expect improved red-
monster performance on the more well-behaved DESI
spectra.
Development work is ongoing for eBOSS, both in the

calibration and extraction of spectra and on redmonster
itself. The next priority for redmonster development is to
build and test templates for ELG and quasar spectra.
Additionally, we will incorporate simultaneous fitting to the
individual exposures at their native resolution to remove
covariances between neighboring pixels introduced by the co-
adding process. Subsequent eBOSS data releases will be

Figure 13. Left: eBOSS LRG sample failure rate as a function of fiber number. The orange plot shows individual fibers, while the black has been smoothed by five
pixels to highlight large-scale structure. Right: failure rate of eBOSS LRG sample as a function of location of fiber head on the physical plug plate.
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accompanied by catalogs of redshift measurements and spectral
classifications produced by redmonster.

Funding for the Sloan Digital Sky Survey IV has been
provided by the Alfred P. Sloan Foundation and the
Participating Institutions. SDSS-IV acknowledges support and
resources from the Center for High-Performance Computing at
the University of Utah. The SDSS web site iswww.sdss.org.

SDSS-IV is managed by the Astrophysical Research
Consortium for the Participating Institutions of the SDSS
Collaboration including the Brazilian Participation Group,
Carnegie Institution for Science, Carnegie Mellon University,
the Chilean Participation Group, Harvard-Smithsonian Center
for Astrophysics, Instituto de Astrofísica de Canarias, The
Johns Hopkins University, Kavli Institute for the Physics and
Mathematics of the universe (IPMU)/University of Tokyo,
Lawrence Berkeley National Laboratory, Leibniz Institut für
Astrophysik Potsdam (AIP), Max-Planck-Institut für Astro-
physik (MPA Garching), Max-Planck-Institut für Extraterres-
trische Physik (MPE), Max-Planck-Institut für Astronomie
(MPIA Heidelberg), National Astronomical Observatory of

China, New Mexico State University, New York University,
University of Notre Dame, Observatório Nacional do Brasil,
The Ohio State University, Pennsylvania State University,
Shanghai Astronomical Observatory, United Kingdom Partici-
pation Group, Universidad Nacional Autónoma de México,

Table 3
Redshift Distribution for the LRG Sample from Visual Inspections, spectro1d, and redmonster

Using Tagged Versions v5_9_0 and v5_10_0 of the Reductions

Visual Visual spectro1d redmonster spectro1d redmonster
(qconf>0) (qconf>1) (DR13) (DR13) (DR14) (DR14)

Poor Spectra 4.0 6.7 17.7 7.7 14.3 5.7
Stellar 5.3 5.3 6.5 2.9 5.4 4.9
0.0<z<0.5 0.6 0.6 0.6 0.5 0.6 0.5
0.5<z<0.6 6.2 5.9 5.2 6.2 3.4 6.2
0.6<z<0.7 15.2 14.8 11.3 14.3 12.4 14.7
0.7<z<0.8 15.3 14.7 11.4 16.1 12.9 15.3
0.8<z<0.9 9.4 8.7 5.6 8.8 6.8 8.9
0.9<z<1.0 3.2 2.7 1.4 2.5 1.7 2.7
1.0<z<1.1 0.5 0.4 0.3 0.9 0.3 1.0
1.1<z<1.2 0.1 0.1 0.1 0.2 0.1 0.2

Total Targets 60 60 60 60 60 60
Total Tracers 43.1 41.0 29.7 41.7 33.9 41.7

Note. The surface densities are presented in units of deg−2 assuming that 100% of the objects in the parent sample are spectroscopically observed. Entries highlighted
in bold font denote the fraction of the sample that satisfies the high-level requirement for the redshift distribution of the sample.

Figure 14. Histogram of redshift differences of eBOSS LRG targets on extra-
deep plates that have had observations split into spectra of typical eBOSS
depth, scaled by the quadrature sum of the statistical error estimates of each
split. Over-plotted is the best-fit Gaussian model, with a standard deviation of
σ=0.65 and a mean of μ=0.01.

Table 4
Mean and Standard Deviation of Estimated Statistical Redshift Error in Several

S/N Bins in SDSS r-, i-, and z-bands

SDSS band S/N range sv¯ Var sv
1 2( )

r 1.0 < S/N < 1.5 34.50 10.41
r 1.5 < S/N < 2.0 28.10 8.83
r 2.0 < S/N < 2.5 22.38 7.99
r 2.5 < S/N < 3.0 18.59 15.25
i 1.0 < S/N < 1.5 52.18 17.40
i 1.5 < S/N < 2.0 46.50 14.80
i 2.0 < S/N < 2.5 41.56 12.52
i 2.5 < S/N < 3.0 36.76 9.97
i 3.0 < S/N < 3.5 32.89 8.88
i 3.5 < S/N < 4.0 29.56 8.48
z 1.0 < S/N < 1.5 51.51 16.88
z 1.5 < S/N < 2.0 46.10 13.99
z 2.0 < S/N < 2.5 40.38 10.96
z 2.5 < S/N < 3.0 35.68 9.42
z 3.0 < S/N < 3.5 32.02 8.49
z 3.5 < S/N < 4.0 28.93 7.38

Note. Values are given in km s−1.

Table 5
Mean and Standard Deviation of Estimated Statistical

Redshift Error in Several Redshift Bins

Redshift range sv¯ Var sv
1 2( )

0.6<z<0.7 37.36 12.24
0.7<z<0.8 38.69 13.21
0.8<z<0.9 41.70 15.23
0.9<z<1.0 45.22 17.33

Note. Values are given in km s−1.
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APPENDIX
OUTPUT FILES

The redmonster software generates two output files for
each input set of spectra and summary files of all objects
processed by the software. The “redmonsterAll” file is the
primary output and contains all redshifts, spectral classifica-
tions, parameter estimates, and models, and is described in
Appendix A.1. The “chi2arr” file is an optional output
containing the entire c P z,2 ( ) surface for a template class and
is described in Appendix A.2. A more detailed description of
these files can be found in the online documentation.17

A.1. redmonster Files

The “redmonsterAll” file is the primary output of the
software. This file contains all redshift and parameter
measurements, spectral classifications, and the best-fit model
for each object. This output is an uncompressed FITS file with
all relevant information in the primary HDU header and first
BIN table. The contents of the BIN table are detailed in
Table 6. It has the naming scheme redmonsterAll-vvvvvv.fits,
where vvvvvv is the version of the reduction used. This file is
the parallel to the spAll file produced by spectro1d in
BOSS and eBOSS.

Figure 15. Composite spectra for five ages as estimated by redmonster. The data are shown in black, and the template of corresponding age is shown in teal. Here,
age is the only free parameter; thus one should not over-interpret mismatches between composites and models.

Figure 16. Distributions of the age of the template component in the best-fit
model to each spectrum in four redshift slices.

17 https://data.sdss.org/datamodel/files/REDMONSTER_SPECTRO_
REDUX
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Additionally, a batch file is created for each batch of spectra
processed. It is the parallel to spectro1dʼs spZall for an
SDSS plate in BOSS and eBOSS, and is named redmonster-
pppp-mmmmm.fits, where pppp is the plate number and
mmmmm is the MJD. The file contains a primary header, a binary
extension (similar in format to that of redmonsterAll)
containing the best five redshifts and classifications for each fiber,
and an imageHDU containing a two-dimensional image of the
five best-fit models for all fibers. The size of this file is
approximately 20MB for 1000 spectra of ∼4600 pixels each.

A.2. chi2arr File

The software also has the ability to write the full c P z,2 ( )
surfaces for each template class to an output file. These are also
uncompressed FITS files. The primary HDU contains a multi-
dimensional image of all χ2 values for a single template
class for each spectrum. These files follow the naming scheme
chi2arr-ttttttt-vvvvvv.fits, where tttttt is the name of the template
class and vvvvvv is the version of the reduction used. The primary
HDU contains a multi-dimensional array of the full χ2 surface for
that template class. These files are written per batch of spectra
processed. A summary file similar to redmonsterAll does
not exist due to the large size of these files (often several GB per
1000 spectra).
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Table 6
redmonster All File Binary Table Contents

Name Description

FIBERID spPlate fiber number (0-based) for each object
PLATE spPlate plate number for each object
MJD spPlate MJD for each object
DOF Degrees of freedom used to calculate cred

2

BOSS_TARGET1 BOSS targeting bit
EBOSS_TARGET0 SEQUELS targeting bit
EBOSS_TARGET1 EBOSS targeting bit
Z Best redshift (least cred

2 )

Z_ERR 1-σ error associated with Z
CLASS Object type classification
SUBCLASS Best-fit template parameters
FNAME Full name of ndArch file of template
MINVECTOR Coordinates of best-fit template in ndArch file
MINRCHI2 cred

2 value of fit

NPOLY Number of additive polynomials used
NPIXSTEP Pixel step size used
THETA Coefficients of template and polynomial terms in fit
ZWARNING ZWARNING flags
RCHI2DIFF cD red

2 between first- and second-best fits

CHI2NULL cnull
2 value for each spectrum

SN2DATA (S/N)2 of each spectrum

Note. Each SDSS plate’s reduction file contains the best five redshifts, errors,
and classifications (Z1, Z_ERR1, CLASS1, etc.).
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