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Abstract. We introduce multifractal zetafunctions providing precise information of a very
general class of multifractal spectra, including, for example, the multifractal spectra of self-
conformal measures and the multifractal spectra of ergodic Birkhoff averages of continuous
functions. More precisely, we prove that these and more general multifractal spectra equal
the abscissae of convergence of the associated zeta-functions.
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1. Introduction

Measures with widely varying intensity are called multifractals and have dur-
ing the past 20 years been the focus of enormous attention in the mathemati-
cal literature. Loosely speaking there are two main ingredients in multifractal
analysis: the multifractal spectrum and the Renyi dimensions. One of the main
goals in multifractal analysis is to understand these two ingredients and their
relationship with each other. It is generally believed by experts that the mul-
tifractal spectrum and the Renyi dimensions of a measure encode important
information about the measure, and it is therefore of considerable importance
to find explicit formulas for these quantities. In [29,37–39] the authors used
the zeta-function technique introduced and pioneered by M. Lapidus et al in
the intriguing books [27,28] in order to find explicit formulas for the Renyi
dimensions of a self-similar measure. At this point we note that it is generally
believed that analysing the multifractal spectrum of a measure is consider-
ably more difficult and challenging than analysing its Renyi dimensions, and
the main purpose of this paper is to address the substantially more difficult
problem of finding explicit formulas for the multifractal spectrum of a self-
similar measure similar to the explicit formulas for its Renyi dimensions found
in [29,37–39]. In particular, and as a first step in this direction, we introduce
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multifractal zeta-functions providing precise information of very general classes
of multifractal spectra, including, for example, the multifractal spectra of self-
conformal measures and the multifractal spectra of ergodic Birkhoff averages
of continuous functions. More precisely, we prove that these, and more gen-
eral multifractal spectra, equal the abscissae of convergence of the associated
zeta-functions.

1.1. The first ingredient in multifractal analysis: multifractal spectra

For a Borel measure μ on R
d with support equal to K and a positive number

α, let us consider the set Δμ(α) of those points x in R
d for which the measure

μ(B(x, r)) of the ball B(x, r) with center x and radius r behaves like rα for
small r, i.e. the set

Δμ(α) =

{
x ∈ K

∣∣∣∣∣ lim
r↘0

log μ(B(x, r))
log r

= α

}
.

If the intensity of the measure μ varies very widely, it may happen that the
sets Δμ(α) display a fractal-like character for a range of values of α. In this
case it is natural to study the Hausdorff dimension of the sets Δμ(α) as α
varies. We therefore define the multifractal spectrum of μ by

fμ(α) = dimH Δμ(α) , (2.1)

where dimH denotes the Hausdorff dimension. Here and below we use the
following convention, namely, we define the Hausdorff dimension of the empty
set to be −∞, i.e. we put

dimH ∅ = −∞.

One of the main problems in multifractal analysis is to study this and related
functions. The function fμ(α) was first explicitly defined by the physicists
Halsey et al. in 1986 in their seminal paper [16].

The multifractal spectrum fμ is defined using the Hausdorff dimension.
There is an alternative approach using “box-counting” arguments leading to
the coarse multifractal spectrum. Namely, for a Borel probability measure μ
on R

d with support equal to K and a real number α, the coarse multifractal
spectrum is defined as follows. For positive real numbers r > 0 and δ > 0, we
write

Nμ,δ(α; r) = sup

{
|I|

∣∣∣∣∣ (B(xi, δ))i∈I is a finite family of balls such that:

xi ∈ K for all i.

B(xi, δ) ∩ B(xj , δ) = ∅ for all i �= j,
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α − r ≤ log μ(B(xi, δ))
log δ

≤ α + r for all i

}
, (1.3)

and define the r-approximate coarse multifractal spectrum f c
μ(α; r) of μ by

f c
μ(α; r) = lim inf

δ↘0

log Nμ,δ(α; r)
− log δ

. (1.4)

Finally, the coarse multifractal spectrum f c
μ(α) of μ is defined by

f c
μ(α) = lim

r↘0
f c

μ(α; r) (1.5)

(it is clear that this limit exists since f c
μ(α; r) is a monotone function of r). We

note that it is easily seen that

fμ(α) ≤ f c
μ(α) ,

and that this inequality may be strict, see, for example, [10].

1.2. The second ingredient in multifractal analysis: Renyi dimensions

Renyi dimensions quantify the varying intensity of a measure by analyzing its
moments at different scales. Formally, Renyi dimensions are defined as follows.
Let μ be a Borel measure on R

d. For E ⊆ R
d, q ∈ R and δ > 0, we define the

q-moment Mμ,δ(q;E) of μ on E at scale δ by

Mμ,δ(q; E)=sup

{∑
i∈I

μ(B(xi, δ))
q

∣∣∣∣∣ (B(xi, δ))i∈I is a finite family of balls such that:

xi ∈ K for all i.

B(xi, δ) ∩ B(xj , δ) = ∅ for all i �= j

}
,

We now define the lower and upper Renyi spectra τμ(·;E), τμ(·;E) : R →
[−∞,∞] of μ by

τμ(q;E) = lim inf
δ↘0

log Mμ,δ(q;E)
− log δ

,

τμ(q;E) = lim sup
δ↘0

log Mμ,δ(q;E)
− log δ

.

If E equals the support suppμ of μ, then we will use the following shorter
notation

Mμ,δ(q) = Mμ,δ(q; supp μ) , τμ(q) = τμ(q; supp μ) , τμ(q) = τμ(q; supp μ).

We note that the q-moment Mμ,δ(q;E) is closely related to the box dimension
dimB E of E. Indeed, if we let Mδ(E) denote the greatest number of pairwise
disjoint balls of radii δ with centers in E, then it follows from the definition of
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the box dimension that dimB E = limδ→0
log Mδ(E)

− log δ (provided the limit exists)
and we clearly have

Mδ(E) = Mμ,δ(0;E). (1.6)

It is also possible to define an integral version of the q-moments Mμ,δ(q;E).
Namely, for E ⊆ R

d, q ∈ R and δ > 0, we define the integral q-moment Vμ,δ(q)
of μ on E at scale δ by

Vμ,δ(q;E) =
∫

B(E,δ)

μ(B(x, δ))q dLd(x)

where B(E, δ) = {x ∈ R
d | dist(x,E) ≤ δ} and Ld denotes the Lebesgue

measure in R
d. We now define the lower and upper integral Renyi spectra

Tμ(·;E), T μ(·;E) : R → [−∞,∞] of μ by

Tμ(q;E) = lim inf
δ↘0

log Vμ,δ(q;E)
− log δ

,

Tμ(q;E) = lim sup
δ↘0

log Vμ,δ(q;E)
− log δ

.

As above, if E equals the support suppμ of μ, then we will use the following
shorter notation

Vμ,δ(q) = Vμ,δ(q; supp μ) , Tμ(q) = Tμ(q; supp μ) , Tμ(q) = Tμ(q; supp μ).

As above, we note that the integral q-moment Vμ,δ(q;E) is also closely re-
lated to the Minkowski volume of E and the box dimension dimB E of E.
Namely, if we let Vδ(E) denote the δ approximate Minkowski volume of E, i.e.

Vδ(E) = Ld(B(E, δ) ), then it is well-known that dimB E = limδ→0
log( 1

rd Vδ(E))

− log δ

(provided the limit exists) and we clearly have

Vδ(E) = Vμ,δ(0;E). (1.7)

1.3. The multifractal formalism

Based on a remarkable insight together with a clever heuristic argument, it
was suggested by theoretical physicists Halsey et al. [16] that the multifractal
spectra fμ and f c

μ can be computed using the Renyi dimensions. This result
is known as the “Multifractal Formalism” in the physics literature. More pre-
cisely, the “Multifractal Formalism” says that the multifractal spectra equal
the Legendre transform of the Renyi dimensions. Recall that if ϕ : R → R is a
real valued function, then the Legendre transform ϕ∗ : R → [−∞,∞] of ϕ is
defined by

ϕ∗(x) = inf
y

(xy + ϕ(y)). (1.8)
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We can now state the “Multifractal Formalism”.
The multifractal formalism—a physics Folklore theorem The multifractal spec-
trum fμ of μ and the coarse multifractal spectrum f c

μ of μ equal the Legendre
transforms τ∗

μ, τ∗
μ, (Tμ)∗ and (Tμ)∗ of the Renyi dimensions, i.e.

fμ(α) = f c
μ(α) = τ∗

μ(α) = τ∗
μ(α) = T ∗

μ(α) = T
∗
μ(α)

for all α.
During the past 20 years there has been an enormous interest in verifying

the Multifractal Formalism and computing the multifractal spectra of measures
in the mathematical literature. In the mid 1990’s Cawley and Mauldin [6] and
Arbeiter and Patzschke [1] verified the Multifractal Formalism for self-similar
measures satisfying the OSC, and within the last 15 years the multifractal
spectra of various classes of measures in the Euclidean space R

d exhibiting
some degree of self-similarity have been computed rigorously, cf. the text-
books [11,43] and the references therein. Summarizing the previous paragraph
somewhat more succinctly, we can say that previous work has almost entirely
concentrated on the following problem:

Previous work: Previous work has concentrated on finding the limiting behav-
iour of the following ratios, namely,

log Mμ,δ(q)
− log δ

and

log Nμ,δ(α; r)
− log δ

.

Indeed, computing the Renyi dimensions τμ(q) and τμ(q) involves analysing
the limiting behaviour of log Mμ,r(q)

− log r , and computing the coarse multifractal

spectrum f c
μ(α; r) involves analysing the limiting behaviour of log Nμ,δ(α;r)

− log δ .
Due to the importance of the quantities Mμ,δ(q) and Nμ,δ(α; r) it is clearly
desirable not only to find expressions for the limiting behaviour of log Mμ,δ(q)

− log δ

and log Nμ,δ(α;r)
− log δ , but to find explicit expressions for the quantities Mμ,δ(q) and

Nμ,δ(α; r) themselves. The purpose of this work can be seen as a first step
in this direction. Again, summarizing this somewhat more succinctly, in the
present work we concentrate on the following problem:

Present work: This work explores methods of finding explicit expressions for

Mμ,δ(q)
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and

Nμ,δ(α; r).

It is clear that finding explicit expressions for Mμ,δ(q) and Nμ,δ(α; r) is a
more challenging undertaking than determining the limiting behaviour of the
ratios log Mμ,δ(q)

− log δ and log Nμ,δ(α;r)
− log δ ; indeed, if explicit expressions for Mμ,δ(q)

and Nμ,δ(α; r) are known, then the limiting behaviour of the ratios log Mμ,δ(q)
− log δ

and log Nμ,δ(α;r)
− log δ can be computed directly from these expressions.

We will now describe our strategy for analysing the quantities Mμ,δ(q)
and Nμ,δ(α; r). Very loosely speaking, the quantities Mμ,δ(q) and Nμ,δ(α; r)
“count” the number of balls B(x, δ) satisfying certain conditions. There are two
distinct and widely used techniques for analysing the asymptotic behaviour of
such (and similar) “counting functions”, namely, (1) using ideas from renewal
theory or (2) using the Mellin transform and the residue theorem to express the
“counting functions” as sums involving the residues of suitably defined zeta-
functions. Indeed, renewal theory techniques were introduced and pioneered
by Lalley [19–21] in the 1980’s, and later investigated further by Gatzouras
[15], Winter [48] and most recently Kesseböhmer and Kombrink [18], in order
to analyse the asymptotic behaviour of the “counting function” Mδ(E) =
Mμ,δ(0, E) = Mμ,δ(0) for self-similar sets E (see (1.6)) and similar “counting
functions” from fractal geometry. However, while renewal theory techniques are
powerful tools for analysing the asymptotic behaviour of “counting functions”,
they do not yield “explicit” formulas. This is clearly unsatisfactory and it would
be desirable if “explicit” expressions could be found. However, in spite of the
difficulties, the problem of finding “explicit” formulas of “counting functions”
in fractal geometry has recently attracted considerable interest. In particular,
Lapidus and collaborators [22–24,27,28] have with spectacular success during
the past 20 years pioneered the use of applying the Mellin transform to suitably
defined zeta-functions in order to obtain explicit formulas for the Minkowski
volume Vδ(E) = Vμ,δ(0, E) = Vμ,δ(0) of self-similar fractal subsets E of the
line (see (1.7)).

It would clearly be desirable if similar formulas could be found for the mul-
tifractal quantities Mμ,δ(q) and Nμ,δ(α; r) of self-similar (and more general)
multifractal measures μ. In multifractal analysis it is generally believed that
analysing the q-moments Mμ,δ(q) and the associated Renyi dimensions τ∗

μ(α)
and τ∗

μ(α) is less difficult than analysing the “counting function” Nμ,δ(α; r)
and the associated multifractal spectra fμ and f c

μ. Indeed, in [29,37] (see also
the surveys [38,39]) the authors introduced a one-parameter family of mul-
tifractal zeta-functions and established explicit formulas for the integral q-
moments Vμ,δ(q) expressing Vμ,δ(q) as a sum involving the residues of these
zeta-functions, and in [34] the asymptotic behaviour of the q-moments Mμ,δ(q)
were analysed using techniques from renewal theory. In addition, we note that
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Lapidus and collaborators have introduced various intriguing multifractal zeta-
functions [25,26]. However, the multifractal zeta-functions in [25,26] serve very
different purposes and are significantly different from the multifractal zeta-
functions introduced in [29,35,37]. The purpose of this paper is to address
the significantly more difficult and challenging problem of performing a sim-
ilar analysis of the multifractal spectrum “counting function” Nμ,δ(α; r). In
particular, the final aim is to introduce a class of multifractal zeta-functions
allowing us to derive explicit formulas for the “counting function” Nμ,δ(α; r)
expressing Nμ,δ(α; r) as a sum involving the residues of these zeta-functions.
As a first step in this direction, in this work we introduce multifractal zeta-
functions providing precise information of very general classes of multifractal
spectra, including, for example, the spectra fμ and f c

μ of self-similar multifrac-
tal measures μ. More precisely, we prove that the multifractal spectra equal the
abscissae of convergence of the associated zeta-functions. It is our hope that a
more careful analysis of these zeta-functions will provide explicit formulas for
the “counting function” Nμ,δ(α; r) allowing us to express Nμ,δ(α; r) as a sum
involving the residues of these zeta-functions; this will be explored in [32]. In
order to illustrate the ideas involved we now consider a simple example.

1.4. An example illustrating the ideas: self-similar measures

To illustrate the above ideas in a simple setting, we consider the following
example involving self-similar measures. Recall, that self-similar measures are
defined as follows. Let (S1, . . . , SN ) be a list of contracting similarities Si :
R

d → R
d and let ri denote the similarity ratio of Si. Also, let (p1, . . . , pN ) be

a probability vector. Then there is a unique Borel probability measure μ on
R

d such that

μ =
∑

i

piμ ◦ S−1
i , (1.9)

see [10,17]. The measure μ is called the self-similar measure associated with
the list (S1, . . . , SN , p1, . . . , pN ). If the so-called Open Set Condition (OSC) is
satisfied, then the multifractal spectra fμ and f c

μ are given by the following
formula. Namely, if the OSC is satisfied and if we define β : R → R by∑

i

pq
i r

β(q)
i = 1 , (1.10)

then it follows from, [6,42] that

fμ(α) = f c
μ(α) = β∗(α)

for all α ∈ R where β∗ denotes the Legendre transform of β (recall, that the
definition of the Legendre transform is given in (1.8)).
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For α ∈ R, we are now attempting to introduce a “natural” self-similar
multifractal zeta-function ζsimα whose abscissa of convergence equals fμ(α). To
do this we first introduce the following notation. Write Σ∗ = {i = i1 · · · in |n ∈
N , ij ∈ {1, . . . , N} } i.e. Σ∗ is the set of all finite strings i = i1 · · · in with
n ∈ N and ij ∈ {1, . . . , N}. For a finite string i = i1 · · · in ∈ Σ∗ of length n,
we write |i| = n, and we write ri = ri1 · · · rin

and pi = pi1 · · · pin
. With this

notation, we can now motivate the introduction of a “natural” multifractal
zeta-function as follows. Namely, since fμ(α) measures the size of the set of
points x for which limδ↘0

log μ(B(x,δ))
log δ = α and since log μ(B(x,δ))

log δ has the same
form as log pi

log ri
, it is natural to define the self-similar multifractal zeta-function

ζsimα by

ζsimα (s) =
∑
i

log pi
log ri

=α

rs
i (1.11)

for those complex numbers s for which the series converges absolutely. An
easy and straightforward calculation (which we present below) shows that the
abscissa of convergence σab( ζsimα ) of ζsimμ is less than fμ(α), i.e.

σab( ζsimα ) ≤ fμ(α) = f c
μ(α). (1.12)

Indeed, if α �∈ [mini
log pi

log ri
,maxi

log pi

log ri
], then it is easily seen that for all i ∈ Σ∗,

we have log pi

log ri
�= α, whence σab( ζsimα ) = −∞, and inequality (1.12) is therefore

trivially satisfied. On the other hand, if α ∈ [mini
log pi

log ri
,maxi

log pi

log ri
], then it

follows from [6,10,42] that there is a (unique) q ∈ R with fμ(α) = f c
μ(α) =

αq+β(q). Hence, for each ε > 0, we have (using the fact that
∑

i pq
i r

β(q)+ε
i < 1)

ζsimα

(
fμ(α) + ε

)
=

∑
i

log pi
log ri

=α

r
fμ(α)+ε
i

=
∑
i

log pi
log ri

=α

r
αq+β(q)+ε
i

=
∑
i

log pi
log ri

=α

pq
i r

β(q)+ε
i

≤
∑
i

pq
i r

β(q)+ε
i
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=
∑

n

∑
|i|=n

pq
i r

β(q)+ε
i

=
∑

n

(∑
i

pq
i r

β(q)+ε
i

)n

< ∞.

This shows that σab( ζsimα ) ≤ fμ(α) + ε. Letting ε ↘ 0, now gives σab( ζsimα ) ≤
fμ(α). This proves (1.12).

However, it is also clear that we, in general, do not have equality in (1.12).
Indeed, the set { log pi

log ri
| i ∈ Σ∗} is clearly countable (because Σ∗ is count-

able) and if α ∈ R \ { log pi

log ri
| i ∈ Σ∗}, then σab( ζα ) = −∞ (because the se-

ries (1.11) that defines ζsimα (s) is obtained by summing over the empty set).
Since it also follows from [6,10,42] that fμ(α) = f c

μ(α) > 0 for all α ∈
(mini

log pi

log ri
,maxi

log pi

log ri
), we therefore conclude that:

σab( ζsimα ) = −∞ < 0 < fμ(α) = f c
μ(α)

for all except at most countably many α ∈ (min
i

log pi

log ri
,max

i

log pi

log ri
).

(1.13)

It follows from the above discussion that while the definition of ζsimα (s)
is “natural”, it does not encode sufficient information for us to recover the
multifractal spectra fμ(α) and f c

μ(α). The reason for the strict inequality in
(1.13) is, of course, clear: even though there are no strings i ∈ Σ∗ for which
the ratio log pi

log ri
equals α if α ∈ (mini

log pi

log ri
,maxi

log pi

log ri
) \ { log pi

log ri
| i ∈ Σ∗}, there

are nevertheless many sequences (in)n of strings in ∈ Σ∗ for which the ratios
log pin

log rin
converge to α. In order to capture this, it is necessary to ensure that

those strings i for which the ratio log pi

log ri
is “close” to α are also included in

the series defining the multifractal zeta-function. For this reason, we modify
the definition of ζsimα and introduce a self-similar multifractal zeta-function
obtained by replacing the original small “target” set {α} by a larger “target”
set I (for example, we may choose the enlarged “target” set I to be a non-
degenerate interval). In order to make this idea precise we proceed as follows.
For a closed interval I, we define the self-similar multifractal zeta-function ζsimI

by

ζsimI (s) =
∑
i

log pi
log ri

∈I

rs
i (1.14)
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for those complex numbers s for which the series converges absolutely. Observe
that if I = {α}, then

ζsimI (s) = ζsimα (s).

We can now proceed in two equally natural ways. Either, we can consider a
family of enlarged “target” sets shrinking to the original main “target” {α};
this approach will be referred to as the shrinking target approach. Or, alter-
natively, we can consider a fixed enlarged “target” set and regard this as our
original main “target”; this approach will be referred to as the fixed target
approach. We now discuss these approaches in more detail.
(1) The shrinking target approach. For a given (small) “target” {α}, we con-
sider the following family

(
[α − r, α + r]

)
r>0

of enlarged “target” sets [α −
r, α + r] shrinking to the original main “target” {α} as r ↘ 0, and attempt to
relate the limiting behaviour of the abscissa convergence of ζsim[α−r,α+r] to the
multifractal spectrum fμ(α) at α. In order to make this idea formal we pro-
ceed as follows. For each α ∈ R and for each r > 0, we define the zeta-function
ζsimα (·; r) by

ζsimα (s; r) = ζsim[α−r,α+r](s)

=
∑
i

log pi
log ri

∈[α−r,α+r]

rs
i

=
∑
i∣∣ log pi

log ri
−α

∣∣≤r

rs
i . (1.15)

The next result, which is an application of one of our main results (namely
Theorem 3.6), shows that the multifractal zeta-functions ζsimα (·; r) encode suf-
ficient information for us to recover the multifractal spectra fμ(α) and f c

μ(α)
by letting r ↘ 0.

Theorem 1.1. (Shrinking targets) Assume that the list (S1, . . . SN ) satisfies
the OSC and let μ be the self-similar measure defined by (1.9). For α ∈ R and
r > 0, let ζsimα (·; r) be defined by (1.15). Then we have

lim
r↘0

σab

(
ζsimα (·; r) ) = fμ(α) = f c

μ(α)

where σab

(
ζsimα (·; r) ) denotes the abscissa of convergence of the zeta-function

ζsimα (·; r).
(2) The fixed target approach. Alternatively we can keep the enlarged “target”
set I fixed and attempt to relate the abscissa of convergence of the multifractal
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zeta-function ζsimI associated with the enlarged “target” set I to the values of
the multifractal spectrum fμ(α) for α ∈ I. Of course, inequality (1.13) shows
that if the “target” set I is “too small”, then this is not possible. However, if
the enlarged “target” set I satisfies a mild non-degeneracy condition, namely
condition (1.16), guaranteeing that I is sufficiently “big”, then the next result,
which is also an application of one of our main results (namely Theorem 3.6),
shows that this is possible. More precisely the result shows that if the enlarged
“target” set I satisfies condition (1.16), then the multifractal zeta-function ζsimI

associated with the enlarged “target” set I encode sufficient information for
us to recover the suprema supα∈I fμ(α) and supα∈I f c

μ(α) of the multifractal
spectra fμ(α) and f c

μ(α) for α ∈ I.

Theorem 1.2. (Fixed targets) Assume that the list (S1, . . . SN ) satisfies the
OSC and let μ be the self-similar measure defined by (1.9). For a closed interval
I, let ζsimI be defined by (1.14). If

◦
I ∩

(
min

i

log pi

log ri
,max

i

log pi

log ri

)
�= ∅ (1.16)

(where
◦
I denotes the interior of I), then we have

σab

(
ζsimI

)
= sup

α∈I
fμ(α) = sup

α∈I
f c

μ(α)

where σab

(
ζsimI

)
denotes the abscissa of convergence of the zeta-function ζsimI .

We emphasise that Theorems 1.1 and 1.2 are presented in order to motivate
this work and are special cases of the substantially more general theory of
multifractal zeta-functions developed in this paper.

The next section, i.e. Sect. 2, describes the general framework developed
in this paper and list our main results. In Sect. 3 we will discuss a number of
examples, including, mixed and non-mixed multifractal spectra of self-similar
and self-conformal measures, and multifractal spectra of Birkhoff ergodic av-
erages.

2. Statements of main results

2.1. Main definitions: the zeta-functions ζU,Λ
C (·) and ζU,Λ

C (·; r)

In this section we describe the framework developed in this paper and list our
main results. We first recall and introduce some useful notation. Fix a positive
integer N . Let Σ = {1, . . . , N} and for a positive integer n, write

Σn = {1, . . . , N}n ,

Σ∗ =
⋃
m

Σm ,



V. Mijović, L. Olsen AEM

i.e. Σn is the family of all strings i = i1 · · · in of length n with ij ∈ {1, . . . , N}
and Σ∗ is the family of all finite strings i = i1 · · · im with m ∈ N and ij ∈
{1, . . . , N}. Also write

ΣN = {1, . . . , N}N ,

i.e. ΣN is the family of all infinite strings i = i1i2 . . . with ij ∈ {1, . . . , N}.
For an infinite string i = i1i2 . . . ∈ ΣN and a positive integer n, we will write
i|n = i1 · · · in. In addition, for a positive integer n and a finite string i =
i1 · · · in ∈ Σn with length equal to n, we will write |i| = n, and we let [i]
denote the cylinder generated by i, i.e.

[i] =
{
j ∈ ΣN

∣∣∣ j|n = i
}

.

Also, let S : ΣN → ΣN denote the shift map. Finally, we denote the family
of Borel probability measures on ΣN by P(ΣN) and we equip P(ΣN) with the
weak topology.

The multifractal zeta-function framework developed in this paper depend
on a space X and two maps U and Λ satisfying various conditions. We will
now introduce the space X and the maps U and Λ.

(1) First, we fix a metric space X.
(2) Next, we fix a continuous map U : P(ΣN) → X.
(3) Finally, we fix a function Λ : ΣN → R satisfying the following three

conditions:
(C1) The function Λ is continuous;
(C2) There are constants cmin and cmax with −∞ < cmin ≤ cmax < 0

such that cmin ≤ Λ ≤ cmax;
(C3) There is a constant c with c ≥ 1 such that for all positive integers

n and all i, j ∈ ΣN with i|n = j|n, we have

1
c

≤ exp
∑n−1

k=0 ΛSki

exp
∑n−1

k=0 ΛSkj
≤ c.

Condition (C2) is clearly motivated by the hyperbolicity condition
from dynamical systems, and Condition (C3) is equally clearly moti-
vated by the bounded distortion property from dynamical systems.

Associated with the space X and the maps U and Λ, we now define the fol-
lowing multifractal zeta-functions.

Definition. (The zeta-functions ζU,Λ
C and ζU,Λ

C (·; r) associated with the space X
and the maps U and Λ) For a finite string i ∈ Σn, let

si = sup
k∈[i]

exp
n−1∑
k=0

ΛSkk ,
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and for a positive integer n and an infinite string i ∈ ΣN, let Ln : ΣN → P(ΣN)
be defined by

Lni =
1
n

n−1∑
k=0

δSki.

For C ⊆ X, we define the zeta-function ζU,Λ
C associated with the space X and

the maps U and Λ by

ζU,Λ
C (s) =

∑
i

UL|i|[i]⊆C

ss
i

for those complex numbers s for which the series converges absolutely, and for
r > 0 and C ⊆ X, we define the zeta-function ζU,Λ

C (·; r) associated with the
space X and the maps U and Λ by

ζU,Λ
C (s; r) = ζU,Λ

B(C,r)(s)

=
∑
i

UL|i|[i]⊆B(C,r)

ss
i

for those complex numbers s for which the series converges absolutely and
where B(C, r) = {x ∈ X | dist(x,C) ≤ r} denotes the closed neighborhood r
of C.

Next, we formally define the abscissa of convergence (of a zeta-function).

Definition. (Abscissa of convergence) Let ( ai )i∈Σ∗ be a family of positive num-
bers and define the (zeta-)function ζ by

ζ(s) =
∑
i

as
i

for those complex numbers s for which the series converges. The abscissa of
convergence of ζ is defined by

σab(ζ) = inf

{
t ∈ R

∣∣∣ the series
∑
i

at
i converges absolutely

}
.

Our main results, i.e. Theorems 2.1 and 2.2 below, relate the abscissa of
converge of the zeta-functions ζU,Λ

C (·; r) and ζU,Λ
C to various multifractal quan-

tities, including, the coarse multifractal spectrum associated with the space X
and the maps U and Λ. In order to state Theorems 2.1 and 2.2 we will now
define the coarse multifractal spectra.

Definition. (The coarse multifractal spectra associated with the space X and
the maps U and Λ) For i = i1 · · · in ∈ Σ∗, we let î = i1 · · · in−1 ∈ Σ∗ denote
the “parent” of i. Next, for i ∈ Σ∗ and δ > 0, we write

si ≈ δ



V. Mijović, L. Olsen AEM

if and only if si ≤ δ < sî. For r > 0 and C ⊆ X, let

ΠU,Λ
δ (C, r) =

{
i
∣∣∣ si ≈ δ , UL|i|[i] ⊆ B(C, r)

}
and

NU,Λ
δ (C, r) =

∣∣∣ΠU,Λ
δ (C, r)

∣∣∣.
We define the lower and upper r-approximate coarse multifractal spectrum
associated with the space X and the maps U and Λ by

fU,Λ(C, r) = lim inf
δ↘0

log NU,Λ
δ (C, r)

− log δ
,

f
U,Λ

(C, r) = lim sup
δ↘0

log NU,Λ
δ (C, r)

− log δ
,

and we define the lower and upper coarse multifractal spectrum associated
with the space X and the maps U and Λ by

fU,Λ(C) = lim
r↘0

fU,Λ(C, r) ,

f
U,Λ

(C) = lim
r↘0

f
U,Λ

(C, r).

Below we state our main results. As suggested by the discussion in Sect. 1.4,
we will attempt to relate the abscissae of convergence of the multifractal zeta-
functions ζU,Λ

C and ζU,Λ
C (·; r) to various multifractal spectra using two different

but equally natural approaches: the shrinking target approach or the fixed
target approach. The shrinking target approach is discussed in Sect. 2.2 and
the fixed target approach is discussed in Sect. 2.3.

2.2. First main result: the shrinking target approach: finding limr↘0 σab(
ζU,Λ
C (·; r) )

For a given “target” C, we consider the following family
(
B(C, r)

)
r>0

of
enlarged “target” sets B(C, r) shrinking to the original main “target” C as r ↘
0, and attempt to relate the limiting behaviour of the abscissa of convergence
of the zeta-function ζU,Λ

C (·; r) = ζU,Λ
B(C,r) to the coarse multifractal spectrum

fU,Λ(C) and other multifractal quatities. Our first main result, i.e. Theorem
2.1 below, shows that this approach is possible. More precisely, Theorem 2.1
shows that the abscissa of convergence of the zeta-function ζU,Λ

C (·; r) converges
as r ↘ 0, and that this limit equals the coarse multifractal spectrum of C. We
also show that the limit can be obtained by a variational principle involving
the supremum of the entropy of all shift invariant Borel probability measures
μ ∈ P(ΣN) with Uμ ∈ C. In Sect. 3 we show that in many important cases
the limit limr↘0 σab

(
ζU,Λ
C (·; r) ) equals the traditional multifractal spectra.
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Theorem 2.1. (Shrinking targets) Let X be a metric space and let U : P(ΣN) →
X be continuous with respect to the weak topology. Let C ⊆ X be a closed subset
of X.
(1) The lower coarse multifractal spectrum associated with the space X and

the maps U and Λ: we have

lim
r↘0

σab

(
ζU,Λ
C (·; r) ) = fU,Λ(C).

(2) The variational principle: we have

lim
r↘0

σab

(
ζU,Λ
C (·; r) ) = sup

μ∈PS(ΣN)

Uμ∈C

− h(μ)∫
Λ dμ

;

here PS(ΣN) denotes the family of shift invariant Borel probability mea-
sures on ΣN and h(μ) denotes the entropy of μ ∈ PS(ΣN).

In order to prove Theorem 2.1 it suffices to prove the following three in-
equalities:

lim sup
r↘0

σab

(
ζU,Λ
C (·; r) ) ≤ sup

μ∈PS(ΣN)

Uμ∈C

− h(μ)∫
Λ dμ

, (2.1)

sup
μ∈PS(ΣN)

Uμ∈C

− h(μ)∫
Λ dμ

≤ fU,Λ(C) , (2.2)

fU,Λ(C) ≤ lim inf
r↘0

σab

(
ζU,Λ
C (·; r) ). (2.3)

Inequality (2.1) is proven in Sect. 5 using techniques from the theory of large
deviations. Inequality (2.2) is proven in Sect. 6 using techniques from ergodic
theory. Finally, inequality (2.3) follows directly from the definitions and is
proved in Sect. 7.

2.3. Second main result: the fixed target approach: finding σab

(
ζU,Λ
C

)
Alternatively, instead of choosing a family of “target” sets that shrinks to the
given “target” C, we can keep the given “target” set C fixed and attempt to
relate the abscissa of convergence of the multifractal zeta-function ζU,Λ

C associ-
ated with the “target” set C to the values of the coarse multifractal spectrum
fU,Λ(C). Of course, the example in Sect. 1.4 shows that if the “target” set C is
“too small”, then this is not possible. However, if the coarse multifractal spec-
trum fU,Λ satisfies a continuity condition at C guaranteeing that the interior
of C is “sufficiently big”, then our second main result, i.e. Theorem 2.2 below,
shows that this approach is possible. More precisely, Theorem 2.2 shows that if
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the coarse multifractal spectrum fU,Λ is inner continuous at C (the definition
of inner continuity will be given below), then the abscissa of convergence of
the zeta-function ζU,Λ

C equals the coarse multifractal spectrum of C. In analogy
with Theorem 2.1, we also show that the abscissa of convergence of ζU,Λ

C can
be obtained by a variational principle involving the supremum of the entropy
of all shift invariant Borel probability measures μ ∈ P(ΣN) with Uμ ∈ C.
However, before stating Theorem 2.2, we first define the continuity condition
that the coarse multifractal spectrum fU,Λ is required to satisfy.

Definition. (Inner continuity) Let P (X) denote the family of subsets of X and
for C ⊆ X and r > 0, write

I(C, r) =
{

x ∈ C
∣∣∣ dist(x, ∂C) ≥ r

}
.

We say that a function Φ : P (X) → R is inner continuous at C ⊆ X if

Φ
(
I(C, r)

) → Φ(C) as r ↘ 0.

We can now state Theorem 2.2.

Theorem 2.2. (Fixed targets) Fix a positive integer M . Let U : P(ΣN) → R
M

be continuous with respect to the weak topology. Let C ⊆ R
M be a closed subset

of R
M and assume that fU,Λ is inner continuous at C.

(1) The lower coarse multifractal spectrum associated with R
M and the maps

U and Λ: we have

σab

(
ζU,Λ
C

)
= fU,Λ(C).

(2) The variational principle: we have

σab

(
ζU,Λ
C

)
= sup

μ∈PS(ΣN)

Uμ∈C

− h(μ)∫
Λ dμ

;

here PS(ΣN) denotes the family of shift invariant Borel probability mea-
sures on ΣN and h(μ) denotes the entropy of μ ∈ PS(ΣN).

Theorem 2.2 follows easily from Theorem 2.1 and is proved in Sect. 8.

2.4. Euler product

We will now prove that the multifractal zeta-function ζU,Λ
C has a natural Euler

product. We begin with a definition.

Definition. (Composite and prime) A finite string i ∈ Σ∗ is called composite (or
peiodic) if there are u ∈ Σ∗ and a positive integer n > 1 such that i = u · · ·u
where u is repeated n times. A finite string i ∈ Σ∗ is called prime if it is not
composite.
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Theorem 2.3 shows that ζU,Λ
C has an Euler product. In Theorem 2.3 we use

the following notation, namely, if f is a holomorphic function that does not
attain the value 0, then we let Lf denote the logarithmic derivative of f , i.e.
Lf = f ′

f . We can now state Theorem 2.3.

Theorem 2.3. (Euler product) Let X be a metric space and let U : P(ΣN) → X
be continuous with respect to the weak topology. Assume that

sij = sisj

for all i, j ∈ Σ∗. Let C ⊆ X be a closed subset of X.
(1) For complex numbers s with Re(s) > σab( ζU,Λ

C ), the product

QU,Λ
C (s) =

∏
i

i is prime

UL|i|[i]⊆C

(
1

1 − ss
i

) 1
log si

converges and QU,Λ
C (s) �= 0. The product QU,Λ

C (s) is called the Euler prod-
uct of ζU,Λ

C .
(2) For all complex numbers s with Re(s) > σab( ζU,Λ

C ), we have

ζU,Λ
C (s) = LQU,Λ

C (s).

Theorem 2.3 is proved in Sect. 9.

3. Applications: multifractal spectra of measures and multifractal
spectra of ergodic Birkhoff averages

We will now consider several applications of Theorems 2.1 and 2.2 to multi-
fractal spectra of measures and ergodic averages. In particular, we consider
the following examples:
• Section 3.1: Multifractal spectra of self-conformal measures.
• Section 3.2: Mixed multifractal spectra of self-conformal measures.
• Section 3.3: Multifractal spectra of self-similar measures.
• Section 3.4: Multifractal spectra of ergodic Birkhoff averages.

3.1. Multifractal spectra of self-conformal measures

Since our examples are formulated in the setting of self-conformal (or self-
similar) measures we begin be recalling the definition of self-conformal (and
self-similar) measures. A conformal iterated function system is a list(

V , X , (Si)i=1,...,N

)
where
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(1) V is an open, connected subset of R
d.

(2) X is a compact set with X ⊆ V and X◦ − = X.
(3) Si : V → V is a contractive C1+γ diffeomorphism with 0 < γ < 1 such

that SiX ⊆ X for all i.
(4) The Conformality Condition: For each x ∈ V , we have that (DSi)(x)

is a contractive similarity map, i.e. there exists ri(x) ∈ (0, 1) such that
|(DSi)(x)u − (DSi)(x)v| = ri(x)|u − v| for all u, v ∈ R

d; here (DSi)(x)
denotes the derivative of Si at x.

It follows from [17] that there exists a unique non-empty compact set K with
K ⊆ X such that

K =
⋃
i

SiK. (3.1)

The set K is called the self-conformal set associated with the list
(
V , X,

(Si)i=1,...,N

)
; in particular, if each map Si is a contracting similarity, then the

set K is called the self-similar set associated with the list
(
V , X , (Si)i=1,...,N

)
.

In addition, if (pi)i=1,...,N is a probability vector then it follows from [17] that
there is a unique probability measure μ with suppμ = K such that

μ =
∑

i

pi μ ◦ S−1
i . (3.2)

The measure μ is called the self-conformal measure associated with the list(
V , X , (Si)i=1,...,N , (pi)i=1,...,N

)
; if each map Si is a contracting similarity,

then the measure μ is called the self-similar measure associated with the list(
V , X , (Si)i=1,...,N , (pi)i=1,...,N

)
. We will frequently assume that the list(

V , X , (Si)i=1,...,N

)
satisfies the Open Set Condition defined below. Namely,

the list
(
V , X , (Si)i=1,...,N

)
satisfies the Open Set Condition (OSC) if there

exists an open, non-empty and bounded set O with O ⊆ X and SiO ⊆ O for
all i such that SiO ∩ SjO = ∅ for all i, j with i �= j.

Next, we define the natural projection map π : ΣN → K. However, we first
make the following definitions. Namely, for i = i1 · · · in ∈ Σ∗, write

Si = Si1 · · · Sin
,

Ki = SiK.

The natural projection map π : ΣN → K is now defined by{
π(i)

}
=

⋂
n

Si|nK

for i ∈ ΣN.
Finally, we collect the definitions and results from multifractal analysis of

self-conformal measures that we need in order to state our main results. We
first recall, that the Hausdorff multifractal spectrum fμ of μ is defined by
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fμ(α) = dimH

{
x ∈ K

∣∣∣∣ lim
r↘0

log μB(x, r)
log r

= α

}
,

for α ∈ R where dimH denotes the Hausdorff dimension. In the late 1990’s
Patzschke [42], building on works by Cawley & Mauldin [6] and Arbeiter &
Patzschke [1], succeeded in computing the multifractal spectra fμ(α) assuming
the OSC. In order to state Patzschke’s result we make the following defini-
tions. Define Φ,Λ : ΣN → R by Φ(i) = log pi1 and Λ(i) = log |DSi1(πSi)| for
i = i1i2 . . . ∈ ΣN, and for q ∈ R, let β(q) be the unique real number such that

0 = P
(
β(q)Λ + qΦ

)
;

here, and below, we use the following standard notation, namely if ϕ : ΣN → R

is a Hölder continuous function, then P (ϕ) denotes the pressure of ϕ. Also,
recall that the Legendre transform is defined in (1.8). We can now state
Patzschke’s result.

Theorem A. [P] Let μ be defined by (3.2) and α ∈ R. If the OSC is satisfied,
then we have

fμ(α) = β∗(α).

Of course, in general, the limit limr↘0
log μB(x,r)

log r may not exist. Indeed,
recently Barreira and Schmeling [4] (see also Olsen and Winter [40,41], Xiao,
Wu and Gao [49] and Moran [31]) have shown that the set of divergence points,
i.e. the set

Δμ =

{
x ∈ K

∣∣∣∣∣ the expression
log μB(x, r)

log r
diverges as r ↘ 0

}

of points x for which the limit limr↘0
log μB(x,r)

log r does not exist, is typically
highly “visible” and “observable”, namely it has full Hausdorff dimension.
More precisely, it follows from [4] that if the OSC is satisfied and t denotes
the Hausdorff dimension of K, then{

x ∈ K

∣∣∣∣∣ the expression
log μB(x, r)

log r
diverges as r ↘ 0

}
= ∅

provided μ is proportional to the t-dimensional Hausdorff measure restricted
to K, and

dimH

{
x ∈ K

∣∣∣∣∣ the expression
log μB(x, r)

log r
diverges as r ↘ 0

}
= dimH K

provided μ is not proportional to the t-dimensional Hausdorff measure re-
stricted to K. This suggests that the set Δμ has a surprisingly rich and complex
fractal structure, and in order to explore this more carefully Olsen and Winter
[40,41] introduced various generalised multifractal spectra functions designed
to “see” different sets of divergence points. In order to define these spectra we
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introduce the following notation. If M is a metric space and ϕ : (0,∞) → M
is a function, then we write accr↘0 f(r) for the set of accumulation points of
f as r ↘ 0, i.e.

acc
r↘0

ϕ(r) =
{

x ∈ M
∣∣∣x is an accumulation point of f as r ↘ 0

}
.

In [40] Olsen and Winter introduced and investigated the generalised Hausdorff
multifractal spectrum Fμ of μ defined by

Fμ(C) = dimH

{
x ∈ K

∣∣∣∣ acc
r↘0

log μB(x, r)
log r

⊆ C

}

for C ⊆ R. Note that the generalised spectrum is a genuine extension of the
traditional multifractal spectrum fμ(α), namely if C = {α} is a singleton
consisting of the point α, then clearly Fμ(C) = fμ(α). There is a natural
divergence point analogue of Theorem A. Indeed, the following divergence
point analogue of Theorem A was first obtained by Moran [31] and Olsen and
Winter [40], and later in a less restrictive setting by Li, Wu and Xiong [30]
(see also [5,46] for earlier but related results in a slightly different setting).

Theorem B. [30,31,40] Let μ be defined by (3.2) and let C be a closed subset
of R. If the OSC is satisfied, then we have

Fμ(C) = sup
α∈C

β∗(α).

As a first application of Theorems 2.1 and 2.2 we obtain a zeta-function
whose abscissa of convergence equals the generalised multifractal spectrum
Fμ(C) of a self-conformal measure μ. The is the content of the next theorem.

Theorem 3.1. (Multifractal zeta-functions for multifractal spectra of self-
conformal measures) Let (p1, . . . , pN ) be a probability vector, and let μ de-
note the self-conformal measure associated with the list

(
V , X , (Si)i=1,...,N ,

(pi)i=1,...,N

)
, i.e. μ is the unique probability measure such that μ =

∑
i pl,iμ ◦

S−1
i .

For i ∈ Σ∗, let

si = sup
u∈ΣN

|DSi(πu)|.

For a closed set C ⊆ R, we define the self-conformal multifractal zeta-function
by

ζconC (s) =
∑
i

log pi
log diam Ki

∈C

ss
i ,
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For a closed set C ⊆ R and r > 0, we define the self-conformal multifractal
zeta-function by

ζconC (s; r) = ζconB(C,r)(s)

=
∑
i

dist
(

log pi
log diam Ki

, C
)

≤ r

ss
i ,

and if α ∈ R and C = {α} is the singleton consisting of α, then we write
ζconC (s; r) = ζconα (s; r), i.e. we write

ζconα (s; r) =
∑
i∣∣ log pi

log diam Ki
− α

∣∣≤ r

ss
i .

Define Φ,Λ : ΣN → R by Φ(i) = log pi1 and Λ(i) = log |DSi1(πSi)| for
i = i1i2 . . . ∈ ΣN. Define β : R

M → R by

0 = P
(
β(q)Λ + qΦ

)
for q ∈ R. Let C be a closed subset of R. Then the following hold:

(1.1) We have

lim
r↘0

σab

(
ζconC (·; r) ) = sup

α∈C
β∗(α).

In particular, if α ∈ R, then we have

lim
r↘0

σab

(
ζconα (·; r) ) = β∗(α).

(1.2) If the OSC is satisfied, then we have

lim
r↘0

σab

(
ζconC (·; r) ) = sup

α∈C
dimH

{
x ∈ K

∣∣∣∣∣ lim
r↘0

log μ(B(x, r))
log r

= α

}

= dimH

{
x ∈ K

∣∣∣∣∣ acc
r↘0

log μ(B(x, r))
log r

⊆ C

}
.

In particular, if the OSC is satisfied and α ∈ R, then we have

lim
r↘0

σab

(
ζconα (·; r) ) = dimH

{
x ∈ K

∣∣∣∣∣ lim
r↘0

log μ(B(x, r))
log r

= α

}
.

(2.1) If C is an interval and
◦
C ∩ ( − β′(R)

) �= ∅, then we have

σab

(
ζconC

)
= sup

α∈C
β∗(α).
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(2.2) If C is an interval and
◦
C ∩ ( − β′(R)

) �= ∅ and the OSC is satisfied,
then we have

σab

(
ζconC

)
= sup

α∈C
dimH

{
x ∈ K

∣∣∣∣∣ lim
r↘0

log μ(B(x, r))
log r

= α

}

= dimH

{
x ∈ K

∣∣∣∣∣ acc
r↘0

log μ(B(x, r))
log r

⊆ C

}
.

Proof. This follows immediately from the more general Theorem 3.2 in Sect.
3.2 by putting M = 1. �

3.2. Mixed multifractal spectra of self-conformal measures

Recently mixed (or simultaneous) multifractal spectra have generated an enor-
mous interest in the mathematical literature, see [3,31,35,36]. Indeed, previous
results (Theorems A and B) only considered the scaling behaviour of a sin-
gle measure. Mixed multifractal analysis investigates the simultaneous scaling
behaviour of finitely many measures. Mixed multifractal analysis thus com-
bines local characteristics which depend simultaneously on various different
aspects of the underlying dynamical system, and provides the basis for a sig-
nificantly better understanding of the underlying dynamics. We will now make
these ideas precise. For m = 1, . . . , M , let (pm,1, . . . , pm,N ) be a probability
vector, and let μm denote the self-conformal measure associated with the list(
V , X , (Si)i=1,...,N , (pm,i)i=1,...,N

)
, i.e. μm is the unique probability mea-

sure such that

μm =
∑

i

pm,iμm ◦ S−1
i . (3.3)

The mixed multifractal spectrum fμμμ of the list μμμ = (μ1, . . . , μM ) is defined by

fμμμ(ααα) = dimH

{
x ∈ K

∣∣∣∣∣ lim
r↘0

(
log μ1(B(x, r))

log r
, . . . ,

log μM (B(x, r))
log r

)
= ααα

}

for ααα ∈ R
M . Of course, it is also possible to define generalised mixed multi-

fractal spectra designed to “see” different sets of divergence points. Namely,
we define the generalised mixed Hausdorff multifractal spectrum Fμμμ of the list
μμμ = (μ1, . . . , μM ) by

Fμμμ(C) = dimH

{
x ∈ K

∣∣∣∣∣ acc
r↘0

(
log μ1(B(x, r))

log r
, . . . ,

log μM (B(x, r))
log r

)
⊆ C

}

for C ⊆ R
M . Again we note that the generalised mixed multifractal spec-

trum is a genuine extension of the traditional mixed multifractal spectrum
Fμ(ααα), namely, if C = {ααα} is a singleton consisting of the point ααα, then
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clearly Fμ(C) = fμ(ααα). Assuming the OSC, the generalised mixed multifractal
spectrum Fμ(C) can be computed [31,35]. In order to state the result from
[31,35], we introduce the following definitions. Define Λ,Φm : ΣN → R for m =
1, . . . , M by Λ(i) = log |DSi1(πSi)| and Φm(i) = log pm,i1 for i = i1i2 . . . ∈ ΣN,
and write ΦΦΦ = (Φ1, . . . ,ΦM ). Define β : R

M → R by

0 = P
(
β(q)Λ + 〈q|ΦΦΦ〉 )

for q ∈ R
M ; recall that if ϕ : ΣN → R is a Hölder continuous map, then P (ϕ)

denotes the pressure of ϕ. Also, for x,y ∈ R
M , we let 〈x|y〉 denote the usual

inner product of x and y, and if ϕ : R
M → R is a function, we define the

Legendre transform ϕ∗ : R
M → [−∞,∞] of ϕ by

ϕ∗(x) = inf
y

(〈x|y〉 + ϕ(y)).

The generalised mixed multifractal spectra fμμμ and Fμμμ are now given by the
following theorem.

Theorem C. [31,35] Let μ1, . . . , μM be defined by (3.3) and let C ⊆ R
M be a

closed set. Put μμμ = (μ1, . . . , μM ). If the OSC is satisfied, then we have

Fμμμ(C) = sup
ααα∈C

β∗(ααα).

In particular, if the OSC is satisfied and ααα ∈ R
M , then we have

fμμμ(ααα) = β∗(ααα).

As a second application of Theorems 2.1 and 2.2 we obtain a zeta-function
whose abscissa of convergence equals the generalised mixed multifractal spec-
trum Fμμμ(C) of a list μμμ of self-conformal measures. This is the content of the
next theorem.

Theorem 3.2. (Multifractal zeta-functinons for mixed multifractal spectra of
self-conformal measures) For m = 1, . . . , M , let (pm,1, . . . , pm,N ) be a prob-
ability vector, and let μm denote the self-conformal measure associated with
the list

(
V , X , (Si)i=1,...,N , (pm,i)i=1,...,N

)
, i.e. μm is the unique probability

measure such that μm =
∑

i pm,iμm ◦ S−1
i .

For i ∈ Σ∗, let

si = sup
u∈ΣN

|DSi(πu)|.

For a closed set C ⊆ R
M , we define the self-conformal multifractal zeta-

function by

ζconC (s) =
∑
i(

log p1,i
log diam Ki

,...,
log pM,i

log diam Ki

)
∈C

ss
i .
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For a closed set C ⊆ R
M and r > 0, we define the self-conformal multifractal

zeta-function by
ζconC (s; r) = ζconB(C,r)(s; r)

=
∑
i

dist
((

log p1,i
log diam Ki

,...,
log pM,i

log diam Ki

)
, C

)
≤ r

ss
i .

Define Λ,Φm : ΣN → R for m = 1, . . . , M by Λ(i) = log |DSi1(πSi)| and
Φm(i) = log pm,i1 for i = i1i2 . . . ∈ ΣN, and write ΦΦΦ = (Φ1, . . . ,ΦM ). Define
β : R

M → R by

0 = P
(
β(q)Λ + 〈q|ΦΦΦ〉 )

for q ∈ R
M . Let C be a closed subset of R

M . Then the following hold:
(1.1) We have

lim
r↘0

σab

(
ζconC (·; r) ) = sup

ααα∈C
β∗(ααα).

(1.2) If the OSC is satisfied, then we have

lim
r↘0

σab

(
ζconC (·; r) )

= sup
ααα∈C

dimH

{
x ∈ K

∣∣∣∣∣ lim
r↘0

(
log μ1(B(x, r))

log r
, . . . ,

log μM (B(x, r))
log r

)
= ααα

}

= dimH

{
x ∈ K

∣∣∣∣∣ acc
r↘0

(
log μ1(B(x, r))

log r
, . . . ,

log μM (B(x, r))
log r

)
⊆ C

}
.

(2.1) If C is convex and
◦
C ∩ ( − ∇β(RM )

) �= ∅, then we have

σab

(
ζconC

)
= sup

ααα∈C
β∗(ααα).

(2.2) If C is convex and
◦
C ∩ (−∇β(RM )

) �= ∅ and the OSC is satisfied, then
we have

σab

(
ζconC

)
= sup

ααα∈C
dimH

{
x ∈ K

∣∣∣∣∣ lim
r↘0

(
log μ1(B(x, r))

log r
, . . . ,

log μM (B(x, r))
log r

)
= ααα

}

= dimH

{
x ∈ K

∣∣∣∣∣ acc
r↘0

(
log μ1(B(x, r))

log r
, . . . ,

log μM (B(x, r))
log r

)
⊆ C

}
.

We will now prove Theorem 3.2. Recall that the function Λ : ΣN → R is
defined by

Λ(i) = log |DSi1(πSi)| (3.4)
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for i = i1i2 . . . ∈ ΣN. It is well-known that Λ satisfies Conditions (C1)–(C3)
in Sect. 2.1. Also, a straightforward calculation shows that supk∈[i] exp

∑|i|−1
k=0

ΛSkk = supu∈ΣN |DSi(πu)| = si for i ∈ Σ∗. Next, recall that ΦΦΦ = (Φ1, . . . ,ΦM )
where Φm : ΣN → R is defined by Φm(i) = log pm,i1 for i = i1i2 . . . ∈ ΣN. For
μ ∈ P(ΣN), we will write

∫
ΦΦΦ dμ = (

∫
Φ1 dμ, . . . ,

∫
ΦM dμ). Finally, define

U : P(ΣN) → R
M by

Uμ =
∫

ΦΦΦ dμ∫
Λ dμ

, (3.5)

and note that if i ∈ Σ∗, then

UL|i|[i] =

{(
log p1,i

log |DSi(πu)| , . . . ,
log pM,i

log |DSi(πu)|

)∣∣∣∣∣u ∈ ΣN

}
.

Hence, for C ⊆ R
M we have

ζU,Λ
C (s; r) =

∑
i

UL|i|[i]⊆B(C,r)

ss
i

=
∑
i{(

log p1,i
log |DSi(πu)| ,...,

log pM,i
log |DSi(πu)|

) ∣∣u∈ΣN

}
⊆B(C,r)

ss
i

=
∑
i

∀u∈ΣN : dist
((

log p1,i
log |DSi(πu)| ,...,

log pM,i
log |DSi(πu)|

)
, C

)
≤ r

ss
i . (3.6)

In order to prove Theorem 3.2, we first prove the following three auxiliary
results, namely, Propositions 3.3–3.5.

Proposition 3.3. Let U and Λ be defined by (3.5) and (3.4), respectively. For
ααα ∈ R

M , we have

sup
μ∈PS(ΣN)

Uμ=ααα

− h(μ)∫
Λ dμ

= β∗(ααα).

Proof. This result is folklore for M = 1. The proof of Proposition 3.3 for an
arbitrary positive integer can (with some modifications) be modelled on the
argument for M = 1. However, for the sake of brevity we have decided to omit
the proof. �



V. Mijović, L. Olsen AEM

Proposition 3.4. Let U and Λ be defined by (3.5) and (3.4), respectively. Let

C be a closed subset of R
M . If C is convex and

◦
C ∩ ( − ∇β(RM )

) �= ∅, then
fU,Λ is inner continuous at C.

Proof. Note that it follows from Theorem 2.1 and Proposition 3.3 that if W
is a closed subset of R

M , then

fU,Λ(W ) = sup
μ∈PS(ΣN)

Uμ∈W

− h(μ)∫
Λ dμ

= sup
ααα∈W

sup
μ∈PS(ΣN)

Uμ=ααα

− h(μ)∫
Λ dμ

= sup
ααα∈W

β∗(ααα). (3.8)

Also, since the function β∗ satisfies {ααα ∈ R
M |β∗(ααα) > −∞} = ∇β(RM ) (see

[44, Corollary 26.4.1]) and the set C is convex with
◦
C ∩ ( − ∇β(RM )

) �= ∅,
we conclude immediately from (3.8) that fU,Λ is inner continuous at C. �

Proposition 3.5. Let U and Λ be defined by (3.5) and (3.4), respectively.

(1) There is a sequence (Δn)n with Δn > 0 and Δn → 0 such that for all
closed subsets C of R

M and for all n ∈ N, i ∈ Σn and u ∈ ΣN, we have

dist

((
log p1,i

log |DSi(πu)| , . . . ,
log pM,i

log |DSi(πu)|

)
, C

)

≤ dist

((
log p1,i

log diam Ki
, . . . ,

log pM,i

log diam Ki

)
, C

)
+ Δn ,

(3.9)

dist

((
log p1,i

log diam Ki
, . . . ,

log pM,i

log diam Ki

)
, C

)

≤ dist

((
log p1,i

log |DSi(πu)| , . . . ,
log pM,i

log |DSi(πu)|

)
, C

)
+ Δn. (3.10)

(2) For all closed subsets W of R
M and all r > 0, we have

σab

(
ζU,Λ
W (·; r) ) ≤ σab

(
ζconB(W,2r)

)
, (3.11)

σab

(
ζconB(W,r)

) ≤ σab

(
ζU,Λ
W (·; 2r)

)
. (3.12)
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(3) Let C be a closed subset of R
M . We have

lim
r↘0

σab

(
ζconC (·; r) ) = lim

r↘0
σab

(
ζU,Λ
C (·; r) ).

(4) Let C be a closed subset of R
M . If C is convex and

◦
C∩ (−∇β(RM )

) �= ∅,
then we have

σab

(
ζconC

)
= σab

(
ζU,Λ
C

)
.

Proof. (1) It is well-known that there is a constant c0 > 0 such that for all
i ∈ Σ∗ and all u ∈ ΣN, we have 1

c0
≤ diam Ki

|DSi(πu)| ≤ c0, see, for example, [11]
or [42]. It is not difficult to see that the desired result follows from this and
the fact that the function Λ : ΣN → R defined by Λ(i) = log |DSi1(πSi)| for
i = i1i2 . . . ∈ ΣN satisfies Conditions (C1)–(C3) in Sect. 2.1.
(2) Fix r > 0. Let (Δn)n be the sequence from (1). Since Δn → 0, we can find
a positive integer Nr such that if n ≥ Nr, then Δn ≤ r. Consequently, using
(3.10) in Part (1), for s ∈ R, we have

ζU,Λ
W (s; r) =

∑
i

∀u∈ΣN : dist
((

log p1,i
log |DSi(πu)| ,...,

log pM,i
log |DSi(πu)|

)
, W

)
≤ r

ss
i

≤
∑
i

|i|<Nr

ss
i +

∑
i

|i|≥Nr

∀u∈ΣN : dist
((

log p1,i
log |DSi(πu)| ,...,

log pM,i
log |DSi(πu)|

)
, W

)
≤ r

ss
i

≤
∑
i

|i|<Nr

ss
i +

∑
i

|i|≥Nr

dist
((

log p1,i
log diam Ki

,...,
log pM,i

log diam Ki

)
, W

)
≤ r+Δ|i|

ss
i

≤
∑
i

|i|<Nr

ss
i +

∑
i

|i|≥Nr

dist
((

log p1,i
log diam Ki

,...,
log pM,i

log diam Ki

)
, W

)
≤ 2r

ss
i

≤
∑
i

|i|<Nr

ss
i +

∑
i

dist
((

log p1,i
log diam Ki

,...,
log pM,i

log diam Ki

)
, W

)
≤ 2r

ss
i
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=
∑
i

|i|<Nr

ss
i + ζconB(W,2r)(s). (3.13)

A similar argument using (3.1) in Part 1 shows that

ζconB(W,r)(s) ≤
∑
i

|i|<Nr

ss
i + ζU,Λ

W (s; 2r). (3.14)

The desired results follow immediately from inequalities (3.13) and (3.14).
(3) This result follows from Part (2) by letting r ↘ 0.
(4) “≤” It follows from (3.12) and Theorem 2.1 that

σab

(
ζconC

) ≤ lim inf
r↘0

σab

(
ζconB(C,r)

)
[since C ⊆ B(C, r)]

≤ lim inf
r↘0

σab

(
ζU,Λ
C (·; 2r)

)
[by (3.12)]

= fU,Λ(C) [by Theorem 2.1]. (3.15)

Next, since C is convex and
◦
C ∩ (− ∇β(RM )

) �= ∅, we conclude from Propo-
sition 3.4 that fU,Λ is inner continuous at C, and it therefore follows from
Theorem 2.2 that fU,Λ(C) = σab

(
ζU,Λ
C

)
. The desired result follows from this

and (3.15).
“≥” Let ε > 0. For all r > 0 with 2r < ε, it follows from (3.11) applied to
W = I(C, ε) (recall that I(C, ε) = {x ∈ C | dist(x, ∂C) ≥ ε}, see Sect. 2.3)
that

σab

(
ζU,Λ
I(C,ε)(·; r)

) ≤ σab

(
ζconB(I(C,ε),2r)

)
. (3.16)

However, for 2r < ε it is not difficult to see that B(I(C, ε), 2r) ⊆ C (see, for
example, the proof of Lemma 8.2), whence σab

(
ζconB(I(C,ε),2r)

) ≤ σab

(
ζconC

)
, and

we therefore conclude from (3.16) that if 2r < ε, then

σab

(
ζU,Λ
I(C,ε)(·; r)

) ≤ σab

(
ζconC

)
. (3.17)

Letting r ↘ 0 in (3.17) we now deduce that

lim sup
r↘0

σab

(
ζU,Λ
I(C,ε)(·; r)

) ≤ σab

(
ζconC

)
. (3.18)

Next, since I(C, ε) is closed, we deduce from Theorem 2.1 that lim supr↘0 σab(
ζU,Λ
I(C,ε)(·; r)

)
= fU,Λ( I(C, ε) ), and (3.18) therefore implies that

fU,Λ( I(C, ε) ) ≤ σab

(
ζconC

)
. (3.19)

Finally, it follows from Proposition 3.4 that fU,Λ is inner continuous at C,
whence limε↘0 fU,Λ( I(C, ε) ) = fU,Λ(C). The desired result follows from this
and (3.19). �
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We can now prove Theorem 3.2.

Proof of Theorem 3.2. (1.1) and (2.1) The statements in Part (1.1) and Part
(2.1) of Theorem 3.2 follow immediately from Theorem 2.1, Propositions 3.3
and 3.5.
(1.2) and (2.2) The statements in Part (1.2) and Part (2.2) of Theorem 3.2
follow immediately from Part (1.1) and Part (2.1) using Theorem 2.2 and
Theorem C. �

3.3. Multifractal spectra of self-similar measures

Due to the important role self-similar measures play in fractal geometry, it is
instructive to note the following special case of Theorem 3.1.

Theorem 3.6. (Multifractal zeta-functinons for multifractal spectra of self-
similar measures) Assume that the maps S1, . . . , SN are contracting similarities
and let ri denote the contraction ratio of Si. For i = i1 · · · in ∈ Σ∗, let

ri = ri1 · · · rin
.

Let (p1, . . . , pN ) be a probability vector, and let μ denote the self-conformal
measure associated with the list

(
V , X , (Si)i=1,...,N , (pi)i=1,...,N

)
, i.e. μ is

the unique probability measure such that μ =
∑

i pl,iμ ◦ S−1
i .

For a closed set C ⊆ R, we define the self-similar multifractal zeta-function
by

ζsimC (s) =
∑
i

log pi
log diam Ki

∈C

rs
i .

For a closed set C ⊆ R and r > 0, we define the self-similar multifractal
zeta-function by

ζsimC (s; r) =
∑
i

dist
(

log pi
log diam Ki

, C
)

≤ r

rs
i ,

and if α ∈ R and C = {α} is the singleton consisting of α, then we write
ζC(s; r) = ζα(s; r), i.e. we write

ζsimα (s; r) =
∑
i∣∣ log pi

log diam Ki
− α

∣∣≤ r

rs
i .

Define β : R
M → R by ∑

i

pq
i r

β(q)
i = 1
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for q ∈ R. Let C be a closed subset of R. Then the following hold:
(1.1) We have

lim
r↘0

σab

(
ζsimC (·; r) ) = sup

α∈C
β∗(α).

In particular, if α ∈ R, then we have

lim
r↘0

σab

(
ζsimα (·; r) ) = β∗(α).

(1.2) If the OSC is satisfied, then we have

lim
r↘0

σab

(
ζsimC (·; r) ) = sup

α∈C
dimH

{
x ∈ K

∣∣∣∣∣ lim
r↘0

log μ(B(x, r))
log r

= α

}

= dimH

{
x ∈ K

∣∣∣∣∣ acc
r↘0

log μ(B(x, r))
log r

⊆ C

}
.

In particular, if the OSC is satisfied and α ∈ R, then we have

lim
r↘0

σab

(
ζsimα (·; r) ) = dimH

{
x ∈ K

∣∣∣∣∣ lim
r↘0

log μ(B(x, r))
log r

= α

}
.

(2.1) If C is an interval and
◦
C ∩ (

mini
log pi

log ri
,maxi

log pi

log ri

) �= ∅, then we have

σab

(
ζsimC

)
= sup

α∈C
β∗(α).

(2.2) If C is an interval and
◦
C ∩ (

mini
log pi

log ri
,maxi

log pi

log ri

) �= ∅ and the OSC
is satisfied, then we have

σab

(
ζsimC

)
= sup

α∈C
dimH

{
x ∈ K

∣∣∣∣∣ lim
r↘0

log μ(B(x, r))
log r

= α

}

= dimH

{
x ∈ K

∣∣∣∣∣ acc
r↘0

log μ(B(x, r))
log r

⊆ C

}
.

Proof. Theorem 3.6 follows immediately from Theorem 3.1. �

It is, of course, also possible to formulate a version of Theorem 3.2 for a
finite list of self-similar measures. However, for sake of brevity we have decided
not to do this.

3.4. Multifractal spectra of ergodic Birkhoff averages

We first fix γ ∈ (0, 1) and define the metric dγ on ΣN by dγ(i, j) =
γmax{n | i|n=j|n}; throughout this section, we equip ΣN with the metric dγ and
continuity and Lipschitz properties of functions f : ΣN → R from ΣN to R will
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always refer to the metric dγ . Multifractal analysis of Birkhoff averages has
received significant interest during the past 10 years, see, for example, [2,12–
14,33,36,41]. The multifractal spectrum F erg

f of ergodic Birkhoff averages of a
continuous function f : ΣN → R is defined by

F erg
f (α) = dimH π

{
i ∈ ΣN

∣∣∣∣∣ lim
n

1
n

n−1∑
k=0

f(Ski) = α

}

for α ∈ R; recall that the projection map π : ΣN → R
d is defined in Sect. 3.1

and that S : ΣN → ΣN denotes the shift map. One of the main problems in
multifractal analysis of Birkhoff averages is the detailed study of the multi-
fractal spectrum F erg

f . For example, Theorem D below is proved in different
settings and at various levels of generality in [12–14,33,36,41]. Before we can
state our result we introduce the following notation. If (xn)n is a sequence
of real numbers, then we write accn xn for the set of accumulation points of
(xn)n, i.e.

acc
n

xn =
{

x ∈ R

∣∣∣ x is an accumulation point of (xn)n

}
.

Also, recall that PS(ΣN) denotes the family of shift invariant Borel probability
measures on ΣN and that h(μ) denotes the entropy of μ ∈ PS(ΣN). We can
now state Theorem D.

Theorem D. [12–14,33,36,41] Let f : ΣN → R be a Lipschitz function. Define
Λ : ΣN → R by Λ(i) = log |DSi1(πSi)| for i = i1i2 . . . ∈ ΣN. Let C be a closed
subset of R. If the OSC is satisfied, then

dimH π

{
i ∈ ΣN

∣∣∣∣∣ acc
n

1
n

n−1∑
k=0

f(Ski) ⊆ C

}
= sup

α∈C
sup

μ∈PS(ΣN)∫
f dμ=α

− h(μ)∫
Λ dμ

.

In particular, if the OSC is satisfied and α ∈ R, then we have

dimH π

{
i ∈ ΣN

∣∣∣∣∣ lim
n

1
n

n−1∑
k=0

f(Ski) = α

}
= sup

μ∈PS(ΣN)∫
f dμ=α

− h(μ)∫
Λ dμ

.

As a third application of Theorem 2.1 we obtain a zeta-function whose ab-
scissa of convergence equals the multifractal spectrum F erg

f of ergodic Birkhoff
averages of a Lipschitz function f . This is the content of the next theorem.

Theorem 3.7. (Multifractal zeta-functinons for multifractal spectra of ergodic
Birkhoff averages) Let f : ΣN → R be a Lipschitz function.

For i ∈ Σ∗, let

si = sup
u∈ΣN

|DSi(πu)|
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and write i = iii . . . ∈ ΣN. For a closed set C ⊆ R
M , we define the self-similar

multifractal zeta-function of f by

ζergC (s; r) =
∑
i

dist
(

1
|i|

∑|i|−1
k=0 f(Ski) , C

)
≤ r

ss
i ,

and if α ∈ R and C = {α} is the singleton consisting of α, then we write
ζC(s; r) = ζα(s; r), i.e. we write

ζergα (s; r) =
∑
i∣∣ 1

|i|
∑|i|−1

k=0 f(Ski) − α
∣∣≤ r

ss
i .

Define Λ : ΣN → R by Λ(i) = log |DSi1(πSi)| for i = i1i2 . . . ∈ ΣN. Then
the following hold:

(1) We have

lim
r↘0

σab

(
ζergC (·; r) ) = sup

α∈C
sup

μ∈PS(ΣN)∫
f dμ=α

− h(μ)∫
Λ dμ

.

In particular, if α ∈ R, then we have

lim
r↘0

σab

(
ζergα (·; r) ) = sup

μ∈PS(ΣN)∫
f dμ=α

− h(μ)∫
Λ dμ

.

(2) If the OSC is satisfied, then we have

lim
r↘0

σab

(
ζergC (·; r) ) = sup

α∈C
dimH π

{
i ∈ ΣN

∣∣∣∣∣ lim
n

1
n

n−1∑
k=0

f(Ski) = α

}

= dimH π

{
i ∈ ΣN

∣∣∣∣∣ acc
n

1
n

n−1∑
k=0

f(Ski) ⊆ C

}
.

In particular, if the OSC is satisfied and α ∈ R, then we have

lim
r↘0

σab

(
ζergα (·; r) ) = dimH π

{
i ∈ ΣN

∣∣∣∣∣ lim
n

1
n

n−1∑
k=0

f(Ski) = α

}
.

We will now prove Theorem 3.7. Recall that the function Λ : ΣN → R is
defined by

Λ(i) = log |DSi1(πSi)| (3.20)

for i = i1i2 . . . ∈ ΣN. It is well-known that Λ satisfies Conditions (C1)–(C3)
in Sect. 2.1. Also, a straightforward calculation shows that supk∈[i] exp

∑|i|−1
k=0
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ΛSkk = supu∈ΣN |DSi(πu)| = si for i ∈ Σ∗. Finally, define U : P(ΣN) → R
M

by

Uμ =
∫

f dμ (3.21)

and note that if i ∈ Σ∗, then

UL|i|[i] =

{
1
|i|

|i|−1∑
k=0

f(Sk(iu))

∣∣∣∣∣u ∈ ΣN

}
.

Hence, for C ⊆ R we have

ζU,Λ
C (s; r) =

∑
i

UL|i|[i]⊆B(C,r)

ss
i

=
∑
i{

1
|i|

∑|i|−1
k=0 f(Sk(iu))

∣∣u∈ΣN

}
⊆B(C,r)

ss
i

=
∑
i

∀u∈ΣN : dist
(

1
|i|

∑|i|−1
k=0 f(Sk(iu)) , C

)
≤ r

ss
i . (3.22)

In order to prove Theorem 3.7, we first prove the following auxiliary result,
namely, Proposition 3.8.

Proposition 3.8. Let U and Λ be defined by (3.21) and (3.20), respectively.

(1) There is a sequence (Δn)n with Δn > 0 for all n and Δn → 0 such that
for all closed subsets C of R and for all n ∈ N, i ∈ Σn and u ∈ ΣN, we
have

dist

(
1
|i|

|i|−1∑
k=0

f(Sk(iu)) , C

)
≤ dist

(
1
|i|

|i|−1∑
k=0

f(Sk(i)) , C

)
+ Δn ,

dist

(
1
|i|

|i|−1∑
k=0

f(Sk(i)) , C

)
≤ dist

(
1
|i|

|i|−1∑
k=0

f(Sk(iu)) , C

)
+ Δn.

(2) We have

lim
r↘0

σab

(
ζergC (·; r) ) = lim

r↘0
σab

(
ζU,Λ
C (·; r) ).
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Proof. (1) Let Lip(f) denote the Lipschitz constant of f . It is clear that for
all n ∈ N, i ∈ Σn and u ∈ ΣN, we have∣∣∣∣∣ 1n

n−1∑
k=0

f(Sk(i)) − 1
n

n−1∑
k=0

f(Sk(iu))

∣∣∣∣∣ ≤ 1
n

n−1∑
k=0

|f(Sk(i)) − f(Sk(iu))|

≤ Lip(f)
1
n

n−1∑
k=0

dγ

(
Sk(i), Sk(iu)

)

≤ Lip(f)
1
n

n−1∑
k=0

γk

≤ Lip(f)
1

n(1 − γ)
. (3.23)

It is not difficult to see that the desired result follows from (3.23).
(2) This statement follows from Part (1) by an argument very similar to the
proof of Part (2) and Part (3) in Proposition 3.5, and the proof is therefore
omitted. �

We can now prove Theorem 3.7.

Proof of Theorem 3.7. (1) This statement follows immediately from Theorem
2.1 and Proposition 3.8.
(2) This statement follows immediately from Part (1) using Theorem 2.2 and
Theorem D. �

4. Preliminary results

The purpose of this short section is to prove Proposition 4.1 establishing var-
ious auxiliary results needed for the proof of Theorem 2.1. Let cmin and cmax

be the constants from the Condition (C2) in Sect. 2.1 and write

smin = ecmin ,

smax = ecmax . (4.1)

We can now state and prove Proposition 4.1. Recall, that for i ∈ Σn, the
number si is defined by si = supk∈[i] exp

∑n−1
k=0 ΛSkk, see Sect. 2.1.

Proposition 4.1. Let c be the constant from Condition (C3) in Sect. 2.1. Let
i, j ∈ Σ∗.

(1) 0 < s
|i|
min ≤ si ≤ s

|i|
max < 1.

(2) sij ≤ sisj ≤ csij.
(3) si < ŝi.
(4) For k ∈ ΣN and a positive integer n, we have exp

∑n−1
k=0 ΛSkk ≤ sk|n ≤

c exp
∑n−1

k=0 ΛSkk.
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(5) For k ∈ ΣN and a real number α, the following two statements are equiv-
alent:

(i) 1
n

∑n−1
k=0 ΛSkk → α.

(ii) 1
n log sk|n → α.

Proof. Statements (1), (2) and (4) follow easily from the definitions. Statement
(3) follows from (1) and (2), and statement (5) follows from (4). �

5. Proof of inequality (2.1)

The purpose of this section is to prove Theorem 5.5 providing a proof of in-
equality (2.1). The proof of (2.1) is based on results from large deviation the-
ory. In particular, we need Varadhan’s [45] large deviation theorem (Theorem
5.1.(i) below), and a non-trivial application of this (namely Theorem 5.1.(ii)
below) providing first order asymptotics of certain “Boltzmann distributions”.

Definition. Let X be a complete separable metric space and let (Pn)n be a
sequence of probability measures on X. Let (an)n be a sequence of positive
numbers with an → ∞ and let I : X → [0,∞] be a lower semicontinuous
function with compact level sets. The sequence (Pn)n is said to have the large
deviation property with constants (an)n and rate function I if the following
two conditions hold:
(i) For each closed subset K of X, we have

lim sup
n

1
an

log Pn(K) ≤ − inf
x∈K

I(x).

(ii) For each open subset G of X, we have

lim inf
n

1
an

log Pn(G) ≥ − inf
x∈G

I(x).

Theorem 5.1. Let X be a complete separable metric space and let (Pn)n be
a sequence of probability measures on X. Assume that the sequence (Pn)n

has the large deviation property with constants (an)n and rate function I. Let
F : X → R be a continuous function satisfying the following two conditions:

(i) For all n, we have ∫
exp(anF ) dPn < ∞.

(ii) We have

lim
M→∞

lim sup
n

1
an

log
∫

{M≤F}
exp(anF ) dPn = −∞.

(Observe that the Conditions (i)–(ii) are satisfied if F is bounded.) Then the
following statements hold.
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(1) We have

lim
n

1
an

log
∫

exp(anF ) dPn = − inf
x∈X

(I(x) − F (x)).

(2) For each n define a probability measure Qn on X by

Qn(E) =

∫
E

exp(anF ) dPn∫
exp(anF ) dPn

.

Then the sequence (Qn)n has the large deviation property with constants
(an)n and rate function (I − F ) − infx∈X(I(x) − F (x)).

Proof. Statement (1) follows from [9, Theorem II.7.1] or [7, Theorem 4.3.1],
and statement (2) follows from [9, Theorem II.7.2]. �

Using Theorem 5.1 we first establish the following auxiliary result.

Theorem 5.2. Let X be a metric space and let U : P(ΣN) → X be continuous
with respect to the weak topology. Let C ⊆ X be a closed subset of X and r > 0.

If t ∈ R, then

lim sup
n

1
n

log
∑
|i|=n

ULn[i]⊆B(C,r)

st
i ≤ sup

μ∈PS(ΣN)

Uμ∈B(C,r)

(
t

∫
Λ dμ + h(μ)

)
.

Proof. We start by introducing some notation. If i ∈ Σ∗, then we define i ∈ ΣN

by i = ii . . .. We also define Mn : ΣN → PS(ΣN) by

Mni = Ln

(
i|n

)

=
1
n

n−1∑
k=0

δSk( i|n )

for i ∈ ΣN; recall, that the map Ln : ΣN → P(ΣN) is defined in Sect. 2.
Furthermore, note that if i ∈ ΣN, then Mni is shift invariant, i.e. Mn maps
ΣN into PS(ΣN) as claimed. Next, let P denote the probability measure on ΣN

given by

P = X
N

N∑
i=1

1
N

δi.

Finally, we define F : PS(ΣN) → R by

F (μ) = t

∫
Λ dμ.

Observe that since Λ is bounded, i.e. ‖Λ‖∞ < ∞, we conclude that ‖F‖∞ =
|t| ‖Λ‖∞ < ∞. Also, for a positive integer n, define probability measures
Pn, Qn ∈ P(PS(ΣN)) by
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Pn = P ◦ M−1
n ,

Qn(E) =

∫
E

exp(nF ) dPn∫
exp(nF ) dPn

for E ⊆ PS(ΣN).

We now prove the following two claims. �

Claim 1. We have ∑
|k|=n

ULn[k]⊆B(C,r)

st
k ≤

∑
|k|=n

UMn[k]⊆B(C,r)

st
k.

Proof of Claim 1. Observe that if |k| = n, then Mn[k] = {Mn(kl) | l ∈ ΣN} =
{Ln( (kl)|n ) | l ∈ ΣN} = {Lnk | l ∈ ΣN} = {Lnk} ⊆ Ln[k]. The desired result
follows immediately from this inclusion. This proves Claim 1. �

Claim 2. We have∑
|k|=n

UMn[k]⊆B(C,r)

st
k ≤ Nn

∫
{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} st

i|n dP (i).

Proof of Claim 2. It follows that∫
{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} st

i|n dP (i)

=
∑

|k|=n

∫
[k] ∩

{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} st

i|n dP (i)

=
∑

|k|=n

st
k P

(
[k] ∩

{
j ∈ ΣN

∣∣∣UMn[j|n] ⊆ B(C, r)
})

≥
∑

|k|=n

UMn[k]⊆B(C,r)

st
k P

(
[k] ∩

{
j ∈ ΣN

∣∣∣UMn[j|n] ⊆ B(C, r)
})

. (5.1)

However, for k with |k| = n and UMn[k] ⊆ B(C, r), it is clear that [k] ⊆ {j ∈
ΣN |UMn[j|n] ⊆ B(C, r)}, whence [k] ∩ {j ∈ ΣN |UMn[j|n] ⊆ B(C, r)} = [k].
This and (5.1) now imply that∫

{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} st

i|n dP (i)
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≥
∑

|k|=n

UMn[k]⊆B(C,r)

st
k P

(
[k] ∩

{
j ∈ ΣN

∣∣∣UMn[j|n] ⊆ B(C, r)
})

=
∑

|k|=n

UMn[k]⊆B(C,r)

st
k P

(
[k]

)

=
∑

|k|=n

dist(ULk,C )≤r

st
k

1
Nn

.

Hence ∑
|k|=n

UMn[k]⊆B(C,r)

st
k ≤ Nn

∫
{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} st

i|n dP (i).

This completes the proof of Claim 2. �

Combining Claims 1 and 2 shows that∑
|k|=n

ULn[k]⊆B(C,r)

st
k ≤

∑
|k|=n

UMn[k]⊆B(C,r)

st
k

≤ Nn

∫
{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} st

i|n dP (i). (5.2)

Let c be the constant from Condition (C3) in Sect. 2.1, and notice that it
follows from Proposition 4.1 that if i ∈ ΣN and n is a positive integer, then we
have st

i|n ≤ c|t| exp( t
∑n−1

k=0 ΛSk( i|n ) ). We conclude from this and (5.2) that∑
|k|=n

ULn[k]⊆B(C,r)

st
k ≤ Nn

∫
{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} st

i|n dP (i)

≤ c|t| Nn

∫
{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} exp

(
t

n−1∑
k=0

ΛSk
(
i|n

))
dP (i)

= c|t| Nn

∫
{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} exp

(
tn

∫
Λ d(Mni)

)
dP (i)

= c|t| Nn

∫
{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} exp (nF (Mni)) dP (i).

(5.3)
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Noticing that {j ∈ ΣN |UMn[j|n] ⊆ B(C, r)} ⊆ {j ∈ ΣN |UMnj ⊆ B(C, r)} =
{UMn ∈ B(C, r)}, we now deduce from (5.3) that∑

|k|=n

ULn[k]⊆B(C,r)

st
k ≤ c|t| Nn

∫
{
j∈ΣN

∣∣UMn[j|n]⊆B(C,r)
} exp (nF (Mni)) dP (i)

≤ c|t| Nn

∫
{

UMn∈B(C,r)
} exp (nF (Mni)) dP (i)

= c|t| Nn

∫
{

U∈B(C,r)
} exp (nF ) dPn

= c|t| Nn Qn

({
U ∈ B(C, r)

}) ∫
exp (nF ) dPn. (5.4)

It follows immediately from (5.4) that

lim sup
n

1
n

log
∑
|i|=n

ULn[i]⊆B(C,r)

st
i ≤ log N + lim sup

n

1
n

log Qn

({
U ∈ B(C, r)

})

+ lim sup
n

1
n

log
∫

exp (nF ) dPn. (5.5)

Next, we observe that it follows from [9] that the sequence (Pn = P ◦
M−1

n )n ⊆ P(PS(ΣN)
)

has the large deviation property with respect to the
sequence (n)n and rate function I : PS(ΣN) → R given by I(μ) = log N −h(μ).
We therefore conclude from Part (1) of Theorem 5.1 that

lim sup
n

1
n

log
∫

exp (nF ) dPn = − inf
ν∈PS(ΣN)

(I(ν) − F (ν)). (5.6)

Also, since the sequence (Pn = P ◦ M−1
n )n ⊆ P(PS(ΣN)

)
has the large devia-

tion property with respect to the sequence (n)n and rate function I : PS(ΣN) →
R given by I(μ) = log N − h(μ), we conclude from Part (2) of Theorem 5.1
that the sequence (Qn)n has the large deviation property with respect to the
sequence (n)n and rate function (I − F ) − infν∈PS(ΣN)(I(ν) − F (ν)). As the
set {U ∈ B(C, r)} = U−1(B(C, r)) is closed, it therefore follows from the large
deviation property that

lim sup
n

1
n

log Qn

({
U ∈ B(C, r)

})

≤ − inf
μ∈PS(ΣN)

Uμ∈B(C,r)

((I(μ) − F (μ)) − inf
ν∈PS(ΣN)

(I(ν) − F (ν))

)
. (5.7)
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Combining (5.5). (5.6) and (5.7) now yields

lim sup
n

1
n

log
∑
|i|=n

ULn[i]⊆B(C,r)

st
i ≤ log N + lim sup

n

1
n

log Qn

({
U ∈ B(C, r)

})

+ lim sup
n

1
n

log
∫

exp (nF ) dPn

≤ log N − inf
μ∈PS(ΣN)

Uμ∈B(C,r)

((I(μ) − F (μ))

− inf
ν∈PS(ΣN)

(I(ν) − F (ν))

)

− inf
ν∈PS(ΣN)

(I(ν) − F (ν))

= log N + sup
μ∈PS(ΣN)

Uμ∈B(C,r)

(F (μ) − I(μ))

= sup
μ∈PS(ΣN)

Uμ∈B(C,r)

(
t

∫
Λ dμ + h(μ)

)
.

This completes the proof. �
We will now use Theorem 5.2 to prove Theorem 5.5 providing a proof of

inequality (2.1). However, we first prove two small lemmas.

Lemma 5.3. Let X be a metric space and let f, g : X → R be upper semi-
continuous functions with f, g ≥ 0. Then fg is upper semi-continuous.

Proof. Since f and g are upper semi-continuous with f, g ≥ 0, this result
follows easily from the definition of upper semi-continuity, and the proof is
therefore omitted. �

Lemma 5.4. Let X be a metric space and let Φ : X → R be an upper semi-
continuous function. Let K1,K2, . . . ⊆ X be non-empty compact subsets of X
with K1 ⊇ K2 ⊇ · · · . Then

inf
n

sup
x∈Kn

Φ(x) = sup
x∈∩nKn

Φ(x).

Proof. First note that it is clear that infn supx∈Kn
Φ(x) ≥ supx∈∩nKn

Φ(x). We
will now prove the reverse inequality, namely, infn supx∈Kn

Φ(x) ≤ supx∈∩nKn

Φ(x). Let ε > 0. For each n, we can choose xn ∈ Kn such that Φ(xn) ≥
supx∈Kn

Φ(x) − ε. Next, since Kn is compact for all n and K1 ⊇ K2 ⊇
· · · , we can find a subsequence (xnk

)k and a point x0 ∈ ∩nKn such that
xnk

→ x0. Also, since Kn1 ⊇ Kn2 ⊇ · · · , we conclude that supx∈Kn1
Φ(x) ≥

supx∈Kn2
Φ(x) ≥ · · · , whence infk supx∈Knk

Φ(x) = lim supk supx∈Knk
Φ(x).
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This implies that infn supx∈Kn
Φ(x) ≤ infk supx∈Knk

Φ(x) = lim supk supx∈Knk

Φ(x) ≤ lim supk Φ(xnk
) + ε. However, since xnk

→ x0, we deduce from the
upper semi-continuity of the function Φ, that lim supk Φ(xnk

) ≤ Φ(x0). Con-
sequently infn supx∈Kn

Φ(x) ≤ lim supk Φ(xnk
) + ε ≤ Φ(x0) + ε ≤ supx∈∩nKn

Φ(x) + ε. Finally, letting ε ↘ 0 gives the desired result. �

We can now state and prove Theorem 5.5.

Theorem 5.5. Let X be a metric space and let U : P(ΣN) → X be continuous
with respect to the weak topology. Let C ⊆ X be a closed subset of X and r > 0.

(1) We have

σab

(
ζU,Λ
C (·; r) ) ≤ sup

μ∈PS(ΣN)

Uμ∈B(C,r)

− h(μ)∫
Λ dμ

.

(2) We have

lim sup
r↘0

σab

(
ζU,Λ
C (·; r) ) ≤ sup

μ∈PS(ΣN)

Uμ∈C

− h(μ)∫
Λ dμ

.

Proof. (1) For brevity write

u = sup
μ∈PS(ΣN)

Uμ∈B(C,r)

− h(μ)∫
Λ dμ

.

We must now prove that if t > u, then∑
i

UL|i|[i]⊆B(C,r)

st
i < ∞.

Let t > u and write ε = t−u
3 > 0. It follows from the definition of u that if

μ ∈ PS(ΣN) with Uμ ∈ B(C, r), then we have − h(μ)∫
Λ dμ

< u + ε = (u + 2ε) − ε,
whence −h(μ) > (u + 2ε)

∫
Λ dμ − ε

∫
Λ dμ where we have used the fact that∫

Λ dμ < 0 because Λ < 0. This implies that if μ ∈ PS(ΣN) with Uμ ∈ B(C, r),
then

(u + 2ε)
∫

Λ dμ + h(μ) ≤ ε

∫
Λ dμ

≤ εcmax

= −ε |cmax|.
We deduce from this inequality and Theorem 5.2 that
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lim sup
n

1
n

log
∑
|i|=n

ULn[i]⊆B(C,r)

st
i

= lim sup
n

1
n

log
∑
|i|=n

ULn[i]⊆B(C,r)

su+3ε
i

≤ lim sup
n

1
n

log
∑
|i|=n

ULn[i]⊆B(C,r)

su+2ε
i

≤ sup
μ∈PS(ΣN)

Uμ∈B(C,r)

(
(u + 2ε)

∫
Λ dμ + h(μ)

)
[by Theorem 5.2]

≤ −ε |cmax|
< − 1

2ε |cmax|. (5.8)

Inequality (5.8) shows that there is an integer N0 such that 1
n log∑

|i|=n , ULn[i]⊆B(C,r) st
i ≤ − 1

2ε |cmax| for all n ≥ N0, whence

∑
|i|=n

ULn[i]⊆B(C,r)

st
i ≤ e− 1

2 ε |cmax| n (5.9)

for all n ≥ N0. Using (5.9) we now conclude that

∑
i

UL|i|[i]⊆B(C,r)

st
i =

∑
n<N0

∑
|i|=n

ULn[i]⊆B(C,r)

st
i +

∑
n≥N0

∑
|i|=n

ULn[i]⊆B(C,r)

st
i

≤
∑

n<N0

∑
|i|=n

ULn[i]⊆B(C,r)

st
i +

∑
n≥N0

e− 1
2 ε |cmax| n

< ∞.

This completes the proof of (1).
(2) It follows immediately from Part (1) that

lim sup
r↘0

σab

(
ζU,Λ
C (·; r) ) ≤ lim sup

r↘0
sup

μ∈PS(ΣN)

Uμ∈B(C,r)

− h(μ)∫
Λ dμ

. (5.10)
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Also, the function r → supμ∈PS(ΣN) , Uμ∈B(C,r) − h(μ)∫
Λ dμ

is clearly increasing,
and it therefore follows that

lim sup
r↘0

sup
μ∈PS(ΣN)

Uμ∈B(C,r)

− h(μ)∫
Λ dμ

= inf
k

sup
μ∈PS(ΣN)

Uμ∈B(C, 1
k )

− h(μ)∫
Λ dμ

. (5.11)

Next, since the function U : P(ΣN) → X is continuous, we conclude that the
set U−1B(C, 1

k ) is closed, and it therefore follows that the set Kk = PS(ΣN) ∩
U−1B(C, 1

k ) is compact. Also, since the entropy function h : PS(ΣN) → R is
upper semi-continuous (see [47, Theorem 8.2]) with h ≥ 0 and the function f :
PS(ΣN) → R given by f(μ) = − 1∫

Λ dμ
is continuous (because Λ is continuous)

with f ≥ 0, we conclude from Lemma 5.3 that the function Φ : PS(ΣN) → R

given by Φ(μ) = f(μ)h(μ) = − h(μ)∫
Λ dμ

is upper semi-continuous. Lemma 5.4
applied to Φ therefore implies that

inf
k

sup
μ∈PS(ΣN)

Uμ∈B(C, 1
k )

− h(μ)∫
Λ dμ

= inf
k

sup
μ∈Kk

− h(μ)∫
Λ dμ

= sup
μ∈∩kKk

− h(μ)∫
Λ dμ

. (5.12)

However, clearly ∩kKk = ∩k(PS(ΣN) ∩ U−1B(C, 1
k )) = PS(ΣN) ∩ U−1C,

whence

sup
μ∈∩kKk

− h(μ)∫
Λ dμ

= sup
μ∈PS(ΣN)

Uμ∈C

− h(μ)∫
Λ dμ

. (5.13)

Combining (5.12) and (5.13) gives

inf
k

sup
μ∈PS(ΣN)

Uμ∈B(C, 1
k )

− h(μ)∫
Λ dμ

=
∑

μ∈PS(ΣN)

Uμ∈C

− h(μ)∫
Λ dμ

. (5.14)

Finally, the desired result follows by combining (5.10), (5.11) and (5.14). �

6. Proof of inequality (2.2)

The purpose of this section is to prove Theorem 6.6 providing a proof of
inequality (2.2).

We first state and prove a number of auxiliary results. For i, j ∈ ΣN with
i �= j, we will write i∧ j for the longest common prefix of i and j (i.e. i∧ j = u
where u is the unique element in Σ∗ for which there are k, l ∈ ΣN with k =
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k1k2 . . . and l = l1l2 . . . such that k1 �= l1, i = uk and j = ul). We will always
equip ΣN with the metric dΣN defined by

dΣN(i, j) =

{
0 if i = j;
si∧j if i �= j,

(6.1)

for i, j ∈ ΣN. In the results below, we will always compute the Hausdorff
dimension of a subset of ΣN with respect to the metric dΣN . Note that when
ΣN is equipped with the metric dΣN , then

diam[i] = si (6.2)

for all i ∈ Σ∗.

Lemma 6.1. Let (X, d) be a metric space and let U : P(ΣN) → X be continuous
with respect to the weak topology. Let C be a closed subset of X and r > 0.

(1) There is a positive integer Mr such that if k ≥ Mr, u ∈ Σk and k, l ∈ ΣN,
then

d
(
ULk(uk) , ULk(ul)

) ≤ r

2
.

(2) There is a positive integer Mr such that if m ≥ Mr, then{
i ∈ ΣN

∣∣∣ ULki ∈ B(C, r
2 ) for all k ≥ m

}
⊆

{
i ∈ ΣN

∣∣∣ ULk[i|k] ⊆ B(C, r) for all k ≥ m
}

.

Proof. (1) For a function f : ΣN → R, let Lip(f) denote the Lipschitz constant
of f , i.e. Lip(f) = supi,j∈ΣN,i�=j

|f(i)−f(j)|
dΣN (i,j)

and define the metric L in P(ΣN) by

L(μ, ν) = sup
f :ΣN→R

Lip(f)≤1

∣∣∣∣∣
∫

f dμ −
∫

f dν

∣∣∣∣∣.
We note that it is well-known that L is a metric and that L induces the weak
topology. Since U : P(ΣN) → X is continuous and P(ΣN) is compact, we
conclude that U : P(ΣN) → X is uniformly continuous. This implies that we
can choose δ > 0 such that all measures μ, ν ∈ P(ΣN) satisfy the following
implication:

L(μ, ν) ≤ δ ⇒ d(Uμ,Uν) ≤ r
2 . (6.3)

Next, choose a positive integer Mr such that

1
Mr(1 − smax)

< δ ; (6.4)

recall, that smax is defined in (4.1).
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If k ≥ Mr, u ∈ Σk and k, l ∈ ΣN, then it follows from (6.4) that

L
(
Lk(uk) , Lk(ul)

)
= sup

f :ΣN→R

Lip(f)≤1

∣∣∣∣∣
∫

f d(Lk(uk)) −
∫

f d(Lk(ul))

∣∣∣∣∣
= sup

f :ΣN→R

Lip(f)≤1

∣∣∣∣∣1k
k−1∑
i=0

f(Si(uk)) − 1
k

k−1∑
i=0

f(Si(ul))

∣∣∣∣∣
≤ sup

f :ΣN→R

Lip(f)≤1

1
k

k−1∑
i=0

|f(Si(uk)) − f(Si(ul))|

≤ 1
k

k−1∑
i=0

dΣN

(
Si(uk) , Si(ul)

)

=
1
k

k−1∑
i=0

sSi(uk)∧Si(ul)

≤ 1
Mr

k−1∑
i=0

sk−i
max

≤ 1
Mr(1 − smax)

< δ ,

and we therefore conclude from (6.3) that d(ULk(uk) , ULk(ul) ) ≤ r
2 .

(2) It follows from (1) that there is a positive integer Mr such that if k ≥ Mr,
u ∈ Σk and k, l ∈ ΣN, then d(ULk(uk) , ULk(ul) ) ≤ r

2 .
We now claim that if m ≥ Mr, then{

i ∈ ΣN

∣∣∣ ULki ∈ B(C, r
2 ) for all k ≥ m

}
⊆

{
i ∈ ΣN

∣∣∣ ULk[i|k] ⊆ B(C, r) for all k ≥ m
}

.

In order to prove this inclusion, we fix m ≥ Mr and i ∈ ΣN with ULki ∈
B(C, r

2 ) for all k ≥ m. We must now prove that ULk[i|k] ⊆ B(C, r) for all
k ≥ m. We therefore fix k ≥ m and j ∈ [i|k]. We must now prove that
ULkj ∈ B(C, r). For brevity write u = i|k. Since j ∈ [i|k] = [u], we can now
find (unique) k, l ∈ ΣN such that i = uk and j = ul. We now have

dist
(
ULkj , C

) ≤ d
(
ULkj , ULki

)
+ dist

(
ULki , C

)
= d

(
ULk(ul) , ULk(uk)

)
+ dist

(
ULki , C

)
. (6.5)

However, since k ≥ m ≥ Mr and u ∈ Σk, we conclude that d(ULk

(uk) , ULk(ul) ) ≤ r
2 . Also, since k ≥ m, we deduce that ULki ∈ B(C, r

2 ),
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whence dist( ULki , C ) ≤ r
2 . It therefore follows from (6.5) that

dist
(
ULkj , C

)
= d

(
ULk(ul) , ULk(uk)

)
+ dist

(
ULki , C

)
≤ r

2
+

r

2
= r.

This completes the proof. �

Lemma 6.2. Let X be a metric space and let U : P(ΣN) → X be continuous
with respect to the weak topology. Let C ⊆ X be a closed subset of X. Then

dimH

{
i ∈ ΣN

∣∣∣ lim
m

dist(ULmi, C ) = 0
}

≤ fU,Λ(C) ;

recall that dimH denotes the Hausdorff dimension.

Proof. For a subset Ξ of ΣN, we let dimBΞ denote the lower box dimension of
Ξ; the reader is referred to [10] for the definition of the lower box dimension.
We will use the fact that dimH Ξ ≤ dimBΞ for all Ξ ⊆ ΣN, see, for example,
[8].

We now introduce the following notation. For brevity write

Γ =
{
i ∈ ΣN

∣∣∣ lim
m

dist(ULmi, C ) = 0
}

.

Also, for a positive integer m and a positive real number r > 0, write

Γm(r) =
{
i ∈ ΣN

∣∣∣ ULki ∈ B(C, r) for all k ≥ m
}

,

Δm(r) =
{
i ∈ ΣN

∣∣∣ ULk[i|k] ⊆ B(C, r) for all k ≥ m
}

.

Observe that if M is any positive integer, then we clearly have

Γ ⊆
⋃

m≥M

Γm( r
2 ) (6.6)

for all r > 0. We also observe that it follows from Lemma 6.1 that for each
positive number r > 0 there is a positive integer Mr such that

Γm( r
2 ) ⊆ Δm(r) (6.7)

for all m ≥ Mr. It follows from (6.6) and (6.7) that

Γ ⊆
⋃

m≥Mr

Γm( r
2 )

⊆
⋃

m≥Mr

Δm(r) ,
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whence

dimH Γ ≤ dimH

( ⋃
m≥Mr

Δm(r)

)

= sup
m≥Mr

dimH Δm(r)

≤ sup
m≥Mr

dimBΔm(r) (6.8)

for all r > 0.
Fix a positive integer m. We now prove that

Δm(r) ⊆
⋃

i∈ΠU,Λ
δ (C,r)

[i] (6.9)

for all 0 < δ < sm
min and all r > 0. Indeed, fix j ∈ Δm(r). Now, let k0 denote

the unique positive integer such that if we write j0 = j|k0, then sj0 ≤ δ < sĵ0
,

i.e. sj0 ≈ δ. Since it follows from Proposition 4.1 that sk0
min = s

|j0|
min ≤ sj0 ≤ δ <

sm
min, we conclude that k0 ≥ m, and the fact that j ∈ Δm(r) therefore implies

that UL|j0|[j0] = ULk0 [j|k0] ⊆ B(C, r). This shows that j0 ∈ ΠU,Λ
δ (C, r),

whence j ∈ [j|k0] = [j0] ⊆ ∪i∈ΠU,Λ
δ (C,r)[i]. This proves (6.9).

Inclusion (6.9) shows that for all 0 < δ < sm
min, the family ( [i] )i∈ΠU,Λ

δ (C,r) is

a covering of Δm(r) of sets [i] with i ∈ ΠU,Λ
δ (C, r) such that diam[i] = si ≤ δ

for all i ∈ ΠU,Λ
δ (C, r). This implies that

dimBΔm(r) ≤ lim inf
δ↘0

log |ΠU,Λ
δ (C, r)|

− log δ
(6.10)

for all r > 0. Since (6.10) holds for all m, we conclude that

sup
m≥Mr

dimBΔn(r) ≤ lim inf
δ↘0

log |ΠU,Λ
δ (C, r)|

− log δ
(6.11)

for all r > 0.
Combining (6.8) and (6.11) now shows that

dimH Γ ≤ lim inf
δ↘0

log |ΠU,Λ
δ (C, r)|

− log δ
(6.12)

for all r > 0. Finally, letting r ↘ 0 in (6.12) completes the proof. �

In order to state and prove the next lemma we introduce the following
notation. Namely, for a Hölder continuous function ϕ : ΣN → R, we will write

P (ϕ)

for the topological pressure of ϕ. We can now state and prove Lemma 6.3.
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Lemma 6.3. Let μ ∈ PS(ΣN) with suppμ = ΣN. (Here suppμ denotes the
topological support of μ.) Then there exists a sequence (μn)n of probability
measures on ΣN satisfying the following three conditions.

(1) We have μn → μ weakly.
(2) For each n, the measure μn is ergodic.
(3) We have h(μn) → h(μ).

Proof. Fix a positive integer n. Since suppμ = ΣN, we deduce that μ[i] > 0
for all i ∈ Σ∗. Hence, for m ∈ N and i1 · · · im ∈ Σm, we can define pn,i1···im

by

pn,i1···im
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ[i1 · · · im] for m ≤ n,

m−n∏
k=1

μ[ikik+1···ik+(n−1)]

μ[ik+1...ik+(n−1)]
μ[i(m−n)+1 . . . im] for n < m.

(6.13)

Since clearly
∑

i pn,i = 1 and
∑

i pn,i1···imi = pn,i1···im
for all m and all

i1 · · · im ∈ Σm, there exists a (unique) probability measure μn on ΣN such
that

μn[i1 · · · im] = pn,i1···im

for all m and all i1 · · · im ∈ Σm (cf. [Wa, p. 5]). �

Claim 1. We have μn → μ weakly.

Proof of Claim 1. It follows from definition (6.13) that μn[i] = μ[i] for all
i ∈ Σn. This clearly implies that μn → μ weakly. This completes the proof of
Claim 1.

�

Claim 2. For each n, there is a Hölder continuous function ϕn : ΣN → R

such that the following conditions hold.

(1) P (ϕn) = 0 ,
(2) The measure μn is a Gibbs state of ϕn.

Proof of Claim 2. We first note that μn is shift invariant. Indeed, since μ is
shift invariant, a small calculation shows that

∑
i μn[ii] = μn[i] for all i ∈ Σ∗.

This implies that μn(S−1[i]) = μn[i] for all i ∈ Σ∗, whence μn(S−1B) = μn(B)
for all Borel sets B.

Next we show that μn is a Gibbs state for a Hölder continuous function.
Define ϕn : ΣN → R by

ϕn(i1i2 . . .) = log
(

μ[i1i2 · · · in]
μ[i2 · · · in]

)
.
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The map ϕn is clearly Hölder continuous, and it follows from the definition of
μn that

e−n‖ϕn‖∞ min
j∈Σn

μ[j] ≤ μn[i|m]

e
∑m−1

k=0 ϕn(Ski)
≤ en‖ϕn‖∞ max

j∈Σn
μ[j]

for all i ∈ ΣN and all m > n. This shows that μn is the Gibbs state of ϕn,
and that the pressure P (ϕn) of ϕn equals 0, i.e. P (ϕn) = 0; cf. [Bo]. This
completes the proof of Claim 2.

�

Claim 3. For each n, the measure μn is ergodic.

Proof of Claim 3. It follows from Claim 2 that μn is the Gibbs state of a
Hölder continuous function. This implies that μn is ergodic. This completes
the proof of Claim 3. �

Claim 4. We have h(μn) → h(μ).

Proof of Claim 4. For measurable partitions A,B of Σ, let h(μ;A) and h(μ;
A|B) denote the entropy of A with respect to μ, and the conditional entropy
of A given B with respect to μ, respectively. Write C = { [i] | i ∈ Σ} and
Cn = ∨n−1

k=0S−kC = { [i] | i ∈ Σn}. It follows from Claim 2 that there is a Hölder
continuous function ϕn : ΣN → R with P (ϕn) = 0 such that μn is a Gibbs
state of ϕn. Since P (ϕn) = 0 and μn is a Gibbs state of ϕn, the Variational
Principle now shows that 0 = P (ϕn) = h(μn) +

∫
ϕn dμn (cf. [Bo]), whence

h(μn) = −
∫

ϕn dμn

= −
∑

i1···in

μ[i1 · · · in] log
(

μ[i1i2 · · · in]
μ[i2 · · · in]

)

= h(μ; Cn|Cn−1). (6.14)

Next, we note that it follows from [DGS, 11.4] that h(μ; Cn|Cn−1) → h(μ; C),
and we therefore conclude from (6.14) that

h(μn) → h(μ; C). (6.15)

Finally, it follows immediately from the Kolmogoroff-Sinai theorem that h(μ; C)
= h(μ). This and (6.15) now show that

h(μn) → h(μ).

This completes the proof of Claim 4. �

The proof now follows from Claim 1, Claim 3 and Claim 4.
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The next auxiliary result provides a formula for the upper Hausdorff di-
mension of a probability measure. If μ is a probability measure on ΣN, we
define the upper Hausdorff dimension of μ by

dimHμ = inf
Ξ⊆ΣN

μ(Ξ)=1

H

Ξ.

(Recall that dimH denotes the Hausdorff dimension.) The next result provides
a formula for the upper Hausdorff dimension of an ergodic probability mea-
sure on ΣN. This result is folklore and follows from the Shannon-MacMillan-
Breiman theorem and the ergodic theorem. However, for sake of completeness
we have decided to include the short proof.

Proposition 6.4. Let μ be an ergodic probability measure on ΣN. Then dimHμ =
− h(μ)∫

Λ dμ
.

Proof. Since μ is ergodic, it follows from the Shannon-MacMillan-Breiman
theorem that

log μ([i|n])
n

→ −h(μ) for μ-a.a. i ∈ ΣN. (6.16)

Also, an application of the ergodic theorem shows that
∑n−1

k=0 ΛSki
n → ∫

Λ dμ

for μ-a.a. i ∈ ΣN. It follows from this and Proposition 4.1 that

log si|n
n

→
∫

Λ dμ for μ-a.a. i ∈ ΣN. (6.17)

Combining (6.16) and (6.17) now gives

log μ([i|n])
log si|n

→ − h(μ)∫
Λ dμ

for μ-a.a. i ∈ ΣN. (6.18)

Next, for each i ∈ ΣN and r > 0, let ni,r denote the unique integer such
that si|ni,r

< r ≤ s
î|ni,r

. It follows from the definition of the metric dΣN on ΣN

(see (6.1) and (6.2)) that B(i, r) = [i|ni,r]. Also, if we let c denote the constant
from Condition (C3) in Sect. 2.1, then it follows from Proposition 4.1 that
si|ni,r

< r ≤ s
î|ni,r

≤ c
smin

si|ni,r
. Combining these facts, we now deduce from

(6.18) that

lim
r↘0

log μ(B(i, r))
log r

= lim
r↘0

log μ([i|ni,r])
log si|ni,r

= lim
n

log μ([i|n])
log si|n

= − h(μ)∫
Λ dμ

for μ-a.a. i ∈ ΣN,
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whence

μ-ess supi lim inf
r↘0

log μ(B(i, r))
log r

= − h(μ)∫
Λ dμ

, (6.19)

where μ-ess sup denotes the μ essential supremum.
Finally, we note that it is well-known that dimHμ = μ-ess supi lim infr↘0

log μ(B(i,r))
log r (see, for example, [11]), and it therefore follows immediately from

(6.19) that dimHμ = μ-ess supi lim infr↘0
log μ(B(i,r))

log r = − h(μ)∫
Λ dμ

. �

The final auxiliary result says that the map C → fU,Λ(C) is upper semi-
continuous. In order to state this result we introduce the following notation.
For a metric space X, we write

F(X) =
{

F ⊆ X
∣∣∣F is closed and non-empty

}
(6.20)

and we equip F(X) with the Hausdorff metric D; recall, that since X may
be unbounded, the Hausdorff distance D is defined as follows, namely, for
E,F ∈ F(X), write

Δ(E,F ) = min

(
sup
x∈E

dist(x, F ) , sup
y∈F

dist(y,E)

)
(6.21)

and define D by

D = min(1,Δ). (6.22)

Lemma 6.5. Let X be a metric space and let U : P(ΣN) → X be continuous
with respect to the weak topology. Equip F(X) with the Hausdorff metric D.
Then the function fU,Λ : F(X) → R is upper semicontinuous, i.e. for each
C ∈ F(X) and each ε > 0, there exists a real number ρ > 0 such that if
F ∈ F(X) and D(F,C) < ρ, then

fU,Λ(F ) ≤ fU,Λ(C) + ε.

Proof. Let C ∈ F(X) and ε > 0. Next, it follows from the definition of fU,Λ(C)
that we can choose a real number r0 with 0 < r0 < 1 such that

fU,Λ(C, r0) < fU,Λ(C) + ε. (6.23)

Let ρ = r0
2 . We now prove the following claim.

Claim 1. Let F ∈ F(X) with D(F,C) < ρ. For all 0 < r < ρ and all δ > 0,
we have

NU,Λ
δ (F, r) ≤ NU,Λ

δ (C, r0).

Proof of Claim 1. Fix 0 < r < ρ and δ > 0. Since D(F,C) < ρ = r0
2 and r0 < 1,

we first conclude that B(F, r0
2 ) ⊆ B(C, r0). Hence, if i ∈ ΠU,Λ

δ (F, r), then this
and the fact that 0 < r < ρ = r0

2 imply that UL|i|[i] ⊆ B(F, r) ⊆ B(F, ρ) =
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B(F, r0
2 ) ⊆ B(C, r0) and so i ∈ ΠU,Λ

δ (C, r0). This shows that ΠU,Λ
δ (F, r) ⊆

ΠU,Λ
δ (C, r0), whence NU,Λ

δ (F, r) ≤ NU,Λ
δ (C, r0). This completes the proof of

Claim 1.
We now claim that if F ∈ F(X) and D(F,C) < ρ, then

fU,Λ(F ) ≤ fU,Λ(C) + ε. (6.24)

To prove this, let F ∈ F(X) with D(F,C) < ρ. It follows from Claim 1 and
(6.23) that if 0 < r < ρ, then

fU,Λ(F, r) = lim inf
δ↘0

log NU,Λ
δ (F, r)

− log δ

≤ lim inf
δ↘0

log NU,Λ
δ (C, r0)

− log δ

= fU,Λ(C, r0)

< fU,Λ(C) + ε.

Since this inequality holds for all 0 < r < ρ, we finally conclude that fU,Λ(F ) =
limr↘0 fU,Λ(F, r) ≤ fU,Λ(C) + ε. �

We can now state and prove the main result in this section, namely, Theo-
rem 6.6 providing a proof of inequality (2.2).

Theorem 6.6. Let X be a metric space and let U : P(ΣN) → X be continuous
with respect to the weak topology. Let C ⊆ X be a closed subset of X. We have

sup
μ∈PS(ΣN)

Uμ∈C

− h(μ)∫
Λ dμ

≤ fU,Λ(C).

Proof. Let ε > 0. Next, fix μ ∈ PS(ΣN) with Uμ ∈ C. We will now prove that

− h(μ)∫
Λ dμ

≤ fU,Λ(C) + ε. (6.25)

Let F(X) be defined as in (6.20), i.e. F(X) = {F ⊆ X |F is closed and
non-empty }, and equip F(X) with the Hausdorff metric D, see (6.21) and
(6.22). It follows from Lemma 6.5 that the function fU,Λ : F(X) → R is upper
semi-continuous, and we can therefore choose ρε > 0 such that:

if F ∈ F(X) and D(F,C) < ρε, then

fU,Λ(F ) ≤ fU,Λ(C) + ε.
(6.26)

Next, observe that we can choose an S-invariant probability measure γ on
ΣN such that supp γ = ΣN. For t ∈ (0, 1), we now write μt = (1 − t)μ + tγ ∈
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PS(ΣN). As U is continuous with Uμ ∈ C and μt → μ weakly as t ↘ 0, there
exists 0 < tε < 1 such that for all 0 < t < tε, we have

dist(Uμt, C) < ρε. (6.27)

Fix 0 < t < tε. Since U is continuous and dist(Uμt, C) < ρε (by (6.27)), it
follows from Lemma 6.3 that we may choose a sequence (μt,n)n of S-invariant
probability measures on ΣN such that

μt,n → μt weakly , (6.28)

μt,n is ergodic, (6.29)

h(μt,n) → h(μt) (6.30)

and

dist(Uμt,n, C) < ρε (6.31)

for all n. Observe that it follows from (6.31) that D(C ∪{μt,n} , C ) < ρε, and
we therefore conclude from (6.31) that

fU,Λ(C ∪ {μt,n} ) ≤ fU,Λ(C) + ε (6.32)

for all n. We now prove the following two claims.
Claim 1. For all 0 < t < tε, we have

− (1 − t)h(μ) + th(γ)
(1 − t)

∫
Λ dμ + t

∫
Λ dγ

≤ lim
n

dimH μt,n.

Proof of Claim 1. Using the fact that the entropy map h : PS(Σ) → R is affine
(cf. [47]) we conclude that

− (1 − t)h(μ) + th(γ)
(1 − t)

∫
Λ dμ + t

∫
Λ dγ

≤ − h((1 − t)μ + tγ)∫
Λ d((1 − t)μ + tγ)

= − h(μt)∫
Λ dμt

. (6.33)

However, since Λ is continuous and μt,n → μt weakly (by (6.28)), we conclude
that

∫
Λ dμt,n → ∫

Λ dμt. We deduce from this and the fact that h(μt,n) →
h(μt) (by (6.30)) that

− h(μt)∫
Λ dμt

= lim
n

− h(μt,n)∫
Λ dμt,n

. (6.34)

Combining (6.33) and (6.34) now yields

− (1 − t)h(μ) + th(γ)
(1 − t)

∫
Λ dμ + t

∫
Λ dγ

≤ lim
n

− h(μt,n)∫
Λ dμt,n

. (6.35)
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Also, since μt,n is ergodic (by (6.29)), it follows from Proposition 6.4 that
dimH μt,n = −h(μt,n)

log N , and we therefore conclude from (6.35) that

− (1 − t)h(μ) + th(γ)
(1 − t)

∫
Λ dμ + t

∫
Λ dγ

≤ lim
n

− h(μt,n)∫
Λ dμt,n

= lim
n

dimH μt,n.

This completes the proof of Claim 1.
Claim 2. For all 0 < t < tε, we have

lim
n

dimH μt,n ≤ fU,Λ(C) + ε.

Proof of Claim 2. It follows immediately from the ergodicity of μt,n and the
ergodic theorem that μt,n({i ∈ ΣN | limm Lmi = μt,n}) = 1. Hence

dimH μt,n ≤ dimH

{
i ∈ ΣN

∣∣∣ lim
m

Lmi = μt,n

}
≤ dimH

{
i ∈ ΣN

∣∣∣ lim
m

ULmi = Uμt,n

}
≤ dimH

{
i ∈ ΣN

∣∣∣ lim
m

dist
(
ULmi , C ∪ {Uμt,n} )

= 0
}

. (6.36)

Next, it follows from (6.36) using Lemma 6.2 and (6.32) that

dimH μt,n ≤ dimH

{
i ∈ ΣN

∣∣∣ lim
m

dist
(
ULmi , C ∪ {Uμt,n} )

= 0
}

[by ((6.36)]

≤ fU,Λ(C ∪ {μt,n} ) [by Lemma 6.2]

≤ fU,Λ(C) + ε. [by (6.32)]

This completes the proof of Claim 2.
Combining Claims 1 and 2 shows that for all 0 < t < tε, we have

− (1 − t)h(μ) + th(γ)
(1 − t)

∫
Λ dμ + t

∫
Λ dγ

≤ fU,Λ(C) + ε. (6.37)

Letting t ↘ 0 in (6.37) now gives − h(μ)∫
Λ dμ

≤ fU,Λ(C) + ε. This proves (6.25).

Since μ ∈ PS(X) with Uμ ∈ C was arbitrary, it follows immediately from
(6.25) that

sup
μ∈P(ΣN)

Uμ∈C

− h(μ)∫
Λ dμ

≤ fU,Λ(C) + ε.

Finally, letting ε ↘ 0 gives the desired result. �
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7. Proof of inequality (2.3)

The purpose of this section is to prove Theorem 7.1 providing a proof of
inequality (2.3).

Theorem 7.1. Let X be a metric space and let U : P(ΣN) → X be continuous
with respect to the weak topology. Let C ⊆ X be a closed subset of X and r > 0.

(1) We have

fU,Λ(C, r) ≤ σab

(
ζU,Λ
C (·; r) ).

(2) We have

fU,Λ(C) ≤ lim inf
r↘0

σab

(
ζU,Λ
C (·; r) ).

Proof. (1) Fix ε > 0. For brevity write t = fU,Λ(C, r)−ε. Since t = fU,Λ(C, r)−
ε < fU,Λ(C, r) = lim infδ↘0

log NU,Λ
δ (C,r)

− log δ , we can find δε with 0 < δε < 1 such
that

t <
log NU,Λ

δ (C, r)
− log δ

for all 0 < δ < δε. Consequently, for all 0 < δ < δε, we have

δ−t ≤ NU,Λ
δ (C, r). (7.1)

Next, let c denote the constant from Condition (C3) in Sect. 2.1 and fix
ρ > 0 with ρ < min( smin

c , δε )). We now prove the following two claims.
Claim 1. For ∈ N and i ∈ Σ∗, the following implication holds:

si ≈ ρn ⇒ ρn+1 < si ≤ ρn ;

recall, that for δ > 0, we write si ≈ δ if si ≤ δ < ŝi, see Sect. 2.1.
Proof of Claim 1. Indeed, if i = i1 · · · im ∈ Σm with si ≈ ρn, then si ≤ ρn < ŝi,
whence si ≤ ρn. It also follows from Proposition 4.1 that si = ŝiim

≥ 1
c ŝisim

>
1
cρnsmin = smin

cρ ρn+1 ≥ ρn+1 where the last inequality is due to the fact that
smin
cρ ≥ 1 because ρ < min( smin

c , δε ) ≤ smin
c . This completes the proof of Claim

1.
Claim 2. We have ∑

i
UL|i|[i]⊆B(C,r)

st
i = ∞.
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Proof of Claim 2. It is clear that∑
i

UL|i|[i]⊆B(C,r)

st
i =

∑
n

∑
i

ρn+1<si≤ρn

UL|i|[i]⊆B(C,r)

st
i +

∑
i

ρ<si

UL|i|[i]⊆B(C,r)

st
i

≥
∑

n

∑
i

ρn+1<si≤ρn

UL|i|[i]⊆B(C,r)

st
i . (7.2)

Also, for n ∈ N and i ∈ Σ∗, the following implication follows from Claim 1:

si ≈ ρn ⇒ ρn+1 < si ≤ ρn. (7.3)

We conclude immediately from (7.3) that∑
n

∑
i

ρn+1<si≤ρn

UL|i|[i]⊆B(C,r)

st
i ≥

∑
n

∑
i

si≈ρn

UL|i|[i]⊆B(C,r)

st
i . (7.4)

Combining (7.2) and (7.4) shows that∑
i

UL|i|[i]⊆B(C,r)

st
i ≥

∑
n

∑
i

si≈ρn

UL|i|[i]⊆B(C,r)

st
i

=
∑

n

∑
i∈ΠU

s,ρn (C,r)

st
i . (7.5)

However, if i ∈ ΠU
s,ρn(C, r), then si ≈ ρn, and it therefore follows from Claim

1 that ρn+1 < si ≤ ρn, whence si ≥ ρntρ|t|. We conclude from this and (7.5)
that ∑

i
UL|i|[i]⊆B(C,r)

st
i ≥

∑
n

∑
i∈ΠU

s,ρn (C,r)

st
i

≥ ρ|t| ∑
n

∑
i∈ΠU

s,ρn (C,r)

ρnt

= ρ|t| ∑
n

∣∣∣ΠU
s,ρn(C, r)

∣∣∣ ρnt

= ρ|t| ∑
n

NU
s,ρn(C, r) ρnt. (7.6)
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Finally, since ρn ≤ ρ < min( smin
c , δε ) ≤ δε, we deduce from (7.1) that ρ−nt =

(ρn)−t ≤ NU
s,ρn(C, r). This and (7.6) now implies that∑

i
UL|i|[i]⊆B(C,r)

st
i ≥ ρ|t| ∑

n

ρ−nt ρnt

= ρ|t| ∑
n

1

= ∞.

This completes the proof of Claim 2.
We conclude immediately from Claim 2 that fU,Λ(C, r)− ε = t ≤ σab

(
ζU,Λ
C

(·; r) ). Finally, letting ε ↘ 0 completes the proof.
(2) This follows immediately from (1). �

8. Proof of Theorem 2.2

For x, y ∈ R
M , write

[[x, y]] =
{

(1 − t)x + ty
∣∣∣ t ∈ [0, 1]

}
,

i.e. [[x, y]] denotes the line-segment joining x and y.

Lemma 8.1. Let E ⊆ R
M and let x ∈ E and y ∈ R

M \E. Then [[x, y]]∩∂E �= ∅.

Proof. Let t0 = sup{t ∈ [0, 1] | (1− t)x+ ty ∈ E}. Then (1− t0)x+ t0y ∈ [[x, y]],
and since x ∈ E and y ∈ R

M \E, it is easily seen that (1−t0)x+t0y ∈ ∂E. �

Lemma 8.2. Let C ⊆ R
M be a closed subset of R

M and let r, ε > 0 with r < ε.
Then B

(
I(C, ε) , r

) ⊆ C; recall, that I(C, ε) = {x ∈ C | dist(x, ∂C) ≥ ε}, see
Sect. 2.3.

Proof. Let y ∈ B
(
I(C, ε) , r

)
. We must now prove that y ∈ C. Assume, in

order to reach a contradiction, that y �∈ C. Since I(C, ε) is closed, it follows
that we can find x ∈ I(C, ε) such that |y − x| = dist

(
y , I(C, ε)

)
. Also,

since x ∈ I(C, ε) ⊆ C and y �∈ C, it follows from Lemma 8.2 that there is
v ∈ [[x, y]] ∩ ∂C. We now conclude that

r ≥ dist
(
y , I(C, ε)

)
[since y ∈ B

(
I(C, ε) , r

)
]

= |y − x|
≥ |v − x| [since v ∈ [[x, y]]]

≥ dist
(
x , ∂C

)
[since v ∈ ∂C]

≥ ε. [since x ∈ I(C, ε)]

However, this inequality contradicts the fact that r < ε. �
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Proof of Theorem 2.2. We first note that it follows from Theorem 2.1 that

fU,Λ(C) = sup
μ∈PS(ΣN)

Uμ∈C

− h(μ)∫
Λ dμ

.

Hence it suffices to prove that

σab

(
ζU,Λ
C

)
= fU,Λ(C).

We first show that

σab

(
ζU,Λ
C

) ≤ fU,Λ(C). (8.1)

Indeed, it follows immediately from the definitions of the zeta-functions ζU,Λ
C

and ζU,Λ
C (·; r) that if r > 0, then σab

(
ζU,Λ
C

) ≤ σab

(
ζU,Λ
B(C,r)

)
= σab

(
ζU,Λ
C (·; r) ),

whence σab

(
ζU,Λ
C

) ≤ lim infr↘ σab

(
ζU,Λ
C (·; r) ). We conclude from this and

Theorem 2.1 that σab

(
ζU,Λ
C

) ≤ lim infr↘0 σab

(
ζU,Λ
C (·; r) ) = fU,Λ(C). This

proves (8.1).
Next, we show that

σab

(
ζU,Λ
C

) ≥ fU,Λ(C). (8.2)

Observe that if r, ε > 0 with r < ε, then it follows from Lemma 8.2 that
B
(
I(C, ε) , r

) ⊆ C, and the definitions of the zeta-functions ζU,Λ
C and ζU,Λ

C (·; r)
therefore imply that σab

(
ζU,Λ
C

) ≥ σab

(
ζU,Λ
B( I(C,ε) ,r )

)
= σab

(
ζU,Λ
I(C,ε)(·; r)

)
for all

r, ε > 0 with r < ε. Hence, for all ε > 0 we have

σab

(
ζU,Λ
C

) ≥ lim inf
r↘0

σab

(
ζU,Λ
I(C,ε)(·; r)

)
. (8.3)

Also, since I(C, ε) is closed, it follows from Theorem 2.1 that lim infr↘0 σab(
ζU,Λ
I(C,ε)(·; r)

)
= fU,Λ( I(C, ε) ). We conclude from this and (8.3) that

σab

(
ζU,Λ
C

) ≥ fU,Λ
(
I(C, ε)

)
, (8.4)

for all ε > 0. Finally, using inner continuity at C and letting ε ↘ 0, it follows
from (8.4) that σab

(
ζU,Λ
C

) ≥ limε↘0 fU,Λ( I(C, ε) ) = fU,Λ(C). This proves
(8.2). �

9. Proof of Theorem 2.3

The purpose of this section is to prove Theorem 2.3.

Proof of Theorem 2.3. For brevity write G = {s ∈ C | Re(s) > σab( ζU,Λ
C )}.

Since sup|i|=n
1

log si
→ 0 as n → ∞ (because sup|i|=n si → 0 as n → ∞), we

conclude that the series ZU,Λ
C (s) =

∑
i , UL|i|[i]⊆C

1
log si

ss
i converges uniformly

in the variable s on all compact subsets of G.
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Since the series ZU,Λ
C (s) =

∑
i , UL|i|[i]⊆C

1
log si

ss
i converges uniformly in the

variable s on all compact subsets of G, we conclude that the formal calculations
below are justified, namely, if s ∈ G, then we have

expZU,Λ
C (s) = exp

∑
i

UL|i|[i]⊆C

1
log si

ss
i

= exp
∑
i

i is prime

UL|i|[i]⊆C

∑
n

1
log si···i︸︷︷︸

n times

ss
i···i︸︷︷︸

n times

= exp
∑
i

i is prime

UL|i|[i]⊆C

∑
n

1
n log si

ssn
i

=
∏
i

i is prime

UL|i|[i]⊆C

exp

(
1

log si

∑
n

1
n

ssn
i

)

=
∏
i

i is prime

UL|i|[i]⊆C

exp

(
1

log si
log

(
1

1 − ss
i

))

=
∏
i

i is prime

UL|i|[i]⊆C

(
1

1 − ss
i

) 1
log si

= QU,Λ
C (s). (9.1)

It follows from the calculations involved in establishing (9.1) that the prod-
uct QU,Λ

C (s) converges and that QU,Λ
C (s) �= 0 for all s ∈ G. In addition, we

deduce from (9.1) that for all s ∈ G, we have d
dsQU,Λ

C (s) = d
ds exp ZU,Λ

C (s) =
(exp ZU,Λ

C (s)) d
dsZU,Λ

C (s) = QU,Λ
C (s) d

dsZU,Λ
C (s), whence
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d

ds
ZU,Λ

C (s) =
d
dsQU,Λ

C (s)

QU,Λ
C (s)

= LQU,Λ
C (s). (9.2)

Once again using the fact that the series ZU,Λ
C (s) =

∑
i , UL|i|[i]⊆C

1
log si

ss
i con-

verges uniformly in the variable s on all compact subsets of G, we deduce that
if s ∈ G, then we have

d

ds
ZU,Λ

C (s) =
d

ds

∑
i

UL|i|[i]⊆C

1
log si

ss
i

=
∑
i

UL|i|[i]⊆C

1
log si

d

ds
ss
i

=
∑
i

UL|i|[i]⊆C

ss
i

= ζU,Λ
C (s). (9.3)

Finally, combining (9.2) and (9.3) gives ζU,Λ
C (s) = d

dsZU,Λ
C (s) = LQU,Λ

C (s)
for all s ∈ G. �
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