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Summary 

By using a systems based approach, mathematical and computational techniques can be used 

to develop models that describe the important mechanisms involved in infectious diseases. An 

iterative approach to model development allows new discoveries to continually improve the 

model, and ultimately increase the accuracy of predictions. 

 

SIR models are used to describe epidemics, predicting the extent and spread of disease. 

Genome-wide genotyping and sequencing technologies can be used to identify the biological 

mechanisms behind diseases. These tools help to build strategies for disease prevention and 

treatment, an example being the recent outbreak of Ebola in West Africa where these 

techniques were deployed. 

 

HIV is a complex disease where much is still to be learnt about the virus and the best 

effective treatment. With basic mathematical modelling techniques, significant discoveries 

have been made over the last 20 years. With recent technological advances, the computational 

resources now available and interdisciplinary cooperation, further breakthroughs are 

inevitable. 

 

In TB, modelling has traditionally been empirical in nature, with clinical data providing the 

fuel for this top-down approach. Recently, projects have begun to use data derived from 

laboratory experiments and clinical trials to create mathematical models that describe the 

mechanisms responsible for the disease. 



 

A systems medicine approach to infection modelling helps identify important biological 

questions that then direct future experiments, the results of which improve the model in an 

iterative cycle. This means that data from several model systems can be integrated and 

synthesised to explore complex biological systems. 
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1. Introduction 

Infectious diseases continue to be major worldwide health concerns: hepatitis C, malaria, the 

human immunodeficiency virus (HIV) and tuberculosis (TB) are ongoing pandemics. A third 

of the world population is currently infected with the TB bacillus; and even though 

therapeutic drugs have slowed the threat of HIV, there is no definitive cure or viable vaccine 

in sight. A new way of approaching the problem is needed; this can be achieved with a 

systems approach. By utilising expertise across disciplines, fresh perspective and new insights 

can be gained. 

 

Current modelling efforts span multiple levels in the disease system; population dynamics 

where the focus is on disease transmission, the progression from population level to 

individual level where heterogeneity is included, moving to the pathogen-host interactions 

ranging from molecular to cellular, to whole organism levels. Both biological experiments 

and mathematical modelling have been successful at elucidating the properties of a disease at 

a particular level, but a full understanding requires the integration of all scales. This remains a 



major challenge for systems medicine. Infectious diseases reflect an equilibrium between the 

host and the pathogen that is established and maintained by a broad network of interactions 

that occur on such scales. Maintenance and evolution of these interactions over a prolonged 

time frame adds further complexity to persistent infections. The understanding of a biological 

system requires the integration of data that are used to construct predictive models of the 

dynamic interactions between biological components of the complex pathogen-host system. 

 

Mathematical and computational techniques, together with available in vitro and in vivo 

experimental results can be used to generate realistic pathogen-host interaction models. Often 

these models involve iterative rounds of development, with testing and refinement using, for 

example, Bayesian methods. Models created in such a manner can be used to create testable 

hypotheses, with much learnt about the biological system in the process (see Figure 1). 

Ultimately, predictions can be made that can guide clinical practice. This iterative cycle is key 

to the systems approach and requires efficient integration of data with firm collaboration 

across disciplines. The technologies and computational resources now exist to realise this 

systems approach, we must take advantage of the potential these provide.  

 

In this chapter we review some basic epidemic modelling (section 2) before using two 

infectious disease case studies, HIV (section 3) and tuberculosis (section 4), to demonstrate 

how a systems approach, using simple mathematical techniques, can be used to further 

biological understanding and ultimately lead to changes in clinical practice. The focus in 

these sections is at the cellular level, describing viral/bacterial load dynamics. 

 



 
  



2. Epidemic modelling 

 

One motivating reason for modelling the spread of infectious diseases is to understand how 

future outbreaks can be prevented. This can be achieved in several different ways, such as 

isolation or imposed travel restrictions. These measures aim at reducing contact rates, i.e. to 

reduce the reproduction rate of the pathogen. The effect of these depends on the particular 

disease and the community under consideration. Vaccination is an alternative preventive 

measure, which reduces the pool of susceptible individuals by imparting immunity. 

 

In classical mathematical epidemic models [1], the total population number is assumed to be 

constant.  A small group of infected people is introduced into a large population and a model 

is used to describe the spread of infection within that population as a function of time.   

The model consists of three subpopulations of individuals:  

S(t) which denotes the number of people susceptible to the disease, 

I(t) which denotes the number of people who are infected and can transmit the disease and 

R(t) which denotes the number of removed people, i.e. those who were infected but are now 

recovered, are immune or have been isolated until they are recovered. 

 

Such models are known as SIR models, where transfer between populations is restricted to 

𝑆 ⟶ 𝐼 and 𝐼 ⟶ 𝑅. 

Some diseases include a class in which the disease is latent, E.  Such models are known as 

SEIR models. 

 

Assumptions of the SIR model: 

 The gain in the infective class is at a rate that is proportional to the number of 

infectious and susceptible people, rSI where r > 0 is a constant parameter.   



 The susceptible population is lost at the same rate.  The transfer of infected 

individuals to the removed class is proportional to the number of people who are 

infected, aI where a > 0 is a constant.  1/a is a measure of the time spent in the 

infectious state. 

 The incubation period is short enough to be negligible hence a susceptible person 

who catches the disease is infected immediately. 

 Every person has equal probability of coming into contact with one another. 

 

The model mechanism [2] is therefore,  

𝑑𝑠

𝑑𝑡
=  −𝑟𝑆𝐼, 

𝑑𝐼

𝑑𝑡
= 𝑟𝑆𝐼 − 𝑎𝐼, 

𝑑𝑅

𝑑𝑡
= 𝑎𝐼, 

where r > 0 is the infection rate and a > 0 is the removal rate of infectious individuals. 

Initial conditions are defined as S(0) = S0 > 0, I(0) = I0 > 0 and R(0) = 0 and the constant total 

population is built into the system via  
𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 0 which implies that 

 𝑆 + 𝐼 + 𝑅 = 𝑁, where N is the total population. 

 

With this model, questions can be answered such as whether an infection will spread or not.  

If it does, how does it develop with time and critically, when will it start to decline?  Given r, 

a, S0 and I0 these questions can be addressed. 

 

This type of stochastic modelling looks at the properties of an epidemic by studying a given 

model and its parameters. It can be shown that the most important parameter in these SIR 

models is the basic reproduction rate of the disease, 𝑅0 =
𝑟𝑆0

𝑎
, where it can be shown that 

when R0 > 1, an epidemic ensues. Another important quantity when trying to avoid an 



outbreak is the critical vaccination coverage, which is defined as  

𝑣𝐶 = 1 −
1

𝑅0
 if R0 > 1, otherwise 𝑣𝐶 =  0.  

 

Even when trying to include as many realistic features in a model as possible there is a limit 

to how close a model can get to reality, and models can never completely predict what will 

happen in a given situation. It is, for example, nearly impossible to predict how people will 

adapt and change behaviour as a disease starts spreading. Having said this, models can still be 

very useful as guidance for health professionals when deciding about preventive measures 

aiming at reducing the spread of a disease. Much has been written describing mathematical 

models for infectious disease spread [3], [4], including stochastic epidemic models [5], [6], 

[7]. 

From traditional mathematical modelling it is clear that understanding and incorporating 

information from multiple scales can dramatically increase the power of such approaches. 

Thus, for example, emerging genome-wide genotyping and sequencing technologies are used 

to identify the biological mechanisms underlying the development of complex diseases and 

traits among populations. This allows models to build in host and pathogen features, but also 

points to the inclusion of larger, societal or population data. Such approaches have started to 

be deployed, for example in the recent epidemic outbreaks of Ebola in West Africa.  

Collectively, these approaches can help inform strategies for disease prevention and 

treatment. 

 

  



3. HIV modelling 

 

In 2013, ~1.5  million people died from HIV-related causes globally, having claimed an 

overall 39 million lives so far (World Health Organization, 2014). There is no cure for HIV 

infection but antiretroviral treatment (ART) can be used to control the disease. There is much 

still to be learnt about the virus and how best to administer effective treatment. Mathematical 

models developed over the last 20 years have helped to further understanding and provide 

new insights into the disease. 

 

One of the simplest mathematical models to describe HIV was proposed in 1995, where a 

simple linear first-order equation is used to describe viral load over time [8], 

𝑑𝑉

𝑑𝑡
= 𝑃 − 𝑐𝑉, 

where 𝑃 represents the viral production rate and 𝑐 is the viral clearance rate. Immune cells, 

fluid flow and absorption into other cells are combined to give the overall clearance of viral 

peptides, 𝑐.  

After introduction of the protease inhibitor it is assumed that the drug is completely effective, 

so the drug will block all viral production after being introduced. Under this assumption, 

𝑃 =  0 which leaves the simple equation 

𝑑𝑉

𝑑𝑡
= −𝑐𝑉 ⇒ 𝑉(𝑡) = 𝑉0𝑒−𝑐𝑡 , 

where 𝑉0 is the mean viral concentration in the plasma before treatment. 

Using linear regression to examine the relationship between ln 𝑉 against 𝑡 gives an estimate 

for 𝑐 and hence for the half-life of the virus in the plasma, 𝑡1

2

= ln
2

𝑐
.  

 

If an assumption is then made that the levels of viral load measured in the plasma remain 

fairly constant before treatment begins, i.e. the patient is in a quasi-steady state, 
𝑑𝑉

𝑑𝑡
 =  0, then 

by knowing 𝑐 and the initial virus concentration 𝑉0, the viral production rate before therapy 



can be computed, i.e., 𝑃  =  𝑐𝑉0. It should be noted, however, that as this calculation is based 

on the assumption that the drug completely blocks virus production. This assumption is 

unlikely to hold, and so, experiments would measure the rate of virus clearance in the face of 

some residual production, and the gradient of viral decline would therefore be a lower bound 

of the true clearance rate. Further models with added complexities have been developed from 

this simple framework (see [9] for a comprehensive review). 

 

By using relatively simple modelling techniques and trivial mathematics, fundamental 

information has been gained about the underlying biological mechanisms of the disease. 

These developments have made a substantial impact on our thinking and understanding of 

HIV infection. For example, because the disease can take around 10 years to develop, many 

thought that the disease process would be slow and treatment could be delayed until 

symptoms appeared. Patients were therefore not monitored very aggressively. Modelling, 

coupled with appropriate experiments, has revealed that HIV is a dynamic disease 

encompassing various different time scales. An extremely simple model involving a single 

linear ordinary differential equation (described above), when applied to the interpretation of 

clinical data, gave the first quantitative estimate of how rapidly HIV was being produced and 

cleared [8], [10]. 

 

Rigorous analysis of previously conducted in vivo experiments also prompted the practice of 

using prolonged therapy with effective drug combinations. Calculations revealed that in an 

average HIV-infected person, around 1010 viral particles are produced and released into 

bodily fluids per day [11]. It was therefore calculated that an infected person could go through 

about 200 replication cycles per year, with the possibility of mutating at each replication With 

this new information, the rapid evolution of HIV could easily be understood. Therapy with a 

single drug, in which a few mutations were all that were required for resistance to arise, was 

concluded to be a poor strategy. This demonstrated the need for combination therapy.  

 



Adding complexity into the modelling by considering multiple cell populations, it was found 

that the virus concentration in plasma has a two-phase decline. By using data obtained from 

patients responding well to combination therapy, estimates of how long therapy would need 

to be given to clear the cells responsible for producing the observed levels of virus were 

calculated. This led to the practice of antiretroviral drugs being taken for at least 2 or 3 years 

after the virus is no longer detectable in the blood [9]. This modelling work also began the 

process of quantifying both the level and the role of latently and long-lived infected cell 

populations in HIV infection. 

 

These important breakthroughs in the understanding of the HIV and its treatment have arisen 

from relatively trivial mathematical modelling exercises. This effectively demonstrates how 

systems based, interdisciplinary approaches can make huge advances in medical treatment. 

 

  



4. Tuberculosis modelling 

 

Tuberculosis remains one of the leading causes of death by infectious disease, second only to 

HIV/AIDS. It is estimated that one third of the world population is latently infected by 

Mycobacterium tuberculosis, with 2012 seeing 8.6 million people falling ill and 1.3 million 

dying from the disease (World Health Organization, 2014). 

Although well-administered short-course chemotherapy is clinically effective [12], there are 

several concerns surrounding current TB treatment. The emergence of multi-drug and 

extensive drug resistance is a major burden since it could lead to an increase of tuberculosis 

cases that are hard or impossible to treat [13]. Another major issue in tuberculosis treatment is 

its duration, which is currently a minimum of 6 months. Shortening the duration of effective 

TB therapy would mean better patient compliance and lower rates of relapse and drug 

resistance.  

Traditional approaches in tuberculosis research are based on pre-clinical experiments, in vitro 

and in vivo. These systems each have limitations and often, desired experiments are not 

feasible due to laboratory or ethical issues. Mathematical modelling alongside these assays 

allows hypotheses to be developed and tested, and hence further understanding of the disease 

by suggesting innovative approaches.  

In the last 20 years, mathematical models have provided major insights in the knowledge of 

tuberculosis pathogenesis [14], [15], [16]. During this time, progress has also been made in 

the quantitative description of both pharmacokinetics (PK) and in vitro pharmacodynamics 

(PD) of antituberculosis drugs [17], [18], [19]. Mathematical models that arise from a systems 

approach offer a unique potential to establish quantitative links across multiple biological 

scales. Different mathematical systems capture biological complexity best at individual 

scales. Once mathematical models adequately describe these biological complexities on an 



individual scale, integrating the scales will then be vital in order to understand the overall 

dynamics of this infectious disease. In this chapter we focus on modelling at the cellular level, 

modelling bacterial load detected in clinical sputum samples.  

It has long been noted in tuberculosis patients that decline in bacterial numbers appears to 

have two phases of decline. Many studies have employed non-linear mixed effects modelling 

techniques to fit bi-exponential functions to clinical trial data [20], [21]. For example, in [21], 

a bi-exponential model of the form 

log10 𝐶𝐹𝑈 = log10(𝑒𝜃1𝑒−𝑑𝑎𝑦𝑒𝜃2 + 𝑒𝜃3𝑒−𝑑𝑎𝑦𝑒𝜃4  ) 

was used, where a log10 transformation of the response and a variance function were used to 

account for heteroscedasticity and an exponentiated parameterisation was used to enforce 

positivity of the parameters. These authors showed that the bi-exponential models provide a 

significantly better fit than a mono-exponential model. As it is known from in vitro studies 

that Mycobacterium tuberculosis bacteria exist in more than one cell state, the interpretation 

of the two-phase decline is that two subpopulations of Mycobacterium tuberculosis are 

present in the sputum, each declining at different rates. This has led to hypotheses about 

“dormant” cells being responsible for latent disease, and relapse. Consequently huge effort 

has gone into researching this less metabolically active subpopulation of cells. 

Traditional statistical modelling techniques have also been useful for identifying trends in 

clinical data sets. As tuberculosis is a slow growing organism (with a generation time 

between 17.5-56 hours [22], [23]), it can take time to obtain microbiological results to assess 

the progress of treatment. For this reason, modelling techniques have been used to identify 

biomarkers of success. Thus the 8-week biomarker of culture conversion was created as the 

most used indicator of treatment outcome [24]. More recent modelling efforts have been 

employed to investigate the reliability of using baseline bacterial load as an indicator for later 

relapse [25]. 



Although statistical modelling techniques are very powerful, fitting to the clinical data 

empirically in order to provide future predictions, the differential equations describing the 

system are employed without reference to the mechanisms underlying the biological system 

and so little can be learnt about the basic biology using these methods.  

In contrast to statistical modelling, mathematical or mechanistic models can summarise 

current knowledge, and in their development, a greater understanding of the biological system 

can be gained. They can be used to highlight gaps in current knowledge and identify tractable 

biological questions. The mechanistic approach also allows us to predict how a system will 

shift when underlying processes change. If mechanistic models are correctly specified, they 

should provide better simulation and prediction properties than many current empirical 

models.  

 

In TB, mechanistic models use available clinical and preclinical data to pre-define parameter 

values before solving the set of differential equations describing the biological system. 

Although there is often uncertainty when assigning parameter values, common parameter 

estimation techniques such as profile likelihood can be used to analyse parameter sensitivity 

in the system. A huge advantage of mechanistic modelling is that we are able to analyse the 

effect that parameters have on the bacterial load. For example, by altering killing parameters, 

the effect of new regimens on time to culture conversion can be analysed. Drugs targeting 

bacteria in different cell states can also be investigated. These simulations provide a surrogate 

for experiments that would not be feasible in vivo or in vitro.  

 

This systems medicine approach means that during development of mechanistic models, 

important biological questions can be identified and therefore direct future experiments, the 

results of which will feed back into the model (see Figure 1). Hence data from several model 

systems (animal, human, bacterial, and computational) can be integrated and synthesised to 

explore the complex biological system and address relevant questions. 



 

5. TB-HIV co-infection 

 

For tuberculosis patients co-infected with the HIV, the disease becomes more complex to 

treat. Most TB-HIV models address the epidemiology of co-infection. In 1992, the first model 

was published to quantify the consequences of the emerging TB-HIV epidemic [26]. In 2003, 

it was found that Antiretroviral therapy (ART) must be started early if expansion to the access 

of the therapy was to result in the increased control of TB [27]. Isoniazid preventative therapy 

(IPT) has also been modelled [28], [29], resulting in predictions of 34% - 100% of reduction 

of risk of TB. Models have also been used to explore enhancements to DOTS-based 

programmes [30], and also to inform policy on implementation of new interventions and tools 

[31]. In a recent article, [32] suggest a modelling TB-HIV research agenda, based on expert 

discussions at a meeting convened by the TB Modelling and Analysis Consortium. Here they 

identified high-priority areas for future modelling efforts; the difficult diagnosis and high 

mortality of TB-HIV, the high risk of disease progression, TB health systems in high HIV 

prevalence settings, uncertainty in the natural progression of TB-HIV and combined 

interventions for TB-HIV. The realisation of these aims relies on a systems based approach, 

where modellers’ and key stakeholders’ collaborative efforts result in tangible progress. 

Models that address the pathology of TB-HIV infected patients are also presented in the 

literature. Some studies attempt to understand how Mycobacterium tuberculosis affects the 

dynamic interaction of HIV-1 and the immune system [33] ,[34]. More modelling in this area 

is needed if we are to understand the complex interactions between these two pathogens, and 

hence start to provide recommendations for improvement in treatment plans. 

 

    

  



6. Conclusions 

 

Infectious diseases such as HIV and tuberculosis are major global health concerns and much 

is still unknown about the diseases. In order to aid improvements in treatment, mathematical 

and computational models are needed to provide a new insight.  

 

Interdisciplinary research is often criticised as researchers from other specialties are ignorant 

of many fundamental concepts in the discipline they are new to. However, this can also bring 

advantages. In model development, there is a danger that existing beliefs can inappropriately 

influence judgements about model assumptions and results. When mathematicians and 

computer scientists are used to develop models, however, they are not influenced by current 

dogmas in the field and can provide a fresh perspective on the problem. 

 

Mathematics provides a precise quantitative language to describe the relation between 

variables and changes in states, and in medicine we can represent mathematically the clinical 

course of disease, the distribution of disease across populations and over time, and the 

mechanisms that generate disease. We have seen in this chapter that relatively simple 

mathematics has led to huge leaps forward in the understanding of both HIV and tuberculosis 

infection. With more sophisticated analysis and ever increasing computational power, the 

possibility of significant breakthroughs using this systems-based approach to medical 

research presents an exciting prospect. 
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Figures 

Figure 1: This schematic describes dynamic model development. Prior knowledge and data 

from laboratory results help to develop an initial model. Once constructed, this model is 

refined. After this, an iterative cycle begins where the model is tested against the available 

data until the model is deemed to adequately describe this data. Once this cycle is complete, 

the last iterative cycle is embarked upon where predictions are made and ultimately validated 

against an independent data set. 

 


