Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Chemistry (School of) >
Chemistry >
Chemistry Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/953
This item has been viewed 18 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
The full text of this document is not available.pdf2.61 kBAdobe PDFView/Open
Title: Studies toward the synthesis and structural elucidation of chamuvarinin
Authors: Vanga, Raghava Reddy
Supervisors: Florence, Gordon John
Issue Date: 2009
Abstract: Chamuvarinin (22) is a unique annoanceaeous acetogenin isolated from the roots of Senegalese medicinal plant Uvaria chamae by Laurens and co-workers in 2004. It displays highly potent cytotoxicity towards the cervical cancer cell lines (KB 3-1, IC₅₀= 0.8 nM). Structurally, chamuvarinin is the first reported acetogenin to contain an adjacently linked bis-THF-THP ring system spanning the C15-C28 carbon backbone. However, initial efforts to assign the relative and absolute configuration within this stereochemical array, on the basis of ¹H and ¹³C NMR analysis, provided only partial information pertaining to the relative configuration of C15-C19 region. As a consequence, 32 diastereomeric structural possibilities exist for the highly unusual structure of chamuvarinin; an unrealistic target for total synthesis. The synthesis of the central core tricyclic (BCD) intermediate represents the most challenging aspect in the entire synthesis, which in turn will aid ultimate structural proof. At the outset of the project the stereochemical configuration of C15-C28 (BCD) of chamuvarinin was uncertain and a library approach was proposed to enable structure elucidation (Scheme A-1). Chapter 2 and Chapter 3 detail the synthesis of possible diastereomers of the C9-C21 (51) and C22-C34 fragments (52). Chapter 4 details the intial strategy to couple the key diastereomeric fragments in a series of model studies. Chapter 5 describes the successful coupling strategy via an revised synthetic approach to reach the advanced C9-C34 intermediate 251 (Scheme A-2).
URI: http://hdl.handle.net/10023/953
Other Identifiers: uk.bl.ethos.552346 
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Chemistry Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)