Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Mathematics & Statistics (School of) >
Pure Mathematics >
Pure Mathematics Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/945
This item has been viewed 225 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Andreas Distler PhD thesis.PDFMain text of thesis867.45 kBAdobe PDFView/Open
Appendix C_Part 3.zipAccompanying data and software127.42 MBUnknownView/Open
Appendix C_Part 2.zipAccompanying data and software279.97 MBUnknownView/Open
Appendix C_Part 1.zipAccompanying data and software394.81 MBUnknownView/Open
Title: Classification and enumeration of finite semigroups
Authors: Distler, Andreas
Supervisors: Ruškuc, Nik
Linton, Stephen
Keywords: Nilpotent semigroups
Enumerative combinatorics
Data library
Power group enumeration
3-nilpotent
Computer search
Constraint satisfaction
Computer algebra
Issue Date: 23-Jun-2010
Abstract: The classification of finite semigroups is difficult even for small orders because of their large number. Most finite semigroups are nilpotent of nilpotency rank 3. Formulae for their number up to isomorphism, and up to isomorphism and anti-isomorphism of any order are the main results in the theoretical part of this thesis. Further studies concern the classification of nilpotent semigroups by rank, leading to a full classification for large ranks. In the computational part, a method to find and enumerate multiplication tables of semigroups and subclasses is presented. The approach combines the advantages of computer algebra and constraint satisfaction, to allow for an efficient and fast search. The problem of avoiding isomorphic and anti-isomorphic semigroups is dealt with by supporting standard methods from constraint satisfaction with structural knowledge about the semigroups under consideration. The approach is adapted to various problems, and realised using the computer algebra system GAP and the constraint solver Minion. New results include the numbers of semigroups of order 9, and of monoids and bands of order 10. Up to isomorphism and anti-isomorphism there are 52,989,400,714,478 semigroups with 9 elements, 52,991,253,973,742 monoids with 10 elements, and 7,033,090 bands with 10 elements. That constraint satisfaction can also be utilised for the analysis of algebraic objects is demonstrated by determining the automorphism groups of all semigroups with 9 elements. A classification of the semigroups of orders 1 to 8 is made available as a data library in form of the GAP package Smallsemi. Beyond the semigroups themselves a large amount of precomputed properties is contained in the library. The package as well as the code used to obtain the enumeration results are available on the attached DVD.
URI: http://hdl.handle.net/10023/945
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Pure Mathematics Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)