Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Physics & Astronomy (School of) >
Physics & Astronomy >
Physics & Astronomy Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/927
This item has been viewed 34 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Georgios Tsiminis PhD thesis.PDF29.04 MBAdobe PDFView/Open
Title: One- and two-photon pumped organic semiconductor lasers
Authors: Tsiminis, Georgios
Supervisors: Turnbull, Graham A.
Samuel, Ifor D. W.
Keywords: Laser
Organic semiconductor
Nonlinear optics
Polymer
Photonics
Device
Organic
Materials
Issue Date: 2010
Abstract: This thesis describes a number of studies on organic semiconductors focused around using them as gain media for lasers. The photophysical properties of organic semiconductors are studied using a wide range of experimental techniques, allowing the evaluation of new materials and novel excitation schemes for use in organic semiconductor lasers. Polyfluorene is a well-established conjugated polymer laser gain medium and in this thesis its excellent lasing properties are combined with its two photon absorption properties to demonstrate a tunable two-photon pumped solid-state laser based on a commercially available organic semiconductor. A family of bisfluorene dendrimers was studied using a number of photophysical techniques to evaluate their potential as laser materials. Distributed feedback lasers based on one of the dendrimers are demonstrated with lasing thresholds comparable to polyfluorene. The same materials were found to have enhanced two-photon absorption properties in comparison to polyfluorene, leading to the fabrication of tunable two-photon pumped dendrimer lasers. A member of a novel family of star-shaped oligofluorene truxenes was evaluated as a laser gain material and the distributed feedback lasers made from them show some of the lowest lasing thresholds reported for organic semiconductors, partly as a consequence of exceptionally low waveguide losses in comparison to other single-material thin films. Finally, an organic laser dye is blended with a conjugated polymer, where the dye molecules harvest the excitation light of a GaN laser diode and transfer its energy to the polymer molecules. This is the first time such a scheme is used in an organic laser and in combination with a novel surface-emitting distributed Bragg reflector resonator allows the demonstration of a diode-pumped organic laser, a significant step towards simplifying organic lasers.
URI: http://hdl.handle.net/10023/927
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Physics & Astronomy Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)