Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Chemistry (School of) >
Chemistry >
Chemistry Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/857
This item has been viewed 43 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
JanSadownikPhDThesis.pdf22.17 MBAdobe PDFView/Open
Title: Evolving complex systems from simple molecules
Authors: Sadownik, Jan
Supervisors: Philp, Douglas
Issue Date: 2009
Abstract: Until very recently, synthetic chemistry has focussed on the creation of chemical entities with desirable properties through the programmed application of isolated chemical reactions, either individually or in a cascade that afford a target compound selectively. By contrast, biological systems operate using a plethora of complex interconnected signaling and metabolic networks with multiple checkpoint controls and feedback loops allowing biological systems to adapt and respond rapidly to external stimuli. Systems chemistry attempts to capture the complexity and emergent phenomena prevalent in the life sciences within a wholly synthetic chemical framework. In this approach, complex phenomena are expressed by a group of synthetic chemical entities designed to interact and react with many partners within the ensemble in programmed ways. In this manner, it should be possible to create synthetic chemical systems whose properties are not simply the linear sum of the attributes of the individual components. Chapter 1 discusses the role of complex networks in various aspects of chemistry- related research from the origin of life to nanotechnology. Further, it introduces the concept of Systems chemistry, giving various examples of dynamic covalent networks, self-replicating systems and molecular logic gates, showing the applications of complex system research. Chapter 2 discusses the components of replicator design. Further, it introduces a network based on recognition mediated reactions that is implemented by length- segregation of the substrates and displays properties of self-sorting. Chapter 3 presents a fully addressable chemical system based on auto- and cross- catalytic properties of product templates. The system is described by Boolean logic operations with different template inputs giving different template outputs. Chapter 4 introduces a dynamic network which fate is determined by a single recognition event. The replicator is capable of exploiting and dominating the exchanging pool of reagents in order to amplify its own formation at the expense of other species through the non-linear kinetics inherent in minimal replication. Chapter 5 focuses on the development of complex dynamic systems from structurally simple molecules. The new approach allows creating multicomponent networks with many reaction pathways operating simultaneously from readily available substrates.
URI: http://hdl.handle.net/10023/857
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Chemistry Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)