Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Physics & Astronomy (School of) >
Physics & Astronomy >
Physics & Astronomy Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/821
This item has been viewed 7 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
AndrewBerridgePhDThesis.PDF12 MBAdobe PDFView/Open
Title: Itinerant metamagnetism and magnetic inhomogeneity: a magnetic analogue of the superconducting Fulde-Ferrell-Larkin-Ovchinnikov phase in Sr₃Ru₂O₇
Authors: Berridge, Andrew McConnell
Supervisors: Green, Andrew George
Keywords: Magnetism
Condensed matter
Sr₃Ru₂O₇
LOFF
Issue Date: 30-Nov-2009
Abstract: The formation of magnetic order in solids is a complex and subtle issue. There are a wide range of different types of magnetisation, all of which may be favoured under different circumstances. In this thesis we consider a novel combination of ideas where the formation of spatially modulated magnetisation is linked to a metamagnetic transition. In this we are inspired by a general principle of modulated phases intervening as intermediate states in phase transitions. In particular we draw analogies with the Fulde-Ferrell-Larkin-Ovchinnikov state of spatially modulated superconductivity. We study a mean-field theory for itinerant magnetism where the crystal lattice drives the formation of a rich phase diagram. A peak in the electronic density of states due to a van Hove singularity creates ferromagnetism and a metamagnetic transition. Furthermore we find that a modulated magnetic phase - a spin-spiral, becomes favoured along the metamagnetic transition line. The appearance of this phase causes the metamagnetic transition to bifurcate to enclose the modulated region. The topology of this reconstructed phase diagram shows remarkable similarity to that observed in experiments on Sr₃Ru₂O₇. This material shows a metamagnetic transition which can be tuned by field angle towards zero temperature. Before this point is reached a new phase with high and anisotropic resistivity appears. We believe that this anomalous phase can be explained by the formation of a phase of modulated magnetisation caused by a peak in the electronic density of states. This mechanism may also apply in a range of other materials as it is driven by rather generic features of the bandstructure.
URI: http://hdl.handle.net/10023/821
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Physics & Astronomy Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)