Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Mathematics & Statistics (School of) >
Pure Mathematics >
Pure Mathematics Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/765
This item has been viewed 39 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Fiona Brunk PhD thesis.PDF1.22 MBAdobe PDFView/Open
Title: Intersection problems in combinatorics
Authors: Brunk, Fiona
Supervisors: Ruškuc, Nik
Huczynska, Sophie
Keywords: t-intersecting
Erdős-Ko-Rado
Injections
Posets
Intersecting families
Fixing
Saturation
Extremal combinatorics
Issue Date: 30-Nov-2009
Abstract: With the publication of the famous Erdős-Ko-Rado Theorem in 1961, intersection problems became a popular area of combinatorics. A family of combinatorial objects is t-intersecting if any two of its elements mutually t-intersect, where the latter concept needs to be specified separately in each instance. This thesis is split into two parts; the first is concerned with intersecting injections while the second investigates intersecting posets. We classify maximum 1-intersecting families of injections from {1, ..., k} to {1, ..., n}, a generalisation of the corresponding result on permutations from the early 2000s. Moreover, we obtain classifications in the general t>1 case for different parameter limits: if n is large in terms of k and t, then the so-called fix-families, consisting of all injections which map some fixed set of t points to the same image points, are the only t-intersecting injection families of maximal size. By way of contrast, fixing the differences k-t and n-k while increasing k leads to optimal families which are equivalent to one of the so-called saturation families, consisting of all injections fixing at least r+t of the first 2r+t points, where r=|_ (k-t)/2 _|. Furthermore we demonstrate that, among injection families with t-intersecting and left-compressed fixed point sets, for some value of r the saturation family has maximal size . The concept that two posets intersect if they share a comparison is new. We begin by classifying maximum intersecting families in several isomorphism classes of posets which are linear, or almost linear. Then we study the union of the almost linear classes, and derive a bound for an intersecting family by adapting Katona's elegant cycle method to posets. The thesis ends with an investigation of the intersection structure of poset classes whose elements are close to the antichain. The overarching theme of this thesis is fixing versus saturation: we compare the sizes and structures of intersecting families obtained from these two distinct principles in the context of various classes of combinatorial objects.
URI: http://hdl.handle.net/10023/765
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Pure Mathematics Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)