Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Mathematics & Statistics (School of) >
Pure Mathematics >
Pure Mathematics Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/719
This item has been viewed 30 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Martial R. Hille PhD thesis.PDF671.16 kBAdobe PDFView/Open
Title: Resonances for graph directed Markov systems, and geometry of infinitely generated dynamical systems
Authors: Hille, Martial R.
Supervisors: Stratmann, Bernd
Keywords: Resonances
Graph directed Markov systems
Hausdorff dimension
Zeta function
Limit set
Discrepancy type
Issue Date: 24-Jun-2009
Abstract: In the first part of this thesis we transfer a result of Guillopé et al. concerning the number of zeros of the Selberg zeta function for convex cocompact Schottky groups to the setting of certain types of graph directed Markov systems (GDMS). For these systems the zeta function will be a type of Ruelle zeta function. We show that for a finitely generated primitive conformal GDMS S, which satisfies the strong separation condition (SSC) and the nestedness condition (NC), we have for each c>0 that the following holds, for each w \in\$C$ with Re(w)>-c, |\Im(w)|>1 and for all k \in\$N$ sufficiently large: log | zeta(w) | <<e^{delta(S).log(Im|w|)} and card{w \in\ Q(k) | zeta(w)=0} << k^{delta(S)}. Here, Q(k)\subset\%C$ denotes a certain box of height k, and delta(S) refers to the Hausdorff dimension of the limit set of S. In the second part of this thesis we show that in any dimension m \in\$N$ there are GDMSs for which the Hausdorff dimension of the uniformly radial limit set is equal to a given arbitrary number d \in\(0,m) and the Hausdorff dimension of the Jørgensen limit set is equal to a given arbitrary number j \in\ [0,m). Furthermore, we derive various relations between the exponents of convergence and the Hausdorff dimensions of certain different types of limit sets for iterated function systems (IFS), GDMSs, pseudo GDMSs and normal subsystems of finitely generated GDMSs. Finally, we apply our results to Kleinian groups and generalise a result of Patterson by showing that in any dimension m \in\$N$ there are Kleinian groups for which the Hausdorff dimension of their uniformly radial limit set is less than a given arbitrary number d \in\ (0,m) and the Hausdorff dimension of their Jørgensen limit set is equal to a given arbitrary number j \in\ [0,m).
URI: http://hdl.handle.net/10023/719
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Pure Mathematics Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)