Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Physics & Astronomy (School of) >
Physics & Astronomy >
Physics & Astronomy Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/530
This item has been viewed 19 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Garry William Angus PhD thesis.pdf2.81 MBAdobe PDFView/Open
Title: Modified Newtonian dynamics at all astrophysical scales
Authors: Angus, Garry W.
Supervisors: Zhao, HongSheng
Keywords: Galaxy dynamics
Cosmology
Alternative gravity
MOND
Dwarf galaxies
CMB
Cosmic microwave background
Sterile neutrinos
Clusters of galaxies
Milgrom
Modified dynamics
Dark matter
Issue Date: 27-Nov-2008
Abstract: In this thesis I test the modified Newtonian dynamics as an alternative to the cold dark matter hypothesis. In the Milky Way, I show that the dynamics of the dwarf galaxies are well described by the paradigm and I confirm its distant low surface brightness globular clusters provide a strong test, for which I make predictions. Through analysis of a sample of 26 X-ray bright galaxy groups and clusters I demonstrate that the three active neutrinos and their anti-particles are insufficient to reconcile modified Newtonian dynamics with the observed temperatures of the X-ray emitting gas, nor with weak-lensing measurements, in particular for the bullet cluster. To this end, I propose an 11eV sterile neutrino to serendipitously resolve the residual mass problem in X-ray bright groups and clusters, as well as matching the angular power spectrum of the Cosmic Microwave Background. With this in mind, I show that the large collision velocity of the bullet cluster and the high number of colliding clusters is more naturally reproduced in MOND than in standard dynamics.
URI: http://hdl.handle.net/10023/530
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Physics & Astronomy Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)