Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Physics & Astronomy (School of) >
Physics & Astronomy >
Physics & Astronomy Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/416
This item has been viewed 12 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Thesis.pdf1.98 MBAdobe PDFView/Open
Title: Simulating ultracold matter: horizons and slow light
Authors: Farrell, Conor
Supervisors: Leonhardt, Ulf, 1965-
Keywords: Finite difference
Numerical simulation
Black hole
Bose-Einstein condensate
Perfectly Matched Layer
Slow light
Aharonov-Bohm effect
Issue Date: 19-Jun-2008
Abstract: This thesis explores the links between different ways of modelling the physical world. Finite difference numerical simulations may be used to encode the behaviour of physical systems, allowing us to gain insight into their workings and even to predict their behaviour. Similarly, one can investigate the properties of gravitational black holes through the use of analogue black holes, physical systems which share at least some part of the physics of the astronomical objects. Concentrating on black hole analogues using Bose-Einstein condensates, I show how simulations of these systems may be greatly assisted through the use of a proper absorbing boundary condition, the Perfectly Matched Layer. Such a boundary condition allows the effcient truncation of the computational domain, both saving computational time and increasing accuracy. I then apply this technique to the simulation of the supersonic flow of a Bose-Einstein condensate through a Laval nozzle, a black hole analogue, showing that such a flow should be stable and observable in the laboratory. Moving to a related system, I investigate the optical analogue of the Iordanskii force - the friction resulting from interaction between excitations in a superfluid's normal component and a superfluid vortex - through the simulation of such a vortex in a Bose-Einstein condensate illuminated by slow light, which is light whose group velocity is on the order of metres per second. The interaction of the slow light with the vortex should produce a momentum transfer due to the optical Aharonov-Bohm effect, exerting a force on the vortex. The coupled system of equations describing the condensate-slow light system is simulated, giving some surprising results.
URI: http://hdl.handle.net/10023/416
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Physics & Astronomy Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)