Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Chemistry (School of) >
Chemistry >
Chemistry Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/360
This item has been viewed 23 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
EvanWoodPhDThesis.pdf4.09 MBAdobe PDFView/Open
Title: Designing hypercyclic replicating networks
Authors: Wood, Evan A.
Supervisors: Philp, Douglas
Keywords: Templated synthesis
Minimal replication
Reciprocal replication
Organic supramolecular chemistry
Issue Date: 30-Nov-2007
Abstract: In the last 20 years there has been a number of synthetic and natural product based molecular replicators published in the literature. The majority of these systems have focused on the minimal model with only a few examples of cross-catalytic or reciprocal replication. Of the cross-catalytic systems investigated the majority focus around the use of natural products, oligonucleotides, peptides etc. This thesis will investigate the design, synthesis and kinetic analysis of both synthetic minimal and reciprocal replicating systems, and how these two forms of replication interact in a complex hypercyclic network. Chapter 1 introduces key concepts such as molecular recognition, intramolecularity/ enzyme kinetic, bisubstrate systems and the work conducted into replication systems to date. Chapter 2 describes the design, synthesis and kinetic analysis of a reciprocal replicating system, based on Diels-Alder and 1,3-dipolar cycloadditions, before going on to discuss what we have learned and how this system can be improved. Chapter 3 focuses on the design, synthesis and kinetic analysis of a replicating network (minimal and reciprocal replication), based on 1,3-dipolar cycloadditions. Initial individual systems are examined in isolation to determine their behavior and nature. After which the systems are combined to observe how each species interacts in a potential complex hypercyclic network. Chapter 4 investigates the redesign of the replicating network in Chapter 3 in order to overcome the problems identified from its kinetic analysis. Chapter 5 introduces the shift in direction away from kinetically controlled replicating networks towards systems in thermodynamic equilibrium.
URI: http://hdl.handle.net/10023/360
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Chemistry Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)