Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Physics & Astronomy (School of) >
Physics & Astronomy >
Physics & Astronomy Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/338
This item has been viewed 55 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
thesis.pdf9.14 MBAdobe PDFView/Open
Title: Optical micromanipulation using ultrashort pulsed laser sources
Authors: Little, Helen
Supervisors: Dholakia, Kishan
Sibbett, Wilson
Keywords: Bessel
Supercontinuum
Multiphoton excitation
Optical micromanipulation
Femtosecond lasers
Issue Date: 19-Jun-2007
Abstract: In this thesis two previously separate fields of study are brought together: optical micromanipulation and ultrashort laser research. Here, the benefits of combining the high peak powers of ultrashort pulsed lasers and conventional optical micromanipulation techniques are explored. As optical trapping has been studied extensively, the focus of this research is on optical guiding. Moreover, the emphasis is on the use of Bessel beams as these have been shown to offer greater guiding distances than comparable Gaussian beams. The studies within this thesis show that optical guiding in Bessel and Gaussian beams is governed by the average power of the laser. However, the benefits of guiding with ultrashort pulsed lasers to exploit multi-photon processes become evident as the demonstration of simultaneous optical guiding and second harmonic generation in microscopic nonlinear crystal fragments is detailed. This work is developed by using ultrashort pulses to induce two-photon excitation-induced fluorescence in the guiding medium. This allows direct visualisation of the beam-particle interaction and measurement of the reconstruction of the Bessel beam around an object. Some studies using two-photon excitation to investigate Bessel beam penetration through turbid media are discussed. Finally, the work is concluded by exploring the use of pulsed white-light lasers in optical guiding. The wavelength-dependent propagation and reconstruction properties of the white-light Bessel beam are studied before some preliminary optical guiding experiments are discussed. From this, the broad bandwidth of the supercontinuum source is found to offer extended guiding distances in Gaussian beams thereby negating the need for Bessel beams.
URI: http://hdl.handle.net/10023/338
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Physics & Astronomy Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)