Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Biology (School of) >
Biology >
Biology Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/3230
This item has been viewed 81 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
BerylMazel-SanchezPhDThesis.pdf51.93 MBAdobe PDFView/Open
Title: Attenuation of bunyavirus replication by modification of genomic untranslated regions
Authors: Mazel-Sanchez, Beryl
Supervisors: Elliott, Richard Michael
Issue Date: 30-Nov-2012
Abstract: Bunyamwera orthobunyavirus (BUNV) is the prototype for the family Bunyaviridae. BUNV has a tripartite RNA genome of negative polarity composed of the large(L),medium (M)and small(S)segments. Each segment contains an open reading frame (ORF) flanked by untranslated regions (UTRs). The eleven terminal nucleotides are conserved between the three segments while the internal regions are unique. The UTRs play an important role in the virus life cycle by promoting transcription, replication and encapsidation of the viral genome.The work presented in this thesis explores UTRs plasticity and examines ways to engineere attenuated viruses by modifying only their UTRs. Using reverse genetics, mainly two ways of attenuation were explored: rescue of viruses either carrying deletions within their 3’ and/or 5’ UTRs in all three segments, or of viruses carrying one segment bearing heterologous UTRs. Both approaches resulted in virus attenuation in tissue culture, with viruses producing smaller plaques or even no plaques, and growing to lower titres than wild-type BUNV. Through serial passage, viruses were shown to regain some level of fitness while the mutations introduced in the UTRs proved to be stable. Thus, to investigate the mechanism behind fitness recovery, the nucleotide sequence of the entire genome of viruses with deletions in their UTRs was determined. Amino acid changes were observed in the viral polymerase (L protein) of most mutant viruses and the vast majority of the amino acid changes occured in the C-terminal region. The function of this domain is unclear to date, however data obtained using a mini-replicon assay suggest that the C-terminal domain of the L protein might be involved in UTR recognition. Full genome sequencing also allowed the identification of an amino acid mutation within the polymerase that resulted in a temperature sensitive phenotype when introduced in an otherwise wild-type BUNV. Thus, it was shown that mutations introduced within the UTR regions of the genome were stable through serial passage and resulted in attenuation. Such a strategy could be used in combination with mutations of the ORF to design live-attenuated vaccines against serious pathogens within the family Bunyaviridae.
URI: http://hdl.handle.net/10023/3230
Other Identifiers: uk.bl.ethos.558151
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Biomedical Sciences Research Complex (BSRC) Theses
Biology Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)