Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Computer Science (School of) >
Computer Science >
Computer Science Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/2841
This item has been viewed 28 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
LarsKotthoffPhDThesis.pdf1.12 MBAdobe PDFView/Open
Title: On algorithm selection, with an application to combinatorial search problems
Authors: Kotthoff, Lars
Supervisors: Miguel, Ian
Gent, Ian G.
Keywords: Algorithm selection
Combinatorial search
Constraint programming
Satisfiability
Machine learning
Issue Date: 20-Jun-2012
Abstract: The Algorithm Selection Problem is to select the most appropriate way for solving a problem given a choice of different ways. Some of the most prominent and successful applications come from Artificial Intelligence and in particular combinatorial search problems. Machine Learning has established itself as the de facto way of tackling the Algorithm Selection Problem. Yet even after a decade of intensive research, there are no established guidelines as to what kind of Machine Learning to use and how. This dissertation presents an overview of the field of Algorithm Selection and associated research and highlights the fundamental questions left open and problems facing practitioners. In a series of case studies, it underlines the difficulty of doing Algorithm Selection in practice and tackles issues related to this. The case studies apply Algorithm Selection techniques to new problem domains and show how to achieve significant performance improvements. Lazy learning in constraint solving and the implementation of the alldifferent constraint are the areas in which we improve on the performance of current state of the art systems. The case studies furthermore provide empirical evidence for the effectiveness of using the misclassification penalty as an input to Machine Learning. After having established the difficulty, we present an effective technique for reducing it. Machine Learning ensembles are a way of reducing the background knowledge and experimentation required from the researcher while increasing the robustness of the system. Ensembles do not only decrease the difficulty, but can also increase the performance of Algorithm Selection systems. They are used to much the same ends in Machine Learning itself. We finally tackle one of the great remaining challenges of Algorithm Selection -- which Machine Learning technique to use in practice. Through a large-scale empirical evaluation on diverse data taken from Algorithm Selection applications in the literature, we establish recommendations for Machine Learning algorithms that are likely to perform well in Algorithm Selection for combinatorial search problems. The recommendations are based on strong empirical evidence and additional statistical simulations. The research presented in this dissertation significantly reduces the knowledge threshold for researchers who want to perform Algorithm Selection in practice. It makes major contributions to the field of Algorithm Selection by investigating fundamental issues that have been largely ignored by the research community so far.
URI: http://hdl.handle.net/10023/2841
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Computer Science Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)