Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Biology (School of) >
Biology >
Biology Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/2724
This item has been viewed 46 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
MariaJPintoDesterroPhDThesis.pdf37.77 MBAdobe PDFView/Open
Title: Role of SUMO-1 modification in transcriptional activation
Authors: Pinto Desterro, Maria Joana
Supervisors: Hay, Ron
Issue Date: 1999
Abstract: In unstimulated cells, the transcription factor NF-κB is held in the cytoplasm in an inactive state by IκB inhibitor proteins. Activation of NF--KB is mediated by signal induced degradation of IκBα via the ubiquitin proteasome-dependent pathway. Targeting the proteins for ubiquitin-mediated proteolysis is an irrevocable decision, and as such, the process needs to be highly specific and tightly regulated. This task is achieved by conjugation and deconjugation enzymes that act in a dynamic and coordinated mechanism. In a yeast two hybrid screen designed to identify proteins involved in IκBα signalling Ubch9 was found to interact with the N-terminal regulatory region of IκBα. Although Ubch9 is an enzyme homologous to E2 ubiquitin conjugating enzymes we have shown that is unable to form a thioester with ubiquitin but it is capable to form a thioester with the small ubiquitin-like protein SUMO- 1. To fully characterise the SUMO-1 modification reaction we have purified the proteins and cloned the genes encoding the SUMO-1 activating enzyme (SAEl/SAE2) and shown that it is homologous to enzymes involved in the activation of ubiquitin, Smt3p, the yeast SUMO-1 homologue, and Rublp/Nedd8, another ubiquitin-like protein. SUMO-1 is conjugated to target proteins by a pathway that is distinct from, but analogous to, ubiquitin conjugation. SUMO-1 was efficiently conjugated, both in vivo and in vitro, to IκBα on lysine 21, which is also utilised for ubiquitin modification. Thus, by blocking ubiquitination SUMO-1 modification acts antagonistically to generate a pool of IκBα resistant to proteasome-mediated degradation which consequently inhibits NF-κB dependent transcription activation. In view of several lines of similarity between NF-kB and p53, the involvement of SUMO-1 modification in the metabolism of the tumour supressor p53 was investigated. We have shown that p53 is modified by SUMO-1 at a single site, lysine 386 in the C-terminus of p53. Although p53 is regulated by ubiquitination, SUMO-1 and ubiquitin modification do not compete for the same lysine in p53. However, overexpression of SUMO-1 activates the transcriptional activity of wild type p53, but not K386R p53 where the SUMO-1 acceptor site has been mutated. A consensus sequence was obtained by comparison of the sequences surrounding the SUMO-1 acceptor lysine in proteins that have been shown to be modified by SUMO-1 and revealed a possible recognition site for SUMO-1 conjugation machinery. Tagging of proteins with SUMO-1 regulates transcriptional activation, either by interfering with subcellular location or with the ubiquitination pathway. The pathway may represent a novel target for drug development.
URI: http://hdl.handle.net/10023/2724
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Biology Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)