Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Chemistry (School of) >
Chemistry >
Chemistry Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/2030
This item has been viewed 48 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
The full text of this document is not available.pdfFull thesis2.61 kBAdobe PDFView/Open
Title: Synthesis and structure-property relationships in selected metal fluorides
Authors: Reisinger, Sandra A.
Supervisors: Lightfoot, Philip
Morrison, Finlay D.
Keywords: Tetragonal tungsten bronze
Kagome
Hydrothermal
Solid state
Fluorides
Issue Date: Jun-2012
Abstract: There has been an increase in the interest in fluoride materials over the last decade. This interest has focused on multiferroic materials and kagome lattices, to name but a few areas. This thesis focuses on the synthesis and crystallographic characterisation of selected transition metal fluorides and oxyfluorides. Work is presented on the tetragonal tungsten bronze solid solutions of K[subscript(x)]FeF₃, where x = 0.58 and x ≈ 0.5, and the copper analogue, K₃Cu₃Fe₂F₁₅; the kagome structure of Cs₂ZrCu₃F₁₂; and hydrothermal reactions using vanadium, manganese, or molybdenum as the transition metals in the formation of new fluorides and oxyfluorides. The tetragonal tungsten bronze compounds K[subscript(x)]FeF₃ (x = 0.58 and x ≈ 0.5) are both tetragonal at 500 K. In the variant with the lower K-content, there is a clear phase separation into two tetragonal phases even at this temperature. The K₀.₅₈FeF₃ sample separates into two distinct phases below 340 K to possess one tetragonal and one orthorhombic phase. Then at roughly 300 K, both samples undergo a phase transition where the tetragonal phase in the P4/mbm space group in K₀.₅₈FeF₃ changes to an orthorhombic phase with a larger unit cell; and the tetragonal phase in P4₂bc for the K₀.₅FeF₃ sample changes to the same orthorhombic model, whilst the P4/mbm model remains unchanged. The evolution of the lattice parameters and phase fractions is studied in detail using synchrotron powder X-ray diffraction (sPXRD). The kagome structure investigated, Cs₂ZrCu₃F₁₂, possesses the “ideal” kagome lattice at room temperature, but previous work has suggested that there is a phase transition at 225 K. The two structures are determined by single crystal X-ray diffraction at 300 K and 125 K. Variable temperature sPXRD studies are performed between these two temperature ranges to determine the phase evolution as a function of temperature. The structure changes from a rhombohedral to a monoclinic phase at low temperature. This is the result of the buckling of the kagome layers at the phase transition. The Zr⁴⁺ ion changes from 6 to 7 coordinate and this is seen as the main driving force for the distortion of the kagome layer from its “ideal” planar arrangement. ii The phase transition is first-order as seen from the electrical impedance measurements. The hydrothermal reactions presented reveal seven new materials and their crystal structures. Sr₂V₂F₁₀·H₂O is new and found to be isostructural to Sr₂Fe₂F₁₀·H₂O. BaVO₂F₃ is a cubic material that is potentially piezoelectric. Two hybrid organic inorganic manganese compounds are reported. The ladder structure (C₃N₂H₅)[Mn₂F₆(H₂O)₂] crystallises in a polar space group and shows promise as a candidate for multiferroic studies. The second hybrid material, (C₇NH₁₆)₂[MnF₅(H₂O)]·2H₂O, crystallises in a centrosymmetric space group. The Mo hybrid materials are all centrosymmetric and possess isolated molybdenum-centred monomeric or dimeric octahedral units.
URI: http://hdl.handle.net/10023/2030
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Chemistry Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)