Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Psychology & Neuroscience (School of) >
Psychology & Neuroscience >
Psychology & Neuroscience Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/1922
This item has been viewed 6 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
TheFullTextOfThisDocumentIsNotAvailable.pdfFull text not available2.61 kBAdobe PDFView/Open
Title: Binocular vision and three-dimensional motion perception : the use of changing disparity and inter-ocular velocity differences
Authors: Grafton, Catherine E.
Supervisors: Harris, Julie M.
Keywords: Binocular vision
Motion-in-depth
Changing disparity
Inter-ocular velocity differences
Time-to-contact
Vision science
Visual perception
Issue Date: 22-Jun-2011
Abstract: This thesis investigates the use of binocular information for motion-in-depth (MID) perception. There are at least two different types of binocular information available to the visual system from which to derive a perception of MID: changing disparity (CD) and inter-ocular velocity differences (IOVD). In the following experiments, we manipulate the availability of CD and IOVD information in order to assess the relative influence of each on MID judgements. In the first experiment, we assessed the relative effectiveness of CD and IOVD information for MID detection, and whether the two types of binocular information are processed by separate mechanisms with differing characteristics. Our results suggest that, both CD and IOVD information can be utilised for MID detection, yet, the relative dependence on either of these types of MID information varies between observers. We then went on to explore the contribution of CD and IOVD information to time-to-contact (TTC) perception, whereby an observer judges the time at which an approaching stimulus will contact them. We confirmed that the addition of congruent binocular information to looming stimuli can influence TTC judgements, but that there is no influence from binocular information indicating no motion. Further to this, we found that observers could utilise both CD and IOVD for TTC judgements, although once again, individual receptiveness to CD and/or IOVD information varied. Thus, we demonstrate that the human visual system is able to process both CD and IOVD information, but the influence of either (or both) of these cues on an individual’s perception has been shown to be mutually independent.
URI: http://hdl.handle.net/10023/1922
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Psychology & Neuroscience Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)