Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Biology (School of) >
Biology >
Biology Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/1910
This item has been viewed 24 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
TeresaGridleyPhDThesis.pdf9.49 MBAdobe PDFView/Open
Title: Geographic and species variation in bottlenose dolphin (Tursiops spp.) signature whistle types
Authors: Gridley, Teresa
Supervisors: Janik, Vincent
Issue Date: 2011
Abstract: Geographic variation in the whistle vocalisations of dolphins has previously been reported. However, most studies have focused on the whole whistle repertoire, with little attempt to classify sounds into biologically relevant categories. Common bottlenose dolphins (Tursiops truncatus) use individually distinctive signature whistles which are thought to help maintain contact between conspecifics at sea. These whistles may show a different kind of variation between populations than non-signature whistles. Here I investigate signature whistle use and variation in the two recognised species of bottlenose dolphins (T. truncatus and T. aduncus) from populations inhabiting the coastal waters of the North America, Scotland, South Africa, Tanzania, Japan, Australia and New Zealand, and one captive colony. I identified likely signature whistles (signature whistles types, SWTs) from acoustic recordings by combining two novel techniques: automated contour categorisation in ARTwarp (Deecke and Janik, 2006) and a specific bout analysis based on the timing of signature whistle production in T. truncatus termed SIGID (Janik et al. in press). Three ways of categorising the contours were tested and between 87 and 111 SWTs were identified in total. Repeated emissions of stereotyped contours were apparent in the repertoire of all T. aduncus populations using both automated and human observer categorisation, providing good evidence for signature whistle use in this species. There was significant inter-specific variation in the frequency parameters, looping patterns and duration of SWTs. Inflection points, duration and measures of SWT complexity showed high variation within populations, suggesting inter- and intra-individual modification of these parameters, perhaps to enhance identity encoding or convey motivational information. Using 328 bases of the mtDNA control region, I found high levels of population differentiation (FST and φST) within the genus Tursiops. These data do not support a link between mtDNA population differentiation and variability in call type. Instead, morphological variations at the species level, and learned differences at the population level, better explain the variation found.
URI: http://hdl.handle.net/10023/1910
Other Identifiers: uk.bl.ethos.552608
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Biology Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)