Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Chemistry (School of) >
Chemistry >
Chemistry Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/1904
This item has been viewed 7 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
TheFullTextOfThisDocumentIsNotAvailable.pdf2.61 kBAdobe PDFView/Open
Title: Exploring and exploiting benzylic regioselectivity in rhodium-catalysed hydroformylation
Authors: Martin, Nicola
Supervisors: Clarke, Matt
Keywords: Hydroformylation
Organometallic
Catalysis
Esters
Issue Date: 22-Jun-2011
Abstract: This project involves a study into the hydroformylation of substituted alkenes and ways to exploit “benzylic regioselectivity”. It was our aim to develop a clean, selective hydroformylation reaction which takes advantage of the tendency for benzylic regioselectivity in styrene-type molecules; in doing so, providing a potential route to important biologically active molecules. In Chapter Two, hydroformylation of methyl cinnamate is explored since we envisaged that a regioselective hydroformylation of this substrate would serve as a step in an efficient route to γ-amino acids derivatives; which are important building blocks for the synthesis of important drug molecules. Most Rh-phosphine catalysts install the formyl group α- to the ester group however, we found that certain reaction conditions and appropriate choice of phosphorus containing ligands led to highly chemoselective and regioselective hydroformylation. Regioselectivities of up to 25 : 1 favouring the benzylic aldehyde were observed. However, as will be explained, this reaction is hindered by significant hydrogenation under hydroformylation conditions. Using a novel ligand this side reaction was lowered to 5% with reasonable regioselectivity, however overall conversion to the desired aldehyde was low. As a means to synthesise γ-amino acid derivatives, enamine formation using the aldehyde products was also attempted. An alternative alkenyl arene substrate is studied in Chapter Three. High benzylic regioselectivity was observed using a variety of chiral and achiral ligands and again reaction conditions were optimised with the aim to develop an efficient process for the synthesis of γ-amino alcohol derivatives. It was found that PPh₃, tris(3,4,5-trifluorophenyl)phosphine and a phosphaadamantane cage phosphine ligand gave the most promising results with moderate to high regioselectivity observed. Asymmetric hydroformylation was not possible due to low activity using a variety of state-of-the-art chiral ligands.
URI: http://hdl.handle.net/10023/1904
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Chemistry Theses



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)