Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Research Centres and Institutes >
Centre for Research into Ecological & Environmental Modelling (CREEM) >
Centre for Research into Ecological & Environmental Modelling (CREEM) Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/174
This item has been viewed 71 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
ChristianAsseburgPhDThesis.pdf5.24 MBAdobe PDFView/Open
Title: A Bayesian approach to modelling field data on multi-species predator prey-interactions
Authors: Asseburg, Christian
Supervisors: Harwood, John
Issue Date: 2006
Abstract: Multi-species functional response models are required to model the predation of generalist preda- tors, which consume more than one prey species. In chapter 2, a new model for the multi-species functional response is presented. This model can describe generalist predators that exhibit func- tional responses of Holling type II to some of their prey and of type III to other prey. In chapter 3, I review some of the theoretical distinctions between Bayesian and frequentist statistics and show how Bayesian statistics are particularly well-suited for the fitting of functional response models because uncertainty can be represented comprehensively. In chapters 4 and 5, the multi- species functional response model is fitted to field data on two generalist predators: the hen harrier Circus cyaneus and the harp seal Phoca groenlandica. I am not aware of any previous Bayesian model of the multi-species functional response that has been fitted to field data. The hen harrier's functional response fitted in chapter 4 is strongly sigmoidal to the densities of red grouse Lagopus lagopus scoticus, but no type III shape was detected in the response to the two main prey species, field vole Microtus agrestis and meadow pipit Anthus pratensis. The impact of using Bayesian or frequentist models on the resulting functional response is discussed. In chapter 5, no functional response could be fitted to the data on harp seal predation. Possible reasons are discussed, including poor data quality or a lack of relevance of the available data for informing a behavioural functional response model. I conclude with a comparison of the role that functional responses play in behavioural, population and community ecology and emphasise the need for further research into unifying these different approaches to understanding predation with particular reference to predator movement. In an appendix, I evaluate the possibility of using a functional response for inferring the abun- dances of prey species from performance indicators of generalist predators feeding on these prey. I argue that this approach may be futile in general, because a generalist predator's energy intake does not depend on the density of any single of its prey, so that the possibly unknown densities of all prey need to be taken into account.
URI: http://hdl.handle.net/10023/174
uk.bl.ethos.551973
Other Identifiers: uk.bl.ethos.551973
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Centre for Research into Ecological & Environmental Modelling (CREEM) Theses
Biology Theses
Statistics Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)