Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Physics & Astronomy (School of) >
Physics & Astronomy >
Physics & Astronomy Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/1694
This item has been viewed 38 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
FlavioFusariPhDThesis.pdf4.16 MBAdobe PDFView/Open
Title: Continuous wave and modelocked femtosecond novel bulk glass lasers operating around 2000 nm
Authors: Fusari, Flavio
Supervisors: Brown, C. T. A.
Keywords: Femtosecond
Bulk glass
Infrared
SESAM
Issue Date: 2010
Abstract: This thesis reports on the development of glass-based femtosecond laser sources around 2 µm wavelength. In order to be able to produce 2 µm radiation the dopants used were trivalent Thulium (Tm³⁺) and trivalent Holmium (Ho³⁺) that could be optically pumped with Ti:Sapphire radiation at 0.8 µm and semiconductor disk lasers (SDL) at 1.2 µm. The samples were produced at Leeds University and polished in-house in bulk form and deployed in free space laser cavities. Tellurite compounds doped with Tm³⁺ produced stable continuous wave 1.94 µm radiation when pumped at 800 nm with a maximum efficiency of 28.4% with respect to the absorbed power and maximum output power around 120 mW when pumped using a Ti:Sapphire operating around 0.8 µm. The radiation was broadly tunable across 130 nm. Tm³⁺-Ho³⁺ doubly doped tellurite samples lased around 2.02 µm with maximum efficiency of 25.9% and with P[subscript(OUT)]=75 mW and a smooth tunability of 125 nm. The fluorogermanate glass doped with Tm³⁺ gave an absorbed to output power efficiency of 50%. The maximum continuous wave output powers obtained were around 190 mW and limited by the available pump power at 0.8 µm. These results together with a very low threshold of 60 mW of incident power were comparable to the crystalline counterparts to this gain medium. The Tm3+ tellurite and the Tm³⁺-Ho³⁺ tellurite compounds were also pumped by an SDL operating at 1215 nm to obtain an indication of the viability of such a pump scheme. The results were a maximum internal slope efficiency of 22.4% with a highest output power of 60 mW. The comparison demonstrated that 1.2 µm pumping was competitive with using 0.8 µm wavelength. The use of semiconductor saturable absorbing mirror (SESAM) technology was used for the modelocking of these lasers. The SESAM was produced in Canada and implanted with As⁺ ions in order to reduce the relaxation time. Trains of transform-limited laser pulses at 222 MHz as short as 410 fs centred at 1.99 µm were produced for the first time with a bulk Tm³⁺:Fluorogermanate glass. The maximum average output power obtained was of 84 mW. The same SESAM deployed on the Tm³⁺-Ho³⁺ Tellurite compounds gave trains of transform-limited pulses as short as 630 fs at 2.01 µm with a repetition rate of 143 MHz and a maximum averaged output power of 43 mW. The regime of propagation obtained was soliton-like and the modelocking was self-starting. The results obtained with bulk glass were very promising and open interesting research pathways within the realm of amorphous bulk gain media.
URI: http://hdl.handle.net/10023/1694
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Physics & Astronomy Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)