Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
University of St Andrews Research >
University of St Andrews Research >
University of St Andrews Research >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/1063
This item has been viewed 3 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Paterson.PLoSone.0003176.pdf488.42 kBAdobe PDFView/Open
Title: Light-dependant biostabilisation of sediments by stromatolite assemblages
Authors: Paterson, David Maxwell
Aspden, R J
Visscher, P T
Consalvey, M
Andres, M
Decho, A W
Stolz, J
Reid, P R
Keywords: Ecology
Ecosystems
QH301 Biology
Issue Date: 2008
Citation: Paterson , D M , Aspden , R J , Visscher , P T , Consalvey , M , Andres , M , Decho , A W , Stolz , J & Reid , P R 2008 , ' Light-dependant biostabilisation of sediments by stromatolite assemblages ' PLoS One , vol 3 , no. 9 , pp. e3176 .
Abstract: For the first time we have investigated the natural ecosystem engineering capacity of stromatolitic microbial assemblages. Stromatolites are laminated sedimentary structures formed by microbial activity and are considered to have dominated the shallows of the Precambrian oceans. Their fossilised remains are the most ancient unambiguous record of early life on earth. Stromatolites can therefore be considered as the first recognisable ecosystems on the planet. However, while many discussions have taken place over their structure and form, we have very little information on their functional ecology and how such assemblages persisted despite strong eternal forcing from wind and waves. The capture and binding of sediment is clearly a critical feature for the formation and persistence of stromatolite assemblages. Here, we investigated the ecosystem engineering capacity of stromatolitic microbial assemblages with respect to their ability to stabilise sediment using material from one of the few remaining living stromatolite systems (Highborne Cay, Bahamas). It was shown that the most effective assemblages could produce a rapid (12-24h) and significant increase in sediment stability that continued in a linear fashion over the period of the experimentation (228h). Importantly, it was also found that light was required for the assemblages to produce this stabilisation effect and that removal of assemblage into darkness could lead to a partial reversal of the stabilisation. This was attributed to the breakdown of extracellular polymeric substances under anaerobic conditions. These data were supported by microelectrode profiling of oxygen and calcium. The structure of the assemblages as they formed was visualised by low-temperature scanning electron microscopy and confocal laser microscopy. These results have implications for the understanding of early stromatolite development and highlight the potential importance of the evolution of photosynthesis in the mat forming process. The evolution of photosynthesis may have provided an important advance for the niche construction activity of microbial systems and the formation and persistence of the stromatolites which came to dominate shallow coastal environments for 80% of the biotic history of the earth.
Version: Publisher PDF
Status: Peer reviewed
URI: http://hdl.handle.net/10023/1063
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003176
DOI: http://dx.doi.org/10.1371/journal.pone.0003176
ISSN: 1932-6203
Type: Journal article
Rights: (c) 2008 Paterson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Appears in Collections:University of St Andrews Research
Biology Research



This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)