Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Physics & Astronomy (School of) >
Physics & Astronomy >
Physics & Astronomy Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/1030
This item has been viewed 38 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Noe Kains PhD thesis.PDF17.98 MBAdobe PDFView/Open
Title: The Solar System in perspective : from debris discs to extrasolar planets
Authors: Kains, Noé
Supervisors: Horne, Keith D.
Keywords: Astronomy
Astrophysics
Planets
Extrasolar
Debris discs
Modelling
Gravitational lensing
Solar System
Issue Date: 30-Nov-2010
Abstract: The last twenty-five years have seen our understanding of the formation and abundance of planets revolutionised, thanks to the first detections of debris discs, and, a decade later, of the first extrasolar planets. Hardly a week now goes by without a planet discovery, and the range of methods used to search for planets has expanded to include techniques that are efficient at detecting different types of planets. By combining the discoveries of the various methods, we therefore have the opportunity to build a picture of planet populations across the Galaxy. In this thesis, I am presenting work done as a basis towards such an effort: first I present work carried out to improve modelling methods for gravitational microlensing events. Since the first microlensing observing campaigns, the amount of data of anomalous events has been increasing ever faster, meaning that the time required to model all observed anomalous events is putting a strain on available human and computational resources. I present work to develop a method to fit anomalous microlensing events automatically and show that it is possible to conduct a thorough and unbiased search of the parameter space, illustrating this by analysing an event from the 2007 observing season. I then discuss the possible models found with this method for this event, and their implication (Kains et al. 2009), and find that this algorithm locates good-fit models in regions of parameters that would have been very unlikely to be found using standard modelling methods. Results indicate that it is necessary to use a full Bayesian approach, in order to include prior information on the parameters. I discuss the analytical priors calculated by Cassan et al. (2009) and suggest a possible form of an automatic fitting algorithm by incorporating these priors in the algorithm used by Kains et al. (2009). Another topic with which this thesis is concerned is the evolution of debris discs around solar-type stars. Late-type stars are expected to be the most numerous host stars of planets detected with the microlensing technique. Understanding how their debris discs evolve equates to understanding the earliest stages of planet formation around these stars, allowing us to truly put our Solar System in perspective. Using the analytical model of Wyatt et al. (2007a), I modelled the evolution of infrared excess flux at 24 and 70 microns using published data of debris discs around solar-type (spectral types F, G and K) stars from the Spitzer Space Telescope. By comparing the results of this study to an analogous study carried out by for A stars by Wyatt et al. (2007b), I find that although best-fit parameters are significantly different for solar-type stars, this may be due to the varying number of inefficient emitters around stars of different spectral types. I suggest that although effective properties are different by an order of magnitude or more, intrinsic properties, while still different, are so by a much smaller factor. These differences may be due to the longer timescales over which solar-type stars evolve, which allow for the formation of larger and stronger planetesimals.
URI: http://hdl.handle.net/10023/1030
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Physics & Astronomy Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)