
EFFECTIVE COMPILATION OF CONSTRAINT MODELS

Andrea Rendl

A Thesis Submitted for the Degree of PhD
at the

University of St. Andrews

2010

Full metadata for this item is available in the St Andrews
Digital Research Repository

at:
https://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/973

This item is protected by original copyright

http://www.st-andrews.ac.uk/
http://hdl.handle.net/10023/973

Effective Compilation of Constraint
Models

A thesis submitted to the
UNIVERSITY OF ST ANDREWS

for the degree of
DOCTOR OF PHILOSOPHY

by
Andrea Rendl

School of Computer Science
University of St Andrews

January 2010

ABSTRACT

Constraint Programming is a powerful technique for solving large-scale combinatorial (op-
timisation) problems. However, it is often inaccessible to users without expert knowledge
in the area, precluding the wide-spread use of Constraint Programming techniques. This
thesis addresses this issue in three main contributions.

First, we propose a simple ‘model-and-solve’ approach, consisting of a framework where
the user formulates a solver-independent problem model, which is then automatically tai-
lored to the input format of a selected constraint solver (a process similar to compiling a
high-level modelling language to machine code). The solver is then executed on the in-
put, solver, and solutions (if they exist) are returned to the user. This allows the user to
formulate constraint models without requiring any particular background knowledge of the
respective solver and its solving technique. Furthermore, since the framework can target
several solvers, the user can explore different types of solvers.

Second, we extend the tailoring process with model optimisations that can compensate for a
wide selection of poor modelling choices that novices (and experts) in Constraint Program-
ming often make and hence result in redundancies. The elimination of these redundancies
by the proposed optimisation techniques can result in solving time speedups of over an
order of magnitude, in both naive and expert models. Furthermore, the optimisations are
particularly light-weight, adding negligible overhead to the overall translation process.

The third contribution is the implementation of this framework in the tool TAILOR, that
currently translates 2 different solver-independent modelling languages to 3 different solver
formats and is freely available online. It performs almost all optimisation techniques that
are proposed in this thesis and demonstrates its significance in our empirical analysis.

In summary, this thesis presents a framework that facilitates modelling for both experts
and novices: problems can be formulated in a clear, high-level fashion, without requiring
any particular background knowledge about constraint solvers and their solving techniques,
while (sometimes naturally occurring) redundancies in the model are eliminated for prac-
tically no additional cost, improving the respective model in solving performance by up to
an order of magnitude.

I, Andrea Rendl, hereby certify that this thesis, which is approximately 78,500 words in
length, has been written by me, that it is the record of work carried out by me, and that it
has not been submitted in any previous application for a higher degree.

date signature of candidate

I was admitted as a research student in September 2006 and as a candidate for the degree
of Doctor of Philosophy in September 2006; the higher study for which this is a record was
carried out in the University of St Andrews between 2006 and 2009.

date signature of candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regu-
lations appropriate for the degree of Doctor of Philosophy in the University of St Andrews
and that the candidate is qualified to submit this thesis in application for that degree.

date signature of supervisor

In submitting this thesis to the University of St. Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. We also understand that the title and the abstract will be pub-
lished, and that a copy of the work may be made and supplied to any bona fide library or
research worker, that my thesis will be electronically accessible for personal or research
use unless exepmt by award of an embargo as requested below, and that the library has the
right to migrate my thesis into new electronic forms as required to ensure continued access
to the thesis. We have obtained any third-party copyright permissions that may be required
in order t oallow such access and migration, or have requested the appropriate embargo
below.

The following is an agreed request by the candidate and the supervisor regarding the elec-
tronic publication of this thesis:

Access to Printed copy and electronic publication of thesis through the University of St
Andrews.

date signature of candidate

ACKNOWLEDGEMENT

I want to thank my main supervisor, Ian Miguel, who has done the best possible job in
advising me during this work. Thank you for your constant support, the vast amount of
freedom and the uncountable things I’ve learnt during the work on this thesis. Also many
thanks to my second supervisor, Ian Gent, who, in the most entertaining way, has demon-
strated how to be a good, professional and respected researcher, which has contributed a
lot to this work. Thank you both for your advice and friendship.

I also want to thank my colleagues at St Andrews, in particular the members of the local
constraints group, Andy Grayland, Pete Nightingale, Neil Moore, Lars Kotthoff, Chris Jef-
ferson, and Ozgur Akgun for many interesting discussions (some of them involving work),
as well as all members of CIRCA and the School of Computer Science in St Andrews,
of which many have enriched my time during my stay. For many inspirational talks and
discussions, I want to thank researchers outside of St Andrews, in particular Peter Gregory,
Alan Frisch, Mikael Lagerkvist, Karen Petrie, Christian Schulte, Barbara Smith and Guido
Tack.

This project was funded by a DOC fFORTE scholarship provided by the Austrian Academy
of Sciences and an EPSRC grant. Therefore, I would like to extend my gratitude to the
Austrian Academy of Sciences and EPSRC for their generous financial support that has
allowed me a lot of freedom and hence has certainly positively contributed to this thesis.

Last, but certainly not least, I want to thank my dear friends and family, without whose
support this thesis would not have been possible. I want to thank all the members of my
family, in particular my parents, Eva and Franz, for their unconditional support, their advice
and friendship. I also want to thank my brother Stefan and my aunt Susi for sharing many
of my experiences during this work, despite the distance. Many thanks to all my friends
from St Andrews who have made the last three years an extraordinary time. In particular,
Marion, Valentina, Tania, Sandra, Melina, Amy, Heike, Angie and Karen, as well my dear
flatmates, Ralph and Andrea, and Diego, Pascal, Fred, Alan and all the others that I have
not mentioned. Finally, I want to thank all my dear friends from Austria and Stockholm.
You have all contributed to this thesis in your own way.

Thank you!

CONTENTS

1 Introduction 1
1.1 Solving Problems using Constraint Programming 2

1.1.1 Modelling Constraint Satisfaction Problems (CSPs) 3
1.1.2 Solving Constraint Satisfaction Problems (CSPs) 4

1.2 Automated Constraint Modelling . 5
1.3 Thesis Statement and Contributions . 6

1.3.1 Specification of ESSENCE′ . 7
1.3.2 Tailoring . 7
1.3.3 Model Optimisations . 8
1.3.4 The tool TAILOR . 9
1.3.5 Addressing the Missing Link in Automated Constraint Modelling . 11

1.4 Thesis Structure . 11

2 The Modelling Language ESSENCE′ 15
2.1 ESSENCE′ by Example . 16
2.2 Format . 18

2.2.1 Expressions . 20
2.2.2 Arrays . 21
2.2.3 Domains . 23
2.2.4 Parameters and Constants . 23
2.2.5 Decision Variables . 23
2.2.6 Objective and Constraints . 24
2.2.7 Global Constraints . 24
2.2.8 Quantified Expressions ∀, ∃ and

∑
. 25

2.3 Summary . 26

3 Tailoring Problem Instances 27
3.1 Tailoring in a Nutshell . 28

3.1.1 The tailoring tool TAILOR . 28
3.2 Frontend . 29
3.3 Middle-End . 32

3.3.1 Preprocessing . 33
3.3.2 Flattening . 38
3.3.3 Representing Solver Features . 41

3.4 Backend . 42

i

ii

3.5 A Tailoring Example . 43
3.6 Summary . 47

4 Instance Optimisations 53
4.1 Established Optimisation Techniques . 54

4.1.1 Optimisation Techniques in Constraint Programming 55
4.1.2 Optimisation Techniques in Compilers 58
4.1.3 Summary . 58

4.2 Basic Common Subexpression Elimination (CSE) 61
4.2.1 Extending Flattening with CSE 62

4.3 Increasing the Number of Common Subexpressions 66
4.3.1 Overview: Reformulating Equivalent Subexpressions 66
4.3.2 Associativity and Commutativity 70
4.3.3 Negation . 70
4.3.4 De Morgan’s Law . 74
4.3.5 Horn Clauses . 76
4.3.6 Distributivity . 81

4.4 The Scope of CSE . 81
4.4.1 Matching Global Constraints . 81
4.4.2 Common Subexpressions in n-ary Arguments 82

4.5 Eliminating Redundant Constraints . 87
4.5.1 Duplicate Constraints . 88
4.5.2 Benefits of Eliminating Duplicate Constraints 89

4.6 Quantification Optimisations . 93
4.6.1 Sources of Redundancies in Quantifications 94
4.6.2 Loop-invariant Expressions . 96
4.6.3 Moving Loop-invariant Expressions 97

4.7 Summary . 105

5 Tailoring Problem Classes 107
5.1 Applications of Problem Class Tailoring 108
5.2 Representing Parameterised Expressions 109
5.3 Tailoring Problem Classes . 111

5.3.1 Flattening Parameterised Subexpressions 112
5.3.2 Redundancies from Flattening Quantified Subexpressions 116

5.4 Instance-wise versus Class-wise Tailoring 120
5.4.1 Empirical Analysis . 121

5.5 Summary . 124

6 Class Optimisations 125
6.1 Eliminating Redundant Constraints . 126

6.1.1 Eliminating Duplicate Constraints by Unification 126
6.2 Common Subexpression Elimination (CSE) 129

6.2.1 Approach 1: Quantification Normalisation 130
6.2.2 Approach 2: Label and Domain Representation 133

iii

6.2.3 Shifted Common Subexpressions 136
6.2.4 Approach 3: Approximating Array Dereferences 138
6.2.5 Summary: CSE at Class Level . 140

6.3 Summary . 141

7 Case Study: Common Subexpressions in CSPs of Planning Problems 143
7.1 Modelling Planning Problems as CSPs . 144
7.2 Sources of Common Subexpressions . 145
7.3 Case Studies . 147

7.3.1 Sokoban . 147
7.3.2 Settlers . 150
7.3.3 English Peg Solitaire . 152
7.3.4 Plotting . 156

7.4 Experimental Results . 158
7.5 Summary . 160

8 Experiments 163
8.1 Experimental Setup . 163

8.1.1 Tailoring Setup . 163
8.1.2 Solving Setup . 164
8.1.3 Problem Models . 164

8.2 Basic Common Subexpression Elimination 168
8.2.1 Auxiliary Variable Reduction (Eliminated CSs) 168
8.2.2 Reduction in Constraints . 170
8.2.3 Tailoring Time with CSE . 172
8.2.4 Impact on Solving Performance 174

8.3 Active Reformulations to Increase the Number of CS 177
8.3.1 Overview . 177
8.3.2 Active Negation Reformulation 177
8.3.3 Active Horn Clause Reformulation 182
8.3.4 Active De Morgan Reformulation 185

8.4 Eliminating Argument Common Subexpressions 185
8.5 Loop Optimisations: Inside vs. Outside Representation 189
8.6 The Power of Instance Optimisations . 192

8.6.1 Instance Reductions . 192
8.6.2 Tailoring Time . 196
8.6.3 Impact on Solving Performance 200

9 Conclusions 205
9.1 Summary . 206

9.1.1 Specification of ESSENCE′ . 206
9.1.2 Tailoring Constraint Models . 206
9.1.3 Optimisation during Tailoring . 207
9.1.4 The tool TAILOR . 210
9.1.5 The Missing Link in Automated Constraint Modelling 211

iv

9.2 Future Work . 211
9.2.1 Addressing Redundancies when Tailoring Classes 211
9.2.2 Extending the set of Model Optimisations 212

Bibliography 215

A The Syntax of ESSENCE′ 223
A.1 Grammar Specification . 223

A.1.1 Notation . 224
A.1.2 Grammar: Problem Specification 224
A.1.3 Grammar: Solution Specification 227

A.2 Operator Precedence . 227
A.3 Examples . 228

CHAPTER 1

INTRODUCTION

Constraint Programming is a powerful technique for solving large-scale combinatorial (op-
timisation) problems. However, it is often inaccessible to users without expert knowledge
in the area, precluding the wide-spread use of Constraint Programming techniques. There
are two main reasons for this.

1. Lack of Standards
First, unlike similar successful areas, like SAT [15], the Constraint Programming
community has not (yet) agreed on a standard format to represent problem instances.
This is a major drawback, since every constraint solver takes a different format as
input. Furthermore, every constraint solver performs different internal techniques,
hence exploiting a solver’s strengths requires a thorough study of the solver’s internal
procedures. This makes it particularly impractical for a novice to explore the strength
of Constraint Programming, since he or she has to commit to a single solver.

2. Generality and the Modelling Bottleneck
The second reason stems from the generality of the problems Constraint Program-
ming can tackle: in Constraint Programming, problems are formulated in a rich lan-
guage, far richer than, for instance, SAT or MIP languages. Typically, many different
model formulations exist that represent the same problem and it is vital to choose a
high-quality formulation in order to gain a satisfactory solving performance in the
solver: a good formulation may be solved in fractions of a second, and poor formu-
lations might not be solvable at all (in a reasonable amount of time). However, it
is difficult, often even for experts, to determine the a high-quality CSP formulation.
This creates a major bottleneck in Constraint Programming.

This thesis addresses both of these issues in order to render Constraint Programming tech-
niques more accessible to non-experts.

We address the first issue by proposing a simple ‘model-and-solve’ approach, consisting
of a framework where the user formulates a solver-independent problem model, which is

1

2

then automatically tailored to the input format of a selected target solver (a process similar
to compiling a high-level modelling language to machine code). The generated solver
input is then applied to the solver, from which solutions are retrieved (if they exist) and
returned to the user. This allows the user to formulate a constraint model without requiring
any particular background knowledge of the respective solver and its solving technique.
Furthermore, since the framework can target several solvers, the user can explore different
types of solvers.

The second issue is addressed by extending the tailoring process (the translation from
solver-independent model to solver input format) with model optimisations that can com-
pensate for a wide selection of poor modelling choices that novices (and also experts!) in
Constraint Programming often make and hence result in redundancies. Moreover, we will
see that for some families of problems, these redundancies naturally occur in constraint
models and cannot be easily prevented when modelled as a CSP. Most importantly, in our
empirical analysis, we will see that eliminating these redundancies by the proposed optimi-
sation techniques can result in solving time speedups of over an order of magnitude, in both
naive and expert models. Furthermore, the optimisations are also particularly light-weight,
adding negligible overhead to the overall tailoring process.

During the work on this thesis, the framework has been implemented in the tool TAILOR,
that currently translates 2 different solver-independent modelling languages to 3 different
solver formats and is freely available online. It performs almost all optimisation techniques
that are proposed in this thesis and has already contributed to the spread of Constraint
Programming techniques in other areas [52].

In summary, this thesis presents a framework that facilitates modelling for both experts and
novices: problems can be formulated in a clear, high-level fashion, without requiring any
particular background knowledge of the respective constraint solver and its solving tech-
niques, while (sometimes naturally occurring) redundancies in the model are eliminated
for practically no additional cost, improving the respective model in solving performance
by up to an order of magnitude.

In the following, we want to elaborate on the issues we presented above, by giving a brief
introduction to Constraint Programming and discuss the issue of the Modelling Bottleneck
in Constraint Programming. Then, we will show how the work presented in this thesis
successfully addresses the modelling bottleneck and contributes access to Constraint Pro-
gramming for non-experts.

1.1 Solving Problems using Constraint Programming

Constraint Programming is a particularly powerful technique that can tackle large-scale
combinatorial (optimisation) problems. Solving problems using Constraint Programming
proceeds in two steps: modelling and solving. In the following we will give a brief intro-

3

duction of how problems are first modelled and then solved in Constraint Programming.

1.1.1 Modelling Constraint Satisfaction Problems (CSPs)

The first step in Constraint Programming, modelling, is concerned with formulating the
respective problem as a Constraint Satisfaction Problem (CSP).
Definition 1.1.1. A Constraint Satisfaction Problem (CSP) is a triple (V, D, C) where V is
a set of n variables, D a set of n discrete domains and C a finite set of constraints, where
each variable vi ∈ V is defined over the domain Di ∈ D, and a constraint c ∈ C is a
relation on a subset of variables of V .

A solution to a CSP is a set of n variable assignments ai ∈ A where ai ∈ Di and all
constraints in C hold, if every vi ∈ V is assigned ai. As an example, consider the Send-
More-Money Problem [23] that is described in Example 1.1.1.
Example 1.1.1. Send-More-Money. A young student in Computer Science asks his par-
ents for some additional money (to buy the latest gadget). The parents decide to grant their
son’s wish only if he can prove to have learnt something during the term. Therefore, they
give him the following riddle to solve in order to obtain the money:
Solve the following equation, assigning each letter a distinct number between 0 and 9,
where the leftmost letters, S and M must not be zero:

S E N D
M O R E

M O N E Y

The Send-More-Money Problem can be easily represented as a CSP: first, the set of vari-
ables V consists of the 8 letters V = {S, E, N , D, M , O, R, Y }. Each letter can
be assigned a number between 0 and 9, with the exception of the leftmost letters, S
and M , that may not be 0. Therefore, we define the set of corresponding domains as
D = {(1..9), (0..9), (0..9), (0..9), (1..9), (0..9), (0..9), (0..9)}. Finally, we define the list
of constraints that need to capture (1) the equation and (2) that all variables take different
values. We start with the first constraint, that deals with the equation, described as follows:

c1 ≡ 1000*S + 100*E + 10*N + D
1000*M + 100*O + 10*R + E

= 10000*M + 1000*O + 100*N + 10*E + Y

Second, we state that the numbers assigned to each letter have to be different. We can do
this either by stating the disequality explicitly, like below.

c2 ≡ S %= E
S %= N
S %= D
S %= M

. . .

4

However, there exists the global constraint [84] called alldifferent [62, 33] that imposes
disequality on all its arguments and is equivalent to the above clique of disequalities:

c2 ≡ alldifferent(S, E, N, D,M,O,R, Y)

Global constraints [84] represent constraint patterns that often occur in combinatorial prob-
lems and for which constraint solvers provide particularly powerful solving techniques.

In summary, we obtain the CSP (V, D, C) consisting of

• variables V = {S, E, N , D, M , O, R, Y }
• domains D = {(1..9), (0..9), (0..9), (0..9), (1..9), (0..9), (0..9), (0..9)}
• constraints C = {c1, c2}.

The unique solution to this problem is the assignment A = {9, 5, 6, 7, 1, 0, 8, 2}, i.e. 9567+
1085 = 10652.

1.1.2 Solving Constraint Satisfaction Problems (CSPs)

The solving procedure of a CSP as performed in a typical finite-domain constraint solver,
consists of two core parts: propagation [10] and search [81].

Propagation

Propagation is a mean of inference, which prunes values from variable domains. Each
constraint is represented by a propagator that reduces the domains of the variables in the
constraint’s scope when possible. In other words, a propagator infers that some value i
from a particular variable v is not consistent with the constraint imposed on v. Hence the
value i can be removed from the variable’s domain.

For example, consider the following, simple CSP:

• variables V = {x, y}
• domains D = {(1..5), (0..4)}
• constraints C = {x ≤ y}

where from the constraint x ≤ y we can infer two things. First, infer that ‘5’ can be
removed from x’s domain, since the highest value in the domain of y is 4 and x ≤ y.
Second, we infer that ‘0’ can be removed from y’s domain, since ‘1’ is the smallest number
in x’s domain and x ≤ y. The ≤-propagator applied to x and y prunes their respective
domains yielding x ∈ (1..4) and y ∈ (1..4).

5

Search

In many cases, applying propagation is not enough to infer solutions of a CSP: at some
point no more values can be removed from the variables’ domains. At this point, we have
to search for solutions.

In principle, search is a structured way of testing various value assignments until a solution
is found. More specifically, a search tree is constructed, over which a search algorithm
iterates in order to detect a solution. The construction (‘branching’) heuristic and iteration
(‘search’) heuristic concerning the search tree are core features of search.

In many constraint solvers, search is interleaved with propagation, where typically propa-
gation is triggered as soon as search has removed further values of the problem.

In summary, Constraint Programming proceeds in two steps, modelling and solving. This
work addresses issues arising during modelling, however, note that modelling and solving
are closely linked to another: poor modelling typically has a strong negative effect on the
solving performance. In the following section, we want to investigate different established
approaches in order to automatically model an efficient constraint model.

1.2 Automated Constraint Modelling

The modelling bottleneck, which stems from the difficulty of selection an appropriate con-
straint model to represent a given problem, can be addressed by modelling the CSP auto-
matically, which is the main concern of Automated Constraint Modelling.

At present, there exist several successful automated modelling systems that aim at reducing
the modelling bottleneck by generating efficient constraint instances, typically from a rather
intuitive (or naive) input. In the following, we present these systems by briefly outlining
their approach and objectives.

O’CASEY

O’CASEY [51] uses case-based reasoning to store, retrieve and reuse constraint program-
ming experience. Case-based reasoning is a means to solve a problem by exploiting ex-
perience gained in previous problem-solving episodes [48]. In particular, problems are
paired with model instances to form a ‘case’. The experience obtained from cases mainly
includes propagator selection and search heuristics. Guiding propagator and search heuris-
tic selection by previous experience during tailoring is an interesting possibility for future
work.

6

CONACQ

CONACQ [11] is a SAT-based version space algorithm to acquire constraint networks: given
a set of variables (with associated domains), solutions and non-solutions from the user,
CONACQ generates a constraint model by applying machine learning. CONACQ has no-
tably evolved over the past years and has been further extended [12] with interesting fea-
tures: first, CONACQ can assist in the selection of examples for learning, through which
a smaller set of examples is needed to generate a good constraint network. Furthermore,
CONACQ now learns non-binary constraints and provides interactive assistance to the user.
In summary, CONACQ is an established system that is the subject of active research. This
application of machine learning to acquiring a good set of valid constraints is a useful
idea for automated modelling, however, since (non-)solutions are a prerequisite, it is not
applicable to tailoring.

CONJURE

CONJURE [27] is an automated refinement system, that, given an abstract problem spec-
ification, returns a set of constraint models derived from the specification. The idea is to
allow the user to formulate a problem in an abstract, mathematical way, using abstract con-
structs such as mappings, sets, functions, etc. This abstract specification is then refined to a
CSP by non-deterministic refinement rules. Refinement rules include data structure refine-
ment (e.g. refining mappings into arrays), as well as corresponding operator refinement. In
its implementation, CONJURE takes specifications formulated in the abstract specification
language ESSENCE [26] as input, and returns constraint models in ESSENCE′ (Chapter 2).

Summary

In summary, the presented automated modelling tools aim at generating an efficient con-
straint instance using different approaches. This thesis is concerned with the subsequent
step, after a constraint model has been formulated, when it has to be tailored to a constraint
solver in order to be solved. In the following section, we outline our contributions towards
reducing the modelling bottleneck.

1.3 Thesis Statement and Contributions

Modelling in Constraint Programming is a notoriously difficult task, which prevents the
widespread use of Constraint Programming techniques, a phenomenom referred to as the
modelling bottleneck. Automated Constraint Modelling currently addresses the first es-
sential step in modelling, which is to formulate a constraint model from a (sometimes
informal) problem specification. However, a further step remains: to represent the model

7

in solver format. The translation from solver-independent constraint model to solver input
is non-trivial and hence desirable to be automated.

This dissertation defends the thesis that this second step in automated modelling, the com-
pilation from solver-independent constraint model to solver input, can be automated and
extended with light-weight model optimisations that can deliver substantial enhancements
of the problem model formulation. To defend this claim, we present a set of compilation
and optimisation algorithms and thoroughly assess their implementation on a large set of
examples. In the following, we explicitly outline our contributions.

1.3.1 Specification of ESSENCE′

The first contribution is the specification of the solver-independent constraint modelling
language ESSENCE′. ESSENCE′ is a derivative of the problem specification language ESSENCE,
and has not been explictly defined to date. This thesis gives a detailed introduction to
ESSENCE′ in Chapter 2, including many examples. In Appendix A we summarise the syn-
tax of ESSENCE′ in a more formal way; its semantics is inherited from that of ESSENCE [26].

1.3.2 Tailoring

The second contribution is the detailed discussion of tailoring. Tailoring is the process
of compiling a solver-independent (high-level) problem formulation into low-level solver
input. The main challenge is to produce a valid solver input from an input file, using as
little time as possible.

As we will show in this thesis, the process shares many properties and concerns with the
compilation of programs, from which we can gain substantial inspiration on how to per-
fect the process. In particular, we present the architecture of an effective tailoring engine,
consisting of three parts (like a compiler), with two important properties: first, the engine
is easily extendable to support other input- or output-languages (Sec. 3.1). Second, the
key compilation entities (for preprocessing and flattening) that represent the core of the
translation process, are re-usable for every translation and needs not be re-implemented for
different target solvers or input languages.

Moreover, we do not limit our discussion of tailoring to problem instances, but extend it
to tailoring whole problem classes. Tailoring problem classes has barely been studied, in
Constraint Programming or related areas. We show how to extend the tailoring procedure
at instance level to class level, highlight the main challenges in tailoring at class level
and demonstrate that class-wise tailoring can be a competitive alternative to instance-wise
tailoring.

8

1.3.3 Model Optimisations

The third contribution is the introduction of automated model optimisations that aim at en-
hancing problem models. These optimisations are easily integrated into tailoring, combined
with core tailoring tasks, such as normalisation or flattening, which render the optimisa-
tions particularly cheap to perform. In the following we briefly discuss two optimisation
techniques that we propose.

Common Subexpression Elimination

The most successful optimisation technique from this thesis is that of common subexpres-
sion elimination (CSE), a technique that is widely spread in related areas. In this work we
present a new CSE technique, that is integrated into the (necessary) process of flattening,
and which hence adds practically no notable overhead to the overall tailoring procedure,
even if performed in vain. Furthermore, CSE can result in solving time speedups of up to a
factor of 2,000 in some problem instances.

We extend the basic approach of CSE with additional measures that aim at increasing the
benefits from CSE-flattening. CSE-flattening is limited to detecting subexpressions that
are identical (i.e. they are equivalent wrt their syntax). Therefore, we augment tailoring
with optimisation techniques that detect equivalent subexpressions that are not identical
and then reformulate them into an identical representation. We exploit several different
kinds of equivalences, each providing different benefits. The most successful one, the
active negation reformulation has the best impact on solving performance, in some cases
reducing the overall solving time to a third of the solving time used for instances tailored
without the reformulation.

Applying CSE is also discussed at class level (Sec. 6.2), where CSE has to be performed
in an advanced fashion to detect all equivalences that are detected at instance level. We
present three different CSE techniques at class level, each with its own advantages and
drawbacks. In summary, CSE is a powerful optimisation technique, at both instance and
class level, that yields dramatic speedups, on novice and expert models (Sec. 8.2).

Eliminating Duplicate Constraints

Duplicate constraints often arise in naive models of inexperienced users, by specifying
Boolean guards that are too weak (Sec. 4.5.1). We show how to eliminate those duplicates
at both instance and class level, applying two different techniques. Our empirical results
confirm the benefits of this optimisation technique, as duplicate constraints can double the
solving time in medium-sized instances (of the problems we have considered).

9

Figure 1.1: Tailoring Overview. Given a problem model (paired with a parameter speci-
fication), the tailoring engine produces solver input undergoing three major steps: prepro-
cessing, flattening and mapping to solver syntax.

1.3.4 The tool TAILOR

The most practical contribution is the implementation that incorporates almost all pro-
cedures that are proposed in this thesis: TAILOR. TAILOR is an interactive modelling
assistant that is freely available at TAILOR’s website [65]. It provides a graphical user in-
terface in which the user can both model her problem, tailor it to a solver (Minion [32] or
Gecode [80]), call the solver externally and retrieve solutions (if they exist).

TAILOR’s Capabilities

The flow-graph in Fig. 1.1 illustrates the different operations TAILOR can perform. As
input, TAILOR takes constraint models formulated either in modelling language ESSENCE′

or the XML format XCSP 2.1. TAILOR can perform several different translations of this
input. First, it can generate intermediate formats, such as flat ESSENCE′ or the FlatZinc
format. Second, it can generate solver input format for constraint solvers MINION(text
format) and Gecode (C++) (translation to the latter is still restricted). Third, TAILOR can
guide the whole solving process for you: first generating solver input, then invoking the
solver on the input and finally mapping the solution back to ESSENCE′ or FlatZinc. In this
way the user simply has to model the respective problem, click the ‘solve’ button and does
not have to bother about the solver input/settings at all.

A Snapshot of TAILOR

We show a snapshot of TAILOR’s graphical user interface (of version 0.3.2) in Fig. 1.2. It
consists of the input part on the left hand side and the output part on the right hand side.

10

Figure 1.2: Snapshot of TAILOR v0.3.2’s graphical user interface (GUI) solving a Su-
doku instance in solver Minion. The GUI is divided into an input part (left) where problem
class(top) and parameters(bottom) are specified, and an output part (right) that returns solu-
tions(top) and system messages(bottom). The drop-down menus and buttons in the middle
enable the user to select the target solver and select between solving and tailoring

The input part to the left has two fields for modelling: the top field is used to model the
problem class; the bottom field to specify parameter values (data). The parameter field
can be left empty. There is a series of ESSENCE′ examples that comes with the TAILOR
distribution (like the Sudoku problem model in the image) to get familiar with modelling
in ESSENCE′.

The output part on the right summarises the results obtained from either tailoring or the tar-
get solver: the top right field is a collection of tabs, each showing the translation output at a
different stage: normalised ESSENCE′, flattened ESSENCE′, solver input and the ESSENCE′

solution. The content of each tab can be saved using the ’Save Tab’ button.

In between the input and output part, there are drop-down menus to select a translation
mode: the first option is ‘solve’ or ‘tailor’ (in Fig. 1.2 the ‘solve’ option is selected). If
‘solve’ is selected, TAILOR will translate the problem from the left hand side into the
corresponding solver format, save it in a file, execute the solver on the file (in a separate

11

process), and return the solver output (in either ESSENCE′ or FlatZinc format) on the right
hand side.

In summary, TAILOR is an attractive and useful tool, in particular for novices, to model and
efficiently problems using Constraint Programming techniques.

1.3.5 Addressing the Missing Link in Automated Constraint Mod-
elling

To date, automated modelling has mainly focussed on how to formulate a given problem as
a constraint model, an essential task to reduce the modelling bottleneck. This is, however,
not enough. In order for a (generated) model to be solved, it has to be formulated in
the solver language, a non-trivial step that constitutes another challenge to the modeller,
a challenge that has not yet been recognised and investigated for automation. The last
and probably most significant contribution of this thesis is the identification of this last
important step during automated modelling, as well as its automation.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2: The Modelling Language ESSENCE′ We begin with a detailed specification
of the solver-independent modelling language, that is used through-out this thesis:ESSENCE′.
ESSENCE′ has not yet been explicitly specified, so this chapter delivers a general contri-
bution in form of a detailed description. The presentation of ESSENCE′ is illustrated with
many different examples and demonstrates that ESSENCE′ incorporates all necessary facil-
ities that other constraint modelling languages provide, demonstrating that ESSENCE′ is a
suitable choice of modelling language to illustrate the issues discussed in this thesis.

Chapter 3: Tailoring Problem Instances The third chapter gives a thorough discussion
of the task of tailoring, which is the compilation of a solver-independent constraint model
to a particular constraint solver. This chapter illustrates how tailoring can be performed in
a structured, easily-extendable and efficient fashion, generalising the core tailoring tasks
for an arbitrary input (constraint language) and output (solver language), while considering
the distinguished features a target solver may provide.

Chapter 4: Instance Optimisations This chapter is the largest and most significant part
of this work, as it presents instance optimisations that can easily be integrated into tailor-

12

ing, adding negligible computational effort while resulting in speedups of up to a factor of
3,400. We first explore various optimisation techniques that have been proposed in the con-
text of Constraint Programming and Code Optimisation in Compilers where the latter has
inspired many of the optimisation techniques we propose. The optimisations include four
main techniques: first, common subexpression elimination(CSE) is the most powerful op-
timisation technique we propose that we show to be applicable to many constraint models.
Second, we propose a set of techniques in order to increase the number of common subex-
pressions in order to augment the benefits obtained through CSE. Third, we consider the
elimination of redundant constraints, in particular duplicate constraints that often occur in
constraint models of inexperienced modellers. Fourth, we study optimisations of quantifi-
cations, in particular the role of Boolean guards and different quantification representations
involving loop-invariant expressions.

Chapter 5: Tailoring Problem Classes In this chapter we extend the tailoring process
from translating problem instances to whole problem classes. We start with presenting two
different applications of tailoring problem classes and proceed with a thorough discussion
of the extension of the instance tailoring procedure from Chapter 3, where we highlight
challenges and current limitations.

Chapter 6: Class Optimisations This chapter discusses automated enhancements of a
problem class that can be integrated into tailoring problem classes as presented in the pre-
vious chapter. We show how the techniques proposed at instance level are applicable at
class level and how they need to be extended and refined in order to provide similar bene-
fits at class level as at instance level.

Chapter 7: Case Study: Common Subexpressions in CSPs of Planning Problems In
this chapter we summarise our observations from enhancing a particular kind of CSP: CSPs
that represent AI planning problems are particularly amenable to CSE and, the more com-
plex their structure, the more benefits can be gained from CSE. We first present well-
established techniques of how to represent an AI Planning problem as a CSP and highlight
the sources of common subexpressions in a generic problem formulation. Then we present
four case studies, considering four different AI Planning problems of different complexity,
and analyse the impact of CSE on each of them.

Chapter 8: Experiments This chapter contains our main empirical analysis where we
assess all the proposed optimisation techniques wrt (1) the scope of each enhancement
(e.g. reduction of constraints in the model), (2) the impact of the optimisation on the
solving performance, and (3) the optimisation’s computational effort during tailoring (does
performing the optimisation add an significant overhead to the overall translation process).

13

Chapter 9: Conclusions The final chapter first summarises the work, then gives a thor-
ough conclusion and outlines plans for future work.

14

CHAPTER 2

THE MODELLING LANGUAGE ESSENCE′

A discussion of translating constraint models to solvers requires a solver-independent mod-
elling language in which to formulate problems. Unfortunately, the Constraint Program-
ming community is still far away from agreeing on a standard constraint format or standard
constraint modelling language. However, there exists a small range of solver-independent
modelling languages (MiniZinc [58], OPL [83], ESSENCE′ and XCSP 2.1 [68]) from which
we had to choose an appropriate candidate at the beginning of this PhD project. We could
not chose MiniZinc since it has been developed after this project was initiated. Commercial
OPL did not apply to our plans of offering free software, and the CSP solver competition
format XCSP 2.1 [68] does not permit formulating problem classes, thus our choice fell
on ESSENCE′. ESSENCE′ is a derivative of the specification language ESSENCE [26] and
has only been specified implicitly through ESSENCE. Therefore, this chapter contributes a
thorough specification.

We stress that the general choice of modelling language is unimportant, since this work is
applicable to any of the modelling languages mentioned above. ESSENCE′ is a deserving
candidate for two main reasons: first, ESSENCE′ incorporates all typical features that other
constraint modelling languages provide, which we will demonstrate in this chapter. Second,
ESSENCE′ is a plain and straight-forward modelling language, whose underlying idea is
to allow users to formulate problems in a succinct, mathematical way without requiring
any CP background. The syntax is based on typical mathematical notation and the model
structure is similar to that of mathematical modelling languages, such as AMPL [24] or
ZIMPL [47]. We will use ESSENCE′ as modelling language throughout this thesis.

This chapter is structured as follows: first, Sec. 2.1 introduces ESSENCE′ by formulating a
classical combinatorial problem, the Graph Colouring (or Map Colouring) Problem. The
section covers basic concepts of ESSENCE′ and gives a brief overview of the available
facilities. Section 2.2 provides detailed information about ESSENCE′, in particular its for-
mat, features (types, expressions, etc) and its usage. A detailed grammar specification of
ESSENCE′ can be found in Appendix A.

15

16

2.1 ESSENCE′ by Example

The Graph Colouring (or Map Colouring) Problem (GCP) is a classical combinatorial op-
timisation problem: given a non-directed graph and a number of colours, assign a colour
to each vertex, such that every pair of adjacent vertices has distinct colours and a minimal
number of colours is used. Fig. 2.1 illustrates an example of a minimally coloured graph.
The GCP can be formally specified (in the L language from [41]):

parameters vertices ∈ N1 Vertices: set(1..vertices)
colours ∈ N1 Colours: set(1..colours)
edges ∈ (Vertices × Vertices)

variables colouring: Vertices → Colours
usedColours : Colours → (0, 1)

objective minimise
∑

c∈Colours . usedColours(c)
constraints ∀(a, b) ∈ edges . colouring(a) %= colouring(b)

∀v ∈ Vertices. ∀c ∈ Colours.
(colouring(v) = c) ⇒ (usedColours(c) = 1)

The number of vertices and colours are given as parameters from which the set of vertices
and set of colours, Vertices and Colours, are defined. The graph edges are also parameters,
specified by the Cartesian product between the set of vertices (i.e. specified by adjacent
vertices). The aim is to find a valid colouring, i.e. a mapping of vertices to colours. Ad-
ditionally, usedColours is employed as a helper mapping that records which colours are
actually in use: colour c is mapped to ‘1’ if c is used in the colouring and to ‘0’ otherwise.
The objective is to use a minimal number of colours, hence the sum of all used colours has
to be minimal. Two constraints define the GCP: first, for all vertices a and b that are con-
nected by an edge, the colours assigned to a and b have to be different. Second, colouring
vertex v with colour c implies that colour c is used.

Modelling the Problem
The GCP specification can be easily converted into an ESSENCE′ model, which is given
in Fig. 2.2. First, parameters are declared: the number of ‘vertices’ and ‘colours’ are
positive integers, and the ‘edges’ are represented as adjacency matrix, i.e. a 2-dimensional
matrix of zeros and ones, where ‘edges[a,b]=1’ if there is an edge between vertices ‘a’ and
‘b’. ‘VERTICES’ and ‘COLOURS’ are labels for the range of vertices and colours, respectively.
Labels are practical means to represent constants that often occur in a problem model.

Figure 2.1: Sample solution to the Graph Colouring Problem (GCP)

17

language ESSENCE’ 1 .b .a
$ −−−−−−−−−−−−−−−−−−− PARAMETERS and CONSTANTS −−−−−−−−−−−−−−−−−−−−−−−−
g iven vertices : i n t (1 . .)
g iven colours : i n t (1 . .)

l e t t i n g VERTICES be domain i n t (1 . . vertices)
l e t t i n g COLOURS be domain i n t (1 . . colours)

g iven edges : matrix indexed by [VERTICES ,VERTICES] of i n t (0 , 1)
$ −−−−−−−−−−−−−−−−−−− VARIABLES −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f i n d colouring : matrix indexed by [VERTICES] of COLOURS
f i n d usedColours : matrix indexed by [COLOURS] of i n t (0 . . 1)
$ −−−−−−−−−−−−−−−−−−− OBJECTIVE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
minimis ing sum c : COLOURS . usedColours [c]
$ −−−−−−−−−−−−−−−−−−− CONSTRAINTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
such t h a t

f o r a l l a ,b : VERTICES .
(edges [a ,b] = 1) => (colouring [a] != colouring [b]) ,

f o r a l l v : VERTICES . f o r a l l c : COLOURS .
(colouring [v] = c) => (usedColours [c] = 1)

Figure 2.2: ESSENCE′ problem model of the GCP.

Second, the variables ‘colouring’ and ‘usedColours’ are defined. In the problem specifi-
cation, colouring and usedColours are defined as mappings, however, constraint modelling
languages typically do not provide mappings as data structures. Thus every mapping has
to be represented by an array (‘matrix’). There are several ways of refining a mapping to
an array [27]. In this case, every mapping m : X → Y is represented by a matrix m′

where m′[x] = y for all x ∈ X and y ∈ Y where m(x) → y. As an example, the mapping
colouring: Vertices → Colours is represented by a 1-dimensional array, ‘colouring’, of
length vertices, where every array element ‘colouring’[i] stands for the colour assigned
to a vertex i. In other words, ‘colouring’ has an element for every vertex whose domain
ranges over all colours, i.e. ‘colouring[vertex]=colour’.

Finally, the objective and constraints are specified. Note, that the formulation is very close
to the problem specification. The objective states that the sum of all used colours has to
be minimal. The first constraint states that for vertices ‘a’ and ‘b’ that are connected by an
edge, the colours assigned to a and b have to differ. The second constraint states that if
colour ‘c’ is assigned to vertex v then colour ‘c’ is used, i.e. ‘usedColour[c]’ is assigned
‘1’.

Defining Parameter Values
In order to solve an instance of the Graph Colouring Problem, parameter values (also
known as ‘data’) have to be specified. Typically, this is done in a separate file, the parame-
ter specification. The separation of problem and data facilitates modelling and is standard
in many constraint modelling languages. For illustration, Fig. 2.3 shows the ESSENCE′

parameter specification for the graph in Fig. 2.1 that has 5 vertices, 3 colours and 6 edges

18

defined by an adjacency matrix.

language ESSENCE’ 1 .b .a

l e t t i n g vertices be 5
l e t t i n g colours be 4
l e t t i n g edges be [[0 , 1 , 0 , 1 , 0] ,

[1 , 0 , 1 , 0 , 1] ,
[0 , 1 , 0 , 1 , 1] ,
[1 , 0 , 1 , 0 , 0] ,
[0 , 1 , 1 , 0 , 0]]

Figure 2.3: ESSENCE′ parameter specification of the GCP in Fig. 2.1.

Presenting Solutions
Constraint solvers differ greatly in how they output solutions, hence it is practical (and
standard in most constraint modelling languages) to provide means to describe solutions.
For illustration, Fig. 2.4 shows the ESSENCE′ solution for the instance obtained by the
parameters in Fig. 2.3, which also corresponds to the coloured graph in Fig. 2.1.

language ESSENCE’ 1 .b .a

v a r i a b l e colouring i s [1 , 2 , 1 , 2 , 3] ,
v a r i a b l e usedColours i s [0 , 1 , 1 , 1]

Figure 2.4: ESSENCE′ solution description of the GCP shown in Fig. 2.1

Quick Summary
ESSENCE′ can be used to formulate three specifications: problem models, parameters and
solutions. It has a concise syntax which is based on mathematical notations. Furthermore,
it embodies all standard features (separation of model and data, quantifications, arrays, etc)
that other solver-independent CP modelling languages, such as OPL or MiniZinc, provide.

2.2 Format

The format of ESSENCE′ is closely related to that of ESSENCE, which is thoroughly dis-
cussed in [26]. In particular, ESSENCE′ is a subset of ESSENCE with some additional
features that we present in this section. Furthermore, we give an anecdotal overview of
the format of ESSENCE′, highlighting the most important features, starting with the model
structure.

An ESSENCE′ model is structured in the following way:

19

1. Header
2. Declarations (constants, parameters, variables)
3. Objective
4. Constraints

All statements from above are optional, with the exception of the header, which states
the ESSENCE′ version number. Comments are line-wise and preceded by the symbol ‘$’.
The following format discussion is focused on the format of problem models. Parameter
specifications follow the same structure and syntax with the difference, that it consists
solely of a header and declaration part. Similarly, a solution specification contains only
the header and a set of solution statements, as shown in Fig. 2.1. For a detailed grammar
specification, consult Appendix A.

Types
ESSENCE′ is a strongly typed language where every expression has a type. The basic types
are Boolean and integer; advanced types are domain and array (matrix) types, which are
again either Boolean or integer. Note that arrays are denoted ‘matrix’ in ESSENCE′’s syntax.
All types are further discussed in Sec. 2.2.1.

Identifiers and Scopes
Every identifier that is used in an expression has to be declared before use. ESSENCE′

does not support local variables, with the exception of quantified variables whose scope
is limited by the corresponding quantification. The scope of all other identifiers is global.
Identifier names have to be unique in their scope.

Categories
ESSENCE′ has four categories of expressions: constant, parameter, quantifying variable
and decision variable. There is a strict order over the four categories:

constant < parameter < quantifying variable < decision variable
Every expression is assigned a category in a recursive fashion: atoms (terminals) have
the category corresponding to their declaration; expressions composed of subexpressions
are assigned the highest category of its subexpressions. As an example, 4 + n has category
parameter if n is a parameter; 3∗x has category decision variable if x is a decision variable.

Categories are necessary to describe the arguments of global constraints. For instance, in
the global constraint atmost(var,val,occ) (see Tab. 2.4) decision variables are not allowed
for argument occ - only constants, parameters and quantifying variables. However, argu-
ments that are typically of category decision variable, like var, can be replaced by any of
the other, lower categories. Thus, the ordering incorporates a means to express the ‘high-
est’ category that can be used as an argument. In the case of atmost, the respective highest
feasible category for its arguments would be atmost(var:dec-var,val:q-var,occ:q-var).

Notation
Throughout this thesis, Boolean expressions are denoted with uppercase letters from the
beginning of the alphabet (A, B, C, etc.); integer expressions are denoted with lower-case

20

letters from the ending of the alphabet (x, y, z, etc). Arrays are denoted with the prefix
‘arrayi’, where i gives the dimension of the array. Domains are written in capital letters
(e.g. DOM). In the remainder of this chapter, ‘Boolean expression’ and ‘integer expression’
refer to expressions that are neither array nor domain expressions; if expressions are of type
domain or array, it will be specifically emphasised.

2.2.1 Expressions

Every ESSENCE′ expression is either Boolean or integer. Advanced types are domain and
array expressions, which are again either Boolean or integer. In this section, we cover
basic expressions, i.e. expressions that are either atoms or constructed by unary or binary
operators. Array expressions are covered in Sec. 2.2.2, followed by domain expressions in
Sec. 2.2.3. Complex expressions, such as global constraints are discussed in Sec. 2.2.7 and
quantifiers (∀, ∃ and

∑
) in Sec. 2.2.8.

Basic Boolean Expressions are either constants (true and false), Boolean identifiers or
expressions composed by operators that yield Boolean expressions. Table 2.1 summarises
all unary and binary Boolean and relational operators that yield Boolean expressions in
ESSENCE′. These operators are standard in most solver-independent modelling languages.
Note that n-ary operators that yield Boolean expressions, such as global constraints and
quantifiers, are discussed in Sec. 2.2.7 and Sec. 2.2.8, respectively.

Boolean Operators
!A negation of A ¬A
A /\ B A and B A ∧B
A \/ B A or B A ∨B
A => B A implies B A ⇒ B
A <=> B A is equivalent to B A ⇔ B

Relational Operators
x = y equality x = y
x <= y less or equal x ≤ y
x >= y greater or equal than x ≥ y
x != y disequality x %= y
x < y less than x < y
x > y greater than x > y

Table 2.1: Unary and Binary Operators yielding Boolean expressions. A and B are
arbitrary Boolean expressions, x and y are arbitrary integer expressions.

Basic Integer Expressions are either integer constants (e.g. 0, 120, 7), integer identifiers
or expressions composed by operators that yield integer expressions. Table 2.2 summarises
all unary and binary operators that yield integer expressions. These operators are standard

21

in most solver-independent modelling languages. Note that the n-ary sum constraint(
∑

) is
discussed in Sec. 2.2.6.

-x negative x −x
|x| absolute value | x |
x + y addition x + y
x - y subtraction x− y
x * y multiplication x ∗ y
x / y integer division x/y
x mod y x modulo y x mod y
x ˆ y x to the power of y xy

Table 2.2: Unary and Binary Operators yielding integer expressions. x and y are arbi-
trary integer expressions

Polymorphic Operators. In our implementation, particular operators are polymorphic, i.e.
they can be applied to both Boolean and integer expressions. The polymorphic operators
are +, -, *, sum and the relational operators (=, <=, etc). If these operators are applied to
Boolean expressions, then true is converted to 1 and false to 0. This provides two benefits:
first, it gives more expressiveness to ESSENCE′ (e.g. one can state that exactly 2 out of 3
statements have to be true, as illustrated in the example below).

$ example o f po lymorph i c o p e r a t i o n s $

A + B + C = 2 $ e x a c t l y 2 s t a t e m e n t s have t o be t r u e $
(x=0) ∗ (y=0) = 1 $ e x p r e s s i n g (x =0) xor (y =0) $

Second, since most solvers allow summation/multiplication of Boolean variables, ESSENCE′

provides direct support of these features. Furthermore, note that many solver-independent
modelling languages provide a bool2Int function that converts a Boolean expression into
an integer expression.

2.2.2 Arrays

Arrays are a means to collect a fixed number of items of the same type into one structure.
In general, the array type is defined by the element type and the dimension. For example, a
2-dimensional array containing Boolean elements is of type ‘Boolean 2-dimensional array’.

Declaring Arrays
Constants, parameters or decision variables can be declared as an array using the keyword
‘matrix’, followed by its dimension (‘indexed by’) and the base domain (‘of’), i.e. the domain
over which the array elements range. An example would be

array1 : matrix indexed by [i n t (1 . . 1 0)] of bool

22

that declares a Boolean array labelled ‘array1’ containing 10 elements. The base domain
(‘bool’) denotes the basic type of the array elements. The index domain (‘ int (1..10) ’) states
dimension, length and how to dereference the array. In the example above, there is one in-
dex domain, ‘[int (1..10)] ’, hence ‘array1’ has 10 entries and ‘array1[1]’ dereferences the
first element since the index domain starts with ‘1’. Arrays can have arbitrary dimensions,
for instance, the following statement declares a 2-dimensional integer array with 10 ∗ 6
elements whose elements range over the integer domain (1..5).

array2 : matrix indexed by [i n t (1 . . 1 0) , i n t (0 . . 5)] of i n t (1 . . 5)

Constructing Arrays
Simple expressions of the same type can be combined into an array expression by using the
array constructors ‘[’ and ‘]’, e.g. ‘[x,y,z]’. Multi-dimensional arrays are constructed by
nesting ‘[’ and ‘]’, as the example below demonstrates:

$ C o n s t r u c t i n g a 2−d i m e n s i o n a l a r r a y i n a c o n s t a n t d e f i n i t i o n $
l e t t i n g myArray be [[1 , 2] , [3 , 4] , [5 , 6] , [7 , 8] , [9 , 1 0] , [1 1 , 1 2]]

Note, that in the current implementation, the elements of a constructed array have to be
atomic expressions, i.e. constants or identifiers. If the corresponding index array of a
constant array is not defined, then it is indexed starting from 1. For example, if the index
domain of ‘myArray’ has not been defined, then ‘myArray[2,1]’ will return ‘3’.

Dereferencing Arrays
Array elements are accessed by a similar syntax to that used in many programming lan-
guages. For instance, given ‘myArray’ from the example above, ‘myArray[4,1]’ represents
‘7’, since it is the ‘1’st element of the ‘4’th vector (1-dim. array) in the matrix. It is also
possible to dereference a set of elements of an array by dereferencing ranges, which are
similar to domain expressions. Table 2.3 illustrates dereferencing with ranges.

3-Dimensional sample Array
letting array3 be [[[1,2], [3,4]],

[[5,6], [7,8]],
[[9,10], [11,12]]]

Array Dereference Referenced Expression
‘array3[3,1,..]’ ‘ [9,10] ’
‘array3[1,..,2]’ ‘ [2,4] ’
‘array3 [2,..,..] ’ ‘ [[5,6], [7,8]] ’
‘array3[1..2,1,1]’ ‘ [1,5] ’

‘array3 [2..3,2,..] ’ ‘ [[7,8], [11,12]] ’

Table 2.3: Sample Array Dereferencing in ESSENCE′

23

2.2.3 Domains

There are two types of domains in ESSENCE′: the Boolean domain (bool) and integer
domains. There exist both finite and infinite integer domains. Finite Integer domains are
restricted by a lower and upper bound lb and ub, where lb and ub are integer expressions and
lb ≤ ub. The elements of a domain can be explicitly given (e.g. ‘ int (1,2,3,4) ’), specified by
the range (e.g. ‘ int (1..4) ’), or defined by a combination of both (e.g. ‘ int (1,2..4) ’).

Infinite domains are only allowed when declaring a parameter’s domain. They can be open
within the lower or upper bound (e.g. ‘ int (1..) ’ or ‘ int (..10) ’ or simply specified as the set
of integers with ‘ int’.

2.2.4 Parameters and Constants

Parameters are problem features that define a particular problem instance. They can rep-
resent all kinds of expressions, i.e. basic expressions, arrays or domains. Parameters are
declared in the problem class model using the ‘given’ statement and then specified in a sepa-
rate parameter file. After specifying the parameter’s name, the parameter’s type is declared
after a colon symbol, as examples illustrate below:
$ p a r a m e t e r d e c l a r a t i o n examples $
g iven A : bool
g iven n : i n t (1 . .)
g iven array_M2 : matrix indexed by [i n t (1 . . 3) , i n t (1 . . n)] of i n t (1 . . 1 2)

Constants are used to either specify parameter values or to label expressions/domains that
often occur in a problem model. The ‘ letting ’ statement allows us to assign a name to a con-
stant value. For instance, the statement ‘ letting c be constant’ introduces a new reserved
name ‘c’ that is associated with the constant expression constant. Every subsequent occur-
rence of identifier ‘c’ in the model is replaced by constant. Note that ‘c’ cannot be used
in the model before it has been defined. Below are some examples to illustrate constant
definitions:
$ p a r a m e t e r and c o n s t a n t d e f i n i t i o n examples $
l e t t i n g A be f a l s e
l e t t i n g n be 4
l e t t i n g array2_M be [[1 , 4 , 5 , 1 0] , [1 1 , 7 , 6 , 2] , [8 , 1 2 , 9 , 3]]
l e t t i n g length be n∗n
l e t t i n g Dom be domain i n t (1 . . n)

2.2.5 Decision Variables

Decision variables can be defined over either a finite integer domain or the Boolean do-
main. As with constants and parameters, finite variable arrays can be defined. A variable is

24

defined with the statement ‘find’, followed by a unique name and the underlying domain,
which specifies its type (if a variable is defined over a Boolean domain, it is considered a
Boolean expression, if defined over an integer domain, it is considered integer).
$ v a r i a b l e d e c l a r a t i o n examples$
f i n d B : bool
f i n d x : i n t (1 . . n)
f i n d array1 : matrix indexed by [i n t (1 . . n)] of i n t (1 . . n)

2.2.6 Objective and Constraints

The objective statement is optional; if left out, the problem is a satisfaction problem (i.e.
the solver will return the first valid solution). The objective options are ‘maximising’ and
‘minimising’, followed by an arbitrary integer expression. Only one objective can be stated.
Below are two examples for illustration.
$ o b j e c t i v e examples $
maximising x∗y
minimis ing sum i : i n t (1 . . n) . array1_x [i]

Constraints are stated after the ‘such that’ statement and separated by a comma. Every
constraint has to be of type ‘Boolean expression’. A list of examples illustrates different
kinds of constraints:
$ c o n s t r a i n t examples $
such t h a t
x + y∗z = 0 ,
true ,
A => B ,
a l l d i f f e r e n t ([x ,y ,z]) ,
n = sum i : i n t (1 . . n) . array1_x [i]

2.2.7 Global Constraints

Global constraints [67] are particular constraint patterns for which solvers provide strong
propagation algorithms. The most popular global constraint is the alldifferent constraint [33,
63]. alldifferent(x1, x2, . . . , xn) states that every variable xi has to take a different value,
which corresponds to a clique of disequalities between x1, . . . , xn. In many cases, ex-
pressing such a clique explicitly (i.e. by a set of disequalities) results in a worse solving
performance than expressing the clique by alldifferent (given the solver provides an alldif-
ferent propagator, such as [62]). Therefore, solver-independent modelling languages need
to provide global constraints.

So far, 313 global constraints have been defined in the global constraint catalogue [9]. The
research on global constraints is very active, thus the number is increasing rather quickly.

25

There are efforts to decrease the number of global constraints by defining patterns that
summarise kinds of global constraints [14]. Typically, solvers only support a small range of
global constraints, which differs from solver to solver. In our implementation of ESSENCE′,
only a range of the most popular global constraints is supported which is listed in Table 2.4.

Global Constraint Description Formally
alldiff([x,y,z]) different values are x %= y, x %= z

assigned to x,y and z y %= z

atleast([x,y],[4,5],[1,2]) 4 occurs atleast 1× in [x,y]
5 occurs atleast 2× in [x,y]

atmost([x,y],[2,3],[3,1]) 2 occurs atmost 3× in [x,y]
3 occurs atmost 1× in [x,y]

element(array1 x,y,z) array1 x has value z array x[y] = z
at position y

gcc([x,y,z],[6,7],[1,2]) 6 occurs exactly 1×in [x,y,z]
7 occurs exactly 2×in [x,y,z]

table([x,y], [[1,2], allowed value tuples (x = 1) ∧ (y = 2)∨
[1,3], for [x,y] (x = 1) ∧ (y = 3)∨
[4,5]]) (x = 4) ∧ (y = 5)

Table 2.4: Global constraints supported by the current implementation of ESSENCE′

2.2.8 Quantified Expressions ∀, ∃ and
∑

Quantifications are a powerful means to express a (variable) number of constraints in a
compact way. In principle, ∀ corresponds to n-ary conjunction, ∃ to n-ary disjunction and∑

to an n-ary addition. The general syntax is

quantifier quantifying-variables : domain . expression

where quantifier represents either ‘ forall ’, ‘ exists ’ or ‘sum’, quantifying-variables is a list of
identifiers that range over domain and whose scope is limited to the quantified expression,
expression. ‘ forall ’ and ‘ exists ’ yield Boolean expressions; ‘sum’ yields integer expressions.
domain may only contain expressions that consist of constants, parameters or quantifying
variables, i.e. may not contain decision variables. ‘ forall ’ and ‘ exists ’ can only quantify
Boolean expressions, while ‘sum’ is applicable to both Boolean and integer expressions.
Quantifications can be arbitrarily nested, as some examples illustrate:

26

$ q u a n t i f i c a t i o n examples $
n != sum i : i n t (1 . . n) . x [i]

f o r a l l i : i n t (1 . . n) . x [i] != y [i]

e x i s t s k : i n t (1 . . m−1) .
x [k] − x [k+1] = k

f o r a l l i : i n t (1 . . n) .
e x i s t s j : i n t (i . . n) .

x [i] = j

f o r a l l i : i n t (1 . . n) . f o r a l l j : i n t (1 . . m) .
n∗m <= sum k : i n t (1 . . l) . x [i ,k]∗y [j ,k]

2.3 Summary

In summary, this chapter has introduced the modelling language ESSENCE′ that is used
throughout this thesis. So far, ESSENCE′ has only been defined implicitly through the
abstract problem specification language ESSENCE [26] of which ESSENCE′ is a subset.

This chapter provides the following contributions. First, it gives an anecdotal description
of ESSENCE′ of which no concrete definition has been previously published. Second, it
demonstrates that ESSENCE′ is an appropriate choice of modelling language throughout
this work, by highlighting similarities to other constraint solver-independent modelling
languages.

CHAPTER 3

TAILORING PROBLEM INSTANCES

Tailoring is the compilation of solver-independent constraint problem models to solver
input. In this chapter, we focus on tailoring problem instances, i.e. a constraint model
where all parameter values are specified. A constraint instance is typically obtained by
pairing a problem class with a parameter specification. For example, pairing the n-queens
problem class [57] with n = 8, yields the 8-queens instance.

Tailoring is a necessary task in order to solve a problem that is formulated in a solver-
independent modelling language: solver input is on a low level, consisting of a restricted set
of types and granular constraint expressions. Furthermore, every solver has a different input
format and supports different constraints and data types. Hence, tailoring is closely related
to compiling high-level programming languages to machine code: complex expressions
have to be flattened to low-level representation, data types refined to simpler types, and the
problem models needs to be checked for syntactic and semantic correctness.

The general aim of tailoring is to produce valid solver input from the given problem in-
stance. Furthermore, it is desirable to design a general, efficient tailoring process that can
be easily extended with further input languages and/or target solvers. By applying a similar
translation structure as in Compiler Construction [2], we can achieve this goal, as demon-
strated in this chapter.

First, we give a general overview of the translation process structure, in particular in com-
parison to Compiler Construction and introduce TAILOR, a tailoring tool that has been
implemented by the author during the work on this thesis and incorporates all translation
techniques discussed in this work. Second, the three tailoring components are discussed:
the frontend deals with input-related transformations, discussed in Sec. 3.2. The middle-
end incorporates the most important transformations, that are parameterised by the target
solver’s features (Sec. 3.3). Finally, the backend performs solver-specific transformations
that cannot be generalised in the middle-end (Sec. 3.4). In Sec. 3.5, tailoring is illustrated
on an example, where an instance is tailored to three different target solvers.

27

28

Figure 3.1: Tailoring Overview. Given a problem model (paired with a parameter speci-
fication), the tailoring engine produces solver input undergoing three major steps: prepro-
cessing, flattening and mapping to solver syntax.

3.1 Tailoring in a Nutshell

A classical compiler consist of three consecutive parts: the compiler frontend, middle-
end and backend. The frontend parses the input and generates an intermediate format.
The middle-end performs general translations, in particular preprocessing and flattening.
The backend applies target-specific operations, generating the final compiler output. This
division into frontend, middle-end and backend is very practical, since several frontends
and backends can be plugged before/after the middle-end. In other words, the middle-end
can be reused for different translations and therefore makes the compiler easily extendable.

We employ a similar structure in tailoring, which is illustrated in Fig. 3.1. The frontend
parses the input and performs particular input-language specific preprocessing, such as
inserting parameter values or inserting constant labels. Furthermore, it constructs a symbol
table that holds information about every declared identifier. This representation is then
passed on to the middle-end.

The middle-end contains the two core translation processes: preprocessing and flattening.
Though both are generic processes, they include many solver-dependent transformations,
so the middle-end requires information about the target solver. How solver information is
stored and obtained is explained in Sec. 3.3.3. The middle-end generates a flat, normalised
format that is applied to the backend.

The backend performs solver-specific operations that cannot be generalised in the middle-
end. These operations include propagator selection, heuristic selection and solver-syntax
related issues. Finally, the backend outputs the corresponding solver format.

3.1.1 The tailoring tool TAILOR

During this thesis project, the tailoring tool TAILOR has been implemented by the author.
TAILOR follows the tailoring description in this chapter and performs all automated en-

29

Figure 3.2: Structure of tailoring tool TAILOR. TAILOR takes two different inputs:
ESSENCE′and XCSP 2.1 format. Three backends allow the translation to 3 different for-
mats: FlatZinc, Gecode C++ and MINION input.

hancement techniques that are discussed in this thesis. TAILOR can process two different
input formats, ESSENCE′(Chapter 2) and XML format XCSP 2.1 [68], and generates three
different solver input formats: FlatZinc [58], solver Gecode’s [80] C++ format and solver
MINION’s [32] text input format. The structure of TAILOR is shown in Fig. 3.2 and illus-
trates how several front- and backends can be efficiently plugged into a tailoring system
(note, that TAILOR’s middle-end (preprocessor, flattener and intermediate format) makes
up about 70% of the overall code).

3.2 Frontend

The frontend processes the tailoring input and generates an intermediate format. The in-
termediate format is the internal expression representation of the translator and is typically
a format to which any input can be easily transformed to. For instance, in case of TAI-
LOR, the intermediate format is ESSENCE′. The intermediate format represents the list of
constraints and all identifiers that have been declared in the problem model (and parameter
file). The following translation steps yield the intermediate format:

1. Lexing and parsing
2. Expression tree construction
3. Symbol table construction
4. Parameter/constant/predicate insertion
5. Computation of subexpression domains

The first step is lexing and parsing the input, which assesses the input for syntactic errors
by matching lexems to the specified input language grammar. The matched tokens are then

30

Production Rules Semantic Rules
E → (E1) E.lb = E1.lb, E.ub = E1.ub
E → R E.lb = R.lb, E.ub = R.ub
E → A E.lb = A.lb, E.ub = A.ub
R → false R.lb = 0, R.ub = 0
R → true R.lb = 1, R.ub = 1
R → ¬R1 R.lb = 0, R.ub = 1
R → E1 rel E2 R.lb = 0, R.ub = 1
R → R1 boolop R2 R.lb = 0, R.ub = 1
R → Q∀,∃ R.lb = 0, R.ub = 1
R → G R.lb = 0, R.ub = 1
A → Atom A.lb = Atom.lb, A.ub = Atom.ub
A → −A1 A.lb = min{−A1.lb, −A1.ub}

A.ub = max{−A1.lb, −A1.ub}
A → |A1 | A.lb = min{| A1.lb |, | A1.ub |}

A.ub = max{| A1.lb |, | A1.ub |}
A → A1 mul A2 A.lb = min{(A1.lb mul A2.lb),

(A1.lb mul A2.ub),
(A1.ub mul A2.lb),
(A1.ub mul A2.ub)}

A.ub = max{(A1.lb mul A2.lb),
(A1.lb mul A2.ub),
(A1.ub mul A2.lb),
(A1.ub mul A2.ub)}

A → QP A.lb = Qsum.lb, A.ub = Qsum.ub
A → min(A1, A2) A.lb = min{A1.lb, A2.lb},

A.ub = max{A1.ub, A2.ub}
A → max(A1, A2) A.lb = min{A1.lb, A2.lb},

A.ub = max{A1.ub, A2.ub}
QP → sum idList : BD . A QP.lb = A.lb * idList.length

QP.ub = (BD.ub-BD.lb +1)
* A.ub * idList.length

Atom → num Atom.lb = num, Atom.ub = num
Atom → ident Atom.lb = symbolTable(ident).lb

Atom.ub = symbolTable(ident).ub
Atom → ident [{Ilist}’] Atom.lb = symbolTable(ident).lb

Atom.ub = symbolTable(ident).ub

Figure 3.3: Syntax-directed definition that defines the computation of the synthesised at-
tribute domain for each node in the expression tree. Attributes lb and ub represent lower and
upper bound of domain. Terminals are boldfaced; keywords are underlined. Single, capital
letters represent non-terminals: E (expression), R (Boolean expr.), A (integer expr.), Q
(quantification), G (global constraint).

31

transformed into a syntax tree that represents the parsed expressions.

Second, constraint expressions are extracted from the syntax tree, each represented as a
single expression tree, where leaves are atoms (i.e. constants or identifiers), and nodes
represent operators, such as +, ∧ or alldifferent. Every constraint expression is represented
by a single tree. Typically, expression trees are represented in a compact way, i.e. all
successive n-ary operators of the same type (that are commutative and associative) are
merged into nodes of n children. For instance, the subtree +(a, +(b, c)) is restructured into
the simpler tree +(a, b, c). Note, that throughout this thesis, constraint expressions will be
mainly considered as expression trees.

Third, the symbol table is generated: from the declaration part of the parsed syntax tree
all information about declared identifiers and their type, domain and category is collected
in the symbol table. The symbol table acts as main reference for measures like type and
category checking during the translation.

The next step is parameter/constant/predicate insertion. Many solver-independent mod-
elling languages allow the user to specify parameters in a separate file or to define labels
for particular expressions, such as constant labels or predicates. These are inserted into the
problem model to yield an intermediate instance.

Finally, the domain of each subexpression is computed. This is achieved by using a syn-
thesised attribute [2], domain, for every tree element e, representing the lower and upper
bound of e. domain is computed bottom-up from the leaves for every tree. Since atoms
must be defined over a finite domain, every leaf’s domain is finite, thus we can compute
a finite domain for every node in the expression tree. Note, that Boolean nodes are rep-
resented by integer values, i.e. false is represented by ‘0’ and true by ‘1’. The semantic
rules for obtaining the domain of each subexpression is summarised in the syntax-directed
definition in Fig. 3.3. Note, that all these steps are standard in program compilation and
are further described in [2]. Finally, the frontend returns the intermediate representation
which consists of the problem instance and the symbol table, which are input to the next
layer, the middle-end.

For illustration, we will consider one of TAILOR’s frontends, the XCSP 2.1 frontend. As
a sample input, consider the 4-queens instance in XML format XCSP 2.1 in Fig. 3.4(top)
which has been taken from the XCSP Benchmark Website [50]. This model defines 4 vari-
ables, V0, V1, V2 and V3, ranging over the domain (1..4). Constraints are expressed by
referring to a predicate. The frontend parses the XML file and generates the intermedi-
ate format in ESSENCE′that is illustrated in Fig. 3.4 (bottom), where all predicates and
domains have been inserted into the representation.

32

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<i n s t a n c e> <p r e s e n t a t i o n name=”4−Queens ” m a x C o n s t r a i n t A r i t y =” 2 ” f o r m a t =”XCSP 2 . 0 ” />
<domains nbDomains=” 1 ”> <domain name=”D0” nbValues =” 4 ”>1 . . 4< / domain>
< / domains>

<v a r i a b l e s n b V a r i a b l e s =” 4 ”>
<v a r i a b l e name=”V0” domain=”D0” /> <v a r i a b l e name=”V1” domain=”D0” />
<v a r i a b l e name=”V2” domain=”D0” /> <v a r i a b l e name=”V3” domain=”D0” />

< / v a r i a b l e s>

<p r e d i c a t e s n b P r e d i c a t e s =” 1 ”>
<p r e d i c a t e name=” P0 ”> <parameters>int X0 int X1 int X2 int X3 int X4< / parameters>

<e x p r e s s i o n> <f u n c t i o n a l>and (ne (X0 ,X1) ,ne (abs (sub (X2 ,X3)) ,X4))< / f u n c t i o n a l>
< / e x p r e s s i o n>

< / p r e d i c a t e>
< / p r e d i c a t e s>

<c o n s t r a i n t s n b C o n s t r a i n t s =” 6 ”>
<c o n s t r a i n t name=”C0” a r i t y =” 2 ” scope =”V0 V1” r e f e r e n c e =” P0 ”>

<parameters>V0 V1 V0 V1 1< / parameters>
< / c o n s t r a i n t>
<c o n s t r a i n t name=”C1” a r i t y =” 2 ” scope =”V0 V2” r e f e r e n c e =” P0 ”>

<parameters>V0 V2 V0 V2 2< / parameters>
< / c o n s t r a i n t>
<c o n s t r a i n t name=”C2” a r i t y =” 2 ” scope =”V0 V3” r e f e r e n c e =” P0 ”>

<parameters>V0 V3 V0 V3 3< / parameters>
< / c o n s t r a i n t>
<c o n s t r a i n t name=”C3” a r i t y =” 2 ” scope =”V1 V2” r e f e r e n c e =” P0 ”>

<parameters>V1 V2 V1 V2 1< / parameters>
< / c o n s t r a i n t>
<c o n s t r a i n t name=”C4” a r i t y =” 2 ” scope =”V1 V3” r e f e r e n c e =” P0 ”>

<parameters>V1 V3 V1 V3 2< / parameters>
< / c o n s t r a i n t>
<c o n s t r a i n t name=”C5” a r i t y =” 2 ” scope =”V2 V3” r e f e r e n c e =” P0 ”>

<parameters>V2 V3 V2 V3 1< / parameters>
< / c o n s t r a i n t>

< / c o n s t r a i n t s>
< / i n s t a n c e>

f i n d V0 , V1 , V2 , V3 : i n t (1 . . 4)
such t h a t (1 ! = (|V0−V1 |)) /\ (V0 !=V1) , (2 ! = (|V0−V2 |)) /\ (V0 !=V2) ,

(3 ! = (|V0−V3 |)) /\ (V0 !=V3) , (1 ! = (|V1−V2 |)) /\ (V1 !=V2) ,
(2 ! = (|V1−V3 |)) /\ (V1 !=V3) , (1 ! = (|V2−V3 |)) /\ (V2 !=V3)

Figure 3.4: 4-queens instance in XCSP 2.1 format (top) and ESSENCE′intermediate for-
mat (bottom) generated by the XCSP 2.1 frontend in TAILOR.

3.3 Middle-End

The middle-end contains all transformations that can be generalised for every input. The
main processes are preprocessing (Sec. 3.3.1) and flattening (Sec. 3.3.2). However, many
transformations depend on the target solver. Therefore, both preprocessing and flattening
are parameterised by target solver features. How solver features are represented and used
to trigger particular transformations is described in Sec. 3.3.3.

33

3.3.1 Preprocessing

Preprocessing summarises all model transformations that are performed before the prob-
lem model is flattened to a low-level representation. There are two main processing steps:
model normalisation and type adaptions. Normalisation simplifies the problem instance
and reduces equivalent but syntactically different representations to one unique represen-
tation. Type adaptions are transformations of types (e.g. data structures) to conform to
the target solver. This includes for instance flattening of multi-dimensional arrays to 1-
dimensional arrays. These adaptions typical concern the whole problem instance and are
therefore easiest performed during preprocessing, when the instance is still in a compact
format: quantifications are not unrolled, so the model contains ‘less’ expressions.

Normalisation

The grammar of constraint expressions contains many equivalent representations, for in-
stance, x + y + z and y + x + z where the equivalence stems from the commutativity of
addition. A normal form without such equivalences provides many benefits. For instance,
processing methods, like flattening, need only be implemented for one normalised sub-
term and not for every other equivalent representation. Further benefits will be explained
in Sec. 4.3, where instance optimisations are discussed. The core normalisation steps are
evaluation and ordering of expressions, which are described in more detail below.

Expression Ordering We define an order ≤g over the expressions in ESSENCE′and
transform every expression tree into a minimal form with respect to this order. The general
ordering rules are:

• Numbers are ordered according to their value
• Identifiers are ordered lexicographically
• Expressions separated by a comma are ordered according to the number of expres-

sion, i.e.
expression

<g expression, expression
<g expression, expression, expression
<g . . .

For instance, m[c1, c2] <g m[c1, c2, c3].
• We impose an order on terms composed by commutative operators opc ∈ { +, ∗,

=, %=, ⇔, ∨, ∧ }: a term expression1 opc expression2 is ordered, if and only if
expression1 ≤g expression2.

We summarise the expression order in Fig. 3.5. The topmost expression is weakest; if
a non-terminal has several productions, the first production is the weakest. The order of
operations is derived from the operator precedence.

34

Non-terminals (expressions) Ordering of possible productions
Atom false

<g true
<g num
<g ident
<g ident [ArithmExpr]
<g ident [ArithmExpr, ArithmExpr]
<g ident [ArithmExpr, ArithmExpr, ArithmExpr]
<g . . .

Unary Operators - ArithmExpr
<g ! RelExpr
<g | ArithmExpr |

Binary Operators Expression = Expression
<g Expression != Expression
<g Expression < Expression
<g Expression <= Expression
<g Expression > Expression
<g Expression >= Expression
<g Expression + Expression
<g Expression - Expression
<g Expression * Expression
<g ArithmExpr / ArithmExpr
<g ArithmExpr % ArithmExpr
<g ArithmExpr ˆ ArithmExpr
<g RelExpr <=> RelExpr
<g RelExpr => RelExpr
<g RelExpr \/ RelExpr
<g RelExpr /\ RelExpr

Global Constraints alldifferent (ArrayExpr)
<g table (ArrayExpr, ConstArray)
<g element (ArrayExpr, Expression, Expression)
<g atmost (ArrayExpr, ArrayExpr, ConstArray)
<g atleast (ArrayExpr, ArrayExpr, ConstArray)
<g gcc (ArrayExpr, ConstArray, ArrayExpr)

Quantified Expressions sum Bindingexpression . ArithmExpr
<g forall Bindingexpression . RelExpr
<g exists Bindingexpression . RelExpr

Binding Expression ident : SimpleDomain
<g ident, ident : SimpleDomain
<g ident, ident, ident : SimpleDomain
<g . . .

Figure 3.5: Expression Ordering in ESSENCE′

Expression Evaluation is important to simplify expressions involving constants and is
performed only to a certain extent to minimise the computational effort. Note, that ordering
expressions simplifies evaluation: constant expressions are listed before decision variables,
e.g. 2 + x + 5 is ordered to 2 + 5 + x, hence evaluation rules can be applied from left.

We apply constant evaluation (e.g. ‘2 + 5’ is evaluated to ‘7’), simple logical evaluation,
as well as several simple algebraic transformations, such as algebraic identity or inverses.

35

The table below summarises all transformations, excluding constant evaluation, which is
straightforward. Note, that even though some expressions, like identity expressions, seem
quite uncommon, they occur rather often at instance level, when parameters are replaced
by constant values.

Algebraic Identities Algebraic Inverses Other Simplifications
E + 0 −→ E E + -A −→ 0 E * 0 −→ 0
E - 0 −→ E E - E −→ 0 A ˆ 0 −→ 1
E * 1 −→ E A * (1/A) −→ 1 B ∧ false −→ false
A / 1 −→ A A / A −→ 1 B ∨ true −→ true
A ˆ 1 −→ A B ⇔ true −→ B
B ∧ true −→ B B ⇔ false −→ ¬B
B ∨ false −→ B B ⇒ false −→ ¬B

B ⇒ true −→ true
true ⇒ B −→ true
false ⇒ B −→ B

Figure 3.6: Summary of evaluation transformations during Normalisation. E represents
arbitrary expressions, A integer expressions and B Boolean expressions

Other Normalisations include the transformation to negation normal form, i.e. every
expression is transformed such that negation is only applied to atomic expressions. For
instance, ¬(A∨B) is transformed to ¬A∧¬B by applying de Morgan’s Law. Furthermore,
we unify inequality operators. For instance, expressions of the form A ≥ B are transformed
to B ≤ A.

Type Adaptions

Constraint solvers support different kinds of types, in particular different types of arrays or
domains. Therefore, the types used in a problem instance must be adapted to the solver’s
repertory. For instance, some solvers only support 1-dimensional arrays. Hence, if a
model is tailored to such a solver, all multi-dimensional arrays have to be flattened to 1-
dimensional arrays. Type adaptions typically involve the whole constraint model, therefore
it is best performed during preprocessing, when the quantifications are not unrolled and
thus the expressions are represented in a compact way (i.e. less expression trees need to be
transformed).

Adapting Arrays Arrays are data structures to contain variables of the same type (and
typically from the same category) into one structure. Typically, solver-independent mod-
elling languages support multi-dimensional arrays that can be arbitrarily indexed. However,
most solvers provide limited support for arrays, which needs to be taken into account during
tailoring.

36

The first limitation concerns dereferencing of arrays. In most solvers, arrays are indexed
starting from a fixed constant. For instance, in solver MINION, arrays are indexed starting
from ‘0’; in FlatZinc format arrays are indexed from ‘1’. However, in ESSENCE′, the
user can specify the value from which an array is indexed. Therefore, during tailoring, the
index domain has to be adapted. For instance, if the index domain of array M is defined as
int(1..10), but the target solver initialises arrays with ‘0’, the index domain is transformed
into int(0..9). Changing the index domain also requires changing the dereferences of array
expressions. For instance, the array dereference in the constraint

f i n d M : matrix indexed by [i n t (1 . . 1 0)] of i n t (1 . . 2 0)

such t h a t
f o r a l l i : i n t (1 . . 1 0) .

M [i] = i

has to be rewritten to
f i n d M : matrix indexed by [i n t (0 . . 9)] of i n t (1 . . 2 0)

such t h a t
f o r a l l i : i n t (1 . . 1 0) .

M [i−1] = i

Note that only the dereferencing expression (‘M[i−1]’) can be adapted and not the quan-
tifying domain (‘ int (1..10) ’). Changing the quantifying domain may have serious effects
on dereference expressions of other arrays in the quantified expression. As an example,
consider a similar constraint below, that involves array M together with another array N
whose indices range from int(0..20):

f i n d M : matrix indexed by [i n t (1 . . 1 0)] of i n t (1 . . 2 0)
f i n d N : matrix indexed by [i n t (0 . . 2 0)] of i n t (1 . . 1 0)

such t h a t
f o r a l l i : i n t (1 . . 1 0) .

M [i] = N [i]

Adapting the quantifying domain, ‘ int (1..10) ’, instead of the dereferenced expression of
M , ‘M[i]’, yields the following constraint that does not preserve the semantics of the initial
constraint:

f i n d M : matrix indexed by [i n t (1 . . 1 0)] of i n t (1 . . 2 0)
f i n d N : matrix indexed by [i n t (0 . . 2 0)] of i n t (1 . . 1 0)

such t h a t
f o r a l l i : i n t (0 . . 9) .

M [i] = N [i]

Note that array index adaptions not only involve transforming array dereferences, but
can also involve argument changes in global constraints, such as the element constraint,

37

element(M ,x,y), denoting M [x] = y. In such a case, the constraint has to be transformed
to element(M ,x−1,y).

The second limitation is the array dimension, for instances, many solvers only support 1-
dimensional arrays. Array dimensions can be adapted in the following way: whenever the
solver profile indicates that the target solver provides limited support, e.g. only supports
1-dimensional arrays, then every multi-dimensional array M is flattened in two steps: first,
all constraint expressions are searched for references of M , which are typically of the
form M [c1, ..., cn]. Those dereferencing expressions are transformed to dereference a 1-
dimensional array:

M [c1, c2, . . . , cn−1, cn] −→ M [cn +
∑n−1..1

i ci ∗
∏i..n−1

j (ubj − lbj + 1)]

where lbi and ubi are the lower and upper bound of the ith index domain of array M .
Consecutively, the entry of M in the symbol table is changed to an 1-dimensional array M :

M : matrix indexed by [int(lb1..ub1), int(lb2..ub2), ..., int(lbn..ubn)] −→
M : matrix indexed by [int(lbsolver .. (

∏1..n
i ubi−lbi+1)− (1−lbsolver))]

Array Adaption: Example As an example, we consider the array adaption steps when
tailoring a simple instance(below) to FlatZinc format. In FlatZinc, index domains start
with ‘1’ and only 1-dimensional arrays are supported. Hence, the 3-dimensional array M
requires adaption of its index domains, as well as of its dimension.
$ u n a d a p t e d c o n s t r a i n t i n s t a n c e wi th 3−d i m e n s i o n a l a r r a y $
f i n d M : matrix indexed by [i n t (1 . . 5) , i n t (0 . . 9) , i n t (2 . . 4)] of i n t (1 . . 1 0)
such t h a t

f o r a l l i : i n t (1 . . 5) . f o r a l l j : i n t (0 . . 9) .
10 <= sum k : i n t (2 . . 4) . M [i ,j ,k]

First, index domains are adapted: the second and third index domain, ‘ int (0..9 ’ and ‘ int (2..4) ’
are adapted as follows:
$ STEP1 : a d a p t e d a r r a y d e r e f e r e n c e s t o s t a r t i n g i n d e x ‘1 ’ $
f i n d M : matrix indexed by [i n t (1 . . 5) , i n t (1 . . 1 0) , i n t (1 . . 3)] of i n t (1 . . 1 0)
such t h a t

f o r a l l i : i n t (1 . . 5) . f o r a l l j : i n t (0 . . 9) .
10 <= sum k : i n t (2 . . 4) . M [i ,j+1 ,k−1]

Second, the 3-dimensional array has to be flattened to a 1-dimensional array, which yields:
$ STEP2 : f l a t t e n e d m u l t i−d i m e n s i o n a l a r r a y t o 1−d i m e n s i o n a l a r r a y $
f i n d M : matrix indexed by [1 . . 1 5 0] of i n t (1 . . 1 0)
such t h a t

f o r a l l i : i n t (1 . . 5) . f o r a l l j : i n t (0 . . 9) .
10 <= sum k : i n t (2 . . 4) . M [i∗50 + (j+1)∗5 + (k−1)]

38

Adapting Domains The basic domain types are integer and Boolean, however, solvers
distinguish between integer domains that represent a range of integers (e.g. int(1..5)) and
domains that represent a range with holes (e.g. int(1,3,5)). We will refer to the former
as bound domain and to the latter as sparse domain. Practically every constraint solver
supports bound domains, but some have no support for sparse domains. In that case, sparse
domains have to be converted into bound domains with additional disequality constraints
that explicitly set the holes in the domain.

Algorithm 3.1 FLATTEN INSTANCE (MS) flattens instance MS to flat instance M ′
S .

Require: MS : problem instance
1: global flatConstraints, constraintBuffer, auxVars← empty lists
2: for all E ∈ MS .constraints do
3: constraintBuffer ← empty
4: E′

0 ← FLATTEN (E false)
5: E′

S ← E′
0 ∧ (

∧
i E′

i ∈ constraintBuffer)
6: flatConstraints.add(E′

S)
7: M ′

S .constraints ← flatConstraints
8: M ′

S .vars ← {MS .vars ∪ auxVars}
9: return M ′

S

3.3.2 Flattening

In many cases, a target solver does not directly support expressions as they are formulated
in a rich, solver-independent modelling language: in solvers, constraints are implemented
as propagators which are ‘granular’ constraints that take only variables as arguments i.e.
their expression tree depth is 1 (exceptions are solvers such as ECLiPSe Prolog, that flatten
their input internally). Thus, many expressions need to be decomposed into a conjunc-
tion of simpler expressions that conform to the constraints provided by the solver. This
decomposition is generally known as flattening.

Definition 3.3.1. A flat representation E ′
S of expression tree E wrt target solver S is a

conjunction of simple expression trees, defined as E ′
S:=∧iE ′

i, where for each conjoint ex-

Algorithm 3.2 FLATTEN (E,flatten2Aux) recursive procedure that flattens expression tree
E, where flatten2Aux denotes if E will be flattened to an auxiliary variable.
Require: E : expression tree, flatten2Aux : Boolean
1: if ¬(all of E’s children are leaves) then
2: for all ei ∈ children(E) do
3: if ¬(ei.isLeaf) then
4: e′

i ← FLATTEN (ei, true)
5: E.replaceChildWith(ei,e′

i)
6: if flatten2Aux then
7: Aux← createNewVariable(E.lb, E.ub); auxVars.add(Aux)
8: constraintBuffer.add(‘Aux = E’)
9: return Aux

10: else
11: return E

39

pression E ′
i there exists a propagator p in solver S that matches the tree structure of E ′

i, and
E ′

s ≡ E.

We assume that prior to flattening, every expression tree has been preprocessed such that its
tree structure conforms to the propagators provided by solver S. In other words, for every
node N in E, there exists a propagator in solver S that corresponds to operation N and has
the same arity as node N has children (e.g. if E contains a sum-node with n children, then
solver S must have an n-ary sum propagator). Note, that this preprocessing procedure can
be embedded into flattening, but has been left out in this discussion to not obscure the task
of flattening. If all constraints in a model M are adapted to solver S in this way, we will
refer to it as MS .

Flattening is a well-understood technique, however, we summarise a standard flattening
algorithm, FLATTEN INSTANCE , in Alg. 3.1 that applies a recursive helper procedure,
FLATTEN (Alg. 3.2), on every constraint in instance MS . FLATTEN iterates over the ex-
pression tree in a bottom up fashion and replaces all nodes Ni in E (except the root node)
with an auxiliary variable Auxi, generating the constraint ‘Auxi = N ′

i’ that connects ev-
ery auxiliary variable with its corresponding flat subtree N ′

i (line 7-9 in Alg. 3.2). Af-
ter flattening every subnode Ni of expression E, the ‘Auxi=N ′

i’-constraints are conjoined
with the flat root node (line 5 in Alg. 3.1), yielding the flat representation of E. As an
example, consider Figure 3.7 that illustrates how FLATTEN decomposes the expression
a ⇒ ((x<3)∧(y>5)∧(z=0)).

An important issue in flattening is deriving tight bounds for auxiliary variables. In FLAT-
TEN , the procedure createNewVariable creates an auxiliary variable with lower bound lb
and upper bound ub (line 7 in Alg. 3.2). lb and ub are obtained from the domain attribute of
node E that contains the lower and upper bound of the subtree E (see Sec. 3.2 or Fig. 3.3).
In this way, we can assign tight bounds to the auxiliary variables.

After generating the flat representation E ′
S for every constraint E in instance MS , FLAT-

TEN INSTANCE constructs the flat instance M ′
S , consisting of the flat constraints and Ms’s

decision variables combined with the auxiliary variables (line 7) in Alg. 3.1). Clearly,
FLATTEN INSTANCE will generate a valid flat instance M ′

S: FLATTEN is applied to every
constraint E of MS , which is recursively applied to all subnodes of E, creating an auxiliary
variable for each. Since we assume that every node in E corresponds to a propagator in
target solver S, it is sufficient to replace each subnode that is not a leaf with an auxiliary
variable to conform to the target solver.

Lemma 3.3.1. If constraint instance MS contains n constraints that contain m nodes in
their expression trees (with m ≥ n), then FLATTEN INSTANCE will generate flat instance
M ′

S with m constraints and m− n auxiliary variables.

Proof. FLATTEN INSTANCE applies FLATTEN to every constraint E in MS (line 4 in Alg.
3.1). FLATTEN is recursively invoked on every subnode that is not a leaf (line 4 in Alg.
3.2), and creates an auxiliary variable and constraint for every node, except the root node

40

Figure 3.7: Example: Flattening a → ((x<3)∧(y>5)∧(z=0)) using FLATTEN (Alg. 3.2). Arrows
pointing at nodes denote that FLATTEN has been invoked on the subtree. T and F represent the Boolean value
for flatten2Aux. The numbers represent parts of Algorithm 3.2: (1) invoke FLATTEN on non-leaf children
(line 4-5), (2) return expression (line 10-11), (3) flatten to auxiliary variable (line 7-9).

(flatten2Aux=false only for the root node, line 4 in Alg. 3.1). Thus, FLATTEN creates one
auxiliary variable and one ‘Aux=E’-constraint for all m nodes, except the n root nodes.
For all n root nodes, one constraint is returned (line 11 in Alg. 3.2). Therefore, FLATTEN
generates m− n auxiliary variables and m constraints.

As an example, consider the constraint instance consisting of the constraint from Fig. 3.7:
a⇒((x<3)∧(y>5)∧(z=0)). MS contains 1 constraint (n=1) and 5 nodes (m=5), therefore
FLATTEN generates M ′

S containing 5 constraints using 5-1 auxiliary variables.

Theorem 3.3.1. The time complexity of FLATTEN INSTANCE lies in O(n).

Proof. Let f be the number of atomic operations required to flatten a node of an expres-
sion (note that f is a constant that is the same for every subexpression but which might
differ between machines). From Lemma 3.3.1 we know that FLATTEN INSTANCE per-
forms these operations n times, since it is applied to every node in MS . Therefore, FLAT-
TEN INSTANCE has a runtime of f ∗ n which lies in O(n), since f is a constant (recall that
we are assuming atomic operations in the implementation).

Theorem 3.3.2. The space complexity of FLATTEN INSTANCE lies in O(n).

Proof. FLATTEN INSTANCE employs the lists flatCts, auxVars and ctBuffer, as well as
the representation of constraint model MS and M ′. All of these data structures require a
maximal capacity of n, where n is the number of subexpressions in MS (Lemma 3.3.1).
Therefore the space complexity of FLATTEN INSTANCE lies in O(n).

41

3.3.3 Representing Solver Features

Many constraint solvers exist, but each differs in provided variable types, propagators, data
structures and search heuristics.

Flattening constraint expressions to propagators in solver format is a particularly difficult
issue, since many expressions are flattened differently for each solver. As an example, con-
sider flattening the nonlinear constraint ‘a+b+c %= e∗f’ to three different solvers: ECLiPSe
Prolog [87], Gecode [80] and MINION [32]. The appropriate constraint representation for
each solver is given in the table below:

Target Solver ECLiPSe Prolog Gecode MINION

a + b + c %= e ∗ f aux1 = e ∗ f aux1 = e ∗ f
Propagators a + b + c %= aux1 a + b + c ≤aux2

a + b + c ≥aux2

aux1 %= aux2

ECLiPSe takes arbitrarily complex expressions (since it performs flattening internally),
hence no flattening is required. Gecode provides a linear disequality constraint, allowing
variables as arguments only, hence we flatten e ∗ f by introducing auxiliary variable aux1,
and post a + b + c %= aux1. MINION only supports binary disequality, hence we introduce
another auxiliary variable, aux2, representing a + b + c.

Note, that the flat representation of MINION would also be valid for solvers Gecode and
ECLiPSe Prolog, but would contain additional variables, aux1 and aux2, respectively. Such
a representation can result in worse propagation/runtime than a representation that is ex-
actly tailored to the solver’s repertory. Therefore, the flattening engine should decompose
expressions only if the expression is not directly supported by the solver. In order to do
this, the flattening engine requires information about the solver’s constraint repertory - in-
formation a solver profile can provide.

Solver Profiles

We propose the notion of a solver profile, similar to rule-based systems in retargetable com-
pilers [25], that captures important features of a particular solver. Those features include

• variable information (variable and domain types, available data structures),
• propagator information (constraint type, consistency level, arity, reifiability, etc.),
• provided search heuristics
• and other, solver-specific features

Given a general list of features, every solver profile associates a Boolean value to each
feature that indicates if the feature is supported or not. For instance, if solver S provides

42

one n-ary conjunction propagator that is not reifiable, then the the feature n-ary conjunction
will be set to true, but feature reifiable n-ary conjunction will be set to false. Solver profiles
can also include solver-specific features, e.g. variable labelling.

Solver profiles can be used to customise preprocessing and flattening by setting choice-
points in the procedure that depend on the information retrieved from the solver profile.
For illustration, we will consider in detail how flattening can be customised for the target
solver by using the solver profile’s propagator and variable information.

Solver Profile-driven Flattening

The flattening engine works recursively, i.e. when given an expression, the flattening pro-
cedure is again invoked on the expression’s arguments. A solver profile can guide the
flattening engine: when given an expression, e.g. an n-ary multiplication, the flattening en-
gine consults the solver profile about the availability of the corresponding propagator. If no
applicable propagator exists, flattening proceeds (e.g. the n-ary multiplication is flattened
into a binary multiplication). In this manner, an expression is only flattened, if the target
solver does not support it.

This approach provides three key benefits: first, it assists in reducing the overhead when
flattening expressions, since expressions are only flattened if necessary for the target solver.
Second, a general flattening engine can be used for different solvers. Third, the flexibility of
the solver profile allows to easily adapt to changes in the target solver (e.g. a new constraint
is supported by simply changing the settings in the solver profile). Solver profiles can also
assist in other parts of the tailoring process, such as selecting an appropriate propagator or
search heuristic (in case favoured propagators or search heuristics are not already defined
in the modelling language, as possible in MiniZinc).

A notable limitation of solver profiles is that they cannot provide alternatives if a particu-
lar constraint is not supported. For instance, consider the case when the flattening engine
encounters the global constraint ‘atmost’ and learns from the solver profile that it is not
supported. In this case, the solver profile currently cannot provide assistance as how to
reformulate ‘atmost’ to be supported by the target solver. This can be resolved by either
extending the tailoring engine with additional reasoning or extend the modelling language
to support predicates with which one can define alternative representations (as in MiniZ-
inc [58]).

3.4 Backend

The backend performs solver-specific transformations that cannot be generalised in the
middle-end. These transformations include propagator selection, search heuristic selection
and solver-specific issues.

43

Propagator Selection Some solvers provide several propagators for the same constraint
expression. As an example, solver MINION provides two variants of the ‘alldifferent’ con-
straint: a standard, arc consistent version, alldiff, and a general arc consistent version,
gacalldiff. The former version is computationally cheap but will not prune many val-
ues from the variables’ domains. The latter version can be computationally expensive but
can prune more values than the first variant. Note that the modeller cannot specify which
variant to choose in his/her model, so the backend has to decide which version to apply. In
the case of ‘alldifferent’ there is a fairly good heuristic: if the number of arguments corre-
sponds to the domain size of the arguments, then gacalldiff is preferable, otherwise it
is likely to get too expensive, hence alldiff should be chosen.

However, typically, the choice is difficult, even for expert modellers, and strongly depends
on the problem instance and other factors, such as the underlying variable types. The analy-
sis of when which propagator is most effective can therefore seldom be generalised. Hence,
in TAILOR, the standard propagators are chosen, unless a special known case occurs, in
which another propagator is known to perform better.

Search Heuristic Selection Similarly, the best search heuristic for a given instance is
very difficult to choose and this choice is not an objective in our work. Therefore, the
default search heuristic is chosen in the solver backend.

3.5 A Tailoring Example

The tailoring steps are best illustrated by an example: the Graph Colouring Problem (GCP)
from Sec. 2.1. Starting from a problem model and a parameter specification (Fig. 3.8), we
consider the steps to generate solver input. In particular, we consider the instance at three
different levels: after preprocessing, after flattening, and the final format.

We tailor the instance to three different formats: input for solver MINION [32], FlatZ-
inc [58] format, and C++ for solver Gecode [80], as it is performed by TAILOR. Note, that
FlatZinc is a low-level language that ‘differs’ for every target solver. In this example, we
generate FlatZinc that conforms to target solver MINION.

1. Preprocessing

The first major tailoring step is preprocessing. Fig. 3.9 shows the problem instance from
Fig. 3.8 as it is preprocessed for solver MINION. Preprocessing performs three main steps:
parameter insertion, data structure adaption and normalisation.

The first step, involves inserting parameter values into the problem model and eliminating
all constant labels. Therefore, in Fig. 3.9, all constant and parameter values are replaced

44

by the corresponding integer value/domain. Second, data structures are adapted to the
solver, which includes the adaption of array dereferences. For example, the array deref-
erences in expressions like ‘usedColours[c]’ are transformed to ‘usedColours[c−1]’ in
Fig. 3.9, since MINION starts indexing arrays from ‘0’ and the index domains in the prob-
lem model start with ‘1’. The third step is normalisation, which includes steps like ordering
and evaluation. For illustration, in Fig. 3.9, expressions such as ‘edges[a,b]=1’ are ordered
to ‘1=edges[a,b]’.

2. Flattening

After preprocessing, the instance is flattened, i.e. quantifications are unrolled and expres-
sions are simplified by introducing auxiliary variables. The flat instance for the GCP when
targeting solver MINION, is given in Fig. 3.10.

The objective is flattened to a sum constraint (1); the first constraint is flattened to six
disequality constraints (2); and the second constraint is flattened to a list of implication
constraints, introducing auxiliary variables (3).

g iven vertices : i n t (1 . .)
g iven colours : i n t (1 . .)
l e t t i n g VERTICES be domain i n t (1 . . vertices)
l e t t i n g COLOURS be domain i n t (1 . . colours)
g iven edges : matrix indexed by [VERTICES ,VERTICES] of i n t (0 , 1)

f i n d colouring : matrix indexed by [VERTICES] of COLOURS
f i n d usedColours : matrix indexed by [COLOURS] of i n t (0 . . 1)

minimis ing sum c : COLOURS . usedColours [c]

such t h a t
f o r a l l a ,b : VERTICES .

(edges [a ,b] = 1) => (colouring [a] != colouring [b]) ,

f o r a l l v : VERTICES . f o r a l l c : COLOURS .
(colouring [v] = c) => (usedColours [c] = 1)

l e t t i n g vertices be 5
l e t t i n g colours be 3
l e t t i n g edges be [[0 , 1 , 0 , 1 , 0] ,

[1 , 0 , 1 , 0 , 1] ,
[0 , 1 , 0 , 1 , 1] ,
[1 , 0 , 1 , 0 , 0] ,
[0 , 1 , 1 , 0 , 0]]

Figure 3.8: ESSENCE′problem model and parameter specification of Graph Colouring
Problem(GCP) instance from Fig. 2.1

45

l e t t i n g edges be [[0 , 1 , 0 , 1 , 0] ,
[1 , 0 , 1 , 0 , 1] ,
[0 , 1 , 0 , 1 , 1] ,
[1 , 0 , 1 , 0 , 0] ,
[0 , 1 , 1 , 0 , 0]]

f i n d colouring : matrix indexed by [i n t (0 . . 4)] of i n t (1 . . 3)
f i n d usedColours : matrix indexed by [i n t (0 . . 2)] of i n t (0 . . 1)

minimis ing sum c : i n t (1 . . 3) . usedColours [c−1]

such t h a t
f o r a l l a ,b : i n t (1 . . 5) .

(1 = edges [a ,b]) => (colouring [a−1] != colouring [b−1]) ,

f o r a l l v : i n t (1 . . 5) . f o r a l l c : i n t (1 . . 3) .
(c = colouring [v−1]) => (1 = usedColours [c−1])

Figure 3.9: ESSENCE′GCP problem instance after preprocessing for MINION

3. Final Solver Formats

Finally, the flat problem instance is mapped to solver format. We show three different solver
formats that were all generated automatically by our tailoring tool TAILOR. Fig. 3.11 shows
the MINION input file, Fig. 3.12 the FlatZinc representation and Fig. 3.13 the C++ file for
solver Gecode.

MINION Instance The instance for MINION consists of three main parts: the variable
declaration, the search specification and the constraint specification, where each part is
initialised with double stars following the corresponding keyword, e.g. **VARIABLES**.
The comments are (optionally) generated by TAILOR and denote what expression each
auxiliary variable represents from the original model. The variables are ordered according
to their declaration order in the original model. Auxiliary variables are last in the search
order.

FlatZinc Instance The FlatZinc instance is tailored for solver MINION, i.e. it contains
those constraints that are supported by solver MINION. The format is very similar to MIN-
ION’s input format, also consisting of three main parts: the variable declarations, followed
by the constraints and a search declaration at the end. Note, that there are no particular
search specifications, such as variable ordering, which is optional in FlatZinc.

Gecode C++ File The C++ class for library-based solver Gecode is the most compli-
cated format. Gecode is a C++ library, so problems are formulated as C++ classes. Note,
that the translation to Gecode is mainly inspired by the examples provided by the Gecode
distribution [80]. All comments are automatically added by TAILOR.

46

f i n d colouring : matrix indexed by [i n t (0 . . 4)] of i n t (1 . . 3)
f i n d usedColours : matrix indexed by [i n t (0 . . 2)] of i n t (0 . . 1)

$ a u x i l i a r y v a r i a b l e s
f i n d aux0 : i n t (0 . . 3) f i n d aux1 : bool f i n d aux2 : bool f i n d aux3 : bool
f i n d aux4 : bool f i n d aux5 : bool f i n d aux6 : bool f i n d aux7 : bool
f i n d aux8 : bool f i n d aux9 : bool f i n d aux10 : bool f i n d aux11 : bool
f i n d aux12 : bool f i n d aux13 : bool f i n d aux14 : bool f i n d aux15 : bool
f i n d aux16 : bool f i n d aux17 : bool f i n d aux18 : bool

minimis ing aux0
such t h a t

$ (1) f l a t o b j e c t i v e
usedColours [0] + usedColours [1] + usedColours [2] =aux0 ,

$ (2) f i r s t c o n s t r a i n t f l a t t e n e d
colouring [0] ! =colouring [1] , colouring [0] ! =colouring [3] ,
colouring [1] ! =colouring [2] , colouring [1] ! =colouring [4] ,
colouring [2] ! =colouring [3] , colouring [2] ! =colouring [4] ,

$ (3) second c o n s t r a i n t f l a t t e n e d
aux1 <=> (1=colouring [0]) , aux2 <=> (1=usedColours [0]) ,
aux1 => aux2 ,
aux3 <=> (2=colouring [0]) , aux4 <=> (1=usedColours [1]) ,
aux3 => aux4 ,
aux5 <=> (3=colouring [0]) , aux6 <=> (1=usedColours [2]) ,
aux5 => aux6 ,
aux7 <=> (1=colouring [1]) ,
aux7 => aux2 ,
aux8 <=> (2=colouring [1]) ,
aux8 => aux4 ,
aux9 <=> (3=colouring [1]) ,
aux9 => aux6 ,
aux10 <=> (1=colouring [2]) ,
aux10 => aux2 ,
aux11 <=> (2=colouring [2]) ,
aux11 => aux4 ,
aux12 <=> (3=colouring [2]) ,
aux12 => aux6 ,
aux13 <=> (1=colouring [3]) ,
aux13 => aux2 ,
aux14 <=> (2=colouring [3]) ,
aux14 => aux4 ,
aux15 <=> (3=colouring [3]) ,
aux15 => aux6 ,
aux16 <=> (1=colouring [4]) ,
aux16 => aux2 ,
aux17 <=> (2=colouring [4]) ,
aux17 => aux4 ,
aux18 <=> (3=colouring [4]) ,
aux18 => aux6

Figure 3.10: ESSENCE′GCP problem instance after flattening, targeting solver MINION

The C++ class representing the problem inherits from the class ‘Example’, which is de-
fined in Gecode’s library. First, the variables on which search is performed are declared as
protected class members. Then the class constructor is defined: given the search variables,
auxiliary variables are initialised, followed by the set of constraints. Finally, the branching
option for each variable is stated, for which TAILOR picks a standard approach (smallest
domain and smallest value first).

47

After the class constructor, several additional methods need to be defined. First, method
‘constrain’ is used to express the objective. Second, ‘print’ is overwritten to handle how
solutions are printed to stdout. Third, the ‘copy’ method and the constructor for cloning
are necessary for Gecode’s search procedure. Finally, a main function is defined in order
to initiate the solving the problem.

Summary

We have considered tailoring a sample instance of the Graph Colouring problem to three
targets: solver MINION, FlatZinc and C++-based Gecode, as it is performed by our im-
plementation, TAILOR. Note, that TAILOR takes about 0.25 seconds to generate each of
the respective MINION, Gecode and FlatZinc files (on an rather old machine, an Intel(R)
Pentium(R) 4 CPU 3.00GHz with 512 RAM using Java 1.5.0).

Though the formats differ in their syntax, the (low) level of abstraction is the same. Ex-
amples for differences are for instance the different starting values for array indexing in
MINION and FlatZinc.

The examples demonstrate that a modeller requires a lot of specific knowledge to formulate
a problem directly in solver language. For instance, in order to construct the C++ instance
for Gecode, it is necessary to be aware of the Gecode API.

Furthermore, the instance we have considered in this example is very small - more practical
instances will probably involve graphs that contain far more than 5 vertices and 4 colours as
in the example. However, modelling larger instances by hand can easily become unfeasible:
writing an instance for MINION, FlatZinc or Gecode with 50 vertices by hand is expected to
take longer than the 2.5 seconds TAILOR takes (on the same machine as mentioned above).

3.6 Summary

In this chapter we have considered the task of tailoring, the compilation of a solver-
independent constraint model to low-level solver input. We started by giving a brief overview
of the tailoring task by describing its features in a nutshell. Then we proposed a general,
efficient and easily-extendable architecture for a tailoring engine that consists of three core
parts: frontend, middlelend and backend, which are each thoroughly discussed. During this
discussion, we introduced the tool TAILOR that incorporates all tailoring steps described in
this chapter. Finally, we illustrated tailoring on an example, where we use TAILOR in order
to generate three different solver formats: solver MINION’s text format, solver Gecode’s
C++ format and FlatZinc format.

The contributions of this chapter are clear: first, we specified the main objectives of tai-
loring and presented a generic and efficient tailoring engine that can easily be extended to

48

support further input- or output-languages. Second, we showed how core tailoring steps,
like preprocessing and flattening, can be generalised for any target solver by the use of
solver profiles. This allows us to re-use these central parts of the implementation (that,
in the case of TAILOR nearly make up 70% of the code) for all target solvers. Third, we
demonstrated that tailoring can be efficiently implemented by introducing the tool TAILOR
that can currently generate three output formats from two different modelling languages,
which is illustrated throughout the chapter, in particular, in the tailoring example.

In conclusion, we have seen that tailoring is not only an important item in the context of
automated constraint modelling, but can be realised in a general, efficient and extendable
way. In the following chapter, we will consider how we can augment particular tailoring
processes in order to enhance the instance that is tailored.

49

MINION 3
∗∗VARIABLES∗∗
DISCRETE colouring [5] {1 . . 3}
SPARSEBOUND usedColours [3] {0 ,1}
a u x i l i a r y v a r i a b l e s
DISCRETE aux0 {0 . . 3} # u s e d C o l o u r s [0] + u s e d C o l o u r s [1] + u s e d C o l o u r s [2]
BOOL aux1 # 1= c o l o u r i n g [0]
BOOL aux2 # 1= u s e d C o l o u r s [0]
BOOL aux3 # 2= c o l o u r i n g [0]
BOOL aux4 # 1= u s e d C o l o u r s [1]
BOOL aux5 # 3= c o l o u r i n g [0]
BOOL aux6 # 1= u s e d C o l o u r s [2]
BOOL aux7 # 1= c o l o u r i n g [1]
BOOL aux8 # 2= c o l o u r i n g [1]
BOOL aux9 # 3= c o l o u r i n g [1]
BOOL aux10 # 1= c o l o u r i n g [2]
BOOL aux11 # 2= c o l o u r i n g [2]
BOOL aux12 # 3= c o l o u r i n g [2]
BOOL aux13 # 1= c o l o u r i n g [3]
BOOL aux14 # 2= c o l o u r i n g [3]
BOOL aux15 # 3= c o l o u r i n g [3]
BOOL aux16 # 1= c o l o u r i n g [4]
BOOL aux17 # 2= c o l o u r i n g [4]
BOOL aux18 # 3= c o l o u r i n g [4]

∗∗SEARCH∗∗
MINIMISING aux0

PRINT [colouring ,usedColours]
VARORDER [colouring ,usedColours ,aux2 ,aux4 ,aux6 ,aux0 ,aux1 ,aux3 ,aux5 ,
aux7 ,aux8 ,aux9 ,aux10 ,aux11 ,aux12 ,aux13 ,aux14 ,aux15 ,aux16 ,aux17 ,aux18]

∗∗CONSTRAINTS∗∗
d i s e q (colouring [2] , colouring [4]) d i s e q (colouring [2] , colouring [3])
d i s e q (colouring [1] , colouring [4]) d i s e q (colouring [1] , colouring [2])
d i s e q (colouring [0] , colouring [3]) d i s e q (colouring [0] , colouring [1])
sumleq ([usedColours [0] ,usedColours [1] ,usedColours [2]] , aux0)
sumgeq ([usedColours [0] ,usedColours [1] ,usedColours [2]] , aux0)
r e i f y (eq (1 , colouring [0]) , aux1)
r e i f y (eq (1 , usedColours [0]) , aux2)
ineq (aux1 ,aux2 , 0)
r e i f y (eq (2 , colouring [0]) , aux3)
r e i f y (eq (1 , usedColours [1]) , aux4)
r e i f y (eq (3 , colouring [0]) , aux5)
r e i f y (eq (1 , usedColours [2]) , aux6)
ineq (aux5 ,aux6 , 0) ineq (aux3 ,aux4 , 0)
r e i f y (eq (1 , colouring [1]) , aux7)
r e i f y (eq (2 , colouring [1]) , aux8)
r e i f y (eq (3 , colouring [1]) , aux9)
ineq (aux9 ,aux6 , 0) ineq (aux8 ,aux4 , 0)
r e i f y (eq (1 , colouring [2]) , aux10)
r e i f y (eq (2 , colouring [2]) , aux11)
r e i f y (eq (3 , colouring [2]) , aux12)
ineq (aux12 ,aux6 , 0) ineq (aux11 ,aux4 , 0)
r e i f y (eq (1 , colouring [3]) , aux13)
r e i f y (eq (2 , colouring [3]) , aux14)
r e i f y (eq (3 , colouring [3]) , aux15)
ineq (aux15 ,aux6 , 0) ineq (aux14 ,aux4 , 0)
r e i f y (eq (1 , colouring [4]) , aux16)
r e i f y (eq (2 , colouring [4]) , aux17)
r e i f y (eq (3 , colouring [4]) , aux18)
ineq (aux18 ,aux6 , 0) ineq (aux17 ,aux4 , 0)
ineq (aux16 ,aux2 , 0) ineq (aux13 ,aux2 , 0)
ineq (aux10 ,aux2 , 0) ineq (aux7 ,aux2 , 0)
∗∗EOF∗∗

Figure 3.11: MINION input for the Graph Colouring Problem instance from Fig. 2.1

50

array [1 . . 5] of var 1 . . 3 :colouring : : output_array ([1 . . 5]) ;
array [1 . . 3] of var 0 . . 1 :usedColours : : output_array ([1 . . 3]) ;

% a u x i l i a r y v a r i a b l e s
var 0 . . 3 : aux0 ; % u s e d C o l o u r s [0] + u s e d C o l o u r s [1] + u s e d C o l o u r s [2]
var bool : aux1 ; % 1= c o l o u r i n g [0]
var bool : aux2 ; % 1= u s e d C o l o u r s [0]
var bool : aux3 ; % 2= c o l o u r i n g [0]
var bool : aux4 ; % 1= u s e d C o l o u r s [1]
var bool : aux5 ; % 3= c o l o u r i n g [0]
var bool : aux6 ; % 1= u s e d C o l o u r s [2]
var bool : aux7 ; % 1= c o l o u r i n g [1]
var bool : aux8 ; % 2= c o l o u r i n g [1]
var bool : aux9 ; % 3= c o l o u r i n g [1]
var bool : aux10 ; % 1= c o l o u r i n g [2]
var bool : aux11 ; % 2= c o l o u r i n g [2]
var bool : aux12 ; % 3= c o l o u r i n g [2]
var bool : aux13 ; % 1= c o l o u r i n g [3]
var bool : aux14 ; % 2= c o l o u r i n g [3]
var bool : aux15 ; % 3= c o l o u r i n g [3]
var bool : aux16 ; % 1= c o l o u r i n g [4]
var bool : aux17 ; % 2= c o l o u r i n g [4]
var bool : aux18 ; % 3= c o l o u r i n g [4]

% c o n s t r a i n t s
c o n s t r a i n t i n t l i n e q ([1 , 1 , 1 , −1] ,

[usedColours [1] , usedColours [2] , usedColours [3] , aux0] , 0) ;
c o n s t r a i n t i n t n e (colouring [1] , colouring [2]) ;
c o n s t r a i n t i n t n e (colouring [1] , colouring [4]) ;
c o n s t r a i n t i n t n e (colouring [2] , colouring [3]) ;
c o n s t r a i n t i n t n e (colouring [2] , colouring [5]) ;
c o n s t r a i n t i n t n e (colouring [3] , colouring [4]) ;
c o n s t r a i n t i n t n e (colouring [3] , colouring [5]) ;
c o n s t r a i n t b o o l l e (aux1 , aux2) ;
c o n s t r a i n t b o o l l e (aux7 , aux2) ;
c o n s t r a i n t b o o l l e (aux10 , aux2) ;
c o n s t r a i n t b o o l l e (aux13 , aux2) ;
c o n s t r a i n t b o o l l e (aux16 , aux2) ;
c o n s t r a i n t b o o l l e (aux17 , aux4) ;
c o n s t r a i n t b o o l l e (aux18 , aux6) ;
c o n s t r a i n t i n t e q r e i f (3 , colouring [5] , aux18) ;
c o n s t r a i n t i n t e q r e i f (2 , colouring [5] , aux17) ;
c o n s t r a i n t i n t e q r e i f (1 , colouring [5] , aux16) ;
c o n s t r a i n t b o o l l e (aux14 , aux4) ;
c o n s t r a i n t b o o l l e (aux15 , aux6) ;
c o n s t r a i n t i n t e q r e i f (3 , colouring [4] , aux15) ;
c o n s t r a i n t i n t e q r e i f (2 , colouring [4] , aux14) ;
c o n s t r a i n t i n t e q r e i f (1 , colouring [4] , aux13) ;
c o n s t r a i n t b o o l l e (aux11 , aux4) ;
c o n s t r a i n t b o o l l e (aux12 , aux6) ;
c o n s t r a i n t i n t e q r e i f (3 , colouring [3] , aux12) ;
c o n s t r a i n t i n t e q r e i f (2 , colouring [3] , aux11) ;
c o n s t r a i n t i n t e q r e i f (1 , colouring [3] , aux10) ;
c o n s t r a i n t b o o l l e (aux8 , aux4) ;
c o n s t r a i n t b o o l l e (aux9 , aux6) ;
c o n s t r a i n t i n t e q r e i f (3 , colouring [2] , aux9) ;
c o n s t r a i n t i n t e q r e i f (2 , colouring [2] , aux8) ;
c o n s t r a i n t i n t e q r e i f (1 , colouring [2] , aux7) ;
c o n s t r a i n t b o o l l e (aux3 , aux4) ;
c o n s t r a i n t b o o l l e (aux5 , aux6) ;
c o n s t r a i n t i n t e q r e i f (1 , usedColours [3] , aux6) ;
c o n s t r a i n t i n t e q r e i f (3 , colouring [1] , aux5) ;
c o n s t r a i n t i n t e q r e i f (1 , usedColours [2] , aux4) ;
c o n s t r a i n t i n t e q r e i f (2 , colouring [1] , aux3) ;
c o n s t r a i n t i n t e q r e i f (1 , usedColours [1] , aux2) ;
c o n s t r a i n t i n t e q r e i f (1 , colouring [1] , aux1) ;

s o l v e minimize aux0 ;

Figure 3.12: Graph Colouring Problem instance from Fig. 2.1 in FlatZinc

51

i n c l u d e ” examples / s u p p o r t . hh ”
i n c l u d e ” gecode / minimodel . hh ”

c l a s s GraphColouring1 : p u b l i c Example {

p r o t e c t e d : / / v a r i a b l e s :
IntVarArray colouring ;
IntVarArray usedColours ;
IntVar aux0 ;

p u b l i c : / / a c t u a l problem
GraphColouring1 (c o n s t Options& opt) : colouring (t h i s , 5 , 1 , 3) ,

usedColours (t h i s , 3 , 0 , 1) ,
aux0 (t h i s , 0 , 3) {

/ / d e f i n i n g t h e ArgsVarArrays t h a t ho ld t h e aux v a r i a b l e s
BoolVarArgs _aux_bool_var_buffer (1 8) ;
IntVarArgs __int_var_buffer_part_7331 (1) ;

/ / d e f i n i n g a u x i l i a r y b o o l e a n v a r i a b l e s
BoolVar
aux1 (t h i s , 0 , 1) , aux2 (t h i s , 0 , 1) , aux3 (t h i s , 0 , 1) , aux4 (t h i s , 0 , 1) ,
aux5 (t h i s , 0 , 1) , aux6 (t h i s , 0 , 1) , aux7 (t h i s , 0 , 1) , aux8 (t h i s , 0 , 1) ,
aux9 (t h i s , 0 , 1) , aux10 (t h i s , 0 , 1) , aux11 (t h i s , 0 , 1) , aux12 (t h i s , 0 , 1) ,
aux13 (t h i s , 0 , 1) , aux14 (t h i s , 0 , 1) , aux15 (t h i s , 0 , 1) , aux16 (t h i s , 0 , 1) ,
aux17 (t h i s , 0 , 1) , aux18 (t h i s , 0 , 1) ;

/ / a s s i g n i n g each a u x i l a r y v a r i a b l e t o t h e c o r r e s p o n d i n g c o n t a i n e r / b u f f e r
_aux_bool_var_buffer [0] = aux1 ; _aux_bool_var_buffer [1] = aux2 ;
_aux_bool_var_buffer [2] = aux3 ; _aux_bool_var_buffer [3] = aux4 ;
_aux_bool_var_buffer [4] = aux5 ; _aux_bool_var_buffer [5] = aux6 ;
_aux_bool_var_buffer [6] = aux7 ; _aux_bool_var_buffer [7] = aux8 ;
_aux_bool_var_buffer [8] = aux9 ; _aux_bool_var_buffer [9] = aux10 ;
_aux_bool_var_buffer [1 0] = aux11 ;_aux_bool_var_buffer [1 1] = aux12 ;
_aux_bool_var_buffer [1 2] = aux13 ; _aux_bool_var_buffer [1 3] = aux14 ;
_aux_bool_var_buffer [1 4] = aux15 ; _aux_bool_var_buffer [1 5] = aux16 ;
_aux_bool_var_buffer [1 6] = aux17 ; _aux_bool_var_buffer [1 7] = aux18 ;
__int_var_buffer_part_7331 [0] = aux0 ;

/∗ c o n s t r a i n t s ∗ /
IntVarArgs _lours_1__usedColours_2_ (3) ;

_lours_1__usedColours_2_ [0] = usedColours [0] ;
_lours_1__usedColours_2_ [1] = usedColours [1] ;
_lours_1__usedColours_2_ [2] = usedColours [2] ;

linear (t h i s , _lours_1__usedColours_2_ , IRT_EQ , aux0) ;
rel (t h i s ,colouring [0] , IRT_NQ , colouring [1] , opt .icl ()) ;
rel (t h i s ,colouring [0] , IRT_NQ , colouring [3] , opt .icl ()) ;
rel (t h i s ,colouring [1] , IRT_NQ , colouring [2] , opt .icl ()) ;
rel (t h i s ,colouring [1] , IRT_NQ , colouring [4] , opt .icl ()) ;
rel (t h i s ,colouring [2] , IRT_NQ , colouring [3] , opt .icl ()) ;
rel (t h i s ,colouring [2] , IRT_NQ , colouring [4] , opt .icl ()) ;
rel (t h i s ,aux1 , IRT_LQ , aux2 , opt .icl ()) ;
rel (t h i s ,aux7 , IRT_LQ , aux2 , opt .icl ()) ;
rel (t h i s ,aux10 , IRT_LQ , aux2 , opt .icl ()) ;
rel (t h i s ,aux13 , IRT_LQ , aux2 , opt .icl ()) ;
rel (t h i s ,aux16 , IRT_LQ , aux2 , opt .icl ()) ;
rel (t h i s ,aux17 , IRT_LQ , aux4 , opt .icl ()) ;
rel (t h i s ,aux18 , IRT_LQ , aux6 , opt .icl ()) ;
rel (t h i s ,colouring [4] , IRT_EQ , 3 , aux18 , opt .icl ()) ;
rel (t h i s ,colouring [4] , IRT_EQ , 2 , aux17 , opt .icl ()) ;
rel (t h i s ,colouring [4] , IRT_EQ , 1 , aux16 , opt .icl ()) ;
rel (t h i s ,aux14 , IRT_LQ , aux4 , opt .icl ()) ;
rel (t h i s ,aux15 , IRT_LQ , aux6 , opt .icl ()) ;
rel (t h i s ,colouring [3] , IRT_EQ , 3 , aux15 , opt .icl ()) ;
rel (t h i s ,colouring [3] , IRT_EQ , 2 , aux14 , opt .icl ()) ;
rel (t h i s ,colouring [3] , IRT_EQ , 1 , aux13 , opt .icl ()) ;
rel (t h i s ,aux11 , IRT_LQ , aux4 , opt .icl ()) ;
rel (t h i s ,aux12 , IRT_LQ , aux6 , opt .icl ()) ;
rel (t h i s ,colouring [2] , IRT_EQ , 3 , aux12 , opt .icl ()) ;
rel (t h i s ,colouring [2] , IRT_EQ , 2 , aux11 , opt .icl ()) ;
rel (t h i s ,colouring [2] , IRT_EQ , 1 , aux10 , opt .icl ()) ;

52

rel (t h i s ,aux8 , IRT_LQ , aux4 , opt .icl ()) ;
rel (t h i s ,aux9 , IRT_LQ , aux6 , opt .icl ()) ;
rel (t h i s ,colouring [1] , IRT_EQ , 3 , aux9 , opt .icl ()) ;
rel (t h i s ,colouring [1] , IRT_EQ , 2 , aux8 , opt .icl ()) ;
rel (t h i s ,colouring [1] , IRT_EQ , 1 , aux7 , opt .icl ()) ;
rel (t h i s ,aux3 , IRT_LQ , aux4 , opt .icl ()) ;
rel (t h i s ,aux5 , IRT_LQ , aux6 , opt .icl ()) ;
rel (t h i s ,usedColours [2] , IRT_EQ , 1 , aux6 , opt .icl ()) ;
rel (t h i s ,colouring [0] , IRT_EQ , 3 , aux5 , opt .icl ()) ;
rel (t h i s ,usedColours [1] , IRT_EQ , 1 , aux4 , opt .icl ()) ;
rel (t h i s ,colouring [0] , IRT_EQ , 2 , aux3 , opt .icl ()) ;
rel (t h i s ,usedColours [0] , IRT_EQ , 1 , aux2 , opt .icl ()) ;
rel (t h i s ,colouring [0] , IRT_EQ , 1 , aux1 , opt .icl ()) ;

branch (t h i s , colouring , INT_VAR_SIZE_MIN , INT_VAL_MIN) ;
branch (t h i s , usedColours , INT_VAR_SIZE_MIN , INT_VAL_MIN) ;
branch (t h i s , _aux_bool_var_buffer , INT_VAR_SIZE_MIN , INT_VAL_MIN) ;
branch (t h i s , __int_var_buffer_part_7331 , INT_VAR_SIZE_MIN , INT_VAL_MIN) ;

}

/ / Method t o s t a t e t h e o b j e c t i v e
void
constrain (Space∗ s) {

rel (t h i s , aux0 , IRT_LE , s t a t i c c a s t <GraphColouring1∗>(s)−>aux0 .val ()) ;
}

/ / method f o r p r i n t i n g s o l u t i o n s
v i r t u a l vo id print (std : : ostream& os) {

os << ”\n ” ;
os << ” c o l o u r i n g : ” << std : : endl ;
f o r (i n t i=0; i<5; i++) {

os << colouring [i] << ” , ” ;
i f (i % 10 == 0 && i ! = 0) os << ”\n ” ;

}
os << std : : endl ;

os << ” u s e d C o l o u r s : ” << std : : endl ;
f o r (i n t i=0; i<3; i++) {

os << usedColours [i] << ” , ” ;
i f (i % 10 == 0 && i ! = 0) os << ”\n ” ;

}
os << std : : endl ;

}

/ / copy d u r i n g c l o n i n g
v i r t u a l Space∗
copy (bool share) {

re turn new GraphColouring1 (share , ∗ t h i s) ;
}

/ / c o n s t r u c t o r f o r c l o n i n g
GraphColouring1 (bool share , GraphColouring1& s) : Example (share ,s){

colouring .update (t h i s , share , s .colouring) ;
usedColours .update (t h i s , share , s .usedColours) ;
aux0 .update (t h i s ,share ,s .aux0) ;

}
} ;

i n t
main (i n t argc , char∗ argv []) {

Options opt (” GraphColou r ing1 ”) ;
opt .solutions (1) ;
opt .parse (argc , argv) ;
Example : : run<GraphColouring1 , BAB , Options>(opt) ;
re turn 0 ;

}

Figure 3.13: Gecode C++ input for the GCP instance from Fig. 2.1

CHAPTER 4

INSTANCE OPTIMISATIONS

The main aim of instance tailoring is to produce valid solver input from a given problem
instance. However, we want to strengthen this aim with two objectives: first, to generate
an effective instance with respect to solving time and search space used in the target solver.
Second, to tailor and enhance in as little computational time (and memory) as possible.
In other words, we want to perform instance optimisations during tailoring that add little
computational overhead. Embedding optimisations into tailoring provides two benefits:
first, the combination of optimisations with necessary tailoring tasks, such as flattening,
saves computational time and memory (e.g. see Sec. 4.2). Second, since the problem
instance is processed at different levels of abstraction (e.g. unflat versus flat representation)
enhancement techniques can be applied at the most appropriate abstraction level.

Automated enhancement of constraint instances has been subject to previous work in Con-
straint Programming (summarised in Sec. 4.1). However, most of these techniques require
solutions of an instance to perform enhancements (see Sec. 4.1), hence the problem needs
to be tailored and solved before the model is enhanced, which is infeasible during tailoring.
Therefore, we do not mainly focus on enhancements proposed in Constraint Programming,
but explore approaches from related fields, such as Compiler Construction [2], that deal
with processes similar to tailoring.

Optimising instances during tailoring is strongly related to Code Optimisation [3], a well-
established and well-researched area of Compiler Construction that is concerned with au-
tomatically enhancing program code during compilation. Compiling a high-level program-
ming language (like C++) to machine code is a very similar process to tailoring. Both
program compilation and tailoring deal with the conversion of a high-level language to a
low-level format consisting of granular expressions that differ slightly between the targets.
However, there is one key difference: program compilation processes instructions whose
variables represent registers at a particular state; tailoring processes relations that are im-
posed on decision variables that range over integer domains. Hence, the former deals with
expressions ‘in series’ and the latter with expressions ‘in parallel’. Though this difference
renders many code optimisations inapplicable to tailoring, we can draw conclusions and
inspiration from them: by assessing promising code optimisation techniques in terms of

53

54

their objectives and applicability to tailoring, we exploit parallels between tailoring and
program compilation, and propose a set of effective instance optimisations.

In summary, the contributions of this chapter are a set of efficient instance optimisation
techniques that were mainly inspired by Code Optimisation. Each technique is easily inte-
grable into tailoring and adds negligible overhead to the tailoring process, even if performed
in vain. More importantly, as we demonstrate in our empirical evaluation (Chapter 8), the
combination of all optimisation techniques can achieve dramatic solving time speedups, in
some cases of a factor of more than 3,000, including reductions in search space. Finally,
we stress that none of these optimisation techniques are routinely performed by constraint
solvers or flattening tools at present (with the exception of basic common subexpression
elimination, which has been recently added to the MiniZinc-FlatZinc converter, following
our work). Since almost all constraint systems perform some translation of the expressions
they allow the user to input, the benefits of instance optimisation during tailoring could be
made available in most constraint systems.

This chapter is organised as follows. First, we analyse established optimisation techniques
and consider their objectives, aims and applicability during tailoring in Sec. 4.1: we be-
gin with an overview of techniques proposed in the context of Constraint Programming,
followed by techniques from Compiler Construction. Then each optimisation technique is
presented, starting with common subexpression elimination (CSE) in Sec. 4.2, followed by
techniques in order to increase the number of common subexpressions (Sec. 4.3), and the
scope of CSE (Sec. 4.4), then techniques of eliminating redundant constraints (Sec. 4.5)
and finally Quantification Optimisations (Sec. 4.6). We wrap up with a chapter summary
in Sec. 4.7).

4.1 Established Optimisation Techniques

In this section, we summarise optimisation techniques proposed in the context of Constraint
Programming and Code Optimisation. Our aim is to use related work as an inspiration for
optimisation techniques that are cheap, effective and easily integrable into the tailoring
process.

Interestingly, the enhancement techniques from Code Optimisation are far more useful
and inspirational than techniques proposed in Constraint Programming. There are several
reasons for this: first, many enhancement techniques in CP are stand-alone techniques
that are not easily integrable into tailoring. Second, many CP techniques require instance
solutions prior to performing enhancement, which is infeasible during tailoring. Third,
as opposed to optimisation techniques in Constraint Programming, Code Optimisation is
a well-established field that has been studied for many decades, thus many more ideas
have been presented. In the following, we briefly present each technique and discuss its
significance and applicability into the context of performing instance optimisations during
tailoring.

55

4.1.1 Optimisation Techniques in Constraint Programming

There exists a set of automated techniques that aim at generating an effective problem
instance in Constraint Programming which we summarise in this section. Note, that we
only consider static enhancement techniques, i.e. techniques that alter the problem model,
as opposed to dynamic techniques that are performed during search, when the instance is
solved. After giving a brief description of each technique’s aims and possible approaches,
we discuss the benefits and its applicability during tailoring.

Adding Implied Constraints

A constraint is called implied if the solutions of a constraint instance are the same with
or without the constraint [77]. We strengthen this definition with the following requi-
site: adding an implied constraint has to result in additional propagation (i.e. an implied
constraint reduces search). In summary, adding an implied constraint to an instance is
beneficial. However, inferring an implied constraint and proving that it enhances propaga-
tion is costly and difficult. Several approaches have been proposed on how to add implied
constraints to instances.

Charnley et al [18] automatically infer implied constraints by setting up an architecture
consisting of a theorem prover, a constraint solver and an automated theory formation sys-
tem: given a constraint class and parameter values, some solutions are generated by the
solver which are passed to the theory formation system that generates conjectures related
to the constraints in the instances. Each conjecture is passed to the theorem prover in an
attempt to proof that the conjecture is implied from the constraint instance. If there is a
proof, the conjecture is added as additional constraint to the instances which are solved
again. If the constraint improves the solving performance, it is kept in the problem model.
Note, that this enhancement technique improves both problem instances and classes.

Bessiere et al [13] introduce a generic framework to learn implied global constraints, in
particular the global ‘gcc’ constraint in their implementation. A brute-force learning al-
gorithm is used to determine the tightest set of parameters for a gcc constraint that is an
implied constraint (which is tested in the constraint solver Choco [19]). Specific heuris-
tics that exploit constraint properties reduce the computational effort. The empirical eval-
uation (that was performed on instances for which implied constraints could be found),
demonstrates that the learning effort pays off for the solving time reduction obtained by
the implied constraints. However, the study does not consider instances for which implied
constraints can not be found and therefore does not analyse the potential penalty one might
have to pay for attempting to enhance an instance.

Both Charnley et al [18] and Bessiere et al [13] propose interesting optimisation techniques
that effectively enhance particular problem instances. However, we have not include them
into tailoring for two main reasons. First, both techniques require solutions of instances in
order to prove the constraints to be implied. This is not useful in the context of tailoring,

56

since solutions can only be obtained by first tailoring the instance to a solver, i.e. it would
require to tailor twice. Second, both techniques cannot be integrated into any necessary
tailoring step, and hence have to be added on top of tailoring. However, since these tech-
niques fire only for a limited number of constraints instances, but would be performed for
every instance that is tailored, this is expected to add overhead to tailoring.

Therefore, we conclude that the techniques from above would be most successfully applied
as an extension to tailoring, to particular instances that have a high potential of benefit
(e.g. learning implied gcc constraints for particular scheduling problems before/after tai-
loring). Formulating heuristics of when these techniques fire on a particular instance is an
interesting item for future work.

Adding Symmetry Breaking Constraints

Many constraint instances contain symmetries that are mainly introduced during modelling,
when entities that are indistinguishable in the original problem are represented by distinct
values or variables. For instance, in the n-queens problem [57], it does not matter which
of the n queen figures is placed into the first row of the chessboard, however, many models
assign a variable to each queen. This results in symmetric solutions, that are permutations
of another and all represent the same setting in the actual problem. If a constraint solver
searches for all solutions of a problem, then looking for symmetric solutions can add sig-
nificant overhead. Therefore, one can add symmetry breaking constraints that eliminate
symmetries in the problem and hence reduce the search space. For more details on sym-
metries and symmetry breaking in Constraint Programming, consult [35].

Symmetry breaking is an important component of efficient modelling, which is subject
to active research in Constraint Programming [35]. Unfortunately, including symmetry
breaking into tailoring is out of scope of this thesis, but an interesting candidate for future
work.

The CGRASS System

The CGRASS system [28] takes a low-level constraint instance as input and returns an au-
tomatically enhanced instance, by help of a proof planner. The instance enhancements
include ordering and evaluation by normalisation, the removal of particular redundant con-
straints, domain and bounds propagation, adding inequalities that break symmetries and
a simple form of common subexpression elimination. Its structure was inspired by proof
planning [17].

CGRASS is a successful tool from which we have drawn inspiration, such as performing
extensive normalisation of expressions during preprocessing (Sec. 3.3.1). However, many
optimisation techniques in CGRASS have limitations: first, since CGRASS is restricted to
flat constraint instances, all optimisation techniques are tailored to simple expressions and

57

do not exploit high-level constructs such as quantifications. Furthermore, the enhance-
ment techniques are not particularly cheap: the authors give no concrete translation times,
but note that the time invested into enhancement often exceeds the solving time reduc-
tion gained from the enhancements. In fact, the authors argue that the input format is too
low-level to perform enhancements effectively and that transformations on more abstract
formulations (involving e.g. quantifications) would be more beneficial. Therefore, we fo-
cus on more general enhancement rules to be included during tailoring.

Constraint Representation and Propagator Selection

Harvey et al [40] present efficient representations of linear constraints to improve propaga-
tion. In particular, they investigate equivalent representations of several linear constraints
by comparing them in terms of bounds and domain propagation. This study has been very
inspirational and given us important insights on how to map linear constraint expressions
to efficient but cheap propagators, which we have applied (to a certain extent) in the imple-
mentation of TAILOR.

Schulte and Stuckey [72] investigate when expensive domain propagators can be replaced
by cheaper bounds propagators while resulting in the same amount of propagation. These
cases can be statically determined, as the authors show. Furthermore, in [73] the authors
extend their work to an even more effective dynamic approach. This work shows important
results that are easily integrable into tailoring to improve the propagator selection, which
we have, to an extend applied. Note however, that these results cannot be directly applied
for every solver, since some solvers do not allow to state the propagator type (bounds or
domains) explicitly. For instance, in solver Minion [32], the variable type determines the
type of propagation (bounds or domains), while in solver Gecode [80], the propagation
type is explicitly set within the constraint specification. Therefore, replacing an expensive
domain propagator with a cheap bounds propagator in Minion cannot be achieved as easily
as in Gecode, since it requires a change of the variable type, which can have consequences
on the propagation behaviour of other constraints and possibly impair the model.

Automated Modelling Systems

There exist several automated modelling systems that aim at generating efficient constraint
instances, typically from a rather intuitive (or naive) input. This is an important step that is
typically independent of a particular target solver and therefore constitutes the automated
modelling step which is performed before tailoring.

58

4.1.2 Optimisation Techniques in Compilers

Code Optimisation [3] is aimed at automatically enhancing program code during the com-
pilation process. It is a well-researched area in Compiler Construction [2] and standard in
current compilers. In this section, we discuss the most established optimisation techniques
in compilers from which we can draw parallels to tailoring constraint instances. Obvi-
ously inapplicable optimisation techniques are excluded from this discussion, e.g. altering
statement blocks to improve the execution paths.

Most of the optimisation techniques presented below depend on the data flow analysis [4,
20] which is concerned with deriving information about the data flow along particular ex-
ecution paths. This analysis is not useful for constraint instances, since expressions repre-
sent relations and not instructions. However, though the compiler optimisation approaches
cannot be directly applied to tailoring, the objectives are very similar and we can draw in-
spiration on how to proceed. Compiler Optimisation has influenced many related fields of
Constraint Programming, such as SAT [55], Proof Theory [60] or Model Checking [49].

4.1.3 Summary

In summary, we have seen a broad selection of enhancement techniques of which some
provide inspiration for instance enhancements. In the following sections, we present each
optimisation technique, show how to integrate them into tailoring by proposing algorithms
which we analyse according to their time complexity. A thorough empirical evaluation of
each technique follows in Chapter 8.

Eliminating Redundant Operations

Redundant operations in program code are instructions that, if eliminated, do not change
the behaviour of the program. Redundant operations can stem from poor programming
(e.g. unnecessary recalculations), but also occur on a very low-level to which the program-
mer has no access: for instance, accesses to the same data structure often share operations
of which the programmer is not (and should not be) aware of. Eliminating redundant oper-
ations shortens the program while preserving the program semantics. In tailoring, the elim-
ination of redundant operations corresponds to eliminating redundant constraints, which
we discuss in Sec. 4.5.

Global Common Subexpression Elimination

In program code, an expression E is called common, if E has been previously computed
and the variables of E have not changed since the previous computation. A common subex-

59

pression is eliminated [20] by reusing the previously computed value (and register) and
discarding E.

In constraint instances, variables have no underlying state, hence two expressions E1 and
E1 that have the same representation are also common. More details on common subex-
pression elimination are given in Section 4.2.

Copy Propagation

Copy Propagation exploits instructions of the form ‘x := y’ by reusing variable ‘y’ for
variable ‘x’, saving instructions and registers.

The corresponding case in tailoring is exploiting linear relations of the form x = y + c
where x and y are decision variables and c a constant value, by reusing y for x, which saves
constraints and variables. Exploiting explicit linear equalities has been well studied in the
context of Constraint Programming [40, 61, 57]. As an example, consider the explicit linear
equality x = y, where x and y are decision variables. If x and y have the same domain,
every occurrence of y can be replaced with x (or vice-versa) and y removed from the set
of variables. Otherwise, a new decision variable can be introduced with the intersection of
the domains of x and y and replace both throughout.

Dead Code Elimination

Dead code corresponds to statements that compute values that are never used elsewhere in
the program. Dead code results either from poor programming or low-level transformations
during compilation to which the programmer has no access to. Obviously, elimination of
dead code is beneficial since it avoids unnecessary computations.

In constraint instances, one could consider unconstrained decision variables as ‘dead code’.
There are two kinds of decision variables in a constraint instance: ‘core’ decision variables
that are declared in the problem model, and auxiliary variables that have been added to the
instance during flattening. If a core decision variable is unconstrained, removing it would
mean a severe alteration of the initial model that does not preserve the model’s seman-
tics (the user might have a reason to leave a decision variable unconstrained). Auxiliary
variables are always constrained, since they are introduced during flattening to represent
subexpressions (see Sec. 3.3.2). Therefore, we do not detect and eliminate unconstrained
decision variables.

Loop Optimisations (Code Motion)

Loops, such as for-loops or while-loops, are important constructs to express a set of related
instructions in high-level programming languages. However, redundancies in loops can

60

have a big effect on the program’s quality. Code Motion [5] is a means to reduce the number
of instructions in a loop by detecting computations that are always the same, independent
on how many times the loop is executed. These loop-invariant computations can be moved
outside the loop.

In constraint modelling languages, there are similar constructs to loops: quantifications.
Quantifications can contain redundancies whose elimination we discuss in Sec. 4.6.

Reducing Induction Variables

An induction variable is defined as a variable whose value increases by a constant value
c ∈ Z each time it is assigned. Such variables occur in loops and it is often possible to
reduce the set of induction variables in a loop to a particular subset.

The equivalent to induction variables in constraint models are quantifying variables. How-
ever, since quantifying variables correspond to constant values (and not registers as in
program code), there is no benefit in reducing the number of quantifying variables. For
instance, the quantifying variables in the example below

f o r a l l i ,j : i n t (1 . . 1 0) .
(j=i+1) => x [i] != x [j]

can be reduced to the quantification over one quantifying variable:

f o r a l l i : i n t (1 . . 1 0) .
x [i] != x [i+1]

However, the resulting set of constraints after unrolling the quantification is the same, so
the transformation has no effect and is therefore unnecessary.

Reduction in Strength

Reduction in strength is replacing an operation with an equivalent, but less expensive oper-
ation. For instance, replacing multiplication ‘2∗x’ with addition ‘x+x’, or replacing a simple
addition ‘x+1’ with the increment-operation ‘x++’.

In the context of constraint instances, we can also perform reduction in strength: given
two equivalent constraint representations, we pick the more efficient one wrt solving time
and search space. However, the efficiency of a constraint representation is often closely
related to the propagators provided by the target solver and typically not straightforward.
For instance, replacing a multiplication 2∗x with x + x will not improve, but possibly even
impair propagation in a weighted linear sum constraint.

61

4.2 Basic Common Subexpression Elimination (CSE)

Common subexpression elimination (CSE) is a well-established optimisation technique
originating from code optimisation [20]. In program code, an expression E is called com-
mon, if E has been previously computed and all variables in E have not changed since the
previous computation. E can be eliminated [20] by reusing the previously computed value
(and register) and discarding E.

Unlike in code optimisation, in CP we are dealing with expressions that represent relations
and not consecutive instructions. Therefore, we distinguish two kinds of common subex-
pressions: first, we call two expression trees E1 and E2 identical, if they are the same wrt
their syntax. Second, we call E1 and E2 equivalent if they are semantically equivalent
under all satisfying assignments. In other words, identical subexpressions are common
with respect to their syntax, equivalent subexpressions are common with respect to their
semantics. For example, the two expressions a ∗ (b + c) and (b + c) ∗ a are not identi-
cal, but equivalent. However, their subexpressions (b + c) and (b + c) are identical and
equivalent. Eliminating all equivalent common subexpressions is hard, therefore, we re-
strict our CSE-algorithm to eliminating all identical subexpressions. However, we will see
that some families of equivalent common subexpressions can be easily reduced to identical
subexpressions.

Expressions in CP are similar to expressions in related areas like Proof Theory, SAT or
Model Checking, where CSE is a wide-spread technique [60, 55, 49]. In most of those
disciplines, CSE is performed by transforming expression trees into acyclic directed graphs
(DAG) where common nodes are merged [71]. This approach has also been applied to
Numerical CSPs [6]. However, big finite-domain constraint instances can contain 10,000s
of complex constraints, resulting in an extremely large DAG. Therefore, we introduce an
alternative approach of CSE, that is embedded into the necessary task of flattening.

Embedding CSE into flattening provides three main benefits. First, it is easy to do. Second,
extending a necessary task like flattening with some cheap operations that apply CSE,
instead of performing an additional CSE-algorithm on top of tailoring, saves computational

Algorithm 4.1 FLATTEN INSTANCE CSE (MS) flattens constraint instance MS to M ′
S

with CSE. Differences/extensions to Algorithm 3.1 are given in red font.
Require: MS : problem instance
1: global flatConstraints, constraintBuffer, auxVars← empty lists
2: global hash-table ← empty hash-table
3: for all E ∈ MS .constraints do
4: constraintBuffer ← empty
5: E′

0 ← FLATTEN CSE (E, false)
6: E′

S ← E′
0 ∧ (

∧
i E′

i ∈constraintBuffer)
7: flatConstraints.add(E′

S)
8: M ′

S .constraints ← flatConstraints
9: M ′

S .vars ← {MS .vars ∪ auxVars}
10: return M ′

S

62

time and memory. Third, if an instance contains common subexpressions, we also save
flattening time, since duplicate subexpressions are never flattened twice.

This section delivers the following contributions. First, we introduce an alternative, light-
weight CSE approach that is embedded into flattening. Second, we show that for many
instances, the proposed CSE-flattening approach lies in the same complexity class (wrt
flattening time and memory) as standard flattening; additionally, we theoretically describe
the potential benefit in instance reduction that can result from CSE (Sec. 4.2.1). In the
following sections, we present techniques to increase the number of identical common
subexpressions in an instance in order to further improve the instance (Sec. 4.3). Further-
more, in Sec. 4.4, we discuss the scope of our CSE approach and show which CSs we do
not eliminate (and why). Finally, a thorough empirical analysis can be found in Chapter 8.

4.2.1 Extending Flattening with CSE

In the previous chapter we have seen a typical flattening procedure (Sec. 3.3), FLAT-
TEN INSTANCE , that invokes FLATTEN on every constraint expression of the instance.
Note, that if two (or more) constraints have identical subtrees (common subexpressions)
then FLATTEN will not exploit this equivalence, which results in three redundancies:

1. FLATTEN creates a different auxiliary variable for each subtree, while each identical
subtree could/should be represented by the same auxiliary variable.

2. Creating redundant auxiliary variables also creates redundant constraints to initialise
these variables.

3. FLATTEN is repeating work that it has already performed.

Consequently, extending FLATTEN to detect and exploit common subexpressions so as to
eliminate these redundancies is desirable.

The CSE-flattening Algorithm

Flattening can be easily extended with CSE: first, a hash-table is introduced to map ev-
ery flattened subexpression to the corresponding auxiliary variable. Second, every time a
subexpression E is about to be flattened, the hash-table is consulted: if E was flattened
before, then the hash-table returns the corresponding auxiliary variable and E does not
have to be flattened. Otherwise, E is flattened to an auxiliary variable aux and an entry
E −→ aux is added to the hash-table. The main advantage of using a hash-table for this
process is that all operations involving adding or retrieving data from the hash-table are
constant on average [46].

We formalise CSE-based flattening in the algorithm FLATTEN INSTANCE CSE (Alg. 4.1),
an extension of FLATTEN INSTANCE (Alg. 3.2). The hash-table maps every flattened

63

Algorithm 4.2 FLATTEN CSE (E,flatten2Aux), recursive procedure based on FLATTEN
(Alg. 3.2), extended with a hash-table, mapping all flattened subexpressions to the corre-
sponding auxiliary variable. Extensions are given in red font.
Require: E : expression tree, flatten2Aux : Boolean flattened to aux var
1: if ¬ (all of E’s children are leaves) then
2: for all ei ∈ children(E) do
3: if ¬(ei.isLeaf) then
4: Stringei ← toString(ei)
5: if hash-table.contains(Stringei) then
6: aux ← hash-table.get(Stringei)
7: else
8: aux ← FLATTEN CSE (ei, S, true)
9: hash-table.add(Stringei , aux)

10: E.replaceChildWith(ei,aux)
11: if flatten2Aux then
12: Aux ← createNewVariable(E.lb, E.ub); auxVars.add(Aux)
13: constraintBuffer.add(‘Aux = E’)
14: return Aux
15: else
16: return E

subtree to its corresponding auxiliary variable and is used by the new recursive flattening
procedure, FLATTEN CSE (Alg. 4.2), based on FLATTEN , to detect identical subexpres-
sions that have been previously flattened:

FLATTEN CSE :

1. whenever a non-leaf child ei of current node E is flattened, we look for an entry of ei

in hash-table (line 5). Note that all subexpressions are stored in String format, hence
ei has to be converted into String format (line 4) before the hash-table is consulted.

2. If there is an entry, we re-use the auxiliary variable to which ei is mapped (line 6),
instead of flattening ei again.

3. Otherwise (i.e. if there is no match in hash-table), we flatten ei to auxiliary variable
e′i (line 8) and add ei → e′i to hash-table (line 9).

Clearly, FLATTEN INSTANCE CSE will flatten each unique subnode exactly once.

Lemma 4.2.1. If constraint instance MS contains m constraints that contain n subex-
pressions of which nu are unique (with n≥nu≥m), then FLATTEN INSTANCE CSE will
generate a flat instance M ′

S with nu−m auxiliary variables and nu constraints.

Proof. FLATTEN INSTANCE CSE applies FLATTEN CSE to every constraint E in MS

(line 5 in Alg. 4.1). If E has a non-leaf child ei (a subnode), then there are two cases
(line 5 in Alg. 4.2): first, if there is no entry of ei in hash-table, ei is flattened to auxiliary
variable aux, and ei → aux is added to hash-table (line 9); hence, if ei appears again in

64

MS , there will be an entry in hash-table. Second, if there is an entry of ei in hash-table,
(ei must have been flattened before), the corresponding auxiliary variable aux is retrieved
from hash-table (line 6). Therefore, FLATTEN CSE is only invoked on those children that
have not been previously flattened, i.e. every unique node is flattened exactly once. This
results in one auxiliary variable and one ‘Aux=E’-constraint for every unique node that is
not a root node, and one constraint for every unique root node (see Lemma 3.3.1). There-
fore, M ′

S contains nu − m auxiliary variables (one for each unique node, minus the root
nodes) and nu constraints (nu−m ‘Aux=E’-constraints and m root-node-constraints).

Comparing CSE-flattening with Standard Flattening

We analyse the differences of applying FLATTEN INSTANCE and FLATTEN INSTANCE CSE
on problem instance MS with m constraints and n subexpressions of which nu are unique,
We denote M ′ the flat instance generated by FLATTEN INSTANCE and M ′

CSE the flat in-
stance generated by FLATTEN INSTANCE CSE . The maximal number of subexpressions
in any expression in instance MS is denoted k̂, and the longest String representation of any
subexpression in MS is denoted ŝ. We consider the worst case with respect to the trans-
lated instance, in which the instance contains no common subexpressions, i.e. the number
of unique subexpressions equals the number of subexpressions, nu = n.

We assume that the hash-table is implemented in such a way that the cost of each lookup
is independent of the number of elements stored and operations to add and retrieve entries
to the hash-table are performed in constant time. Note that this assumption holds for most
standard implementations of hash-tables, e.g. in Java 1.5.0 [78] which we used in our
implementation.

Theorem 4.2.1. M ′
CSE contains n−nu fewer constraints and auxiliary variables than M ′.

Proof. M ′ contains n constraints and n−m auxiliary variables (Lemma 3.3.1), and M ′
CSE

contains nu constraints and nu−m auxiliary variables (Lemma 4.2.1). Since n≥nu, M ′
CSE

contains n−nu fewer constraints and auxiliary variables than M ′.

Theorem 4.2.2. The space complexity of FLATTEN INSTANCE CSE is O(ŝn), where ŝ is
the maximal String length of any subexpression in instance MS .

Proof. From Theorem 3.3.2 we know that the space complexity of FLATTEN INSTANCE
lies in O(n). FLATTEN INSTANCE CSE uses the same data structures as FLATTEN INSTANCE
, with the addition of the hash-table to store flattened subexpressions. The hash-table is
String-based, i.e. each expression tree and auxiliary variable is stored as a String (instead
of as a tree), which facilitates matching. It stores nu unique nodes and the corresponding
auxiliary variables, thus the hash-table uses 2 ∗ nu ∗ ŝ units of memory, where ŝ is the
maximal String length of a subexpression in MS . Therefore, FLATTEN INSTANCE CSE
uses 2 ∗ ŝ ∗ nu∗ more units of memory than FLATTEN INSTANCE . Since nu≤n, the space
complexity lies in O(ŝn.

65

Theorem 4.2.3. The time complexity FLATTEN INSTANCE CSE is O((k̂ + ŝ)n), where
k̂ is the maximal number of subexpressions in any expression in instance MS and ŝ is the
maximal String length of a subexpression in instance MS .

Proof. From Theorem 3.3.1, we know that FLATTEN INSTANCE lies in O(n). FLAT-
TEN INSTANCE CSE adds instructions to the flattening process of FLATTEN INSTANCE :
First, the subexpression is converted to String format, an operation that is in O(k) where
k is the number of subexpressions the to-be-flattened expression E contains. In the worst
case, this is performed for all n subexpressions, yielding a runtime of O(k̂ ∗ n), where k̂
is the maximal number of subexpressions an expression contains. Second, the hash-table
check followed by either retrieving an object from the hash-table (if the check is posi-
tive) or creating an entry to the hash-table (if the check is negative). Since operations on
hash-tables are in O(1) on average they are all together in O(1) since 2 ∗ O(1) = O(1).
However, the hash-table operations require the String (representing the subtree) to be read,
which lies in O(ŝ), where ŝ is the maximal String length of a subexpression in instance MS .
From Lemma 4.2.1 we know that FLATTEN INSTANCE CSE flattens all nu unique nodes/-
subexpression exactly once, thus the hash-table operations lie in O(ŝnu). In summary, the
runtime complexity of the CSE-operations (in addition to flattening) is O(k̂n) + O(ŝn),
since nu=n if the instance contains no common subexpressions and f is a constant. In
summary, this results in an overall runtime of O(n) + O(ŝn) + O(k̂n) = O((k̂ + ŝ)n).

Conclusion Standard flattening and CSE-flattening differ with respect to the factors ŝ for
space and k̂ and ŝ for time complexity, where ŝ denotes the longest String representation of
any subexpression in MS and k̂ denotes the maximal number of subexpressions in any ex-
pression in MS . Note, that ŝ and k̂ are often independent of n (and can hence be considered
constants), since parameters often only scale the number of constraints, but not the width or
depth of the expression trees. As an example, consider again the Graph Colouring Problem
(Fig. 2.2 in Section 2.1), where the number of constraints increases with the number of
vertices and colours, but the width and depth of the corresponding expression trees stays
the same. Therefore, for many problem classes, the time complexity of flattening with or
without CSE lies in the same complexity class, since O(k̂n) = O(n) if k̂ is a constant.
Furthermore, in cases where k̂ is not a constant, note that k̂ is always strictly smaller than
n with the exception of the special case, where the instance contains only one constraint,
where k̂ = n.

Common subexpression elimination as described in this section has been implemented in
the tool TAILOR(Sec. 3.1.1) and we have studied the effects of CSE on various problem
classes in an empirical analysis that is further described in Sec. 8.2. In this empirical study
we observe that in practice, the difference between both flattening approaches is negli-
gible, and, if the instance contains common subexpressions, CSE-flattening often clearly
outperforms standard flattening in both runtime and memory.

66

4.3 Increasing the Number of Common Subexpressions

In the previous section we have seen that flattening an instance MS with CSE yields a flat
constraint instance M ′

S with n−nu fewer constraints and auxiliary variables than applying
flattening without CSE, while also reducing the flattening runtime by n-nu. Naturally, we
are interested in maximising our benefits: if we reduce nu, i.e. we increase the number of
common subexpressions, the reduction in instance size and runtime, n− nu, increases.

The number of unique nodes nu in an instance MS can be decreased by reformulating
equivalent, but not identical subtrees into a common tree structure. For instance, if two
subtrees E1 and E2 are equivalent but not identical, we can reformulate E2 to E1 yielding
two identical trees E1, which decreases nu if performed for every E2 in the instance.

As a simple example, consider the special case of constant evaluation, that can reduce the
number of unique nodes by reducing subtrees that consist of constants. As an example,
2 ∗ 6 and 3 ∗ 4 are both evaluated to the same leaf 12. Constant evaluation is an inexpensive
procedure that again requires no detection step. Evaluation is part of normalisation, which
is a main step during tailoring, and further discussed in Sec. 3.3.1, Note, that evaluation
is performed in many systems that perform some sort of tailoring, e.g. the MiniZinc to
FlatZinc converter [58]. In the following, we will consider a generic approach to increase
the number of identical subexpressions.

4.3.1 Overview: Reformulating Equivalent Subexpressions

We investigate a set of equivalence properties(or law) p that state when two non-identical
expressions E1 and E2 are equivalent, denoted by E1 ∼p E2. Given p, we can either
reformulate E1 into E2 or E2 into E1. For example, given commutativity as property of
conjunction, expressions A∧B and B∧A are equivalent, which we denote (A∧B) ∼comm

(B ∧ A). Therefore, we can replace the former with the latter and vice versa.

Thus, we consider two different things: first, an equivalence property or law that states
when two expressions are equivalent, e.g. commutativity. Second, we consider reformu-
lations that rewrite one expression into another representation, exploiting the equivalence
property. Note, that such reformulations need not be deterministic. As an example, the
expression A ∧ B ∧ C can be rewritten into 5 different representations exploiting commu-
tativity, such as C ∧ B ∧ A or A ∧ C ∧ B. Furthermore, each such reformulation has an
inverse. Note, that a reformulation is beneficial, if the chosen representation is not worse
than the representation that is replaced.

To apply reformulations in a structured, efficient way, a detection step is required, where
two (or more) equivalent but not identical subtrees are spotted in an instance. Naturally, the
effort required to detect equivalences can be arbitrarily large, especially for very powerful
reformulations. For instance, detecting a maximal clique of disequalities to match global
constraint alldifferent is NP-complete. Therefore, we are interested in measures with low

67

detection effort but high node-reduction potential.

In summary, we can increase the number of identical subexpressions in an instance by ex-
ploiting an equivalence property p between two distinct expressions E1 and E2 and rewrit-
ing one representation into the other by applying a corresponding reformulation r. Ideally,
this approach has the following properties:

• The detection of two equivalent expressions is cheap and integrable into tailoring
• The reformulation from E1 to E2 (or E2 to E1) is cheap.
• It is easy to determine which of the two equivalent representations E1 or E2 is prefer-

able so that the reformulation does not impair the instance.

In the following, we present an algorithm that applies a generic reformulation r (with re-
spect to a generic equivalence property p) to rewrite subexpressions into identical represen-
tations. Subsequently, we discuss a set of equivalences property and their applicability for
increasing the number of identical subexpressions.

An Algorithm for Reformulation

We consider an algorithm to increase the number of identical subexpressions by reformulat-
ing expressions using a reformulation r based on an equivalence property p. The algorithm
is embedded into flattening when common subexpressions are detected. Whenever a to-
be-flattened expression E has no common subexpression, then the algorithm performs the
following steps:

1. Reformulate E to Er, using reformulation r

2. Generate the String representation StringEr from expression Er

3. Check the hash-table for an entry of StringEr

4. If successful, return the corresponding auxiliary variable, auxr, after adding another
entry into the hash-table: E −→ auxr

5. Otherwise continue flattening

Note, that step 4 is necessary in case E has common subexpressions in the constraint in-
stance: if another occurrence of E is flattened, the hash-table check will be positive during
standard CSE and the reformulation need not be repeated.

More formally, the algorithm is summarised in Alg. 4.3 that illustrates the extensions to the
recursive flattening procedure that performs CSE, FLATTEN CSE in red font: whenever a
non-leaf child ei of E has no CS, ei is reformulated using reformulation r (line 9), yielding
the reformulated expression er. Next, er is converted to the String StringR (line 10) and the
hash-table is checked for an entry of StringR (line 11). If the check is successful, the hash-
table returns auxiliary variable aux (line 12), ei is replaced with it (line 20), and another

68

entry is added to the hash-table, linking the original expression to aux, i.e. Stringei −→
aux. This assures that if ei appears again in the instance, the hash-table will have an entry
and the whole reformulation process won’t be repeated. Otherwise, if the hash-table has no
entry of Stringer , flattening proceeds as usual.

Algorithm 4.3 Reformulation for CS-Increase. The recursive procedure FLATTEN REF
(E,flatten2Aux) is based on the CSE-flattening procedure from Alg. 4.2, (FLATTEN CSE),
and performs a general reformulation r in order to increase the number of identical common
subexpressions. Extensions are given in red font.
1: if ¬ (all of E’s children are leaves) then
2: for all ei ∈ children(E) do
3: if ¬(ei.isLeaf) then
4: Stringei ← toString(ei)
5: if hash-table.contains(Stringei) then
6: aux ← hash-table.get(Stringei)
7: else
8: if r is applicable to ei then
9: er ← r(ei)

10: StringR ←toString(er)
11: if hash-table.contains(StringR) then
12: aux ← hash-table.get(StringR) ;
13: hash-table.add(Stringei , aux) ;;
14: else
15: aux ← FLATTEN REF (ei, true);
16: hash-table.add(Stringei , aux)
17: else
18: aux ← FLATTEN REF (ei, true);
19: hash-table.add(Stringei , aux)
20: E.replaceChildWith(ei,aux)
21: if flatten2Aux then
22: Aux ← createNewVariable(E.lb, E.ub); auxVars.add(Aux)
23: constraintBuffer.add(‘Aux = E’)
24: return Aux
25: else
26: return E

Generic Time Complexity

Alg. 4.3 is very general and its complexity depends on two factors. First, the applicability
of reformulation r matters: r is usually applicable only to a certain kind of expressions.
For instance, de Morgan’s Law can only be applied to particular Boolean expressions that
are composed by disjunction and conjunction. Hence the algorithm also depends on the
frequency of occurrence of the expression type to which r is applicable. We denote mr

the number of subexpressions in instance n to which r is applicable, where n ≥ nr ≥ 0.
Furthermore, we denote nr,u the number of unique nodes to which r is applicable, i.e. if
nr − nr,u > 0 then there exist common subexpressions amongst the nodes to which r is
applicable.

69

Second, it depends on the cost of reformulating expression E to Er, i.e. the cost of applying
r on E, which we denote cost(r,k), where k is the number of nodes in the expression tree.

Since Alg. 4.3 is based on CSE-flattening (Alg. 4.2), we analyse the corresponding exten-
sions to derive the time complexity:

Applicability Check First, the to-be-flattened expression ei is tested for applicability, whose
cost we denote applicr(k) where k represents the number of nodes in the tested ex-
pression. This test is performed on all n′ subexpressions that have no previously
flattened common subexpression. In the worst case (if the instance contains no com-
mon subexpressions) n′ = n, hence performing the check lies in O(n)∗applicr(k̂),
where k̂ is the maximum number of subexpressions of any expression in the instance
(in the worst case, if the constraint instance has only one constraint, k̂ = n).

Reformulation Second, the reformulation r is applied to those nodes that pass the check,
which are all unique nodes to which r is applicable, i.e. nr,u nodes. Note, that the
other nr−nr,u nodes to which r is applicable, are common subexpressions, and hence
have a match in the hash-table, to which we add ei and aux (line 13). We denote the
cost of the reformulation costr(k), where k is again the number of subexpressions in
the reformulated expression. Therefore, the reformulation step lies in O(n)∗costr(k̂).
since in the worst case nr,u = nr = n, and where k̂ is the maximum number of
subexpressions of any expression in the instance (note that if the constraint instance
has only one constraint, k̂ = n).

toString Operation . Third, the reformulated expression er is converted to String format
StringR, an operation that lies in O(k) where k is the number of subexpressions the
to-be-flattened expression E contains. This is performed for all nr,u subexpressions,
where in the worst case, nr,u = n, yielding a runtime of O(k̂n), where k̂ is the
maximal number of subexpressions an expression contains.

Hash-Table Operations Finally, hash-table operations are performed in order to retrieve
a common subexpression. The first hash-table check (line 11) is performed on all
nr,u nodes and the following two hash-table operations are performed on all those
subexpressions that have a common subexpression. All hash-table operations are
constant in average, but require to read the String representation, so we summarise
the complexity with O(ŝn), since in the worst case, nr,u = n, where ŝ denotes the
maximal String length of a subexpression in instance n.

In summary, the additional runtime complexity of Alg. 4.3 compared to CSE-flattening
(Alg. 4.2) is:

O(n) ∗ applicr(k̂) + O(n) ∗ costr(k̂) + O(k̂n) + O(ŝn) (4.1)

In the following, we investigate different equivalence properties on both integral and Boolean
expressions: associativity, commutativity, negation, distributivity, Horn Clauses and De

70

Morgan’s Law. In each case, we will apply the reformulation in Alg. 4.3 (if necessary) and
analyse the corresponding runtime from Eq. 4.1.

4.3.2 Associativity and Commutativity

Associativity and commutativity (AC) are well-known properties that hold for several op-
erators, such as addition or conjunction. For instance, A ∧ (C ∧ B) and (C ∧ A) ∧ B are
equivalent, since conjunction is commutative and associative.

Fortunately, reducing equivalent AC expressions can be performed during preprocessing,
when expressions are normalised, which is fairly cheaper than applying Alg. 4.3 during
flattening. Normalisation reduces expressions that are equivalent by AC to an identical
representation: by imposing an order on the arguments of all AC operators, the reduction is
performed even without requiring a detection step. Ordering is a main step during tailoring,
and further discussed in Sec. 3.3.1, Note, that ordering is a common procedure in many
systems that perform some sort of tailoring, such as the MiniZinc to FlatZinc converter [58].

In summary, the AC property can be exploited during normalisation, in particular by or-
dering, which is preferable to applying Alg. 4.3 for two main reasons: first, it requires
no detection step, since simply all AC operators are normalised in the same fashion. Sec-
ond, the number of subexpressions that are processed during normalisation is much smaller
than the number of subexpressions that processed during flattening and Alg. 4.3, since all
quantifications are unrolled. Note, that this approach satisfies the three properties that we
required our reformulation approach to fulfill: both detection and reformulation are cheap
and the reformulated representation is never worse than the original representation.

4.3.3 Negation

Negation can be propagated and extracted from particular expressions, which we consider
as an equivalence property. For illustration, the two expressions x %= y and ¬(x = y) are
equivalent, which we denote x %= y ∼neg ¬(x = y).

Note, that these expressions are not equivalent if either of them contain an undefined expres-
sion and the underlying semantics is relational. The relational semantics interprets every
expression as a relation where undefined Boolean expressions are interpreted as false. For
instance, the constraint ¬(1/y = 1) with y ∈ {0, 1} would have the solution y = 0 under
the relational semantics: (1/0) is interpreted as false; (false = 1) is undefined hence it is
also false, and ¬false is true. However, in the reformulated case, (1/y %= 1), the assignment
y = 0 is not a solution under the relational semantics: (1/0) is undefined, i.e. false, and
(false %= 1) is again undefined and hence false. Therefore, this discussion is restricted to
cases where all expressions are well-defined (in which case the underlying semantics does
not matter wrt equivalence of expressions). For a detailed discussion on different semantics

71

for constraint languages with respect to undefinedness, see [29].

Similar to AC, normalisation reduces this kind of equivalence: every expression is trans-
formed to negation normal form where negations are moved as far ‘inside’ the expression
as possible. Hence, ¬(x = y) is normalised to x %= y. This is a common procedure, also in
other tailoring tools, such as the MiniZinc to FlatZinc converter [58].

Active Negation Reformulation

However, negation can be exploited in an proactive fashion, employing a slight alteration
of Alg. 4.3. The idea is to reformulate a subtree to its negated form, check the hash-table
for an entry of the negated form, and, if successful, replace the expression with the negated
corresponding auxiliary variable.

For illustration, consider the constraint instance in Example 4.3.1:

Example 4.3.1. Example for Active Negation Reformulation
g iven n : i n t (1 . .)
f i n d x ,y ,z : i n t (0 . . n)

such t h a t
(x=0) => (y=z)
(x ! = 0) => (y>0)

The instance contains two subexpressions (x = 0) and (x %= 0), where one is the negated
version of the other. Hence, the auxiliary variable used to represent the former can be used
to represent the other, if it is negated. More specifically, if aux represents (x = 0), then
¬aux can represent (x %= 0). This is particularly beneficial, if the target solver allows
negated variables as arguments of its propagators: then ¬aux could just replace (x %= 0)
which saves one auxiliary variable. Otherwise, the implication (reification) (x %= 0) ⇔
aux! (that would result from flattening (x %= 0)) can be replaced by the simpler expression
¬aux ⇔ aux!.

Fig. 4.1 illustrates the example in more detail: the expression tree in (top, left) shows the
original expression tree and (bottom, left) shows how the tree would be flattened using
CSE-flattening. The tree in (top, right) shows the reformulated version of the original after
applying active negation reformulation. This tree can be flattened in two different ways
according to the following cases: first, if the solver supports negated arguments (bottom,
middle), and second, otherwise (bottom, right).

Negation can only be extracted from relational or Boolean nodes (e.g. we cannot negate
an addition). Since negating Boolean operators typically involves manipulation of the ex-
pression tree structure (e.g. de Morgan’s law), we restrict the negation reformulation to
relational operators, such as ‘=’ or ‘≤’, where negation corresponds to simply switching
operators (e.g. ‘=’ to ‘%=’) and is less expensive to perform.

72

Figure 4.1: Example for Active Negation Reformulation: Flattening an instance (top
left) with constraints (x=0) ⇒ (y=z) and (x %=0) ⇒ (y>0) in three different ways: if
flattened directly (with or without CSE), we get flat instance A (bottom, left). If applying
neg-reformulation on initial instance, we get the reformulated instance (top, right), with 2
common subtrees ‘x=0’. If flattened for solvers that allow negated variables as arguments,
we get flat instance B, otherwise flat instance C.

Active Negation Reformulation Algorithm

We summarise the procedure (for target solvers that allow negated arguments, e.g. MIN-
ION) in Alg. 4.4 where alterations/adaptions to Alg. 4.3 are illustrated in red font: whenever
a non-leaf child ei of E has no CS and is relational, ei is negated to ¬ei (line 9), and the
hash-table is consulted with the String representation of ¬ei (line 11). If there is a match
that returns auxiliary variable aux (line 12), ei is replaced by the negated auxiliary variable
¬aux (line 14), after adding another entry of ei −→ ¬aux to the hash-table (line 13)

If the target solver does not allow negated variables as arguments in constraints, ¬e′i has to
be flattened to an auxiliary variable.

As mentioned earlier, it is vital that the reformulation does not impair the model, i.e. the
reformulated subtree must provide as least as good propagation as the initial subtree. There-
fore, the negation-reformulation may only be applied for solvers where Boolean negation
is cheaper than all relational operators it substitutes.

To determine the runtime complexity, need to define the complexity of the applicability
check, applicr(k̂), and the reformulation cost, costr(k̂). First, the applicability check deter-
mines if the expression is relational, a simple check, which is independent of the number
of subexpressions k in the corresponding expression. Therefore, this check is constant, i.e.
lies in O(1). Second, the reformulation cost: since we limit the reformulation to relational
expressions (i.e. we exclude Boolean expressions), the reformulation corresponds to an

73

Algorithm 4.4 Active Negation Reformulation. Excerpt of the recursive procedure FLAT-
TEN NEG (E,flatten2Aux) is based on the generic reformulation procedure FLATTEN REF
(Alg. 4.3). Changes are given in red font.
1: if ¬ (all of E’s children are leaves) then
2: for all ei ∈ children(E) do
3: if ¬(ei.isLeaf) then
4: Stringei ← toString(ei)
5: if hash-table.contains(Stringei) then
6: aux ← hash-table.get(Stringei)
7: else
8: if ei is relational then
9: er ← ¬(ei)

10: StringR ←toString(er)
11: if hash-table.contains(StringR) then
12: aux ← hash-table.get(StringR) ;
13: hash-table.add(Stringei ,¬aux)
14: E.replaceChildWith(ei,¬aux)
15: else
16: aux ← FLATTEN NEG (ei, true)
17: hash-table.add(Stringei , aux)
18: E.replaceChildWith(ei,aux)
19: else
20: aux ← FLATTEN NEG (ei, true)
21: hash-table.add(Stringei , aux)
22: E.replaceChildWith(ei,aux)

operator switch of the topmost node in the expression tree, which is again independent of
the number of subexpressions k in the respective expression, and thus lies in O(1).

Inserting the respective complexities for applicr(k̂) and costr(k̂) in Eq. 4.1 (that represents
the additional effort to increase the number of identical subexpressions) yields:

O(n) ∗O(1) + O(n) ∗O(1) + O(k̂n) + O(ŝn) = O((k̂ + ŝ)n) (4.2)

In summary, the time complexity of the active negation reformulation lies in O((k̂ + ŝ)n).

Summary

In summary, the equivalence stemming from negation can be easily exploited during nor-
malisation. Furthermore, actively searching for negated common subexpressions, as in-
corporated by the active negation reformulation, is a cheap reformulation approach that
satisfies the three desired properties: both detection and reformulation are cheap and the
reformulated representation is never worse than the original representation.

The active negation reformulation is implemented in the tool TAILORand experiments on
a set of problem classes have shown that it can deliver a solving time speedup of a factor
10, additional to basic common subexpression elimination. We have also observed a slight

74

tailoring time overhead for particular problem classes when performing the active negation
reformulation. However, the overhead arises mainly in cases where instances are enhanced
and hence in most cases the slight overhead in tailoring time is compensated by a notable
solving time speedup. For more details on the empirical analysis of the active negation
reformulating, see Sec. 8.3.2. g

4.3.4 De Morgan’s Law

De Morgan’s Law is another equivalence property that we can exploit. As an example,
consider the expressions ¬A ∨ ¬B and ¬(A ∧B), where (¬A ∨ ¬B) ∼deMor (¬(A ∧B))
and thus the former can be rewritten into the latter representation.

De Morgan’s law is applicable to both conjunctions and disjunctions and is ‘moves’ a nega-
tion either ‘inside’ or ‘outside’ the respective expression. Similar to negation, normalisa-
tion automatically transforms all expressions of the form ¬(A ∧ B) into ¬A ∨ ¬B which
corresponds to the negation normal form.

Active De Morgan’s Law Reformulation

However, similar to the active negation reformulation, we can apply an active form of
De Morgan’s reformulation, where normalised expressions of the form ¬A ∨ ¬B are re-
formulated to ¬(A ∧ B) whose subexpression, (A ∧ B) can be checked for a common
subexpression in the instance.

For illustration, consider the example below
(A /\ B) => C ,
(!A \ / !B) <=> D

The example contains two subexpressions, (A ∧ B) and (¬A ∨ ¬B), where the former
corresponds to the negation of the latter, which becomes evident as soon as (¬A ∨ ¬B)
is reformulated to ¬(A ∧ B). After this reformulation, the active negation reformulation
(Alg. 4.4) can detect the equivalence and (in case the solver allows negation of arguments),
(A ∧B) and (¬A ∨ ¬B) could be represented by the same auxiliary variable:

(A /\ B) <=> aux ,
aux => C ,

!aux <=> D

More formally, the active De Morgan reformulation performs the following steps whenever
a to-be-flattened subexpression ei has no common subexpression:

1. if De Morgan’s law is applicable to ei, i.e. if ei is a conjunction or disjunction whose
arguments are negatable, goto 2. else continue flattening

75

Algorithm 4.5 Active De Morgan Reformulation. Excerpt of the recursive procedure
FLATTEN MORGAN (E,flatten2Aux) which is based on the generic flatten+reformulation
procedure from FLATTEN REF (Alg. 4.3). Changes are given in red font.
1: if ¬ (all of E’s children are leaves) then
2: for all ei ∈ children(E) do
3: if ¬(ei.isLeaf) then
4: Stringei ← toString(ei)
5: if hash-table.contains(Stringei) then
6: aux ← hash-table.get(Stringei)
7: else
8: if ei applicable to De Morgan then
9: er ← deMorgan(ei).getNegatedArg()

10: StringR ←toString(er)
11: if hash-table.contains(StringR) then
12: aux ← hash-table.get(StringR) ;
13: hash-table.add(Stringei ,¬aux)
14: E.replaceChildWith(ei,¬aux)
15: else
16: aux ← FLATTEN MORGAN (ei, true)
17: hash-table.add(Stringei , aux)
18: E.replaceChildWith(ei,aux)
19: else
20: aux ← FLATTEN MORGAN (ei, true)
21: hash-table.add(Stringei , aux)
22: E.replaceChildWith(ei,aux)

2. reformulate ei using the reformulation exploiting De Morgan’s law. This results in
a negation of a conjunction or disjunction, respectively (since all expressions have
been normalised to negation normal form and hence De Morgan’s Law can only be
applied in one way). Retrieve the negation argument and store it as er.

3. Generate the String representation StringR of er

4. Check the hash-table for an occurrence of StringR

5. if successful, retrieve the corresponding auxiliary variable aux, otherwise continue
flattening.

6. add an entry to the hash-table for ei −→ ¬aux

7. replace ei with ¬aux.

The Active De Morgan Algorithm

The reformulation algorithm is summarised in Alg. 4.5 where extensions/alterations to
Alg. 4.3 are given in red font. Note, that the differences are marginal compared to the
negation reformulation.

In order to determine the runtime complexity, we define the complexity of the applicability
check, applicr(k̂), and the reformulation cost, costr(k̂). First, the applicability check deter-
mines if the expression is a disjunction or conjunction and of its arguments are negatable.

76

In the worst case, this check involves all k subexpressions of the corresponding expres-
sion and therefore lies in O(k̂), where k̂ is the maximal number of subexpressions in any
expression of the instance.

Second, the reformulation cost: applying De Morgan’s law requires to negate all argu-
ments of the corresponding conjunction/disjunction which in the worst case again affects
the whole expression tree and therefore lies in O(k̂).

Inserting the respective complexities for applicr(k̂) and costr(k̂) in Eq. 4.1 (that represents
the additional effort to increase the number of identical subexpressions) yields:

O(n) ∗O(k̂) + O(n) ∗O(k̂) + O(k̂n) + O(ŝn) = O((k̂ + ŝ)n) (4.3)

Thus, the time complexity of the active De Morgan reformulation lies in O((k̂ + ŝ)n).

Summary We can exploit De Morgan’s law in order to reduce equivalent expressions
that are not identical. The first reformulation, that rewrites a negation of a disjunction/con-
junction to a conjunction/disjunction of negated arguments, like ¬(A ∨B) −→ ¬A ∧ ¬B,
is performed during normalisation that transforms each Boolean expression into Negation
Normal Form. The second reformulation (the inverse of the former), can be used in order
to actively search for negated common subexpressions. For instance, in the example above,
¬A ∧ ¬B can be reformulated to ¬(A ∨ B) and if (A ∨ B) has been previously flattened
to aux, then ¬aux can replace ¬A∧¬B. The active De Morgan approach is a fairly cheap
approach where both detection and reformulation are cheap and the resulting representation
is not worse than the original one.

The active De Morgan approach has been implemented in the tool TAILORand empirically
evaluated on a set of problems, which is further outlined in Sec. 8.3.4. In this study we
have seen that attempting the De Morgan reformulation does not add significant overhead,
however, only very few problems apply to the reformulation that, in these few cases, does
not deliver very impressive speedups. To conclude, in practice, we have not seen any
problems where the De Morgan approach provides particular benefits, however performing
it during tailoring is cheap and therefore it is one of the standard optimisation techniques
in TAILOR.

4.3.5 Horn Clauses

Another equivalence to consider is that between Horn Clauses and implications. A Horn
Clause is a disjunction of literals where at most one literal is positive, i.e. the disjunction
can be expressed as an implication. As an example, consider the expression ¬A∨B ∨¬C
which is a Horn clause and is hence equivalent to the implication (A ∧ C) ⇒ B, denoted
¬A ∨ B ∨ ¬C ∼horn (A ∧ C) ⇒ B. Hence ¬A ∨ B ∨ ¬C can be reformulated into (A ∧
C) ⇒ B and vice versa. There are two different cases to consider: first, reformulating a

77

disjunction that is a Horn Clause into an implication. Second, reformulating an implication
into a disjunction.

Horn Clauses during Normalisation

We include the first reformulation into normalisation, where we reformulate every disjunc-
tion into a Horn Clause (if possible), which is then reformulated into an implication. The
first step is achieved by reformulating the arguments of disjunctions so that each disjunction
contains exactly one positive literal. This is often possible, by ‘pushing’ negation outside
an expression, in particular if arguments are relational expressions. As an example, con-
sider the disjunction A ∨ (x < y) where we can rewrite argument (x < y) into ¬(x ≥ y),
yielding the Horn Clause A ∨ ¬(x ≥ y).

Note, that disjunctions can have several different representations as Horn Clauses. For
instance, the expression (x = y) ∨ (z > y) ∨ (z %= x) can be represented by three different
Horn Clauses, as illustrated below:

(x = y) ∨ (z > y) ∨ (z %= x) −→ ¬(x %= y) ∨ ¬(z ≤ y) ∨ (z %= x)
−→ ¬(x %= y) ∨ (z > y) ∨ ¬(z = x)
−→ (x = y) ∨ ¬(z ≤ y) ∨ (z %= x)

In our normalisation procedure, we pick the argument, that is largest with respect to our ex-
pression ordering to be the positive literal. Hence, in the example above, we would pick the
first representation, since disequality ‘ %=’ is the ‘largest’ operation according to our order.
Note, that this (more or less random) choice is currently not beneficial (see our empirical
analysis in Sec. 8.3.3) and has to be further enhanced by considering all combinations of ar-
guments in the disjunction, which is an item of future work. For further details on common
subexpressions stemming from arguments of disjunctions, see Sec. 4.4.2.

Since all disjunctions that can be reformulated as Horn Clauses are normalised into dis-
junctions, it is useless to attempt the inverse reformulation (reformulating implications into
Horn Clauses) in order to find common subexpressions. However, similar to negation and
De Morgan’s Law, we can use the reformulation from implication to disjunction in an ac-
tive manner in order to match common subexpressions, which we denote the active Horn
Clause reformulation.

Active Horn Clause Reformulation

First, we want to illustrate the active Horn Clause reformulation on a simple example

(x < y) \ / A ,
(x >= y) => B

78

where ‘x’ and ‘y’ are integer variables and ‘A’ and ‘B’ are Booleans. The normalisation step
transforms the disjunction into an implication (choosing (‘x < y’) as positive literal, since
it is largest according to the ordering), which yields:

!A => (x < y) ,
(x >= y) => B

The active Horn clause reformulation aims at detecting a common subexpressions for the
lefthand side expression of each implication: when flattening the second implication, the
active Horn clause reformulation checks for a common subexpression of the negation of
‘(x >= y)’, i.e. (x < y), since (x >= y) ⇒ B is equivalent to (x < y) ∨B. Since ‘(x < y)’
appears in the first constraint, ‘(x >= y) => B’ can be reformulated to ‘(x < y) / B’, which
yields the flat constraints:

$ u s i n g t h e a c t i v e Horn Cl au se r e f o r m u l a t i o n $
(x < y) <=> aux ,
!A => aux ,
aux \ / B

Note, that the active negation reformulation would be successful as well in this example,
but would result in a negated auxiliary variable, as illustrated below:

$ u s i n g t h e a c t i v e n e g a t i o n r e f o r m u l a t i o n $
(x < y) <=> aux ,
!A => aux ,
!aux => B

Furthermore, there is another option: if the Horn Clause normalisation (that reformulates
all Horn clauses into implications) would pick ‘A’ as positive literal, then this would yield
different normalised constraints:

(x >= y) => !A ,
(x >= y) => B

In this case, standard common subexpression elimination will replace the two occurrences
of ‘(x >= y)’ with the same auxiliary variable:

$ s t a n d a r d CSE+ d i f f e r e n t Horn c l a u s e n o r m a l i s a t i o n $
(x >= y) <=> aux ,
aux => !A ,
aux => B

Hence, this example demonstrates the effects of the choice of positive literal when reformu-
lating Horn Clauses into implications during normalisation, in particular, that this choice
needs to be refined in order to provide an efficient reformulation.

The Active Horn Clause Algorithm

We now consider the algorithm for active Horn Clause reformulation, that attempts to re-
formulate implications into disjunctions. The algorithm is summarised in Alg. 4.6 which

79

Algorithm 4.6 Horn Clause Reformulation. Excerpt of the recursive procedure FLAT-
TEN HORN (E,flatten2Aux) which is based on the generic flatten+reformulation procedure
from FLATTEN REF (Alg. 4.3). Changes are given in red font.
1: if ¬ (all of E’s children are leaves) then
2: for all ei ∈ children(E) do
3: if ¬(ei.isLeaf) then
4: Stringei ← toString(ei)
5: if hash-table.contains(Stringei) then
6: aux ← hash-table.get(Stringei)
7: else
8: if ei is an implication then
9: er ← ¬((ei).getLeftArg())

10: StringR ←toString(er)
11: if hash-table.contains(StringR) then
12: aux1 ← hash-table.get(StringR) ;
13: eright ← ei.getRightArg()
14: ei ← aux1 ∨ eright

15: aux ← FLATTEN HORN (ei, true)
16: hash-table.add(Stringei , aux)
17: E.replaceChildWith(ei,aux)
18: else
19: aux ← FLATTEN HORN (ei, true)
20: hash-table.add(Stringei , aux)
21: E.replaceChildWith(ei,aux)

is based on the generic reformulation algorithm in Alg. 4.3 - alterations are denoted in red
font. The alterations are as follows: if subexpression ei has no common subexpression,
proceed as follows:

1. if ei is an implication, goto2., otherwise continue flattening
2. negate the left-hand argument of the implication and store it in er.
3. transform er into its String representation Stringr

4. check for a common subexpression of er, if successful, goto 5., otherwise continue
flattening

5. retrieve the corresponding auxiliary variable of er, denoted aux1

6. retrieve the right-hand side argument of the implication, eright and create a new ex-
pression ei, defined as aux1 ∨ eright and continue flattening.

For a runtime analysis, we define the complexity of the applicability check, applicr(k̂), and
the reformulation cost, costr(k̂). First, the applicability check determines if an expression
is an implication. This is a simple test that is independent of the number of nodes in the
corresponding expression tree and hence in O(1).

Second, the reformulation cost: applying Horn Clause reformulation requires to (1) retrieve
the left-hand side argument of the implication, (2) negate the argument and finally, in case
the CSE-test is successful, create a new expression by (3) retrieving the right-hand side
argument of the implication and (4) constructing a new disjunction. Retrieving the impli-

80

cation arguments, (1) and (4), lie in O(1), since retrieving a subtree from a binary node is
independent of the tree size (since we assume atomic operations). Negating the argument,
(2), has a runtime of O(k) where k is the number of subexpressions in the tree (i.e. number
of nodes and leaves), and thus lies in O(k̂) where k̂ is the largest number of subexpressions
in any expression of the instance. Finally, (4), constructing a new binary disjunction out of
two existing subtrees lies again in O(1). Hence, in summary, the reformulation cost lies in
O(1) + O(1) + O(k̂) + O(1) = O(k̂).

Inserting the respective complexities for applicr(k̂) and costr(k̂) in Eq. 4.1 (that represents
the additional effort to increase the number of identical subexpressions) yields:

O(n) ∗O(1) + O(n) ∗O(k̂) + O(k̂n) + O(ŝn) = O((k̂ + ŝ)n) (4.4)

Thus, the time complexity of the active Horn Clause reformulation lies in O((k̂ + ŝ)n).

Summary We can exploit the equivalence between Horn clauses and implications in or-
der to create further identical subexpressions. The equivalence is exploited during nor-
malisation and flattening: first, during normalisation, all disjunctions are reformulated into
Horn clauses which are then reformulated into implications. Second, during flattening of
an implication, its left argument is negated and checked for a common subexpression. If
this check is positive, the resulting auxiliary variable can be combined in a disjunction with
the right argument of the implication.

Note, that this approach is not complimentary to the active negation reformulation, which
also detects the negated common subexpression of the left hand side argument. However,
the active Horn Clause reformulation uses the auxiliary variable without negating it, as
opposed to the active negation reformulation.

The active Horn Clause reformulation is implemented in TAILORand has been tested on
a selection of problems (see Sec. 8.3.3). It fires only in one problem class, but the at-
tempt adds no significant overhead. However, we observe a solving time increase of about
40% from the active Horn Clause reformulation, which we presume results from the im-
matureness of our reformulation from disjunction to Horn Clauses. However, we expect an
improvement of solving performance after enhancing the approach in order to create the
‘best’ set of common subexpressions.

In summary, the active Horn Clause reformulation is a promising reformulation in addition
to the active negation reformulation. However, at its current state, it is impractical and there
is still room for improvement: there are several choices on how to reformulate a disjunction
into a Horn Clause and the ‘best’ choice is expected to depend on other subexpressions in
the problem instance. Investigating this issue is an important item of future work.

81

4.3.6 Distributivity

The law of distributivity can be exploited to create expressions that are likely to match other
subexpressions. For instance, representing x ∗ y + x ∗ z with the equivalent representation
x∗(y+z) in order to match further occurrences of x∗(y+z) (or its subexpression, (y+z)).

As noted earlier, a reformulation is beneficial, if the chosen representation is not worse
than the original representation. This is, however, not always clear and depends on many
different factors. Consider again the example above: in many cases, x ∗ (y + z) is expected
to provide better propagation than x ∗ y + x ∗ z. However, other subexpressions in the
instance can play an important role: what if the instance contains several occurrences of
x ∗ y and x ∗ z but no further occurrence of (y + z) - in that case the latter representation
might be preferable. Evidently, the preferred representation cannot be determined in a local
manner (i.e. without considering the rest of the constraint instance). Therefore, applying
the distributivity reformulation requires further investigations that are part of our future
work.

4.4 The Scope of CSE

As noted before, our basic technique of CSE (Alg. 4.2) does not eliminate all possible
common subexpressions in a constraint instance, but only handles identical subexpressions
that are equivalent according to their syntax. By performing measures like normalisation
or active reformulations, as discussed in the previous subsection, we can still detect a fair
amount of equivalent subexpressions by reducing them to identical subexpressions. How-
ever, there are still many kinds of equivalent subexpressions that we could detect at instance
level, but choose not to. In the following, we discuss two particular families of common
subexpressions that we neither detect nor eliminate and explain our choice.

4.4.1 Matching Global Constraints

A powerful family of common subexpressions that we do not generally eliminate at in-
stance level is that of matching global constraints with their equivalent, decomposed rep-
resentation. For instance, detecting a maximal clique of disequalities to replace with the
global alldifferent constraint [62, 33]. This procedure is NP complete and therefore not
feasible to be integrated into tailoring. However, when tailoring whole problem classes
instead of single instances, these expensive detections are feasible in a restricted manner,
since they can be highly beneficial (as demonstrated, for instance, with the Golomb Ruler
Problem [77]). More details on problem class optimisations will follow in Chapter 6.

82

4.4.2 Common Subexpressions in n-ary Arguments

Another interesting family of common subexpressions is that of common subexpressions in
arguments of n-ary operators (note, that we consider binary associative and commutative
operators, like ∧ or +, as n-ary). Expressions that are constructed from n-ary commutative
and associative operators can share common subexpressions, that we denote ‘argument-
CS’ for brevity. For instance, consider Example 4.4.1 where the conjunctions in the two
constraints share the arguments A and C, hence they share the subexpression A ∧ C.

Example 4.4.1. Common subexpression A ∧ C in the arguments of two conjunctions

A /\ B /\ C => D ,
(A /\ C) \ / E

The argument-CS A ∧ C in Example 4.4.1 can be eliminated by introducing an auxiliary
variable ‘Aux’ to replace A ∧ C, as illustrated below:

Aux <=> A /\ C ,
Aux /\ B => D ,
Aux \ / E

The Cost of argument-CS Elimination

The CSE-flattening algorithm from Sec. 4.2.1 does not detect and eliminate argument-
CSs. The reason for this is that CSE-flattening checks each argument separately and does
not look for common subsets of arguments. The CSE-approach using Directed Acyclic
Graphs(DAG) [71, 6] eliminates argument-CSs by disjoining the nodes of the DAG. This
approach can be integrated into CSE-flattening by testing every possible argument combi-
nation for a common subexpression. However, this (naive) approach would add significant
overhead to the algorithm: testing every possible argument subset (whose cardinality is
greater than 1) for a common subexpression requires 2n − (n + 1) additional checks for
every n-ary commutative associative expression in the constraint instance. Furthermore,
the hash-table would need to store all those argument combinations. This can result in a
vast overhead, since in practice, n can be very large (e.g. in sums or conjunctions). Another
approach would be to find a new data structure that replaces the hash-table and which can
perform the matching steps using set operations. Such an approach would be far cheaper
in computational cost to detect argument-CS than the naive approach using the hash-table.
However, it would require to perform the standard CSE approach using the same datastruc-
ture, which would have to perform adding- and retrieving-operations in constant time in
order to compete with the hash-table approach. This difficulty is one reason why we have
not included the detection and elimination of argument-CSs into CSE-flattening at present.

83

The Benefits of Eliminating Argument-CSs

From our experimental evaluation, we observe that argument-CS elimination is benefi-
cial in only very restricted cases: manually eliminating argument-CSs has often no effect,
neither on solving time, nor search space. However, there are cases where argument-CS
elimination is beneficial. For illustration, consider the constraint instance in Example 4.4.2
where the two sums share the common arguments ‘x + y + z’.

Example 4.4.2. Argument CS in two sums
f i n d x ,y ,z : i n t (−5 . . 5)
f i n d t ,u ,v : i n t (1)
f i n d w : i n t (2)

such t h a t
x + y + z + t = v ,
x + y + z + u = w

In this example, propagation will not fire and thus not detect unsatisfiability. However, if
the argument-CS is eliminated using a variable ‘aux’, as illustrated in Example 4.4.2 below,
then propagation would be triggered in the sums ‘aux + t = v’ and ‘aux + u = w’, since in the
former case ‘aux’ is assigned ‘1’ and in the latter ‘aux’ is assigned ‘0’.

Example 4.4.3. Eliminated argument-CS in two sums
f i n d x ,y ,z : i n t (−5 . . 5)
f i n d t ,u ,v : i n t (1)
f i n d w : i n t (2)
f i n d aux : i n t (−1 5 . . 1 5)

such t h a t
x + y + z = aux ,
aux + t = v ,
aux + u = w

Obviously, eliminating the argument-CS is highly beneficial in this case, since variables
‘t’, ‘u’, ‘u’ and ‘w’ have small domains so propagation immediately derives unsatisfiability.
However, in our experience, argument-CS elimination is beneficial mainly in constructed
cases, like the one above, which we have not (so far) encountered in ‘real’ constraint in-
stances, which leads us to the analysis of argument-CS in practice.

Argument-CS in Practical Examples

Our study of instance optimisations has been mainly driven by performing manual en-
hancement on a large selection of different problem classes (drawn from both experts and
novices). From this process we have gained a certain extent of experience on what kind of
redundancies typically appear in constraint instances. During our investigations, the only

84

problem class model in which we found argument-CS, was that of ‘Plotting’ (see Sec. 7.3.4
for a detailed discussion of the problem class). Interestingly, the respective argument-CS
are of a particular kind that can be eliminated by slightly extending CSE-flattening.

More specifically, Plotting contains a constraint that we simplify (for clarity) as follows:

f o r a l l a : i n t (1 . . uba) .
f o r a l l b : i n t (1 . . ubb) .

(A (a) /\ e x i s t s c : i n t (1 . . b) .
B (a ,c))

=>
C (a ,b)

Expression ‘A(a)’ denotes a Boolean expression ‘A’ that is quantified by quantifying variable
‘a’. Note that the upper bound of the existential quantification is limited by the quantifying
variable ‘b’. Unrolling the quantification reveals the argument-CS, therefore, we set ‘uba=1’
and ‘ubb=4’ and unroll the quantification:

A (1) /\ B (1 , 1) => C (1 , 1) ,
A (1) /\ (B (1 , 1) \ / B (1 , 2)) => C (1 , 2) ,
A (1) /\ (B (1 , 1) \ / B (1 , 2) \ / B (1 , 3)) => C (1 , 3) ,
A (1) /\ (B (1 , 1) \ / B (1 , 2) \ / B (1 , 3) \ / B (1 , 4)) => C (1 , 4)

Evidently, the disjunctions conjoined with A(1) share arguments. Flattening-CSE cannot
detect the argument-CS and would flatten the example to (simplified for clarity):

aux1 /\ aux2 => aux3 ,
(aux2 \ / aux4) <=> aux5 ,

aux1 /\ aux5 => aux6 ,
(aux2 \ / aux4 \ / aux7) <=> aux8 ,

aux1 /\ aux8 => aux9 ,
(aux2 \ / aux4 \ / aux6 \ / aux10) <=> aux11 ,

aux1 /\ aux11 => aux12

while elimination of argument-CS would yield:

aux1 /\ aux2 => aux3 ,
(aux2 \ / aux4) <=> aux5 ,

aux1 /\ aux5 => aux6 ,
(aux5 \ / aux7) <=> aux8 ,

aux1 /\ aux8 => aux9 ,
(aux8 \ / aux10) <=> aux11 ,

aux1 /\ aux11 => aux12

Note, that argument-CSE does not save auxiliary variables but decreases the arity of the
corresponding disjunction.

The kind of argument-CS from the example above has an important feature: the argument-
CSs stem from a quantification and are ‘extracted’ while unrolling it. This is an important

85

point, since it allows us to make the following assumptions about two associative and com-
mutative subexpressions A and B of the form E1 ⊗ E2 ⊗ · · · ⊗ En that share this kind of
argument-CS:

First, the arguments of A and B are ordered in the same way, starting with the arguments
that are shared. This is a valuable feature, since it facilitates matching two expressions at
String level: we can compare if expression A corresponds to the prefix of expression B.

Second, the number of (common) arguments strictly increases in each iteration (typically
by 1), since quantifying domains are all ascending. A quantifying domains is ascending if
in every iteration the value assigned to the quantifying variable(s) increases. Descending
quantifying domains, such as int(5..1) are considered the empty range and therefore never
occur in quantifications that are unrolled. If quantifications are unrolled starting from the
lower bound of the quantified domain, then we can conclude that if unrolled subexpression
A has more arguments than unrolled subexpression B, then the first occurrence of B is
always before the first occurrence of A. Therefore, the detection of these special kinds
of argument-CS (by checking if a subexpression is the prefix of another subexpression) is
confluent.

An Algorithm for Detecting Special Argument-CS

In summary, we can extend CSE-flattening to detect argument-CS stemming from quantifi-
cations by adding a set of steps to the flattening procedure FLATTEN CSE (Alg. 4.2) which
we informally summarise in the algorithm ARGUMENT CS as follows:

ARGUMENT CS (E, bool)

1. for each subtree e of E

(a) if e has a common subexpression in the hash-table, replace e with the respective
auxiliary variable aux and stop, otherwise goto (b)

(b) if e consists of an AC operation with more than c arguments goto (c) , otherwise
goto (f).

(c) create the String representation e′ of e, excluding the last i arguments of E,
where i is the constant value for which the quantifying variable increases in
every iteration (typically i = 1).

(d) check if e′ has an entry in the hash-table (i.e. a common subexpression) - if
successful, goto (e), otherwise to (f).

(e) replace the first n− 1 arguments of e with the corresponding auxiliary variable
aux and goto (f) procedure

(f) apply ARGUMENT CS (e, true) which returns auxiliary variable aux and re-
place e with aux in E

86

2. if bool is true, reify E to auxiliary variable aux and return aux, otherwise return E

This algorithm matches all argument-CSs that stem from quantifications of similar struc-
ture as in Plotting, if the quantifying domain increases by i. Since expressions with less
arguments always first appear before those with more arguments, all argument-CS of this
kind will be detected. From our empirical analysis, c = 3 has shown to be the most efficient
choice.

The detection algorithm has been implemented in the tool TAILORand its effects have been
tested on the Plotting example, further documented in Sec. 8.4. In the Plotting example,
the enhancement has shown a notable benefit and reduced the overall solving time by about
50% for small instances and 25% for larger instances. Furthermore, it has not caused
any significant overhead wrt tailoring time to perform the optimisation. Therefore, we
conclude that there is no overall penalty for removing redundancies stemming from these
special argument-CS and therefore include this measure to the set of optimisations that are
performed by default during tailoring in TAILOR.

Conflicting Common Subexpressions

Another difficulty can arise with argument-CS: conflicting common subexpressions [6].
Two common subexpressions E1 and E2 are in conflict if E1 ∩ E2 %= ∅ but E1 %⊆ E2 and
E2 %⊆ E1. For instance, consider Example 4.4.4, which is a slight alteration of Exam-
ple 4.4.2 that contains the conflicting common subexpressions ‘x + y + z’ and ‘x + y + t’.

Hence, the elimination of one subexpression prevents eliminating the other. In the case of
conflicting common subexpressions, one has to choose which CS is best to select. In the
context of numerical CSPs, Araya et al [6] propose a technique to eliminate those CS that
have the most occurrences. However, it is not clear if this approach is best for finite inte-
ger domain CSPs, since some common subexpressions might dominate others in terms of
propagation but might not have the most occurrences. For instance, in Example 4.4.4 from
above, subexpression ‘x+y’ has most occurrences, but eliminating ‘x+y’ would not improve
propagation. Hence, determining which common subexpression to eliminate from a set
of conflicting CS is complex and requires a detailed investigation, including propagation
behaviour.

Example 4.4.4. Conflicting common subexpressions
f i n d x ,y ,z ,s ,r : i n t (−5 . . 5)
f i n d t ,u ,v : i n t (1)
f i n d w : i n t (2)

such t h a t
x + y + z + t = v ,
x + y + z + u = w ,
x + y + t + s = r

87

Note, that in our restricted approach of argument-CS, conflicting common subexpressions
are not an issue, since we still compare subexpressions according to their syntax and do not
test several combinations of arguments. Furthermore, conflicting common subexpressions
only occur in n-ary commutative associative expressions, i.e. in the form of argument-CS,
and are hence not an issue during CSE-flattening, as described in the previous subsections.

Summary

In summary, the decision of whether it is worthwhile to eliminate all argument-CS is diffi-
cult. It is not clear if the computational effort into detecting and eliminating all argument-
CS would pay off in practice. We propose a detection algorithm for a special kind of
argument-CS that occurs in practical examples. This algorithm is implemented in TAI-
LORand from our respective empirical analysis (Sec. 8.4), we see that argument-CS elimi-
nation can provide a benefit.

From our experience with enhancing problem classes, it seems that general argument-CS
elimination provides notable improvements in only in very restricted cases, that hardly oc-
cur in practical examples. Therefore, for now, we choose not integrate a general argument-
CS elimination procedure into tailoring. However, there are interesting open questions
(such as the question of how to deal with conflicting argument-CS) hence further investi-
gation of argument-CS is part of our future work.

4.5 Eliminating Redundant Constraints

In this work, we call a constraint redundant, if the problem solutions are the same with or
without the constraint and the constraint has no effect on the solving procedure in terms of
propagation. This is opposed to the notion of an implied constraint, which we define as a
constraint where the problem solutions are the same with or without the constraint, but the
constraint adds further propagation. Evidently, implied constraints are beneficial, whereas
redundant constraints are not. As an example, consider the two constraints x + y ≤ 5
and x + y ≤ 10 where the latter constraint is redundant since it does not add any further
information than the former. Often, redundant constraints are a result of poor modelling
from inexperienced users.

There exist many kinds of redundant constraints and detecting and eliminating all redun-
dant constraints in a problem instance requires actually solving the problem and analysing
propagation, which is infeasible in the context of tailoring. Therefore, we restrict the elim-
ination of redundant constraints to special cases that often occur in practice: duplicate
constraints.

88

4.5.1 Duplicate Constraints

The most common cases of redundant constraints are duplicate constraints that arise when
quantified expressions are poorly guarded. A guard B for an expression E is a Boolean
expression that has to hold in order to enforce E. As an example consider the expression
B ⇒ E, where E is enforced if B is true. Guards are often used in Boolean quantifications
to restrict the number of expressions that the quantification yields. This is often done by
enforcing restrictions on quantifying variables. For instance, consider the following naive
model of the n-Queens problem [57] in Example 4.5.1, where each variable ‘queens[i]’
represents the column position of the ith queen on the chessboard. The second and third
constraint (restricting the queens positioned in diagonals) use the guard ‘(i!=j)’.

Example 4.5.1. Naive n-Queens problem model with weak guards
g iven n : i n t (1 . .) $ number o f queens $
f i n d queens : matrix indexed by [i n t (1 . . n)] of i n t (1 . . n)

such t h a t
$ a l l queens a r e p o s i t i o n e d on d i f f e r e n t columns $
a l l d i f f e r e n t (queens) ,

$ no two queens p o s i t i o n e d on same NW−SE d i a g o n a l $
f o r a l l i ,j : i n t (1 . . n) .

(i !=j) => queens [i]+i != queens [j]+j ,

$ no two queens p o s i t i o n e d on same SW−NE d i a g o n a l $
f o r a l l i ,j : i n t (1 . . n) .

(i !=j) => queens [i]−i != queens [j]−j

Unrolling the second constraint (concerning the NW-SE diagonals), yields the following
set of disequality constraints:

queens [1] + 1 != queens [2] + 2 , queens [1] + 1 != queens [3] + 3 ,
queens [2] + 2 != queens [1] + 1 , queens [2] + 2 != queens [3] + 3 ,
queens [3] + 3 != queens [2] + 2 , queens [3] + 3 != queens [1] + 1 ,

Note, that the list of constraints contains duplicates, since the guard in the quantification,
(i!=j), is not as strict as possible. These ‘weak’ guards are the main reason for dupli-
cate constraints in constraint models. For a more thorough discussion on redundancies
stemming from guards, see Sec. 4.6.

Eliminating Duplicate Constraints

Duplicate constraints can be eliminated in two different ways. First, by analysing guards
in quantifications and strengthen them if necessary. For instance, the guard in the quantifi-
cation above can be strengthened to ‘i<j’ to avoid duplicates, as illustrated below:

89

f o r a l l i ,j : i n t (1 . . 3) .
(i<j) => queens [i]+i != queens [j]+j

Reasoning over guards and the guarded expression will be discussed in the context of en-
hancing whole problem classes in Sec. 6.1.1.

At instance level, we consider an alternative, simpler approach to eliminate duplicates:
testing two constraints for syntactical equivalence. Normalisation (see Sec. 3.3.1) assists
us in this matter: since all constraints are ordered, duplicates are positioned consecutively
in the ordered list of constraints. Therefore, duplicates can be detected by simply iterating
once over the list of constraints and test consecutive constraints for equivalence and is thus
performed in linear time wrt the number of constraints in the problem instance [28].

4.5.2 Benefits of Eliminating Duplicate Constraints

In practice, the benefit of removing duplicate constraints depends on their number: the
more duplicate constraints are posted, the more propagation time increases without pruning
domains.

We study the effects of duplicate constraints on two problem models containing weak con-
straints: the n-Queens model from Example 4.5.1, and a naive model of the Golomb Ruler
Problem [77] with a weak guards in the first constraint, depicted in Example 4.5.2.

Example 4.5.2. Naive Golomb Ruler Problem model

g iven n : i n t (1 . .) $ number o f t i c k s $
f i n d ruler : matrix indexed by [i n t (1 . . n)] of i n t (0 . . n ˆ 2)

$ f i n d a r u l e r w i th minimal l e n g t h $
minimis ing ruler [n]
such t h a t

$ d i s t a n c e s between a l l n t i c k s a r e d i s t i n c t $
f o r a l l i1 ,i2 ,i3 ,i4 : i n t (1 . . n) .

((i1 > i2) /\ (i3 > i4) /\ (i2 !=i4)) =>
(ruler [i1] − ruler [i2] != ruler [i3] − ruler [i4]) ,

$ m o n o t o n i c i t y $
f o r a l l i : i n t (1 . . n−1) .

(ruler [i] < ruler [i+ 1]) ,

The experiments were performed on a Mac Pro 4.2 with 8 GB RAM that contains 8 Quad-
Core Intel Xeon 5500 series processors, each 2.26 GHz (note that hyper-threading was
turned off), using v3.2.0 , Minion 0.9 and Gecode 3.2.2 with Gecode/FlatZinc 3.2.1 and a
timeout of 20 minutes.

90

 0.95
 1

 1.1

 1.5

 2

 2.5

 25 50 100 1000 2500

C
o

n
st

ra
in

t
In

cr
ea

se
 F

ac
to

r

Number of Constraints (when duplicates eliminated)

Problem Classes
golomb (Minion)
golomb (Gecode)

nQueensNaive (Minion)
nQueensNaive (Gecode)

50% more constraints
twice as many constraints

same number of constraints

Figure 4.2: Constraints increase (with n) tested in two different solvers on naive models
of the Golomb Ruler Problem (Example 4.5.2) and n-Queens (Example 4.5.1) that both
contain duplicate constraints from weak guards. The y-axis represents the factor with
which the number of constraints increases if the duplicate constraints are not eliminated.
For example, the n-Queens instances with duplicates for solver Gecode contain 50% more
constraints than those where duplicates are eliminated.

The Growth of Constraints with Increasing n

First, we consider the growth of constraints (duplicates) with increasing n in both problems.
Fig. 4.2 illustrates the constraint growth for both models targeting two different solvers:
Gecode [80] and Minion [32]. The y-axis gives the constraint increase factor between
instances with duplicates and instances without. We can see that for the n-Queens problem,
the number of duplicates remains fairly the same with increasing n, both for Gecode and
Minion. In instances of the Golomb Ruler Problem, however, the number of duplicates
stemming from the weak guard increases linearly with n. This means that the larger the
instances, the larger the number of redundancies.

Effect on Solving Performance

Second, we consider the effects of duplicates on the solving performance. Fig. 4.3 illus-
trates the solving performance of instances that contain duplicates versus instances where
duplicates are eliminated. The y-axis represents the solving time increase factor in the case
when instances contain duplicates. For example, all Golomb instances solved in solver
Gecode lie above y = 2, this means that all Golomb instances with duplicates have been

91

 0.5

 0.9
 1

 1.1

 1.5

 2

 2.5

 3

 3.5

 0.0001 0.001 0.01 0.05 0.1 1 10 100 1200

S
o

lv
in

g
 T

im
e

In
cr

ea
se

 F
ac

to
r

Solving Time with eliminated duplicates (sec)

Problem Classes
golomb (Minion)
golomb (Gecode)

nQueensNaive (Minion)
nQueensNaive (Gecode)

30% more time
30% less time

solved in half the time
same solving time

Figure 4.3: Solving Performance of naive models of the Golomb Ruler Problem (Exam-
ple 4.5.2) and n-Queens (Example 4.5.1) that both contain duplicate constraints from
weak guards, tested in two different solvers. The y-axis represents the factor with which
the solving performance increases increases if the duplicate constraints are not eliminated.
For example, many n-Queens instances with duplicates for solver Gecode is solved using
30% more time than those where duplicates are eliminated.

solved in more than twice the amount of time used to solve the Golomb instances without
duplicates.

First, we observe that most instances with duplicates are solved using more time than those
without duplicates (since most lie above y = 1). The exceptions are several n-Queens in-
stances solved in Minion - in particular those that have been solved withing 0.005 and 0.1
seconds. Since all larger n-Queens instances for Minion are solved in less time without du-
plicates, the differences might stem from external factors, in particular since a 30% solving
time difference is very little in the time frame of 0.005 and 0.1 seconds.

Second, we see that the Golomb Ruler instances with duplicates perform worse than the n-
Queens instances with duplicates. A possible explanation would be that the Golomb Ruler
instances are more severely affected by duplicate constraints, since they increase linearly
with n.

Third, there is a notable difference with respect to the two constraint solvers. Duplicate
constraints seem to have a far more negative effect in solver Gecode than in solver Minion.
The reason for this difference is probably that propagation of constraints in Gecode is
performed differently than in Minion.

92

 0.95
 1

 1.1

 1.5

 2

 2.5

 25 50 100 1000 5000 9000

C
o
n
st

ra
in

t
In

cr
ea

se
 F

ac
to

r

Number of Constraints (when duplicates eliminated)

Problem Classes
golomb with CSE (Minion)

golomb with NO CSE (Minion)
nQueensNaive with CSE (Minion)

nQueensNaive with NO CSE (Minion)
50% more constraints

twice as many constraints
same number of constraints

Figure 4.4: Constraints increase (with n) tested with respect to common subexpression
elimination on naive models of the Golomb Ruler Problem (Example 4.5.2) and n-Queens
(Example 4.5.1) that both contain duplicate constraints from weak guards. The y-axis
represents the factor with which the number of constraints increases if the duplicate con-
straints are not eliminated. For example, the n-Queens instances with duplicates tailored
without CSE contain twice as many constraints than those where duplicates are eliminated
(without CSE).

Duplicate Constraints and Common Subexpressions

Note, that for solver Minion, both problems contain common subexpressions which are
eliminated. Out of curiosity, we also consider the impact of common subexpressions elim-
ination (CSE) on the effect of duplicate constraints. Therefore, we compare instance size
and solving time of instances that were generated without CSE. Note, that this is not an
evaluation of CSE (since we do not compare enhanced instances with unenhanced in-
stances).

First, we consider the growth of duplicates with n. In Fig. 4.4 we show the differences in
constraint growth with CSE and without CSE: the y-axis shows constraint increase in the
case when the instances contain duplicates. As expected, instances generated with CSE
contain less constraints in general, but the constraint growth is the same with or without
CSE - in Golomb Ruler, the number of duplicates still increases linearly with n.

Second, we consider the solving time of instances that were all tailored without CSE in
Fig. 4.5. When comparing the solving times of instances generated without CSE (Fig. 4.5)
with the solving times of instances generated with CSE (Fig. 4.3) we make the following
interesting observation: duplicate constraints have a worse impact on solving performance
if common subexpressions are not eliminated.

93

 0.5

 0.9
 1

 1.1

 1.5

 2

 2.5

 3

 3.5

 4

 0.001 0.01 0.05 0.1 1 10 100 1200

S
o

lv
in

g
 T

im
e

F
ac

to
r

Solving Time with eliminated duplicates (sec)

Solving Time with NO CSE - Eliminating Duplicate Constraints

Problem Classes
golomb with no CSE (Minion)
golomb with no CSE (Gecode)

nQueensNaive with no CSE (Minion)
nQueensNaive with no CSE (Gecode)

30% more time
30% less time

solved in half the time
same solving time

Figure 4.5: Solving Performance of naive models of the Golomb Ruler Problem (Exam-
ple 4.5.2) and n-Queens (Example 4.5.1) that both contain duplicate constraints from
weak guards, tested in two different solvers where no common subexpressions where
eliminated in all instances. The y-axis represents the factor with which the solving per-
formance increases increases if the duplicate constraints are not eliminated. For example,
many n-Queens instances with duplicates for solver Gecode is solved using 30% more time
than those where duplicates are eliminated.

Summary

In summary, we have seen that he practical benefits of eliminating duplicate constraints
depend on two things: first, it depends on the respective problem class, where we observed
a connection between the growth of duplicates wrt class parameters and the benefits of re-
moving the duplicates. From this we propose the assumption that the benefits of removing
duplicate constraints will increase if the duplicates increase with some parameter in the
respective problem class. Second, the benefits of eliminating duplicate constraints depends
on the target solver and the way the solver calls propagators. To conclude, removing du-
plicate constraints has shown to be beneficial in many cases, leading to speedups up to a
factor of 3.5.

4.6 Quantification Optimisations

Quantifications are a powerful means to formulate a set of related expressions. We consider
quantifications of the form

94

ϕ i1, ..., in : int(lb..ub). E(i1, ..., in)

where ϕ ∈ {∀,∃,
∑

} is a quantifier that ranges over the set of quantifying variables I =
{i1, . . . , in}, each defined over the finite range of integers int(lb..ub) where lb ≤ ub, and
E(i1, . . . , in) denotes an expression that is quantified over {i1, . . . , in}. Example 4.6.1
shows a set of sample quantifications. Note, that if ϕ represents a universal (∀) or existential
(∃) quantifier, EI has to be a Boolean expression. Apart from this restriction, the quantified
expression EI can be arbitrary (e.g. contain further quantifications, etc). For brevity, we
will refer to quantifications as ϕI .EI , since the exact quantifying domain and number of
quantifying variables is not relevant in this discussion.

Example 4.6.1. Simple quantifications
f o r a l l i ,j : i n t (1 . . 1 0) .

(i<j) => (x [i]+i != x [j]+j) ,

e x i s t s i ,j : i n t (1 . . 5) .
(i<j) /\ (y [i] = y [j]) ,

10 = sum k : i n t (0 . . 3) . z [k]

Quantifications are a very powerful means to represent a set of constraints in a compact
way. However, similarly to for-loops in program code, quantifications can include redun-
dancies, in particular when formulated by novices. Typically, the negative effect of redun-
dancies in quantifications increases with the length of the quantifying domain (combined
with the number of quantifying variables), which can be vast in large instances. There-
fore it is crucial to detect and eliminate redundancies in quantifications. In this section
we investigate how to optimise quantifications in order to address redundancies that might
arise from poor modelling. We begin by identifying frequent sources of redundancies in
quantifications.

4.6.1 Sources of Redundancies in Quantifications

Weak Guards

A guard B for an expression E is a Boolean expression that has to hold in order to en-
force E. As an example, consider the expression B ⇒ E, where E is enforced if B is
true. Guards are often used in Boolean quantifications to restrict the number of expressions
that the quantification yields. For instance, consider the guard ‘(i<j)’ in the two Boolean
quantifications in Example 4.6.1.

As the example illustrates, in universal quantification, guards are typically of the form
∀IBI ⇒ EI where every false BI eliminates the corresponding EI since false⇒ E is eval-
uated to true (which is the identity of conjunction, i.e. of ∀). In existential quantifications,

95

guards are typically of the form ∃IBI ∧EI where every false BI eliminates the correspond-
ing EI , since false∧E is evaluated to false (which is the identity of disjunction, i.e. of ∃).
If guards are too weak, they usually cause redundancies.

Definition 4.6.1. Weak Guards. A Boolean expression BI guarding expression EI in a
Boolean quantification ∀IBI ⇒ EI or ∃IBI ∧ EI is called weak guard, if the conjunction
(or disjunction, respectively) of the expressions allowed by guard BI contains symmetric
arguments with respect to commutative operators in EI . In other words, a weak guard BI

allows at least two expressions EI,2 and EI,1 that are equivalent because of the commuta-
tivity of an operator in EI .

Example 4.6.2. based on Example 4.6.1 with weak guard ‘(i!=j)’.
f o r a l l i ,j : i n t (1 . . 1 0) .

(i !=j) => (x [i]+i != x [j]+j) ,

e x i s t s i ,j : i n t (1 . . 5) .
(i !=j) /\ (y [i] = y [j])

Since weak guards do not eliminate the symmetry stemming from commutative operators,
they yield duplicate expressions in the unrolled quantification. For illustration, consider
Example 4.6.2, which is a slight alteration of Example 4.6.1, where the guard ‘(i<j)’ has
been replaced by the weak guard ‘(i!=j)’. Unrolling the quantification in Example 4.6.2,
will result in duplicate constraints, like ‘x[1]+1!=x[2]+2’ and ‘x[2]+2!=x[1]+1’, since guard
‘(i!=j)’ does not break the symmetry of commutative operator ‘!=’, which guard ‘(i<j)’
does.

In general, two different kinds of duplicates can arise from weak guards. First, if the weak
guard B is a constant expression (like in Example 4.6.2), then duplicate constraints arise
when unrolling the quantification. Otherwise, duplicate subexpressions arise after unrolling
the quantification.

Both cases are covered by previously introduced optimisation techniques. Duplicate con-
straints are easily eliminated due to constraint ordering (Sec. 4.5), duplicate subexpressions
are eliminated by common subexpression elimination (Sec. 4.2). In summary, redundan-
cies from weak guards arise in form of duplicate expressions that are handled by previously
discussed instance optimisation techniques.

Structural Reasons

In some cases, expressions involving quantifications can be reformulated into an equiva-
lent representation that is generally more efficient. Our aim is to explore these equivalent
representations and determine the most efficient one. More specifically, we consider refor-
mulations in which expressions are ‘moved’ inside or outside the corresponding quantifi-
cation. Naturally, only particular expressions can be moved in or outside a quantification

96

- expressions we denote loop-invariant (discussed in Sec. 4.6.2). The number of refor-
mulations involving loop-invariant expressions is small and manageable for a case-wise
analysis, which we conduct in Sec. 4.6.3.

4.6.2 Loop-invariant Expressions

Definition 4.6.2. Loop-invariance. If expression A in quantification ϕI .A ⊕ EI is not
quantified by any of the quantifying variables in I and there exists an operator ⊕′ such that

ϕI .A⊕ EI ≡ A⊕′ ϕI .EI (4.5)

then we call A loop-invariant. In other words, a subexpression A in quantification ϕI .A⊕
EI is loop-invariant, if it can be moved outside the quantification while preserving the
semantic of the constraint.

Example 4.6.3 shows a quantification where the guard,‘(x=0)’, is loop-invariant since (x=0) ⇒
(∀iy[i]=i) is equivalent to (∀i(x=0) ⇒ y[i]=i).

Example 4.6.3. A quantification containing the loop-invariant expression ‘(x=0)’
f o r a l l i : i n t (1 . . 5) .

(x=0) => (y [i] = i)

In this section, we want to analyse the effect of loop-invariant expressions in quantifications
and address redundancies they introduce. Loop-invariant expressions introduce redundan-
cies in form of common subexpressions as soon as the corresponding quantification is un-
rolled. More specifically, every quantification ϕ i1, ..., in:int(lb..ub). A ⊕ EI is unrolled
to

(A⊕ E1)⊕ϕ (A⊕ E2)⊕ϕ · · · ⊕ϕ (A⊕ Ek−1)⊕ϕ (A⊕ Ek)

where ⊕ϕ represents the corresponding operation for ϕ, i.e. ⊕∀ = ∧, ⊕∃ = ∨ and
⊕P = +. The number of unrolled subexpressions, k, depends on if A⊕ EI is guarded: if
unguarded, k = n∗(ub−lb+1), otherwise n ≤ k ≤ n∗(ub−lb+1). Evidently, the unrolled
quantification contains k occurrences of the loop-invariant expression A. These multiple
occurrences are common subexpressions, which, if not eliminated, can cause a significant
increase in solving time, and in some cases, a significant increase in search space (see CSE
experiments in Sec. 8.2). Common subexpressions can be easily eliminated, as discussed
in Sec. 4.2.

We illustrate the effects caused by common subexpressions stemming from loop-invariant
expressions on a simple example. Consider the unrolled set of constraints from Exam-
ple 4.6.3, where the loop-invariant expression ‘(x=0)’ has 5 occurrences:

(x=0) => (y [1] = 1) , (x=0) => (y [2] = 2) ,
(x=0) => (y [3] = 3) , (x=0) => (y [4] = 4) ,
(x=0) => (y [5] = 5)

97

If common subexpressions are not eliminated, the flat instance will contain redundancies:

(x=0) <=> aux1 , aux1 => (y [1] = 1) ,
(x=0) <=> aux2 , aux2 => (y [2] = 2) ,
(x=0) <=> aux3 , aux3 => (y [3] = 3) ,
(x=0) <=> aux4 , aux4 => (y [4] = 4) ,
(x=0) <=> aux5 , aux5 => (y [5] = 5)

However, with common subexpression elimination, ‘x=0’ is represented by the same auxil-
iary variable ‘aux’, yielding:

(x=0) <=> aux ,
aux => (y [1] = 1) , aux => (y [2] = 2) ,
aux => (y [3] = 3) , aux => (y [4] = 4) ,
aux => (y [5] = 5)

In summary, we have seen that loop-invariant expressions in quantifications cause redun-
dancies in form of common subexpressions, which can be effectively eliminated by com-
mon subexpression elimination (Sec. 4.2).

4.6.3 Moving Loop-invariant Expressions

In the previous subsection, we have seen that, thanks to common subexpression elimina-
tion (Sec. 4.2), loop-invariant expressions in quantifications do not impair the constraint
instance per se. Therefore, we are interested if there are cases, where moving a loop-
invariant expression inside a quantification (and performing CSE) is preferable to moving
it outside. Hence, we conduct a thorough comparison between the two equivalent represen-
tations: the quantification where the loop-invariant expression is inside the quantification
(‘inside-representation’), and where the loop-invariant expression is outside the quantifica-
tion (‘outside-representation’). More formally, we compare ϕI .A ⊕ EI with A ⊕′ ϕI .EI

and determine which representation is preferable for specific ϕ, ⊕ and ⊕′.

In order to conduct a proper analysis, we need to consider the flat representation of both
expressions. The flat representation is obtained by flattening the expression to the propaga-
tors provided by the target solver, which typically involves introducing auxiliary variables
and additional constraints (see Sec. 3.3.2 for more details). Flattening is a strictly solver-
dependent procedure, however, considering every possible combination of propagators in
the target solver is out of scope of this analysis. Therefore, we restrict our analysis to
solvers that provide n-ary conjunction, n-ary disjunction and n-ary summation propaga-
tors, which holds for most constraint solvers. Furthermore, during flattening we need to
take into account if the ‘to-be-flattened’ expression E is nested in another expression: if E
is not nested in another constraint, E is flattened to a propagator (constraint), otherwise, if
E is nested, e.g. in ‘A ⇒ E’, E is flattened to an auxiliary variable. If an expression E is
flattened to a constraint, it is denoted by E, if E is flattened to an auxiliary variable, it is
denoted in lowercase, i.e. e.

98

Note, that the reformulation to the respective inside- and outside-representation is im-
plemented in TAILORand performed during preprocessing as part of normalisation. This
means that every quantifier that contains a loop-invariant expression can be reformulated
either into the inside or outside representation. An empirical analysis of the differences
in loop-invariant representations can be found in the Chapter on Experiments, in Sec. 8.5.
Note, however, that only one kind of quantification optimisation fired to the large set of
problem classes we consider. The remaining optimisations have each been tested on con-
structed examples, but require a more thorough investigation in practical problems, which
is an item of future work.

In summary, we compare the inside-representation with the outside-representation at flat
level considering both the nested and unnested case, assuming that the target solver pro-
vides n-ary conjunction, disjunction and summation propagators. Note, that we assume
that all common subexpressions that result from the inside-representation are eliminated.
We start our investigation with the universal quantifier.

Moving Loop-invariant Expressions in Universal Quantifications

We consider universal quantifications ∀IEI that can be combined with a loop-invariant
expression A, such that

(∀IA⊕ EI) ≡ A⊕′ (∀IEI) (4.6)

which holds for operators ⊕ = ⊕′ = ∧, ⊕ = ⊕′ = ∨ and ⊕ = ⊕′ =⇒. In the following,
we compare both representations for each operator. Note, that it not necessary to consider
the case (∀IEI ⊕ A) ≡ (∀IEI) ⊕′ A since all operators for which this equation holds
(i.e. ∧ and ∨) are commutative and associative and thus covered by Equation 4.6. In
the following we consider all three cases and will see that the inside-representation can
sometimes be preferable to the outside-representation.

Case 1: (∀IA ∧ EI) ≡ A ∧ (∀IEI)
Since ∀ corresponds to n-ary conjunction, which is commutative and associative, Equation
4.6 holds for⊕ = ⊕′ = ∧. The flat representation in the unnested and nested case are given
in Tab. 4.1. Evidently, the inside- and outside-representation yield practically the same flat
constraints (the only difference being a permutation of arguments). Hence we conclude
that it makes no difference if the loop-invariant expression A is moved in- or outside the
universal quantification with ⊕ = ⊕′ = ∧.

Case 2: (∀IA ∨ EI) ≡ A ∨ (∀IEI)
The second case follows the law of distributivity of conjunction and disjunction, i.e. A ∨
(B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C). Tab. 4.2 shows the flat representations for inside- and
outside-representation. First, we consider the unnested case. Moving the loop-invariant

99

∀-CASE 1 inside-representation outside-representation
Original (∀IA ∧ EI) A ∧ (∀IEI)

Unrolled (E1 ∧ E2 ∧ · · · ∧ Ek ∧ A) A ∧ (E1 ∧ E2 ∧ · · · ∧ Ek)

Flat (unnested) E1 A
E2 E1

. . . E2

Ek . . .
A Ek

Flat (nested) auxq⇔ (e1 ∧ e2 ∧ · · · ∧ ek ∧ a) auxq ⇔ (a ∧ e1 ∧ e2 ∧ · · · ∧ ek)

Summary
unnested k + 1 constraints k + 1 constraints

nested 1 constraint, 1 aux. variable 1 constraint, 1 aux. variables

Table 4.1: Case 1 of comparing inside- and outside-representation.

expression A inside the quantification, yields k binary constraints, while moving A outside
the quantification yields one k-ary and one binary constraint, introducing one Boolean aux-
iliary variable. Obviously, the number of constraints of the inside-representation increases
linearly with k while the number of constraints of the outside-representation is constant and
only one constraint’s arity increases linearly with k. The choice of which representation
is preferable is not obvious in the unnested case. In an empirical investigation on some
constructed examples we have not observed a difference in the performance (wrt solving
time and search space) of both representations.

In the nested case, the outside-representation yields a constant number of constraints with
respect to k: 2 constraints and 2 auxiliary variables, where only the constraint arity in-
creases with k. On the other hand, with the inside-representation, the number of constraints
and auxiliary variables increases linearly with k. Therefore, the outside-representation is
preferable in the nested case for ⊕ = ⊕′ = ∨.

Note, that if the loop-invariant expression A is a constant expression, then both representa-
tions are the same: if A evaluates to true, then both (∀I true ∨EI) and true∨(∀IEI) evaluate
to true. Otherwise, if A is false, both (∀I false ∨EI) and false ∨(∀IEI) evaluate to ∀IEI .

∀-Case 3: (∀IA ⇒ EI) ≡ A ⇒ (∀IEI)
The third and last case considers⊕ = ⊕′ =⇒, following from the fact that A ⇒ (B∧C) ≡
(A⇒B)∧(A⇒C). Tab. 4.3 depicts the flat representations for the unnested and nested case.
We start with the unnested case.

Note, that in the unnested case, the flat inside-representation has an alternative representa-

100

∀-CASE 2 inside-representation outside-representation
Original (∀IA ∨ EI) A ∨ (∀IEI)

Unrolled (A ∨ E1) ∧ · · · ∧ (A ∨ Ek) A ∨ (E1 ∧ E2 ∧ · · · ∧ Ek)

Flat a ∨ e1 aux ⇔ (e1 ∧ e2 ∧ · · · ∧ ek)
(unnested) a ∨ e2 a ∨ aux

. . .
a ∨ ek

Flat aux1 ⇔ (a ∨ e1) aux1 ⇔ (e1 ∧ e2 ∧ · · · ∧ ek)
(nested) aux2 ⇔ (a ∨ e2) auxq ⇔ (a ∨ aux1)

. . .
auxk ⇔ (a ∨ ek)
auxq ⇔ (aux1 ∧ aux2 ∧ · · · ∧ auxk)

Summary
unnested 0 aux. variables, 1 aux. variable,

k constraints 2 constraints

nested k + 1 aux. variables, 2 aux. variables,
k + 1 constraints 2 constraints

Table 4.2: ∀-Case 2 of comparing inside- and outside-representation.

tion, given in brackets ‘[’ and ‘]’, which we discuss separately below. The unnested case
is similar to that in Case 2, where the more efficient representation is not straight forward.
The inside-representation yields k binary constraints; the outside-representation yields one
k-ary and one binary constraint, introducing one auxiliary variable. In our empirical evalu-
ation the inside-representation clearly dominated the outside-representation in solving time
on the same search space.

In the alternative inside-representation, we have a ⇒ Ei instead of a ⇒ ei. Recall
the difference between Ei and ei: Ei corresponds to the flat constraint representing Ei,
while ei corresponds to the auxiliary variable representing Ei. Hence, Ei introduces
less overhead, since it does not introduce an additional auxiliary variable, as ei does.
Therefore, the alternative flat inside-representation, a ⇒ Ei, introduces k fewer auxil-
iary variables than a ⇒ ei, but also k fewer auxiliary variables than the corresponding
outside-representation, which flattens all Ei to ei. Note, that the alternative represen-
tation is only available for constraint solvers that provide a ‘reify-imply’ propagator of
the form var⇒propagator where propagator is an arbitrary propagator (e.g. the solver
MINIONsupports reify-imply). Surprisingly, in our experimental evaluation, the alternative
inside-representation performs worse than the original inside-representation and slightly
better than the outside-representation. In summary, in the unnested case, our empiri-
cal analysis (Sec. 8.5) suggests that the standard inside-representation is preferable for
⊕ = ⊕′ =⇒.

101

∀-CASE 3 inside-representation outside-representation
Original (∀IA ⇒ EI) A ⇒ (∀IEI)

Unrolled (A ⇒ E1) ∧ · · · ∧ (A ⇒ Ek) A ⇒ (E1 ∧ E2 ∧ · · · ∧ Ek)

Flat a ⇒ e1 [a ⇒ E1] aux ⇔ e1 ∧ e2 ∧ · · · ∧ ek

(unnested) a ⇒ e2 [a ⇒ E2] a ⇒ aux
. . .
a ⇒ ek [a ⇒ Ek]

Flat aux1 ⇔ (a ⇒ e1) [aux1 ⇔ (a ⇒ E1)] aux1 ⇔ e1 ∧ e2 ∧ · · · ∧ ek

(nested) aux2 ⇔ (a ⇒ e2) [aux2 ⇔ (a ⇒ E2)] auxq ⇔ (a ⇒ aux1)
. . .
auxk ⇔ (a ⇒ ek) [auxk ⇔ (a ⇒ Ek)]
auxq ⇔ (aux1 ∧ aux2 ∧ · · · ∧ auxk)

Summary
unnested 0 aux. variables 1 aux. variable

k constraints 2 constraints,
[saves up to k flat. variables]

nested k + 1 aux. variables 2 aux. variables
k + 1 constraints, 2 constraints,
[saves up to k flat. variables]

Table 4.3: ∀-Case 3 of comparing inside- and outside-representation. The alternative
inside-representation is given in brackets ‘[’ and ‘]’, representing the special case when
the solver provides a ‘reify-imply’-propagator.

In the nested case, the outside-representation yields a constant number of constraints with
respect to k: 2 constraints and 2 auxiliary variables, where only the constraint arity in-
creases with k. On the other hand, with the inside-representation, the number of constraints
and auxiliary variables increases linearly with k. Therefore, the outside-representation is
preferable in the nested case for ⊕ = ⊕′ =⇒.

Again, if loop-invariant A is a constant, then both the inside- and outside-representations
are the same: if A evaluates to false then both representations evaluate to true. Otherwise,
if A evaluates to true, both (∀I true⇒ EI) and (true⇒ (∀IEI)) evaluate to ∀IEI .

Loop-invariant Expressions in Existential Quantifications

Now we consider existential quantifications ∃IEI that can be combined with a loop-invariant
expression A, such that

(∃IA⊕ EI) ≡ A⊕′ (∃IEI) (4.7)

102

This equation holds for the operators ⊕ = ⊕′ = ∨ and ⊕ = ⊕′ = ∧. Note, that it
not necessary to consider the case (∃IEI ⊕ A) ≡ (∃IEI) ⊕′ A since all operators for
which this equation holds, ∧ and ∨, are commutative and associative, and thus covered by
Equation 4.7. In the following two case studies we will see that the outside-representation
is generally preferable or equivalent to the inside-representation.

∃-CASE 1 inside-representation outside-representation
Original (∃IA ∨ EI) A ∨ (∃IEI)

Unrolled (A ∨ E1 ∨ E2 ∨ · · · ∨ Ek) A ∨ (E1 ∨ E2 ∨ · · · ∨ Ek)

Flat (unnested) (e1 ∨ e2 ∨ · · · ∨ ek ∨ a) (a ∨ e1 ∨ e2 ∨ · · · ∨ ek)

Flat (nested) auxq⇔ (e1 ∨ e2 ∨ · · · ∨ ek ∨ a) auxq ⇔ (a ∨ e1 ∨ e2 ∨ · · · ∨ ek)

Summary
unnested 1 constraint 1 constraints
nested 1 aux. variable, 1 constraint 1 aux. variable, 1 constraint

Table 4.4: ∃-Case 1 of comparing inside- and outside-representation.

Case 1: (∃IA ∨ EI) ≡ A ∨ (∃IEI)
Since ∃ corresponds to n-ary disjunction, which is commutative and associative, Equation
4.6 holds for⊕ = ⊕′ = ∨. The flat representation in the unnested and nested case are given
in Tab. 4.4. Evidently, the inside- and outside-representation yield practically the same flat
constraints (the only difference being a permutation of arguments). Hence we conclude
that it makes no difference if the loop-invariant expression A is moved in- or outside the
existential quantification with ⊕ = ⊕′ = ∨.

Case 2: (∃IA ∧ EI) ≡ A ∧ (∃IEI)
The second case follows the law of distributivity of conjunction and disjunction, i.e. A ∧
(B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C). Tab. 4.5 shows the flat representations for inside- and
outside-representation.

First, we consider the unnested case. Moving the loop-invariant expression A inside the
quantification, yields k reification constraints and 1 disjunction, introducing k auxiliary
variables, while moving A outside the quantification only yields 2 constraints without in-
troducing any auxiliary variables. Since the outside-representation results in far less con-
straints and auxiliary variables, it is preferable to the inside-representation. Furthermore,
propagation behaves differently in the two representations: in the outside-representation, A
can be propagated straight away, however in the inside-representation, A is not propagated
before the variables in the Eis are pruned such that the disjunction holds.

In the nested case, again the outside-representation dominates the inside-representation; the
former using only 2 reification constraints and 2 auxiliary variables while the latter requires

103

∃-CASE 2 inside-representation outside-representation
Original (∃IA ∧ EI) A ∧ (∃IEI)

Unrolled (A ∧ E1) ∨ · · · ∨ (A ∧ Ek) A ∧ (E1 ∨ E2 ∨ · · · ∨ Ek)

Flat aux1 ⇔ (a ∧ e1) A
(unnested) aux2 ⇔ (a ∧ e2) (e1 ∨ e2 ∨ · · · ∨ ek)

. . .
auxk ⇔ (a ∧ ek)
(aux1 ∨ aux2 ∨ · · · ∨ auxk)

Flat aux1 ⇔ (a ∧ e1) aux1 ⇔ (e1 ∨ e2 ∨ · · · ∨ ek)
(nested) aux2 ⇔ (a ∧ e2) auxq ⇔ (a ∧ aux1)

. . .
auxk ⇔ (a ∧ ek)
auxq ⇔ (aux1 ∨ aux2 ∨ · · · ∨ auxk)

Summary
unnested k aux. variables, 0 aux. variables,

k + 1 constraints 2 constraints

nested k + 1 aux. variables, 2 aux. variables,
k + 1 constraints 2 constraints

Table 4.5: ∃-Case 2 of comparing inside- and outside-representation.

k + 1 reification constraints and k + 1 auxiliary variables.

Note, that if the loop-invariant expression A is a constant expression, then both representa-
tions are the same: if A evaluates to true, then both (∃I true ∨EI) and true∨(∃IEI) evaluate
to true. Otherwise, if A is false, both (∃I false ∨EI) and false ∨(∃IEI) evaluate to ∃IEI .

Loop-invariant Expressions in Quantified Sums

Now we consider quantified sums
∑

I EI that can be combined with a loop-invariant ex-
pression A, such that

(
∑

I

A⊕ EI) ≡ A⊕′ (
∑

I

EI) (4.8)

where ⊕ and ⊕′ are arithmetic operators. Equation 4.8 holds only for operator ⊕ = ⊕′ =
∗. Note, that the case (

∑
I EI ∗ A) ≡ (

∑
I EI) ∗ A is covered by Equation 4.8, since

multiplication is associative and commutative.

Table 4.6 summarises the inside- and outside-representation in the sum case. Note, that

104

∑
-CASE inside-representation outside-representation

Original (
∑

I A ∗ EI) A ∗ (
∑

I EI)

Unrolled (A ∗ E1) + · · · + (A ∗ Ek) A ∗ (E1 + E2 + · · · + Ek)

Flat aux1 = a ∗ e1 aux1 = e1 + e2 + · · · + ek

(nested) aux2 = a ∗ e2 auxq = a ∗ aux1

. . .
auxk = a ∗ ek

auxq = aux1 + aux2 + · · · + auxk

Summary k + 1 aux. variables, 2 aux. variables,
k + 1 constraints 2 constraints

Table 4.6:
∑

-Case 1 of comparing inside- and outside-representation.

sums, being integer expressions, are always nested in another expression, so we only con-
sider the nested flat case. Evidently, the outside-representation is preferable to the inside-
representation since it uses k−1 less constraints and auxiliary variables. In our experiments
on constructed examples we even observe a drastic difference in propagation. Unfortu-
nately, reasoning about the general propagation behaviour in such a case is very difficult
and in some cases impossible due to the vast variety of propagators in constraint solvers.

Summary

In this subsection, we have seen that, against our expectations, there exist cases where it is
beneficial to move a loop-invariant expression inside a quantification. However, we have
also seen cases where moving loop-invariant expressions outside the quantification is far
more beneficial. Hence, in general, neither representation dominates the other.

Unfortunately, it is not always clear which representation is preferable, in particular when
they are not comparable with respect to propagation: solvers provide many different prop-
agators that work differently, so in some cases our analysis remains empirical. Moreover,
we expect the preferable representation to depend on other expressions in the instance: for
example, if the first representation shares common subexpressions in the instance, but the
other does not, then the former might provide better propagation if the common subex-
pressions are eliminated. Investigating the presence of common subexpressions in other
constraints, however, is infeasible on instance level: consider an instance with n quan-
tifications involving loop-invariant expressions. To determine the representation with the
highest number of common subexpressions, 2n combinations need to be considered and
compared, which, at instance level, is too expensive in time and memory.

The observations from this study can be easily integrated into tailoring by reformulating
quantifications involving loop-invariant expressions into the preferable representation. This
step is best performed during preprocessing, before the quantifications are unrolled.

105

4.7 Summary

This chapter covered instance optimisations, i.e. automated approaches to enhance con-
straint instances and introduces novel instance optimisation techniques that are cheap and
easily integrable into tailoring.

First, we presented established instance optimisation techniques in the field of Constraint
Programming and Compiler Construction, some of which have inspired the instance opti-
misation techniques that we propose during tailoring.

Second, we discussed each technique, starting with the elimination of redundant con-
straints, followed by the most successful enhancement technique, common subexpression
elimination and finally, the enhancement of quantifications.

We stress again that none of the techniques proposed in this chapter are routinely performed
by constraint solvers or flattening tools at present, which the exception of the MiniZinc to
FlatZinc converter that has recently included CSE. Many constraint systems could benefit
from these optimisation techniques since almost all constraint tools or solvers perform
some translation of their input, in which the proposed techniques could be easily integrated.

106

CHAPTER 5

TAILORING PROBLEM CLASSES

In this chapter, we discuss how to extend tailoring instances to tailoring problem classes.
Problem classes represent a whole family of instances, where parameters scale the features
of the problem such that a complete parameter instantiation yields a problem instance.
Constraint problems are typically formulated as classes, but solved as instances.

There are two main reasons for flattening problem classes: first, to support solvers that
take problem classes as input: solvers such as Gecode [80], ECLiPSe [87] or Choco [19]
are libraries of programming languages, where problems are formulated as programs and
parameters can be specified at runtime. Second, it can be more time-efficient to perform
flattening and enhancement techniques once at class level instead of several times, i.e. once
per instance.

The main contribution of this Chapter stems from the novelty of tailoring problem classes
which has barely been investigated. Tailoring tools in constraints, such as the MiniZinc-
Flatzinc converter [44], or the internal flattener of ECLiPSe Prolog [87] are limited to
tailoring instances. Wuille and Schrijvers [89] have recently presented a translation from
constraint instances formulated in the functional programming language Haskell to solver
Gecode’s C++ representation, which in future will include class translations. However,
so far, TAILOR, is the only tool to perform tailoring of constraint problem classes to our
knowledge.

In this chapter, we show how to extend the procedure of instance-wise tailoring to class-
wise tailoring. First, we motivate the idea of class-wise tailoring by presenting different
applications tailoring whole problem classes. Second, we discuss how to represent prob-
lem classes by extending the notion of expression trees from Chapter 3 so as to include
parametrised expressions (Sec. 5.2). Third, we discuss necessary extensions of the instance
tailoring procedure in order to process problem classes in Sec. 5.3. This includes a dis-
cussion on the current limitations of class tailoring. Finally, we wrap up and conclude in
Sec. 5.5.

107

108

Figure 5.1: instance-wise (top) and class-wise tailoring (bottom) to solve instances

5.1 Applications of Problem Class Tailoring

In this section, we discuss when and how tailoring whole problem classes can be useful
and applied in practice, as opposed to the approach of tailoring instances as presented in
Chapter 3. More specifically, there are two ways in which tailoring problem classes can be
employed.

First, tailoring problem classes can be used to generate input for solvers that allow problem
classes as input. Such solvers are typically libraries of programming languages (e.g. solver
Gecode [80] is a library of C++, ECLiPSe [87] of Prolog or Choco [19] of Java). As an
example, consider tailoring a problem class to a C++ program tailored to solver Gecode, a
C++ library. All library-based solvers take constraints in a flat format, i.e. constraints are
not nested within another. Some library-based solvers, such as Gecode or ECLiPSe, allow
nesting of constraint expressions (in case of Gecode, only linear and Boolean constraints).
However, though these nested expressions are typically normalised and flattened so as to
match n-ary constraints, CSE and other enhancements are not performed on them up to
date [74]. Therefore, we conclude that it is more beneficial to flatten and enhance problem
classes during tailoring instead of pushing those tasks onto the solver.

Second, tailoring problem classes can also be used when tailoring to a solver that accepts
only instances. Typically, such solvers receive input by instance-wise-tailoring, as we have
seen in Chapter 3: a class is first merged with a parameter specification, yielding an unflat-
tened instance which is then flattened to a flat instance (Fig. 5.1, top). As an alternative
approach, we propose class-wise tailoring (depicted in Fig. 5.1, bottom) that consists of
two tailoring steps: first, the problem class is tailored to a flat class in intermediate format,
e.g. an ESSENCE′ problem class is flattened to a flat ESSENCE′ problem class. Then the flat
class is tailored together with a parameter specification, yielding a flat instance. Note, that
the solver input generated from instance- and class-wise compilation are identical, with
certain exceptions (see Sec. 5.3.2). In our empirical analysis (Sec. 5.4), we will see that in
particular cases, class-wise flattening is quicker than instance-wise flattening, since a lot of

109

time-consuming tasks (such as flattening) are only performed once at class level and need
not be repeated for every instance.

The process of tailoring problem classes to solver input consists of the same steps as tai-
loring instances, with the difference that parameter values are not known (and hence quan-
tifications can often not be unrolled). Automatically generating problem classes has barely
been investigated and to the best of our knowledge, TAILOR is the only tool that can per-
form this step to date.

5.2 Representing Parameterised Expressions

Problem classes and problem instances have very similar structures with the difference
that problem classes contain parameters whose values are not specified during tailoring.
Parameters scale different properties of a constraint class: (1) constant-scaling parameters
scale constants in constraints, (2) domain-scaling parameters scale the domain of decision
variables, (3) variable-scaling parameters scale the number of variables, and (4) constraint-
scaling parameters scale the number of constraints. These different kinds of parameters
need to be integrated into the expression tree representation from the instance level.

Integrating Constant-Scaling and Domain-Scaling Parameters

Constant-scaling and domain-scaling parameters, as illustrated in Example 5.2.1, often ap-
pear in constraint problem classes. They affect the computation of each tree node’s lower
and upper bound (see Sec. 3.3.1 for more details), which has to be extended.

Example 5.2.1. illustrating constant- and domain-scaling parameters.
g iven n : i n t (1 . .)
g iven m : i n t (0 . .)

f i n d x : i n t (1 . . n) $ n as domain−s c a l i n g p a r a m e t e r $
f i n d y : i n t (0 . . m) $ m as domain−s c a l i n g p a r a m e t e r $

such t h a t $ m and n as c o n s t a n t−s c a l i n g p a r a m e t e r s $
x − m = y + n

Constant-scaling parameters appear in leaves of expression trees, where the leaf has no
specified, constant domain. Therefore, we extend the node/leaf-attributes lb and ub that
represent lower and upper bound of every node/leaf to contain parameters: if parameter k
appears as a leaf in an expression tree, then the leaf’s lb and ub is defined as k..k.

Domain-scaling parameters appear in domain definitions of decision variables. Similarly to
constant-scaling parameters, we state that if a domain associated to identifier x is bounded

110

by the parameters k1, k2, and x appears as leaf in an expression tree E, then x’s lower and
upper bound is defined as k1..k2 under the assumption that k1 ≤ k2.

Figure 5.2: Constant-Scaling and Domain-Scaling Parameters: illustrating the tree node
lower and upper bounds (light-blue labels at each node and leaf) of Example 5.2.1.

In summary, constant- and domain-scaling parameters are easily integrable into the ex-
pression tree structure. Furthermore, the extensions do not prevent us from computing
finite lower and upper bounds of each expression subtree (using the lb and ub attributes),
since every parameter k will be assigned an integer or Boolean value. Fig. 5.2 illustrates
constant- and domain-scaling on an example, as well as the computation of the expression
nodes’ lower and upper bound attributes (represented as light-blue labels), based on the
problem class in Example 5.2.1.

Integrating Variable-Scaling Parameters

Variable-scaling parameters arise in the index domain of variable arrays, i.e. they scale
the number of elements an array contains, as Example 5.2.2 illustrates. Variable-scaling
parameters are easily integrated by extending the symbol table to contain arrays that have
a parameterised number of elements.

Example 5.2.2. illustrating variable- and constraint-scaling parameters.
g iven n : i n t (1 . .)

$ n s c a l i n g l e n g t h o f a r r a y s x and y $
f i n d x ,y : matrix indexed by [i n t (1 . . n)] of bool

such t h a t $ n s c a l i n g number o f c o n s t r a i n t s $
f o r a l l i : i n t (1 . . n) . x [i] \ / y [i]

Integrating Constraint-Scaling Parameters

Constraint-scaling parameters scale the number of constraints, typically by appearing in
quantifying domains of quantifications, such as parameter n in the quantification in Ex-
ample 5.2.2. In a problem instance, n would be specified and the quantification unrolled,

111

generating n disjunctions. However, at class level, such quantifications cannot be unrolled,
thus we need to define a notion of parameterised quantified expressions as part of the in-
termediate expression representation that is used in the tailoring middle-end (Sec. 3.3).
Therefore, we extend the corresponding expression tree representation from instance level
(Sec. 3.2) to support parameterised quantified expressions, particularly ∀, ∃ and

∑
.

Each quantification node N has one argument: the quantified expression. The quantifying
variable(s) and the corresponding quantified domain(s) is(are) stored as attributes of N .
These attributes are also propagated to all subnodes/leaves that are quantified. Thus each
node/leaf in an expression tree ‘knows’ if (and over what domain) it is quantified. As an
example, Fig. 5.3 illustrates the quantifier attributes (quantifying variables and associated
domain) as grey labels in the expression tree of the constraint in Example 5.2.3 below.

Example 5.2.3. Sample Quantification
f o r a l l i : i n t (1 . . n) .

e x i s t s j : i n t (1 . . m) .
x [i] = y [j]

Note, that if the problem class is directly tailored to solver input, then these quantifiers are
only allowed if the target solver provides n-ary propagators for conjunction (∀), disjunction
(∃) and addition (

∑
).

Figure 5.3: illustrating the Quantifier Attributes in the expression tree representation of
the constraint from Example 5.2.3, where the grey labels represent the quantifier attributes
for the corresponding node/leaf.

5.3 Tailoring Problem Classes

In this section, we discuss extensions that are necessary in order to apply the tailoring
procedure from Chapter 3 to problem classes. While we have discussed changes in the data
structures and internal representation in the previous section, we now discuss extensions to
the tailoring process.

112

The tailoring process consists of three stages: (1) the frontend, that processes input to an
intermediate format, (2) the middle-end, which performs the core tasks of preprocessing
and flattening of the intermediate format, and (3) the backend that deals with solver-related
issues that could not be generalised in the middle-end and issues the final output. Each
stage requires a (limited) set of adaptions in order to process problem classes.

The frontend requires no notable extensions, (with the exception of some basic, low-level
operations to handle the data structure extensions described in the previous section) since
its main tasks, parsing, type checking and translation into intermediate format, are the same
for classes as for instances since parameters have well-defined types.

Similarly, in the middle-end, all other processes are performed in the same fashion as for
instances, with the exception of expression flattening that has to be adapted so as to pro-
cess parameterised expressions. This will be elaborated on in the next subsection. The
other core task in the middle-end, preprocessing, is easily extended to deal with problem
classes, since the intermediate representation is the same as in instances with the addition
of parameterised expressions.

Finally, the backend requires extensions so as to output the problem class. For instance,
providing support for ‘for’-loops to express a set of universally quantified constraints in the
target programming language. These are basic, low-level extensions that are very specific
to the target language, and will therefore not be covered.

5.3.1 Flattening Parameterised Subexpressions

The main challenge of flattening parameterised expressions is to handle subexpressions that
are quantified by parameters. If an expression is quantified by a parameterised quantifying
variable, we need to generate a quantified number of auxiliary variables during flattening.
Thus, whenever a parameterised subexpression is flattened, an array of auxiliary variables
is introduced, whose size is derived by the domain of the corresponding quantifiers. This
information is retrieved from the quantification attributes of the quantified subexpression.

Flattening Parameterised Quantifications by Example

To illustrate flattening of a parameterised expression we consider each step in a simple
example that contains a parameterised existential quantification:

g iven n : i n t (1 . .)
f i n d x : matrix indexed by [i n t (1 . . n)] of i n t (1 . . n)

such t h a t
e x i s t s i : i n t (1 . . n) . x [i]=i

The quantified expression, ‘x[i]=i’, is a Boolean expression that has the quantifier attributes
i: (1..n). Therefore, it is flattened to a Boolean auxiliary array ‘auxArray’ of length ‘n’,

113

which is added to the problem class:

f i n d auxArray : matrix indexed by [i n t (1 . . n)] of bool

The auxiliary array is then linked to the flattened expression ‘x[i]=i’:

f o r a l l i : i n t (1 . . n) . auxArray [i] <=> (x [i] = i)

Finally, the auxiliary variable array represents the original expression ‘x[i]=i’:

e x i s t s i : i n t (1 . . n) . auxArray [i]

In summary, flattening yields the flat problem class:

g iven n : i n t (1 . .)
f i n d x : matrix indexed by [i n t (1 . . n)] of i n t (1 . . n)
f i n d auxArray : matrix indexed by [i n t (1 . . n)] of bool

such t h a t
f o r a l l i : i n t (1 . . n) . auxArray [i] <=> (x [i] = i) ,
e x i s t s i : i n t (1 . . n) . auxArray [i]

Algorithm 5.1 Excerpt of FLATTEN CLASS (E,flatten2Aux) for flattening problem classes
(and instances), based on FLATTEN CSE (Alg. 4.2) from instance level. Extensions are
given in red font.
Require: E : expression tree, flatten2Aux : Boolean flattened to aux var
1: if ¬ (all of E’s children are leaves) then
2: for all ei ∈ children(E) do
3: if ¬(ei.isLeaf) then
4: Stringei ← toString(ei)
5: if hashMap.contains(Stringei) then
6: aux ← hashMap.get(Stringei)
7: else
8: aux ← FLATTEN CLASS (ei, S, true)
9: hashMap.add(Stringei , aux)

10: E.replaceChildWith(ei,aux)
11: if flatten2Aux then
12: if E is quantified by parameterised expression then
13: AuxArray = createNewVarArray(E.lb,E.ub, E.qt.length); vars.add(‘AuxArray’)
14: constraints.add(‘{‘∀x ∈ x.dom’ | x ∈ E.qt.vars } . AuxArray[E.qt.index] = E’)
15: return AuxArray[E.qt.index]
16: else
17: Aux ← createNewVariable(E.lb, E.ub); auxVars.add(Aux); ctBuffer.add(‘Aux = E’)
18: return Aux

114

An Algorithm for Flattening Problem Classes

The only difference between instance flattening and class flattening is the generation of aux-
iliary variables and flat constraints: if a subexpressions is quantified over a parameterised
expression, an array of auxiliary variables is created, otherwise just a single auxiliary vari-
able. Therefore, the instance algorithm can simply be extended so as to generate auxiliary
variables for parameterised quantified expressions.

We summarise the flattening process for problem-class expressions in Alg. 5.1, where ex-
tensions to FLATTEN / FLATTEN CSE are given in red font: It proceeds in three steps: first,
an auxiliary variable array is generated (line 13). Second, the array is linked to the corre-
sponding flattened expression (line 14). Third, the auxiliary array is returned in such a way
that it is referenced correspondingly to the flattened expression (line 15).

Note, that only those nodes are flattened that cannot be evaluated at instance level, i.e.
nodes that are of category decision variable (see Sec. 2.2). Furthermore, since quantifi-
cations cannot be unrolled at class level, flattening typically processes far less nodes than
instance flattening. In the following, each flattening step is further explained.

1. Generating the Auxiliary Array if node E is quantified, it is flattened to an auxil-
iary variable array (line 13). Note that, for convenience, we use 1-dimensional arrays to
represent auxiliary variables. The length of the array is determined from the lengths of
the quantifying variables’ domains: if quantified node E is quantified by k quantifying
variables vi that each range over the domain lbi..ubi, then length of the array, l, is

l =
i∏

1..k

ubi − lbi + 1 (5.1)

As an example, in Fig. 5.4, ‘aux0’ represents an expression that is quantified by i ∈ (1..n)
and j ∈ (1..m) and hence has length (n− 1 + 1)∗(m− 1 + 1) = n ∗m.

2. Linking the Auxiliary Array to the Flat Expression After creating the auxiliary
variable array, the to-be-flattened node E is linked (or ‘reified’) with AuxArray (line 14).
The challenge in linking is to dereference the auxiliary array correctly, which needs to take
the following into account: the range of each quantifying variable and its associated domain
as well as the constant value, from which the target solver starts initialising its arrays. As
an example for the latter, in solver MINION, arrays are always dereferenced starting from
0. In FlatZinc, however, arrays are dereferenced starting from 1. We denote this constant
value with t̂. If E is quantified by k quantifying variables vi that range over lbi..ubi, then

115

the linking constraint defined as:

∀v1 ∈ (lb1..ub1).∀v2 ∈ (lb2..ub2). . . .∀vk ∈ (lbk..ubk).

E = AuxArray[v1 +
i∑

2..k

.(vi − t̂) ∗
j∏

1..k−1

(ubj − lbj + 1)] (5.2)

As an example, consider the quantified expression from Fig. 5.4:
f o r a l l i : i n t (1 . . n) .

e x i s t s j : i n t (1 . . m) .
x [i]=y [j]

Now we consider flattening this expression to two different targets: first to FlatZinc, where
t̂ = 1, and then to solver MINION, where t̂ = 0. When flattening to FlatZinc, the tailoring
middle-end produces the intermediate representation:
f o r a l l i : i n t (1 . . n) .

f o r a l l j : i n t (1 . . m) .
(x [i]=y [j]) <=> auxArray [i+(j−1)∗n]

When flattening to MINION, the tailoring middle-end produces:
f o r a l l i : i n t (1 . . n) .

f o r a l l j : i n t (1 . . m) .
(x [i−1]=y [j−1]) <=> auxArray [(i−1)+(j−1)∗(n)]

Note, that every ‘i’ and ‘j’ has been replaced by ‘i−1’ and ‘j−1’ in order to adapt the
index to the target solvers array-dereference start value t̂, since both index domains initially
ranged from ‘ 1..n’ and ‘ 1..m’, respectively.

Theorem 5.3.1. The time complexity of flattening with FLATTEN CLASS lies in O(k̂m).

Proof. FLATTEN CLASS (Alg. 5.1) is an extension of Alg. 4.2 (FLATTEN CSE) that
lies in O(k̂m) where k̂ is the maximal number of subexpressions any expression has in the
instance/class. FLATTEN CLASS additionally flattens quantified expressions, which adds
the following operations:

1. Checking if an expression is quantified (line 12) requires an atomic check of expres-
sion E that is independent of the number of its subexpressions and hence constant.
This check is performed for all mu subexpressions, where in the worst case, when
the class has no CS, mu = m. Hence, in summary, the operation lies in O(m).

2. Generating the auxiliary array (line 13): this operation first requires the computation
of the length l of the auxiliary array, which depends on v (see Eq. 5.1, the the num-
ber of variables that quantify the subexpression, which is constant (the number of
quantifying variables cannot be scaled). Second, an array of length l is constructed.

116

Since we assume atomic operations in the implementation, both operations require
constant time, which is performed for mu subexpressions. In summary, generating
an auxiliary variable lies in O(m), since in the worst case, mu = m.

3. Linking the auxiliary array to the flat expression (line 14) involves adding a constraint
to the class. This requires to construct a quantification and to compute the index
expression from Eq. 5.2 for the auxiliary array where both operations depend on
the number of quantifying variables v, which is constant. Again, since we assume
atomic operations in the implementation, both operations are dependent only on the
number of subexpressions in the to-be-flattened expression, k. The operations are
performed for mu subexpressions, hence, in summary, adding the linking constraint
lies in O(k̂m), since in the worst case, mu = m, where k̂ is the maximal number of
subexpressions of any expression in the class.

In summary, the operations added to flatten classes add O(m) + O(m) + O(k̂m), which, if
added to the overall runtime of CSE-flattening at instance level, results in O(k̂m).

5.3.2 Redundancies from Flattening Quantified Subexpressions

As mentioned in earlier chapters, quantified expressions often contain guards that enforce
particular expressions (see Sec. 4.6). These guards can be either constant (i.e. evaluable
at instance level) or entirely composed of decision variables. If a quantified expression
is guarded by a constant guard, then class flattening introduces redundancies, which we
will illustrate on an example. Consider Example 5.3.1 where the quantified expression
‘x[i]∗x[j] != y[i]∗y[j]’ is guarded by the expression ‘(i<j)’.

Example 5.3.1. illustrating a guarded quantification

g iven n ,m : i n t (1 . .)
f i n d x ,y : matrix indexed by [i n t (1 . . n)] of i n t (1 . . m)

such t h a t
f o r a l l i ,j : i n t (1 . . n) .

(i<j) => (x [i]∗x [j] != y [i]∗y [j])

Flattening will introduce 2n2 auxiliary variables (one array of length n2 for each multi-
plication, since both i and j range over (1..n)). However, (i < j) will evaluate to false
in n(n+1)

2 cases, hence only 2(n2 − n(n+1)
2) auxiliary variables are actually used, the rest

are unconstrained. Note that this does not occur in instance-wise flattening, since con-
stant evaluation reduces expressions of the form ‘false⇒E’ to true before flattening, so E
is never flattened. In the following, we discuss different possibilities of addressing these
redundancies.

117

Figure 5.4: Class Flattening Example: illustrating the four steps in which the constraint
in Example 5.2.3, represented by its expression tree structure, is flattened using Alg. 5.1.
Grey labels represent the quantifier attributes of each node/leaf and the light-blue boxes
contain the constraints resulting from flattening.

Creating a Minimal Auxiliary Array

Ideally, flattening of guarded expressions at class level would use an auxiliary variable
array of minimal length, i.e an auxiliary array that contains the exact number of elements
that are not excluded by the guard. For instance, in the Example 5.3.1 from above, we
would introduce two auxiliary variable arrays, each containing 2(n2 − n(n+1)

2) elements.
Creating an auxiliary array of minimal length requires to first determine the exact number
of expressions that are excluded by the guard, and second, to find a mapping that allows to
properly link the auxiliary array with the flattened expression. These two tasks however,
pose major difficulties.

First, determining the exact number of expressions that are excluded by the guard can be
extremely difficult, since guard and quantification can be arbitrarily complex. Consider,
for instance, quantifications where the guard contains several different quantifiers that can
range over domains that are again scaled by quantifiers, as illustrated in Example 5.3.2. In

118

this example it is difficult to determine the exact number of excluded expressions by the
guard, particularly automatically.

Example 5.3.2. illustrating a complex guarded quantification

f o r a l l i : i n t (1 . . n) .
f o r a l l j : i n t (i . . m) .

(i%n ! = 0) => e x i s t s k : i n t (0 . . j) .
((i+k < j) /\ (k !=i)) /\

(x [i]∗y [j] = z [k])

Second, finding a mapping that allows us to properly link (reify) the auxiliary variable with
the quantified, flattened expression is difficult, even in simple cases like Example 5.3.1: we
know the length of the minimal auxiliary array, which is (n2 − n(n+1)

2), hence we create
two auxiliary variable arrays of that length:

f i n d auxArray0 : matrix indexed by [i n t (1 . . n∗n−(n∗ (n + 1)) / 2)] of i n t (1 . . m∗m)
f i n d auxArray1 : matrix indexed by [i n t (1 . . n∗n−(n∗ (n + 1)) / 2)] of i n t (1 . . m∗m)

The next step is linking each auxiliary variable to the flat expression it represents, i.e.
linking ‘auxArray0’ to ‘x[i]∗x[j]’ and ‘auxArray1’ to ‘y[i]∗y[j]’, respectively. Using the
class-flattening approach described in the previous section, the constraint would be linked
in the following way:

f o r a l l i ,j : i n t (1 . . n) .
(i<j) =>

x [i]∗x [j] = auxArray0 [i+(j−1)∗n]

However, this mapping works only if the array is is not of minimal length, since (i, j)-
assignments that are excluded by the guard are included in the mapping. What we want is
to map the first feasible (i, j)-assignment to the first element of ‘auxArray0’, the second
feasible (i, j)-assignment to the second element of ‘auxArray0’, and so on. Such a mapping
could be formulated in closed form (implicitly) or explicitly. To our knowledge, no implicit
formulation exists. An explicit mapping is an explicit definition of which (i, j)-assignment
is mapped to which auxiliary array index. For illustration, consider again Example 5.3.1
with guard ‘i<j’ where both ‘i’ and ‘j’ range over (1..n) where the explicit mapping can
be summarised as follows:

119

(i, j)-assignment −→ index in ‘auxArray0’
(1,1) ×
(1,2) −→ 1
(1,3) −→ 2

... −→ ...
(1,n) −→ n− 1
(2,1) ×
(2,2) ×
(2,3) −→ n
(2,4) −→ n + 1

... −→ ...
(2,n) −→ 2n− 3
(3,1) ×
(3,2) ×
(3,3) ×
(3,4) −→ 2n− 2

... −→ ...
(3,n) −→ 3n− 5

(n− 1,1) ×
(n− 1,2) ×

... ×
(n− 1,n− 1) ×

(n− 1,n) −→ n2 − n(n+1)
2

(n,1) ×
... ×

(n,n-1) ×
(n,n) ×

However, since the exact value of n is unknown at class level and constraint modelling
languages do not provide appropriate comprehensions, it is not possible to formulate an
explicit mapping.

Using Local Auxiliary Variables

An alternative to minimal arrays is introducing local auxiliary variables for every case
where the Boolean guard holds. Local variables have a limited scope, i.e. they are only
available in the scope of the corresponding quantification. Local variables are common
in programming languages but not very common in constraint languages. For illustration,
consider again Example 5.3.1 where the two subexpressions ‘x[i]∗x[j]’ and ‘y[i]∗y[j]’ can
be flattened to local variables ‘aux0’ and ‘aux1’, as demonstrated in the following excerpt
of a C++ program tailored to solver Gecode:

/ / u s i n g l o c a l a u x i l i a r y v a r i a b l e s ’ aux0 ’ and ’ aux1 ’
f o r (i n t i=1; i<=n ; i++) {

f o r (i n t j=1; j<=n ; j++) {
i f (i<j) {

IntVar aux0 (∗ t h i s , 1 ,m∗m) ;
IntVar aux1 (∗ t h i s , 1 ,m∗m) ;

mult (t h i s , x [i−1] , x [j−1] , aux0 , opt .icl ()) ;

120

mult (t h i s , y [i−1] , y [j−1] , aux1 , opt .icl ()) ;

rel (t h i s , aux0 , IRT_NQ , aux1 , opt .icl ()) ;
}

}
}

Evidently, the local variables will only be created if the guard, ‘i<j’ is true. This is an easy
way to resolve the redundancy problem, however, local variables are not standard in con-
straint modelling languages, nor in constraint solvers. Furthermore, since local variables
have a very restricted scope, they cannot be reused in the case of common subexpressions.
For instance, if subexpression ‘x[i]∗x[j]’ re-occurs in another constraint in the problem
class, it cannot be replaced with the same local variable ‘aux0’. Common subexpression
elimination (Sec. 4.2) can have a huge impact on model performance (see experiments in
Chapter 8) and hence should not be prevented.

The Redundancy in Practice

So far, there is no obvious approach to efficiently tackle redundancies stemming from
guards without extending the constraint modelling language and solver format (e.g. to al-
low comprehensions or local variables) or preventing common subexpression elimination
(local variables). Therefore, we have investigated the actual impact of unconstrained auxil-
iary variables on practical examples. In this empirical analysis (Chapter 8) we observe that
the introduced redundancy only matters if the auxiliary variables are included into search,
otherwise the impact is marginal (for the examples we have considered). This suggests that
the redundancy is negligible as long as auxiliary variables are not searched upon. However,
further investigation of this redundancy is an important part of future work.

5.4 Instance-wise versus Class-wise Tailoring

Typical instance compilation proceeds instance-wise: a class is first merged with a param-
eter specification, yielding an unflattened instance which is then flattened to a flat instance
(see Fig. 5.1 (top) and Chapter 3 for more details). In this chapter (Sec. 5.1) we propose
class-wise compilation, an alternative approach, where first the problem class is tailored to
a flat class, which is then again tailored together with a parameter specification, yielding a
flat instance (Fig. 5.1 (bottom)). Note, that the flat instances from instance- and class-wise
compilation are identical, with certain exceptions (see Sec. 5.3.2). In the following we
investigate the circumstances under which class-wise compilation is preferable to instance-
wise compilation, and vice versa.

Say we want to compile k instances of problem class C. Instance-wise compilation tailors
the class by merging C with a parameter specification and then flattening it k times. Class-

121

wise compilation tailors the class C once and then tailors the instance obtained from pairing
the flat class with a parameter specification, k times. We call n′

i the number of nodes of flat
instance i, n the number of nodes in unflattened class C, and n′ the number of nodes in flat
class C, with n ≤ n′ and n ≤ n′

i.

Proposition 5.4.1. We propose that the preferred compilation process for class C depends
on the kind of parameters that scale C and the number of instances k:

1. First, if C contains no constraint-scaling parameters, every flat instance will have
the same number of nodes as the flat class, i.e. n′=n′

1=...=n′
k. Thus, class-wise

compilation will perform the main tailoring work once, when flattening the class,
while instance-wise tailoring will repeat this work for every instance.

2. Furthermore, if the flat problem class contains more nodes than the unflat problem
class (i.e. n′ > n), then tailoring the class must have applied some effort that can
be saved when tailoring the flat class to an instance. Therefore, we expect class-wise
compilation to be quicker in this case.

3. Finally, in cases where n′ = n, i.e. tailoring the class to a flat class has not changed
the number of nodes (and therefore has not performed any work that can be saved
when tailoring instances), instance-wise tailoring is expected to perform better than
class-wise tailoring. However, the number of tailored instances, k, also plays an
important role: the larger k (i.e. the more instances are flattened), the closer the
performance of class-wise and instance-wise tailoring will become wrt tailoring time.

We test this proposition in an empirical analysis in the following subsection, where we
consider problem classes with different parameter characteristics.

5.4.1 Empirical Analysis

In our empirical analysis we study the differences in instance-wise and class-wise tailoring
on three problem classes that are scaled by parameters in a different way:

1. English Peg Solitaire (state-centric model, taken from [43]) has no constraint-scaling
parameters, i.e. the number of nodes in the flat class is the same as the number of
nodes in every flat instance, hence n′=n′

1=...=n′
k.

2. Balanced Incomplete Block Design (BIBD) (problem 28 from CSPlib [36]) where
n<n′, i.e. the number of nodes in the unflat class is smaller than that of the flattened
class.

3. The Langford Number Problem (problem 24 from CSPlib) where n=n′, i.e. the
number of nodes in the unflat and flattened class are the same.

122

Both BIBD and Langford contain constraint-scaling parameters. Tab. 5.1 gives exact fig-
ures on the differences of n, n′ and ni in each problem class with respect to the parameters.
Note that the instances resulting from both compilation processes are identical (with the
difference that the class-wise compiled instances contain arrays of auxiliary variables in-
stead of single variables).

Problem Class Nodes in unflat class Nodes in flat class Nodes in flat instance i
n n′ n′

i

Peg Solitaire State 30 5,425 5,425

BIBD 2(b+v−1)+
17 20 (b+1)(v2+v)

Langford 5 5 k∗(l−1)+1

Table 5.1: Node Increase by Parameter Values m: #nodes in unflat class, m′: #nodes in
flat class, m′

i: #nodes in flat instance i

We apply both instance- and class-wise compilation on 4 instances of each problem class
and compare the overall compilation time (Tab. 5.2). For tailoring, we use TAILORv0.3.2
on Java REv1.6.0 and tailor all instances/classes on the same machine, a MacBook Pro
1,1 with Intel Dual Core (1.83 GHz) and 512MB RAM. Tab. 5.2 gives an overview of our
results: for each problem class, it shows the tailoring times for class-wise and instance-
wise compilation, showing the times for tailoring the class (first column), followed by the
tailoring times for each instance. In the following, we discuss the results for each class in
more detail and draw conclusions wrt Proposition 5.4.1.

Peg Solitaire (no constraint-scaling parameters) The results for Peg Solitaire confirm
(1) from Proposition 5.4.1: Peg Solitaire contains no constraint-scaling parameters (the
number of nodes of the flat class is the same as the number of nodes in every instance,
see node increase in Tab. 5.1), therefore, when class-wise tailoring first generates a flat
class, it has already performed most of the flattening. This is evident when comparing
the figures for class-wise and instance-wise compilation: tailoring the class takes about
the same time as tailoring the instance in instance-wise tailoring, since all the flattening is
repeated for every instance. These results lead to the conclusion that for problem classes
like Peg Solitaire, which contain no constraint-scaling parameters, class-wise compilation
is preferable to instance-wise compilation wrt tailoring time.

BIBD (n′ > n) BIBD confirms (2) from Proposition 5.4.1: if class tailoring yields a
flat class with more nodes than the initial class (n′ > n), then it has saved tailoring effort
that can be saved when tailoring the instances. This can be observed when comparing the
tailoring times of the different instances: the larger the instance, the higher the benefit in

123

Problem Tailoring Time for (sec)
Class Instance1 Instance 2 Instance 3 Instance 4 Total

Peg Solitaire
class 17.96 6.245 6.235 6.237 6.240 42.917
instance - 17.247 17.227 17.230 17.345 59.049
BIBD
class 0.168 0.335 4.679 9.653 16.875 31.710
instance - 0.306 8.774 19.044 33.222 61.346
Langford
class 0.155 0.196 0.197 0.195 0.197 0.940
instance - 0.196 0.197 0.194 0.197 0.784

Table 5.2: Class-wise vs. Instance-wise Compilation Time with k=4 instances. The first
column (class) shows the time used for tailoring the class; the following columns show the
time for tailoring each of the four instances. The last column gives the total time, where
the faster compilation method is highlighted in bold face.

class-wise tailoring (for the smallest instance, Instance1, the tailoring times are the same,
while for the largest instance, tailoring the flat class takes half the time than tailoring the
unflat class).

Langford (n′ = n) In the Langford Number Problem, first tailoring the unflat class to a
flat class saves no tailoring effort, since the nodes are the same in the unflat and flat class
(n′ = n). Therefore, the results for Langford confirms (3) from Proposition 5.4.1, stating
that instance-wise compilation is preferable in such cases: instance-wise compilation is
quicker by the time that class-wise compilation invests into first flattening the class. Fur-
thermore, note, that with increasing k (i.e. the more instances we tailor) the smaller the
difference between class-wise and instance-wise tailoring becomes.

Summary

In summary, our empirical analysis has provided some confirmation of our proposition as
to when class-wise compilation is preferable to instance-wise compilation and vice versa.
However, this study was performed only on a small selection of problems and a sound evi-
dence of the correctness of our proposition requires a more substantial empirical analysis,
involving more problem classes, which is another item of our future work. Note that it is
difficult to perform a theoretical analysis of this matter, since the tailoring process (of both
instances and classes) depends on many factors, which includes the parameter properties
of a problem class, so it is difficult to make a general, clear statement.

In summary, our observations are valuable and suggest that class-wise compilation is an
interesting and competitive alternative to instance-wise compilation from which we expect
promising results in future work.

124

5.5 Summary

In this chapter we proposed a novel tailoring approach: tailoring problems as classes as
an alternative to tailoring instance-wise. Tailoring classes can be used in two different
contexts: first, to target library-based solvers, where problems are formulated as programs
and parameters can be specified during runtime. In this way, the tailored ‘class program’
can be reused for each instance.

Second, tailoring classes can also be used to tailor problems to instances by class-wise
tailoring. Class-wise tailoring takes a problem class and tailors it to a flat format, corre-
sponding to the target solver. Then the flat problem class is used to tailor instance-wise.
We have shown that if the problem class contains particular kinds of parameters, then class-
wise tailoring is faster than the standard approach of instance-wise tailoring.

Tailoring classes however still has limitations. In particular, the redundancies introduced
by constant Boolean guards, in form of unconstrained auxiliary variables. So far, we do
not know how to completely overcome this redundancy, however, our experiments have
showed that the negative impact is marginal.

In summary, tailoring classes is an interesting and competitive alternative approach to tai-
loring instances that we expect to be a promising candidate in future work.

CHAPTER 6

CLASS OPTIMISATIONS

In this chapter, we discuss how to automatically enhance problem classes during class-wise
tailoring. More specifically, we consider the optimisation techniques from instance level
(Chapter 4) and discuss them at class level.

Performing enhancements at class-level is particularly practical, where an improvement af-
fects all instances that are drawn from the class (as opposed to instance-wise enhancement
in Chapter 4 where the enhancement of a particular instance has to be repeated for every
other instance). This is an important issue, especially since many enhancements are not
dependent on one particular instance, but can be performed in general, for every instance,
by applying them to the problem class. For example, if the instance i1, drawn from problem
class p, contains common subexpressions, then another instance i2 drawn from p will most
likely also contain common subexpressions. Hence, eliminating the common subexpres-
sions in the class p will positively affect both i1 and i2 (and all other instances drawn from
p). Since class-level enhancements positively affect the whole set of instances drawn from
the class, we can invest far more effort and time into enhancement than at instance level.

The main contributions of this chapter are the following. First, we discuss the elimination
of redundant constraints at class level. More specifically, we propose an algorithm to elim-
inate duplicate constraints that arise from weak guards by exploiting unification. This is a
novel approach in order to strengthen weak guards that arise in problem models of inex-
perienced modellers. Second, we consider the elimination of common subexpressions at
class level where we highlight the main challenges in detecting the same set of common
subexpressions that we can detect at instance level. We propose three different CSE ap-
proaches, each comprising particular benefits and drawbacks, each tackling (some of) the
challenges in different ways. In particular, we discuss the challenge of detecting shifted
common subexpressions that are particularly hard to detect at class level if the detection is
supposed to be performed using little computational effort. However, the third approach we
propose can address this challenge and therefore represents the most promising candidate
for class-level CSE.

In the general area of constraints, little research has been done on enhancing whole prob-

125

126

lems classes. Charnley et al [18] automatically infer implied constraints (see Sec. 4.1.1
for more details), which unfortunately is only applicable to simple problem classes. The
aim of enhancing a whole problem class is challenging and this Chapter contains a lot of
unanswered questions that we want to investigate in future work.

The chapter is structured similarly to Chapter 4 that deals with instance enhancements:
First, we discuss the elimination of redundant constraints, in particular duplicate constraints
(Sec. 6.1), Second, we discuss the issue of common subexpression elimination at class level
in Sec. 6.2. Note, that the quantifier optimisations, as discussed at instance level (Sec. 4.6),
are directly applicable to class level (since they performed on quantifications when they are
not yet unrolled) and hence require no further discussion at class level. A quick summary
wraps up and concludes in Sec. 6.3.

6.1 Eliminating Redundant Constraints

A constraint is called redundant, if the set of solutions is unchanged by its addition to or
removal from a model and the constraint has no effect on the solving procedure in terms
of propagation (as opposed to implied constraints with which propagation improves). At
instance level, we have seen that constraint instances can contain redundant constraints, in
particular duplicate constraints, stemming from weak constant Boolean guards (Sec. 4.5.1).
In the following we discuss how to tackle duplicate constraints at class level.

6.1.1 Eliminating Duplicate Constraints by Unification

The technique of removing duplicate constraints at instance level is directly applicable to
class level. However, at class level, most quantifications are not unrollable and the Boolean
guards are not evaluable, since they contain either parameter expressions or quantifying
variables that are not specified at class level. As an example, consider the naive n-Queens
problem class [57] model in Example 6.1.1 below:

Example 6.1.1. Naive n-Queens Problem Class

g iven n : i n t (1 . .)
f i n d queens : matrix indexed by [i n t (1 . . n)] of i n t (1 . . n)

such t h a t
$ (1) no two queens i n t h e same row $
a l l d i f f e r e n t (queens) ,

$ (2) no two queens on t h e same NW−SE d i a g o n a l $
f o r a l l i ,j : i n t (1 . . n) .

(i != j) => (queens [i] + i != queens [j]+ j) ,

$ (3) no two queens on t h e same NE−SW d i a g o n a l $

127

f o r a l l i ,j : i n t (1 . . n) .
(i != j) => (queens [i] − i != queens [j]− j)

Consider the second constraint that restricts the NW-SE diagonal to contain only one queen.
At class level, n is not specified, so the loop cannot be unrolled. However, when unrolled,
the resulting set of constraints will contain duplicate constraints of the form

queen [1] + 1 != queen [2] + 2 ,
queen [2] + 2 != queen [1] + 1 ,
. . .

At instance level, ordering the unrolled constraints facilitated the detection of duplicates
(which are placed next to another), so they can easily be eliminated (Sec. 4.5.1). However,
at class level, duplicate constraints can only be eliminated by analysing and strengthening
the guard. For illustration, the redundancy in Example 6.1.1 can be prevented by strength-
ening the guard, ‘(i!=j)’ to ‘(i<j)’. In the following we discuss one possible approach to
strengthen guards in quantifications, which exploits unification.

Unification is a means to find substitutions that make different logical expressions equiv-
alent [69]. Unification is applied through the UNIFY algorithm that, given two logical sen-
tenses E1 and E2, returns a unifier u (if one exists)

UNIFY(E1, E2) = u where SUBST(u, E1) = SUBST(u, E2)

where SUBST(u, E) denotes the result of applying the substitution u to E. As an example,
consider the two expressions (x + i) and (x + 3) that have the unifier u = {3/i}, i.e. if i
is substitued with (i.e. assigned) 3, then both expressions are equivalent. Unification is a
powerful concept that is applied in logic programming languages, like Prolog [75].

Exploiting Unification

We can exploit unification to eliminate duplicate constraints in the following way: we start
with a quantification of the form

∀I : D.BI ⇒ EI

where I = {i1, ..., im} is a non-empty set of quantifiers, D denotes a finite integral quanti-
fying domain, BI is a Boolean guard and EI is the guarded expression, where both BI and
EI are quantified over (a subset of) I . Note, that expression EI is represented as expression
tree. This quantification is input to STRENGTHEN GUARD, which is informally outlined
below:

128

STRENGTHEN GUARD(∀I : D.BI ⇒ EI)

1. If EI’s root node corresponds to a binary commutative operator, goto 2. otherwise
stop.

2. Compute the set of unifiers U for the two children of EI , e1 and e2.
3. Search U for unifiers from which we can deduce equivalence of the quantifying vari-

ables. For instance, if two unifiers u1 and u2 are of the form u1 = {ik/il} and
u2 = {il/ik} where l, k ∈ {1..m} and l %= k, then we can deduce that if ik = il then
e1 and e2 are equivalent. If successful, goto 4, otherwise stop.

4. Add two conditions to the guard in order to break the equivalence in case ik = il:
first, the restriction ¬(ik = il) to break the equivalence; second, a lexicographical
ordering constraint to break the symmetry stemming from the commutative operator:
(ik ≤ il), (or (il ≤ ik), depending on the order). Note, that the lexicographical
ordering constraint has to follow a well-defined order in a consistent fashion.

Simple Example: Naive n-Queens For illustration, consider again the excerpt from the
n-queens problem class above, where the guarded expression EI corresponds to

Ei,j ≡ (queens[i] + i %= queens[j] + j)

whose root node is ’%=’, a binary commutative operator (step 1). Hence, we compute the
unifiers for the two subtrees (queens[i] + i) and (queens[j] + j) (step 2), which are u1 =
{i/j} and u2 = {j/i} since (queens[i]+ i) is equivalent to (queens[j]+j) if i is substitued
by j or vice versa. Therefore, we deduce that (i %= j) and (i ≤ j) (step 3) and add (i ≤ j)
to the Boolean guard (step 4), yielding:

f o r a l l i ,j : i n t (1 . . n) .
((i !=j) /\ (i<=j)) => (queen [i]+1 != queen [j]+j)

Advanced Example: Golomb Ruler For an advanced example, we consider an excerpt
of a naive Golomb Ruler model [77] that expresses the distinct distances between all ticks:

f o r a l l i1 ,i2 ,i3 ,i4 : i n t (1 . . ticks) .

((i1 > i2) /\ (i3 > i4) /\ (i2 !=i4)) =>

(ruler [i1] − ruler [i2] != ruler [i3] − ruler [i4])

The Boolean guard is weak, since it will result in duplicate constraints after unrolling the
quantification:

(ruler [1] − ruler [2] != ruler [1] − ruler [3]) ,
(ruler [1] − ruler [3] != ruler [1] − ruler [2]) ,

. . .

129

Hence, we can apply unification in order to determine a stronger guard that prevents du-
plicate constraints: First, we compute the set of unifiers for (ruler[i1] − ruler[i2]) and
(ruler[i3]− ruler[i4]) since ‘%=’ is a commutative operator. There are four unifiers:

u1 = {i1/i3 ∧ i2/i4}
u2 = {i3/i1 ∧ i4/i2}
u3 = {i3/i1 ∧ i2/i4}
u4 = {i1/i3 ∧ i4/i2}

From these unifiers we can deduce that (ruler[i1]− ruler[i2]) is equivalent to (ruler[i3]−
ruler[i4]) if (i1 = i3) ∧ (i2 = i4). Therefore, we need to add two restrictions to the guard:

1. The negation of (i1 = i3) ∧ (i2 = i4), i.e. (i1 %= i3) ∨ (i2 %= i4)

2. Lexicographic constraints over the equivalent quantifying variables in order to break
the symmetry of ‘%=’, i.e. (i1 ≤ i3) and (i2 ≤ i4).

In summary, we get the enhanced quantification:

f o r a l l i1 ,i2 ,i3 ,i4 : i n t (1 . . ticks) .

((i1 > i2) /\ (i3 > i4) /\ (i2 !=i4) /\
((i1 !=i3) \ / (i2 !=i4)) /\ (i1 <= i3) /\ (i2 <= i4)) =>

(ruler [i1] − ruler [i2] != ruler [i3] − ruler [i4])

Note that this approach can be extended to all quantifications that contain a quantified
commutative expression (and hence can be used to generate guards, if necessary). An
empirical investigation of eliminating duplicate constraints in n-Queens and the Golomb
Ruler problem is given in our experimental chapter, in Sec. 4.5.1, where we observe that
eliminating duplicates can reduce solving time by half.

In summary, we have seen that unification can be exploited so as to strengthen guards in
quantifications in order to prevent duplicate constraints in the instance after unrolling the
respective quantification. A more thorough and more formal investigation of this approach
as well as an implementation are important items of future work.

6.2 Common Subexpression Elimination (CSE)

Common subexpression elimination (CSE) at class level is very similar to CSE at instance
level. For illustration, consider the quantification from the excerpt from a naive n-queens
model [57] in Example 6.1.1, stating that no two queens may be positioned in the same
NW-SE diagonal:

130

f o r a l l i ,j : i n t (1 . . n) .
(i < j) => (queens [i] + i != queens [j]+ j)

The subexpressions ‘queens[i] + i’ and ‘queens[j]+ j’ are equivalent, and should hence be
eliminated by using the same auxiliary variable array during flattening, as illustrated below:

f o r a l l i : i n t (1 . . n) .
auxArray [i] = queens [i] + i ,

f o r a l l i ,j : i n t (1 . . n) .
(i < j) => auxArray [i] != auxArray [j]

CSE from instance level (Sec. 4.2) will not detect this equivalence, since it only matches
expressions that are identical, which ‘queens[i] + i’ and ‘queens[j]+ j’ are not. Therefore,
we need to extend the detection mechanism from instance level so as to detect equivalences
between quantified subexpressions at class level.

The detection at class level has to be done with care, since equivalence of two subexpres-
sions depends on the domains of the quantifying variables. Consider, for example, the
two subexpressions ‘x[i]∗y[i]’ and ‘x[i]∗y[i]’ that occur in different constraints. They are
identical, but since i might range over different domains in the constraints, they are not
necessarily equivalent. Furthermore, two quantified nodes ‘x[i]∗y[i]’ and ‘x[j]∗y[j]’ are
equivalent if quantifying variables ‘i’ and ‘j’ range over the same domain. Therefore, we
need to adapt the hashmap checks from instance level so as to match the right cases with
respect to the quantifying domain. This can be achieved in different ways. In the follow-
ing, we explore three different possible approaches, each with particular advantages and
drawbacks.

6.2.1 Approach 1: Quantification Normalisation

The first approach exploits normalisation of quantifications in order to detect common
subexpressions. First, quantifiers are normalised (prior to flattening) by renaming quan-
tifiers and creating a hash-table of all those quantifiers that range over the same quantify-
ing domain. Second, this hash-table is employed during flattening where to-be-flattened
subexpressions are reformulated according to common quantifiers.

Quantification Normalisation

The normalisation of quantifiers has two aims: first, renaming quantifiers that range over
the same domain so as to render them identical. For instance, consider the two quantifica-
tions

f o r a l l i : i n t (1 . . n) . x [i] != i ,

131

f o r a l l j : i n t (1 . . n) . x [j] != y [j]

where both ‘i’ and ‘j’ range over ‘ (1.. n)’, and normalisation renames ‘j’ into ‘i’, yielding
two identical subexpressions ‘x[i]’.

f o r a l l i : i n t (1 . . n) . x [i] != i ,

f o r a l l i : i n t (1 . . n) . x [i] != y [i]

The second aim is to rename all quantifying variables that occur elsewhere in the problem
class, ranging over a different domain. As an example, in

f o r a l l s : i n t (0 . . n) . x [s] != s ,

f o r a l l s : i n t (1 . . n−1) .
f o r a l l j : i n t (0 . . m) . x [s] < y [j]+1

quantifier ‘s’ ranges over different domains and is hence the latter occurrence is renamed:
f o r a l l s : i n t (0 . . n) . x [s] != s ,

f o r a l l s1 : i n t (1 . . n−1) .
f o r a l l j : i n t (0 . . m) . x [s1] < y [j]+1

The third aim is to store all quantifying variables that range over the same domain, but
which cannot be renamed. We denote such quantifying variables common quantifying vari-
ables. For illustration, consider the excerpt of the n-queens problem class (Example 6.1.1)
again, where the quantifying variables ‘i’ and ‘j’ are common since they range over the
same domain, ‘ int (1.. n)’, but which cannot be renamed:

f o r a l l i ,j : i n t (1 . . n) .
(i < j) => (queens [i] + i != queens [j]+ j)

During normalisation, a hash-table is created that stores all common quantifying variables
by mapping the quantifying domain to a list of the respective common quantifying vari-
ables. In he example above, the hash-table have an entry ‘ int (1.. n)’ −→ ‘[i,j]’.

An Algorithm for Normalisation Quantifier Normalisation can be achieved by iterating
once over all constraints/subexpressions in the constraint model while collecting/matching
quantifiers and their domains. The algorithm NORMALISE Q(L) takes a list of constraints
L where each quantification q in every constraint c is normalised.

NORMALISE Q(L)

1. create empty hash-table H

132

2. create an empty list Q

3. for each constraint c in list L
for each quantification q in constraint c
for each quantifying variable i in quantification q

(a) if i’s domain D has an entry in the hashmap, obtain the m common quantifiers
j1, . . . , jm and iterate over them:

i. if i and jk are not in the same scope (with 1 ≤ k ≤ m) rename i to jk.
ii. otherwise, if all m common quantifiers are in the same scope (i.e. i cannot

be renamed) add i to the list of quantifiers, Q, and add an entry to hash-
table H of the form D −→ [j1, . . . jm, i].

(b) otherwise
i. if the list of quantifiers, Q, contains a quantifier of the same name as i, then

iteratively rename i to it (where t is an integer, starting from 0) until it has
no other entry in Q. Then add it to Q and add the mapping D −→ [it] to
hash-table H .

ii. otherwise add i to the list of quantifiers Q and add a mapping from i’s
domain D to i of the form D −→ [i] into hash-table H .

Eliminating Common Subexpressions Using Common Quantifying Variables

After normalising quantifiers as described above, the following statements hold for every
normalised problem class:

• For every quantifier i in the problem class, there exists no other quantifier named i
that ranges over a different domain

• If two quantifiers i and j (where i %= j) range over the same domain D, then there is
an entry in the quantifier list of the form D −→ [i, j]

• There exist no two quantifying variables i and j where i and j are in different scopes
and range over the same domain.

Therefore, when flattening a quantified subexpression E that is quantified by variables
i1, . . . , in , we know that any equivalent expression outside E’s scope (equivalent wrt the
quantifying variables) is identical and can hence be matched using the hash-table approach
from instance level. Furthermore, we know that any equivalent expression inside E’s scope
(equivalent wrt the quantifying variables) can be detected by renaming E’s quantifying
variables to the names of their common quantifying variables that are obtained from hash-
table H . Hence, we extend the recursive algorithm FLATTEN CLASS (Alg. 5.1) to algo-
rithm FLATTEN CLASS CSE1 (E,bool) that performs the following additional operations:

FLATTEN CLASS CSE1 (E,bool)
for each subtree e of E

133

1. if e has a common subexpression in the hash-table, replace e with the respective
auxiliary variable aux, otherwise goto 2

2. if e has no common subexpression in the hash-table, and e is quantified by quantify-
ing variables i1, . . . , in goto 3, otherwise goto 4.

3. for each quantifying variable ik that quantifies e (where 1 ≤ k ≤ n):

(a) retrieve the list of common quantifiers L of ik from the common quantifiers
hash-table H .

(b) if L is empty, stop. Otherwise iterate over the list of common quantifiers
j1, . . . , jm:

i. replace every occurrence of i with jl (1 ≤ l ≤ m) in e, yielding e′ and
check for a common subexpression of e′.

ii. if successful, retrieve the corresponding auxiliary variable and use it for e
and return.

4. flatten e to an auxiliary variable aux and replace e with aux and return.

Summary

In summary, the first approach performs two essential steps: first, quantifiers are normalised
so that every quantifying variable is unique and common quantifying variables (i.e. those
that range over the same domain) are stored in a hash-table. The second step is the ex-
ploitation of the hash-table when flattening a subexpression e: Whenever a subexpression e
is flattened, the list of common quantifiers is used in order to reformulate e with a common
quantifier in order to match identical subexpressions. This approach is easy to implement
but can be very impractical if the number of equivalent quantifiers is very high: performing
normalisation and checking all possible combinations of common quantifiers in a subex-
pression can be quite expensive. Therefore, we want to investigate alternative approaches
that reduce the detection effort.

6.2.2 Approach 2: Label and Domain Representation

The second approach is to represent quantifying variables by their underlying domain to-
gether with a label, which does not require any quantifier normalisation or common quan-
tifier hashmaps.

Domain Representation Since the hashmap of subexpressions contains expressions in
String format, one possibility is to replace every quantified variable identifier with its re-
spective domain in the String representation of every expression (following a specific syn-
tax to avoid conflicts with index domains). Then, in a hash-table check, the actual domains

134

of the quantifying variables are compared, and not the corresponding identifiers. For in-
stance, consider the quantification
f o r a l l i : i n t (1 . . n) .

f o r a l l j : i n t (0 . . m) .
x [i] mod n != y [j] mod m

When flattening ‘x[i] mod n’, its String representation in the hashmap is ‘x [{1..n}] mod n’.
Similarly, ‘y[j] mod m’ is stored as ‘y [{0..m}] mod m’.

Note, however, that this introduces another ambiguity: the ambiguity of dimensions. For
illustration, consider representing the two nodes ‘x[i]∗y[i]’ and ‘x[i]∗y[j]’, where the first
is quantified over one variable and the second over two variables. If ‘i’ and ‘j’ are quanti-
fied over the same domain ‘ 1..n’, then both would be represented by the same expression
‘x [{1..n}]∗y[{1..n}]’, but they are not equivalent. The difference between both expressions
can be detected by comparing their dimensions, however, we would require two entries in
the hashmap that have an identical key:

x [i]∗y [i] −−−> aux1 [i]
x [i]∗y [j] −−−> aux2 [i+j∗n]

It is not possible (and not useful) to have identical keys in a hashmap - one will overwrite
the other: if a map expr→ aux1 is added to the hashmap where there is already another
map expr→ value2, then adding the first map will delete the second. In summary, it is not
possible to just represent quantifying variables simply by their range.

Introducing Labels for Quantifying Variables However, it is possible to represent the
quantifying variables with their range and an additional label that represents the quantifier.
The labels are used to distinguish different quantifiers that range over the same quantifying
domain and are given according to the lexicographical order of the quantifying variables.
As an example, consider the following quantification:

f o r a l l i ,j : i n t (1 . . n) .
f o r a l l k : i n t (0 . . m) .

x [i] + y [k] != z [i ,j]

where the subexpressions of ‘x[i] + y[k] != z[i,j]’ would be represented by

‘x[i]’ −→ x[{1..n}:1]
‘y[k]’ −→ y[{0..m}:1]
‘z[i,j]’ −→ z[{1..n}:1,{1..n}:2]

where the boldfaced numbers represent the labels of the quantifiers. In this way, the actual
identifier representing a domain does no longer matter. However, this representation does
not consider all possibilities, since the labels might be enumerated differently, but still
represent an equivalent expression. For instance, consider:

135

‘z[i,j]’ −→ z[{1..n}:1,{1..n}:2]
‘z[b,a]’ −→ z[{1..n}:2,{1..n}:1]

Since the quantifying variables are labelled lexicographically, ‘i’ is labelled 1 and quanti-
fier ‘j’ labelled 2, however, ‘b’ is labelled 2 and quantifier ‘a’ labelled 1, therefore ‘z[i,j]’
and ‘z[b,a]’ are not matched even though they are equivalent. Hence, it is necessary to
compare all permutations of labels for common subexpressions during flattening, if the
first match is not successful.

CSE using Label and Domain Representation

Representing a quantified subexpression by its domain and adding a label for each quanti-
fying variable according to the lexicographical order of the quantifiers is easily done and
requires no formal algorithm. However, we informally describe the CSE approach using
the label and domain representation with algorithm FLATTEN CLASS CSE2 that is based
on FLATTEN CLASS (Alg. 5.1) and recursively flattens a subexpression E:

FLATTEN CLASS CSE2 (E,bool)

1. for each subtree e of E

(a) if e has a common subexpression in the hash-table, replace e with the respective
auxiliary variable aux, otherwise goto (b)

(b) if e is quantified such that the set of labels L has more than one element, goto
(c), otherwise goto (d).

(c) for each permutation p of the set of labels:

i. rename all labels according to permutation p, yielding expression e′

ii. check for a common subexpression of e′ in the hash-table.
iii. if successful, retrieve the corresponding auxiliary variable and use it for e

and stop.

(d) call FLATTEN CLASS CSE2 (e, true) which returns auxiliary variable aux

(e) replace e with aux and stop.

2. if bool is true, reify E to auxiliary variable aux and return aux, otherwise return E

The recursive algorithm FLATTEN CLASS CSE2 performs permutations of labels in or-
der to match common subexpressions that are not identical because quantifiers have been
labelled differently. Note that though this approach avoids normalisation, it can add signif-
icant overhead through the label permutations.

136

Summary

In summary, the second approach replaces quantifying variables by their respective domain
in their String representation, together with a label to avoid ambiguities. This String rep-
resentation renders quantification normalisation unnecessary, but still requires reformula-
tions during flattening in order to detect all equivalent cases wrt the quantifying variables.
Furthermore, both Approach 1 and Approach 2 cannot detect a certain kind of common
subexpressions that instance-level CSE does detect: shifted common subexpressions.

6.2.3 Shifted Common Subexpressions

Approach 1 and Approach 2 do not detect all common subexpressions that instance-wise
flattening detects: they cannot detect shifted common subexpressions. As an example,
consider the following constraint

f o r a l l i : i n t (1 . . n−1) .
x [i] mod n + x [i+1] mod n = 1

that contains the shifted common subexpressions ‘x[i] mod n’ and ‘x[i+1] mod n’ which are
identical in different ‘iterations’ of the quantifications (if n > 2). Note, that at instance
level, we detect these common subexpressions when the quantification is unrolled:

x [1] mod 10 + x [2] mod 10 = 1 ,
x [2] mod 10 + x [3] mod 10 = 1 ,
x [3] mod 10 + x [4] mod 10 = 1 ,
. . .

and are then matched accordingly:

aux1 <=> x [1] mod 10 , aux2 <=> x [2] mod 10 ,
aux3 <=> x [3] mod 10 , aux4 <=> x [4] mod 10 ,
. . .
aux1 + aux2 = 1 ,
aux2 + aux3 = 1 ,
aux3 + aux4 = 1 ,
. . .

At class level, the shifted common subexpressions can be eliminated by using the same
auxiliary array for both subexpressions, since they share subexpressions for n > 2:

f o r a l l i : i n t (1 . . n−1) .
auxArray [i] + auxArray [i+1] = 1 ,

f o r a l l i : i n t (1 . . n) .
auxArray [i] = x [i] mod n ,

137

Shifted Common Subexpressions in Approach 1 and 2

Using either Approach 1 or Approach 2, the shifted common subexpressions are not de-
tected in the example above and the quantification is flattened using two different auxiliary
arrays for ‘x[i] mod n’ and ‘x[i+1] mod n’:

f o r a l l i : i n t (1 . . n−1) .
auxArray0 [i] + auxArray1 [i+1] = 1 ,

f o r a l l i : i n t (1 . . n−1) .
auxArray0 [i] = x [i] mod n ,

f o r a l l i : i n t (1 . . n−1) .
auxArray1 [i] = x [i+1] mod n

The equivalence of both subexpressions is not detected since the expressions are com-
pared in String format, in which they differ: in Approach 1, ‘x[i] mod n’ is compared with
‘x[i+1] mod n’. In Approach 2 ‘x[{1..n− 1}:1] mod n’ is compared with ‘x[{1..n− 1}:1 +
1] mod n’. In order to detect shifted common subexpressions, it is necessary to either alter
the String representation or reason over it.

Detecting Shifted Common Subexpressions

One approach to detecting this equivalence consists of two steps. First, we neend to con-
sider the quantifying domains with respect to the array dereference. This requires us to
include arithmetic operators that are applied to the quantifying variable(s) in an array deref-
erence into the quantifying domain. For instance, including the constant factor ‘+1’ into the
quantifying domain of ‘i’ would result in the following:

‘x[i] mod n’ −→ x[{1..n− 1}:1] mod n
‘x[i+1] mod n’ −→ x[{2..n}:1] mod n

Using this representation, it is easier to detect the shifted common subexpressions by com-
paring the two quantifying domains, since {1..n−1}∩{2..n} %= ∅ forall n > 2. Hence, the
second step performs advanced reasoning over expressions that have the same tree struc-
ture but differ in terms of their quantifying domains: if their quantifying domains have a
non-empty disjoint set, then both subexpressions can be represented with the same aux-
iliary variable array. The length of the auxiliary variable array has to be adapted to both
subexpressions, where the number of elements is defined as the cardinality of the union of
both domains. For instance, in the example above, ‘auxArray’ has n elements since the
domain union is {1..n− 1} ∪{ 2..n} = {1..n} whose cardinality is |{1..n}| = n.

Obviously, the String hash-table cannot perform this sort of reasoning, so a new datastruc-
ture is necessary that can perform reasoning and comparison of domains in an efficient

138

manner. A thorough investigation of possible candidates for such a datastructure was un-
fortunately out of scope of this work and is an item of future work. However, we propose
another, alternative approach on how to represent expressions as Strings that covers the
case of shifted common subexpressions by approximating array dereferences.

6.2.4 Approach 3: Approximating Array Dereferences

The main detection difficulty of shifted common subexpressions lies within the compari-
son of expressions where quantifying variables dereference arrays. The third approach is
based on a simple observation about quantified array dereferences: if an array is derefer-
enced by a quantifying variable, it usually involves (part of) the same domain: the index
domain. Therefore, we perform a generalisation by representing each quantifying variable
that dereferences a dimension in an array with a simple blank ‘ ’, as illustrated below

‘x[i]’ −→ x[]
‘x[k]+z[i,2]’ −→ x[] + y[,2]
‘z[i,j]’ −→ z[,]

In this way, we match expressions of the same dimension, i.e. we do not match ‘z[j,i]’
with ‘z[j,2]’, but would match it with ‘z[a,b]’ (if ‘a,b,i,j’ are all quantifying variables).
Evidently, this also renders subexpressions common that are not equivalent. For instance,
the two occurrences of ‘x[i] mod n’ are not common in the example below

g iven n : i n t (1 . .)
f i n d x : matrix indexed by [i n t (1 . . n)] of i n t (1 . . n)

such t h a t

f o r a l l i : i n t (1 . . n /2−1) .
x [i] mod n <= n / 2 ,

f o r a l l i : i n t (n / 2 . . n) .
x [i] mod n >= n / 2

since in the first quantification, ‘i’ ranges over a different domain than in the second quan-
tification. However, we always know, that both ranges of ‘i’ are a subdomain of the index
domain of the respective variable, ‘x’, which is ‘ int (1.. n)’1. If the two subdomains over-
lap, then the two expressions share subexpressions. Therefore, it is feasible to flatten both
subexpression, using the same auxiliary variable array that is defined over the whole index
domain:

g iven n : i n t (1 . .)
f i n d x : matrix indexed by [i n t (1 . . n)] of i n t (1 . . n)
f i n d aux : matrix indexed by [i n t (1 . . n)] of i n t (0 . . n−1)

1We assume that the problem model is formulated correctly and no index is out of bounds

139

such t h a t
f o r a l l i : i n t (1 . . n) .

aux [i] = x [i] mod n ,

f o r a l l i : i n t (1 . . n /2−1) .
aux [i] <= n / 2 ,

f o r a l l i : i n t (n / 2 . . n) .
aux [i] >= n / 2

CSE with Approximated Array Dereferences

CSE using String representations of expressions that approximate the array dereferences
is very similar to instance CSE, with the slight differences that auxiliary arrays can be
iteratively extended.

For illustration consider flattening the example above: first, the subexpression ‘x[i] mod n’
is flattened to the auxiliary array ‘aux’ that has length n

2 − 1:

f i n d aux : matrix indexed by [i n t (1 . . n /2−1)] of i n t (0 . . n /2−2)
f o r a l l i : i n t (1 . . n / 2 −1) .

aux [i] = x [i] mod n ,

The expression ‘x[i] mod n’ is added to the hash-table: where its String format ‘x[_] mod n’
is linked to ‘aux’. Next, when flattening the second quantification, the other occcurence of
‘x[i+1] mod n’ is flattened: when consulting the hash-table with its String format, ‘x[_] mod n’,
the hash-table returns a match, which is ‘aux’.

In the next step, ‘aux’ is extended so as to be used for the other subexpression: first, the
union of both quantifying domains, D, is computed by D = {1..n/2 − 1} ∪ {n/2..n} =
{1..n}, which defines the new length of ‘aux’. Similarily, the new domain of ‘aux’ is com-
puted: quantifying the subexpression ‘x[i] mod n’ over D and computing the corresponding
lower- and upper-bound attributes, which yields ‘ int (0.. n−1)’:

f i n d aux : matrix indexed by [i n t (1 . . n)] of i n t (0 . . n−1)
f o r a l l i : i n t (1 . . n) .

aux [i] = x [i] mod n ,

Obviously, if two matched subexpressions are quantified over the domains D1 and D2

respectively, then both subexpressions share exactly |D1 ∩D2| common subexpressions.
Note, that this iterative detection technique is confluent due to the commutativity of ∪: it
does not matter if we first construct the auxiliary array from D2 or D1 and then merge it,
since D1 ∪D2 ≡ D2 ∪D1.

However, if the union of the two domains D1 and D2 has a hole, then the gap has to be

140

filled, which introduces unconstrained auxiliary variables. This is the main drawback of
this approach.

Summary

In summary, Approach 3 is a light-weight iterative CSE approach that also detects shifted
common subexpressions. Under the assumption that no array is indexed out of bounds,
it generalises array dereferences, knowing that all references from quantifying variables
have to be a subset of the underlying index domain. Therefore, subexpressions that are not
necessary equivalent are matched by this approximation, and in the worst case, Approach
3 can add redundancies in form of unconstrained auxiliary variables. This case however,
rarely occurs in practical examples.

6.2.5 Summary: CSE at Class Level

In this section we have seen that the basic approach of CSE at instance level is directly
applicable at class level. However, there are many kinds of common subexpressions that
the instance-level approach does not detect at class level, hence, it has to be extended so as
to match these cases.

In this section we have presented three approaches to extend the basic CSE approach from
instance level. The first approach applies special quantification normalisations and main-
tains a hash-table of common quantifiers that is exploited during flattening, where quan-
tifying variables are renamed in order to match equivalent subexpressions. This approach
can be quite expensive, in particular when the number of quantifying variables in the same
scope is high.

The second approach uses an alternative String representation for quantified variables in the
CS hash-table: quantifying variables are represented with their underlying domain, together
with labels (introduced lexicographically) to avoid normalisation. In this approach, the
actual domains of quantifying variables are compared and not the respective identifier.
While this approach is more time-efficient than Approach 1, it still requires reformulation
during flattening in order to detect common subexpressions that stem from a permutation
of labels.

Furthermore, Approach 1 and Approach 2 cannot detect shifted common subexpressions,
which are expressions that are equivalent in different ‘iterations’ of a quantification. This
equivalence can only be detected by performing additional reasoning on the quantifying
domain. Eliminating shifted CS can be achieved by either (1) additional reasoning over the
domains which requires either a data structure other than a simple String-based hash-table,
or (2) applying another, alternative approach, Approach 3, that approximates dereferences
of arrays.

141

Approach 3 is a simple approach, where array dereferences involving quantifying variables
are replaced by a blank, assuming that the array dereference will lie in the range of the index
domain of the respective array variable. Following this assumption, all array variables that
are dereferenced are considered equivalent. This assumption allows us to detect shifted
common subexpressions, however, in the worst case, can result in unconstrained auxiliary
variables. Note, that the worst case hardly appears in practice and therefore Approach 3 is
an interesting alternative to Approach 1 and Approach 2.

To conclude, this section has highlighted and studied the difficulties that arise when at-
tempting to eliminate all CS at class level that we eliminate at instance level. Three possible
approaches are outlined, each of which comprises advantages and drawbacks. A complex-
ity study and an empirical analysis of all three approaches is an item of future work.

6.3 Summary

We have seen that all enhancement techniques from instance level are relevant at class level.
Moreover, we have seen that lifting instance enhancement techniques to class level creates
many challenges that need to be met.

The first challenge we investigated is that of strengthening weak Boolean guards in quan-
tifications to avoid duplicate constraints. Weak guards often arise in models form inexperi-
enced users and in our empirical evaluation, we have observed that duplicates can increase
the solving performance by 100% in some examples. At instance level, duplicates can be
simply eliminated by help of normalisation which places identical constraints next to an-
other. However, at class level quantifications cannot be unrolled, hence it is necessary to
reason over the guard and the guarded expression. Thus, we proposed an approach that
exploits unification in order to strengthen a guard and which is applicable to any kind of
quantified, commutative expression. This approach can easily derive all conditions that
need to be included into the guard so as to prevent duplicate constraints.

The second challenge we addressed is that of common subexpression elimination at class
level. Though CSE as proposed at instance level is directly applicable at class level, there
are many kinds of common subexpression it cannot detect that are detected at instance level.
The reason for this is that at class level we deal with quantified expressions that cannot be
unrolled. Therefore, it is necessary to reason over quantifying variables in order to detect
equivalence of two expressions.

In particular, we proposed three approaches on how to perform CSE at class level, each
with its own advantages and drawbacks. The first approach consists of quantifier normal-
isation prior to flattening and requires additional reformulations during flattening, which
involves renaming quantifying variables. The second approach utilises a special String rep-
resentation for quantifying variables, where each is represented by its underlying domain,
together with a label to avoid ambiguities. This approach also requires additional reformu-

142

lation (concerning permutations of labels) in order to match all common subexpressions
we detect at instance level.

However, Approach 1 and Approach 2 do not detect a special kind of common subexpres-
sions: shifted common subexpressions, which are expressions that are common in different
‘iterations’ of the quantification. Detecting this kind of common subexpressions was a
major challenge that we identified during class-level CSE. We addressed this challenge
by proposing Approach 3, that performs an approximation of array dereferences from the
observation that all expressions dereferencing an array are a subdomain of the underlying
index domain (assuming that no array is dereferenced out of bounds). Therefore, array
dereferences involving quantifying variables can simply be represented by a blank in the
String representation which considerably facilitates detection on one hand, but, in the worst
case, can result in redundancies in form of unconstrained auxiliary variables on the other
hand.

In conclusion, we have successfully lifted all instance-optimisations to class level and met
many challenges that the class level imposes. However, the general scope of class optimi-
sations goes much further than the techniques we have discussed in this chapter. For in-
stance, representing expressions by their global constraint representation (e.g. representing
a clique of disequalities by alldifferent) would be a practical and effective class optimisa-
tion. Unfortunately, a more thorough investigation of class optimisation techniques was out
of scope of this thesis, hence further class optimisation techniques will be investigated in
future work.

CHAPTER 7

CASE STUDY: COMMON
SUBEXPRESSIONS IN CSPS OF
PLANNING PROBLEMS

In this chapter, we consider a particular family of CSPs: those that represent AI planning
problems. Constraint Programming is an attractive approach for solving AI planning prob-
lems, however, generating effective constraint models of complex planning problems is
challenging, and CSPs resulting from standard approaches often require further enhance-
ment to perform well. One reason for this are redundancies in form of common subex-
pressions that, if not eliminated (Sec. 4.2), can have a negative effect on propagation and
solving time.

AI planning is an active, long-established research area, with a wide applicability to such
diverse tasks as automating data-processing procedures, game-playing, and large-scale lo-
gistics problems. The classical AI Planning problem is to find a sequence of actions (a plan)
to transform an initial world state into a goal world state. We consider solving AI Planning
problems by using Constraint Programming: first we formulate the planning problem as a
CSP, then we solve the CSP using a constraint solver and then map the solution back to the
planning problem.

In this context, we identify general causes of common subexpressions from three mod-
elling techniques often used to encode planning problems into constraints. Furthermore,
we present four case studies of constraint models of AI planning problems. In each, we de-
scribe the constraint model, highlight the sources of common subexpressions, and present
an empirical analysis of the effect of eliminating common subexpressions.

143

144

7.1 Modelling Planning Problems as CSPs

Constraint modelling and solving of planning problems has been studied in the context
of many systems, such as CPlan [82], the planning & scheduling framework in [1], the
temporal POCL planner CPT [86] or the distributed multi-agent system in [70]. Hence,
there exist many different approaches on how to model a planning problem as a CSP. Barták
et al [8] describe three different constraint models for planning which are derived from
different successful modelling approaches. They all share the same basic set of constraint
variables:

• v× (n + 1) state variables V s
i , representing the state of the world at step s, where v

is the number of properties of a state, n the length of the plan, i ranges over the state
properties (i.e. from 0 to v) and s ranges from 0 to n.

• n action variables As, representing the action chosen at step s, where s ranges from
0 to n− 1

State and action variables are connected by logical constraints that summarise the chosen
action’s preconditions and effects on the state variables, as well as frame axioms (i.e. con-
straints that enforce that certain state properties stay the same during a state transition).
Each of the three models differ in how preconditions, effects and frame axioms are repre-
sented.

Throughout, we consider the number of steps of the plan to be a parameter to the constraint
model. Hence, to find an optimal solution to a given planning problem, one would itera-
tively increase the value of the steps parameter of the corresponding constraint model until
a solution is found.

1. Basic Model
The basic model describes preconditions and effects by the two constraints

(As = act) ⇒ Pre(act)s ∀act ∈ Dom(As) (7.1)
(As = act) ⇒ Eff(act)s+1 ∀act ∈ Dom(As) (7.2)

stating that if action act is chosen at step s, then precondition Pre(act)s and effect Eff(eff)s+1

have to hold. Pre(act)s and Eff(act)s+1 are a conjunction of conditions where appropriate
state variables are set to act’s preconditions at step s, and effects in step s+1, respectively.
The frame axiom

As ∈ NonAffAct(Vi) ⇒ (V s
i = V s+1

i),∀i ∈ (0, v-1) (7.3)

states that if action As has no effect on state property i then V s
i and V s+1

i are equal.

145

2. Supporting-actions Model
The second model represents supporting actions [22] by adding variables Ss

i that indicate
the action responsible for the value of state property i. Preconditions are formulated as in
Eq. 7.1 but effects (Eq. 7.4) and frame axioms (Eq. 7.5) are stated as follows (and val is a
state value):

(Ss
i = act) ⇒ (V s

i = val) ∀act ∈ Dom(Ss
i) (7.4)

(Ss
i = no-op) ⇒ (V s

i = V s+1
i) (7.5)

3. Successor-state Model
In the third model, effects and frame axioms are merged into so-called successor-state
constraints [54]. Successor state constraints state that a state variable has value val at step
s only if either an action has changed it or it was the same in the previous step, formally

V s
i = val ↔

(As−1 ∈ C(i, val)) ∨ (V s−1
i = val ∧ As−1 ∈ N(i)) (7.6)

where C(i, val) is the set of actions that effect V s
i = val and N(i) is the set of actions that

do not affect Vi.

7.2 Sources of Common Subexpressions

In this section we present the general sources of common subexpressions in constraint mod-
els of planning problems, obtained by state-of-the-art modelling techniques as described in
the previous section.

Common subexpressions in CSPs of planning problems originate in constraints correspond-
ing to effects, preconditions and frame axioms. Our hypothesis is that a model contains
common subexpressions if two or more actions share conditions in preconditions, effects
or frame axioms.

Common Subexpressions in the Basic Model

In the basic model, preconditions and effects are expressed by Eq. 7.1 and Eq. 7.2, re-
spectively. Assume two actions act1 and act2 share conditions in their preconditions, e.g.
Pre(act1)s = a∧b∧c and Pre(act2)s = b∧d share condition b, where a, b, c, d are arbitrary
conditions. Then the precondition constraint in Eq. 7.1 will share arguments, hence contain

146

common subexpression b, which we denote (case A):

(As = act1) ⇒ (a ∧ b ∧ c)s

(As = act2) ⇒ (b ∧ d)s

The same holds if act1 and act2 share a condition in effects Eff(act1) and Eff(act2), when
representing effects by Eq. 7.2. Hence if two actions share a condition in in their precon-
ditions/effects, then the corresponding precondition/effect constraints (Eq. 7.1 and Eq. 7.2)
will always contain a common subexpression.

The frame axioms in the basic model are given by Eq. 7.3. If two actions act1 and act2
have the same frame axiom, then both frame axiom constraints will share the common
subexpression (V s

i =V s+1
i), denoted (case B):

(As = act1) ⇒ (V s
i = V s+1

i)

(As = act2) ⇒ (V s
i = V s+1

i)

Therefore, if two actions share frame axioms then this will always result in a common
subexpression in the frame axioms according to Eq. 7.3.

Common Subexpressions in the Supporting-actions Model

Preconditions in the supporting-actions model are formulated as in the basic model (see
(case A)). The effect formulation uses supporting actions in Eq. 7.4. Hence if two actions
act1 and act2 share conditions in their effect, the effect constraints from Eq. 7.4 will be
(case C)

(Ss
i = act1) ⇒ (V s

i = val)

(Ss
i = act2) ⇒ (V s

i = val)

where the common subexpression V s
i = val is the effect shared by act1 and act2. Note,

that shared frame axioms will not result in common subexpressions, in contrast to the basic
model. The reason for this is that the supporting action Ss

i in the frame axiom constraint
(Eq. 7.4) does not consider the actual action that leaves the state variables unchanged (i.e.
effectively, the supporting action representation ‘eliminates’ this kind of common subex-
pressions by introducing ‘no-op’).

Common Subexpressions in the Successor-state Model

While preconditions are formulated using Eq. 7.1 as in the basic model (see (case A)),
effects and frame axioms are merged into one constraint, stated in Eq. 7.6. If the condition
of an action, act1, effects two state properties V s

i and V s
j , then subexpression As = act1 is

147

occurs twice in the successor-state constraint, as illustrated in (case D):

V s
i = val1 ↔

(As−1 = act1 ∨ As−1 = act2) ∨ (V s−1
i = val1 ∧ As−1 ∈ N(i))

V s
j = val2 ↔

(As−1 = act1 ∨ As−1 = act3) ∨ (V s−1
j = val2 ∧ As−1 ∈ N(i))

Eliminating a common subexpression, i.e. representing each occurrence by the same aux-
iliary variable during flattening, saves (at least) one variable and one constraint per occur-
rence, which reduces the resulting constraint instance. The consequence of this reduction
is a significant speed-up in solving time. Note that the process of common subexpression
elimination does not add any significant computational effort (see Section 4.2 and Sec. 6.2).

In the following sections, we discuss four planning problems where, when modelled as
CSPs, common subexpressions arise. All CSPs are modelled by hand, following one of
the three approaches discussed in the background section. In the first two examples, the
degree of overlap among preconditions, effects and frame conditions is small, and there
are correspondingly few common subexpressions. In the later examples the opposite is
true. The case studies depict the scalability of common subexpressions elimination on
planning CSPs: the more complex the nature of the planning problem, the more common
subexpressions arise and the more we can enhance it. Hence this enhancement particularly
addresses complex planning problems.

7.3 Case Studies

In the following, we present four case studies, in the order of their complexity, i.e. the first,
Sokoban, is represented by a fairly simple model, while the last, Plotting, has the most
complex model representation.

7.3.1 Sokoban

The well known Sokoban puzzle/game (see Fig. 7.1) is played in a 2D virtual warehouse.
The problem is to find a sequence of horizontal and vertical moves for the sokoban such that
every crate is in a goal cell. The sokoban can push a single crate one cell in the direction
that he moves. Neither the sokoban nor the crates can move onto a wall cell, and no two
objects (sokoban or crate) can occupy the same cell.

148

Sokoban Constraint Model

The action variable moves represents the direction that the sokoban moves at step s. The
domain of moves contains four elements, representing the four directions in which the
sokoban can move. The state is represented by variables

• avatars: the position of the avatar (‘sokoban’) at step s

• cratePosns
i : the position of crate i at step s

Both state variables range over the cells of the warehouse, that are enumerated row-wise
from left to right. Note, that another possibility would be to have a pair of variables rep-
resenting the coordinate position of the sokoban/crate, but our formulation allows us to
model moving the sokoban and pushing the crates very simply, as described below.

Each problem instance is instantiated by a set of parameters that scale the warehouse. The
parameters are the width w of the grid, the total number n of cells, the initial positions of
the sokoban (pInit) and crates, the goal positions for the crates, and the positions of the
walls.

Our constraint model is shown in Fig. 7.2. The first constraints, (1) and (2), initialise the
state variables. Constraints (3) and (4) prevent either the sokoban or the crates from ever
entering a wall cell. Constraint (5) prevents any two crates from being co-located (that
the sokoban can never occupy the same cell as a crate is implied by the push constraints
below). The goal is captured by constraint (6).

The effect of a move of the sokoban is a change of its (and possibly the crate’s) position.
Given the row-wise enumeration of the cells, a move left (right) decreases (increases) the
cell index by 1, while a move up (down) decreases (increases) the cell index by w. Hence,
movement can be modelled as a simple summation (7). Note that this is a simplification of
an otherwise more expensive effect constraint. Furthermore, pushing crates can be mod-
elled in the same way, by adding the precondition that the sokoban occupies the same cell

Figure 7.1: A Sokoban instance. The single circle represents the sokoban and the four
circles symbolise the crates. Shaded squares are the goal positions of the crates. From
http://users.bentonrea.com/˜sasquatch/sokoban/

149

g iven w , n , pInit , stps : i n t (1 . .)
g iven noWalls , noGoals , noCrates : i n t (1 . .)
l e t t i n g WALLS be domain i n t (0 . . noWalls−1)
l e t t i n g GOALS be domain i n t (0 . . noGoals−1)
l e t t i n g CRATES be domain i n t (0 . . noCrates−1)
l e t t i n g POSITIONS be domain i n t (0 . . n−1)
l e t t i n g MOVES be domain i n t (−w ,−1 ,1 ,w)
l e t t i n g STEPS be domain i n t (0 . . stps−1)
g iven walls : matrix indexed by [WALLS] of POSITIONS
g iven goals : matrix indexed by [GOALS] of i n t (0 . . n−1)
g iven crates : matrix indexed by [CRATES] of i n t (0 . . n−1)

f i n d avatar : matrix indexed by [STEPS] of i n t (0 . . n−1)
f i n d move : matrix indexed by [i n t (0 . . stps−2)] of MOVES
f i n d cratePosn : matrix indexed by [STEPS ,CRATES] of i n t (0 . . n−1)
f i n d crateMoved : matrix indexed by [STEPS] of bool

such t h a t
avatar [0] = pInit , $ (1) i n i t i a l i z a t i o n o f t h e a v a t a r ’ s p o s i t i o n

$ (2) i n i t i a l i s e c r a t e s ’ p o s i t i o n s
f o r a l l crate : i n t (0 . . noCrates−1).

cratePosn [0 ,crate] = crates [crate] ,

$ (3) a v a t a r must n o t move on w a l l
f o r a l l s :STEPS . f o r a l l wall : WALLS .

avatar [s] != walls [wall]

$ (4) c r a t e s must n o t move on w a l l
f o r a l l s :STEPS . f o r a l l c :CRATES . f o r a l l wall : WALLS .

crates [s ,i] != walls [wall] ,

$ (5) c r a t e s have t o be a t d i f f e r e n t p o s i t i o n s
f o r a l l s :STEPS .

a l l d i f f e r e n t (cratePosn [s , . .]) ,

$ (6) i n t h e l a s t s t e p , e v e r y c r a t e has t o be a t a g o a l p o s i t i o n
f o r a l l c :CRATES . e x i s t s goal :GOALS .

cratePosn [stps−1,c] = goals [goal] ,

$ (7) moving t h e a v a t a r
f o r a l l s : i n t (0 . . stps−2).

avatar [s+1] = avatar [s] + move [s] ,

$ (8) moving c r a t e s
f o r a l l s : i n t (0 . . stps−2) . f o r a l l c : CRATES .

(avatar [s+1] = cratePosn [s ,c]) => (cratePosn [s+1 ,c] = (cratePosn [s ,c] + move [s])) ,

$ (9) push c r a t e o r l e a v e i t
f o r a l l s : i n t (0 . . stps−2) . f o r a l l c : CRATES .

(avatar [s+1] = cratePosn [s ,c]) \ / (cratePosn [s+1 ,c] = cratePosn [s ,c]) ,

$ (1 0) c r a t e has n o t been moved a t t h e s t a r t
crateMoved [0] = 0 ,

$ (1 1) cra teMoved i s t r u e i f a v a t a r has moved a c r a t e
f o r a l l s : i n t (1 . . stps−1). crateMoved [s] <=>

e x i s t s c :CRATES . avatar [s] = cratePosn [s−1,c] ,

$ (1 2) on ly move i n c y c l e s i f a c r a t e has been moved
f o r a l l s1 : i n t (0 . . stps−2). f o r a l l s2 : i n t (s1+ 1 . .stps−1).

(avatar [s1] = avatar [s2]) => ((sum s3 : i n t (s1 . . s2) . crateMoved [s3]) > 0)

Figure 7.2: ESSENCE′ problem class of Sokoban

150

at step s + 1 as a crate at step s (8). Following the successor-state formulation (Equation
6), we ensure that crates are either pushed or stay in the same cell (9).

Finally, we exploit that, if no crate is pushed, it is pointless for the sokoban to re-visit the
same cell. We introduce a Boolean variable per time step (crateMoved), which is true if
some crate is pushed (10,11). Then, we allow the sokoban to revisit the same cell only if
some crate moved in the interim (12).

Common Subexpressions in Sokoban

The simple effect constraints and frame axioms lead to a small number of common subex-
pressions in Sokoban. The only source of common subexpressions is the precondition of
the sokoban pushing a crate c at step s, stated by sokPosn[s+1] = cratePosns[s,c]
This condition occurs in constraint (8) that describes the effect of pushing a crate, in the
successor-state constraint (9), and in the implied constraint (11) that restricts the sokoban
to go in circles only when moving a crate. In summary, we have (s− 1)*c common subex-
pressions where s is the length of the plan and c the number of crates.

7.3.2 Settlers

The Settlers problem, introduced in the third International Planning Competition [53], is
loosely based on the German board game ‘Die Siedler von Catan’ (by Franckh-Kosmos
Verlags-GmbH & Co.). Each instance has a goal of constructing various buildings across
a set of cities. Different cities have access to different raw-materials hence some goods
have to be transported between cities in order to construct the required buildings. There
are three ways of transporting goods: by cart, train and ship. There are different costs
(‘labour’) associated with creating and operating these forms of transport.

Settlers Constraint Model

In Settlers, actions are the production and transport of goods. The action variables are

• productions
i,g: units of good g produced in city i at step s

• exportsi,g: the units of good g exported from city i at step s

• importsi,g: the units of good g imported to city i at step s.

Every action variable ranges over the quantity that has been produced/transported. For
reasons of brevity, we focus on the main state variables:

151

$ (1) b e f o r e p r o d u c i n g ore , a mine must have been b u i l t $
f o r a l l city :CITIES . f o r a l l s :STEPS .

production [s , city , ORE] > 0) =>
buildingBuiltInCity [city ,MINE] < s) ,

$ (2) b e f o r e e x p o r t i n g ore , a mine must have been b u i l t $
f o r a l l city :CITIES . f o r a l l s :STEPS .

(export [s , city , ORE] > 0) =>
(buildingBuiltInCity [city ,MINE] < s−1) ,

$ (3) we r e q u i r e goods f o r c o n s t r u c t i n g b u i l d i n g s and ho us e s $
f o r a l l city :CITIES . f o r a l l good :GOODS . f o r a l l s :STEPS .

buildingRequirement [s ,city ,good] =
sum building :BUILDINGS .

(buildingBuiltInCity [city ,building] = s)∗
requirementTable [building ,good]

+ houses [city]∗houseRequirements [good]∗ (s=horizon) ,

$ (4) t h e t o t a l l a b o u r c o n s i s t s o f b u i l d i n g and p r o d u c t i o n l a b o u r $
f o r a l l s :STEPS . f o r a l l city :CITIES .

totalLabour [s ,city] =
sum building :BUILDINGS .

(buildingBuiltInCity [city , building] = s)∗labour [building]
+ sum good :GOODS .

production [s ,city ,good]∗labour [good]

Figure 7.3: Selection of constraints of the Settlers Model in ESSENCE′

• buildingBuiltInCitys
i,b: true if building b exists in city i at step s

• buildingRequirementsc,g: the units of good g required for construction work in city c
at time step s.

• totalLabours
c: labour at step s in city c

Fig. 7.3 shows a selection of constraints of the constraint model of Settlers [39]. The
maximum number of steps, the amount of cities and building requirements are given as
parameters.

The production of a particular material requires the prior construction of the appropriate
production site. For instance, to produce ore at time s, a mine must have been built be-
fore s. We express these precondition constraints following the standard approach from
Eq. 7.1; an example is given in constraint (1). Since export succeeds production, we add
similar precondition constraints for exporting a particular good (for an example see con-
straint (2)). For every city and step, we constrain buildingRequirement to equal the sum
of goods needed to build construction sites and houses (constraint (3)). We measure the
quality of a plan for Settlers by the amount of labour required. The total labour is restricted
by constraint (4).

152

Common Subexpressions in Settlers

There are two main sources of common subexpressions. The first source results from a
shared precondition of production and export of a particular good at step s: the appropriate
production facility must have been built before s. Fig. 7.3 shows the precondition con-
straint for production(1) and export(2) concerning ore production. Both constraints share
subexpressions of the form

‘buildingBuiltInCity[city,MINE] < s’

stating the precondition that a mine in city was built before step s. This kind of common
subexpression occurs for every city, step and production facility (e.g. mine), thus c*s*5
times where c is the number of cities, s the number of steps and 5 the number of production
facilities.

The second source of common subexpressions arises because the construction of a building
b in city c effects both the requirement of goods in c and the amount of labour for building
b. Constraint (3) in Fig. 7.3 describes the good requirements, constraint (4) the amount of
labour in each city. Both constraints share the subexpression

‘buildingBuiltInCity[city,building]=s’

stating that b was built in c at step s. In each problem instance, there are 5*c*s common
subexpressions of this form, where c is the number of cities, s the number of steps and 5
the number of production facilities.

7.3.3 English Peg Solitaire

Peg Solitaire (see CSPLib 37 [36]) is played on a board with a number of holes. In the
English version of the game, the board is in the shape of a cross with 33 holes. Pegs are
arranged on the board so that at least one hole remains. Moves are draughts/checkers-like
and are horizontal or vertical. There are several variations of Peg Solitaire. We focus on
the classic reversal game in which an initial state with just one peg missing is transformed
into a state with a single peg remaining in the same location as the initial hole (Fig. 7.4
shows a sample instance).

Constraint Models of Peg Solitaire

The action variables movess represent the particular move (transition from one cell to an-
other) chosen at step s. moves ranges over the 76 possible moves. The state variables

153

Figure 7.4: Peg Solitaire start (left) and goal (right) board states: black dots mark pegs and white
dots mark empty cells.

boards
i represent the state of cell i at step s as a Boolean value: if true, the cell is occupied

by a peg, if false it is empty. It takes 31 steps to remove 31 pegs.

Based upon these variables, we consider two model variants. The first is action-centric
(Fig. 7.5): for a given move it describes the cells that change and those that stay the same
(1), which corresponds to the basic model representation from the Background section.
The second is state-centric (Fig. 7.6): for each cell, it describes the moves that cause it to
change state and those that leave it unaffected (2), which corresponds to the successor-state
model. Both models share initial/goal constraints and the implied constraint.

Common Subexpressions in Peg Solitaire

The representation of a state in Peg Solitaire is more complex than for Sokoban, consisting
as it does of 33 Boolean variables per step. Since each move affects three cells on the
board (and leaves 30 unchanged), there is considerable overlap: The removal of a peg from
a particular cell can result from up to 8 different moves, i.e. it is a shared effect. Likewise,
the reverse action, placing a peg into a hole, is shared among up to 4 different moves.
The biggest overlap occurs in the frame axioms, as a particular cell is left unchanged by
up to 72 different actions. It is from this overlap that the common subexpressions in the
frame/effect/precondition constraints stem.

Action-centric Model In the action-centric model, we detect common subexpressions
that result from effect constraints, as illustrated in (case A) in Section 3. For instance,
moves ‘36’ and ‘37’ both remove a peg from the centre hole(17), expressed in the legal
transition constraint (4) in Figure 7.5), so both actions share effects:

(movess= 36) ⇒ (boards
17>boards+1

17 ∧ ...)
(movess= 37) ⇒ (boards

17>boards+1
17 ∧ ...)

Specifically, a standard instance of the action-centric model has 3,999 common subexpres-
sions, which when eliminated, save 75,857 auxiliary variables (i.e. reducing the number of
auxiliary variables from 80,104 to 5,425).

154

l e t t i n g moveNb : $ (f i e l d 1 , f i e l d 2) −−−> move
matrix indexed by [i n t (1 . . 3 3) , i n t (1 . . 3 3)] of i n t (0 . . 7 6) be [. . .]

l e t t i n g fieldNb : $ (move ,{1 , 2 , 3}) −−−> f i e l d
matrix indexed by [i n t (1 . . 7 6) , i n t (1 . . 3)] of i n t (1 . . 3 3) be [. . .]

l e t t i n g nbSteps be 31
l e t t i n g fields be 33
g iven startField : i n t (1 . . fields)
l e t t i n g STEPS be domain i n t (0 . . nbSteps)
l e t t i n g FIELDS be domain i n t (1 . . fields)

f i n d moves : matrix indexed by [i n t (0 . . nbSteps−1)] of i n t (1 . . 7 6)
f i n d board : matrix indexed by [STEPS , FIELDS] of bool

such t h a t

$ (1) i n i t i a l s t a t e : a l l f i e l d s a r e o c c u p i e d b u t t h e one i n t h e c e n t r e
f o r a l l i : FIELDS .

(i != startField) => (board [0 ,i] = t rue) ,
board [0 ,startField] = f a l s e ,

$ (2) g o a l s t a t e : on ly t h e i n i t i a l f i e l d i s o c c u p i e d
f o r a l l i : FIELDS .

(i != startField) => (board [nbSteps ,i] = f a l s e) ,
board [nbSteps ,startField] = true ,

$ (3) i n e v e r y s t e p t h e number o f pegs d e c r e a s e s by 1
f o r a l l step : STEPS .

noFields−step−1 = (sum i : FIELDS . board [step ,i]) ,

$ (4) l e g a l t r a n s i t i o n s
f o r a l l step : i n t (0 . . nbSteps−1) .

f o r a l l f1 ,f2 : FIELDS .

$ i f t h e r e e x i s t s a l e g a l move from f1 t o f2
((moveNb [f1 ,f2] != 0)

/\ (f1 != f2)) =>

$ and we s e l e c t t h a t move , t h e f o l l o w i n g h o l d s . .
((moves [step] = moveNb [f1 ,f2]) <=>

$ e f f e c t and p r e c o n d i t i o n
((board [step , f1] > board [step+1 ,f1]) /\

(board [step ,fieldNb [moveNb [f1 ,f2] , 2]] >
board [step+1 , fieldNb [moveNb [f1 ,f2] , 2]])

/\
(board [step , f2] < board [step+1 , f2]) /\

$ frame axiom
f o r a l l field : FIELDS .

((field != f1) /\
(field != fieldNb [moveNb [f1 ,f2] , 2]) /\
(field != f2)

) =>
(board [step ,field] = board [step+1 ,field])

)
)

Figure 7.5: Peg Solitaire Action Model in ESSENCE′

State-centric Model In the state-centric model, common subexpressions arise in the
successor-state constraints, illustrated as (case D) in Section 3. As an example, consider the
constraints (5) and (6) in Fig. 7.6, describing the possible actions when a peg is inserted(5)

155

l e t t i n g moveNb : $ (f i e l d 1 , f i e l d 2) −−−> move
matrix indexed by [i n t (1 . . 3 3) , i n t (1 . . 3 3)] of i n t (0 . . 7 6) be [. . .]

l e t t i n g fieldNb : $ (move ,{1 , 2 , 3}) −−−> f i e l d
matrix indexed by [i n t (1 . . 7 6) , i n t (1 . . 3)] of i n t (1 . . 3 3) be [. . .]

$ same c o n s t a n t s and p a r a m e t e r s a s i n Ac t i on Model

f i n d moves : matrix indexed by [i n t (0 . . nbSteps−1)] of i n t (1 . . 7 6)
f i n d board : matrix indexed by [STEPS , FIELDS] of bool

such t h a t
$ same c o n s t r a i n t s (1) − (3) a s i n Ac t i on Model

$ (4) Frame Axioms :
f o r a l l step : i n t (0 . . noSteps−1) .

f o r a l l f : FIELDS .
$ i f f i e l d f s t a y s t h e same

(bState [step , f] = bState [step+1 ,f]) <=>
$ t h e n no move has been s e l e c t e d t h a t i n c l u d e s f

(f o r a l l f1 : FIELDS .
((moves [step] != moveNb [f ,f1]) /\

(moves [step] != moveNb [f1 ,f]) /\

f o r a l l f2 : FIELDS .
(((moveNb [f1 ,f2] != 0) =>

((f = fieldNb [moveNb [f1 ,f2] , 2]) =>
(moves [step] != moveNb [f1 ,f2])))

/\
((moveNb [f2 ,f1] != 0) =>

((f = fieldNb [moveNb [f2 ,f1] , 2]) =>
(moves [step] != moveNb [f2 ,f1])))

)
)

) ,

$ (5) Moving a peg t o f i e l d f
f o r a l l step : i n t (0 . . noSteps−1) .

f o r a l l f : FIELDS . $ 0 −> 1
(bState [step ,f] < bState [step+1 ,f]) <=>

e x i s t s f1 : FIELDS .
(moveNb [f1 ,f] != 0) /\
(moves [step] = moveNb [f1 ,f]) ,

$ (6) Removing a peg from f i e l d f
f o r a l l step : i n t (0 . . noSteps−1) .

f o r a l l f : FIELDS . $ 1 −> 0
(bState [step ,f] > bState [step+1 ,f]) <=>

(e x i s t s f1 : FIELDS .
$ midd le peg
(e x i s t s f2 : FIELDS .

(moveNb [f1 ,f2] != 0) /\
(moves [step] = moveNb [f1 ,f2]) /\
(f = fieldNb [moveNb [f1 ,f2] , 2])

)
\ /

$ s t a r t peg
(((moveNb [f ,f1] != 0) /\

(moves [step] = moveNb [f ,f1]))
)

)

Figure 7.6: Peg Solitaire State Model in ESSENCE′

156

or removed(6): for move ‘36’ (moving the centre peg(17) to north) there are 2 occurrences
of movess=36:

(boards
17>boards+1

17)⇔ (movess = 36 ∨ ...)
(boards

17<boards+1
17)⇔ (movess = 36 ∨ ...)

A typical instance of the state-centric model contains 5,890 common subexpressions, which
when eliminated, save 30,039 auxiliary variables (reducing the number of auxiliary vari-
ables from 38,750 to 8,711).

7.3.4 Plotting

Plotting is a puzzle game made by Taito in 1989, see Fig. 7.7. It is played on a 14x14
grid, where the perimeter is composed of solid wall cells. The sub-grid on the bottom-right
of the play area contains an arrangement of blocks of one of four types (for simplicity we
exclude a fifth, wildcard, type from the grid). The player avatar can move up and down
the first column. The avatar carries a single block of one of the types. It can throw this
block horizontally along the row it occupies. At the start of the game, the avatar carries a
wildcard. The effects of throwing a block against a wall are:

• If it hits a wall as it is travelling right, it falls vertically downwards. Additional walls
are arranged to facilitate hitting the blocks from above, as shown in the figure. This
arrangement varies with instances of the puzzle — in harder instances wall cells are
placed so as to prevent throwing blocks along some rows and columns.

• If it falls onto a wall, it rebounds into the avatar’s hand.

A thrown wildcard transforms into the same type as the first block it hits. For the other
block types:

• If the first block a thrown block hits is of a different type from itself it rebounds into
the avatar’s hand.

• If a block A hits a block B of the same type, B is consumed and A continues to travel
in the same direction. All blocks above B fall one grid cell each.

• If a thrown block A, having already consumed a block of the same type, hits a block
B of a different type, A replaces B, and B rebounds into the avatar’s hand.

If, after making a throw, the block that rebounds into the avatar’s hand is such that there
is now no possible throw that can further reduce the blocks, the player loses a life and the
block in the avatar’s hand is transformed into a wildcard block. The game is over if the
player has no lives remaining. The aim of the game is to reduce the initial configuration of
blocks so that at most some specified number remain.

157

Figure 7.7: Screenshot of Taito’s Plotting game.

Plotting Constraint Model

Plotting can be seen as a planning problem. Our model captures an attempt to find a
mistake-free solution to an instance, so moves leading to a loss of life will not be allowed.
The constraint model is very large, so we restrict our discussion to the main features of the
model.

A single action is possible at each step. We abstract away the use of the wall cells, and
assume simply that the avatar throws a block either along one of the r rows or down one of
the k columns. This is modelled using the pair of action variables:

• trows
i : the row along which a block is thrown (0..r)

• tcolsj the column along which a block is thrown (0..k)

The 0 value is used to record that no block was thrown along a row (or column) at this time
step. A simple constraint ensures that exactly one of this pair of variables takes the value
one at each time step.

There are several variables representing the state:

• hands: the block in the avatar’s hand at step s; ranges over the different block types
(represented by integers)

• grids
i,j: the state of cell at row i and column j; ranges over all block types, including

0 (empty)

An instance is obtained by instantiating the following parameters: the number of steps in
the plan, the width k and height r of the grid of blocks; the initial contents of the grid; the
number of steps allowed s; the goal number of blocks remaining; and the number of block
types (a generalisation of the original problem).

158

The initial wildcard in the avatar’s hand is modelled simply by leaving hand at step 0
unconstrained. We constrain each move to be useful (remove at least one block) by insisting
that the sum of each grids is less than that of grids−1.

Effects and frame axioms are modelled according to the basic model in Section 2. The main
effects are: grid cells becoming empty or changing block type and changing the block type
in the hand. Frame axioms are: grid cells and the hand remaining unchanged. Due to the
extent of the constraint model we do not go into further detail1.

Common Subexpressions in Plotting

Plotting is the most complex of our case studies and has the most common subexpressions,
arising from precondition effect and frame axiom constraints corresponding to (case A,B)
in Section 3. Important overlaps are:

• Cell status: many common subexpressions stem from the shared condition that a
cell is empty at step s. It is an effect of hitting blocks, a precondition for hitting
consecutive blocks, and also contained in the frame axiom that an empty cell will
always stay empty. Similarly, the opposite condition, that a cell contains a block at
step s is shared among effects and preconditions.

• Throwing blocks: the precondition that a block is thrown from a (particular) row or
column is shared among several actions, such as aiming for a particular wall or block
type.

• Frame axioms: many cells are unaffected by different shots, another source of com-
mon subexpressions.

• Comparing block types: the precondition that the block in the avatar’s hand is the
same as a particular block in the grid applies to different actions on the grid. The
opposite precondition, that the types differ, is also shared by different actions.

• Shared conjunctions of conditions: there are several conjunctions of the above men-
tioned conditions that form another big group of common subexpressions. For in-
stance, the conjunction of “cell (1,4) is not empty” and “cell(4,1) has the same block
type as the hand” is shared among the action “shoot from row 4 at cell(4,1)” and the
action “shoot from column 1 at cell(4,1)”.

7.4 Experimental Results

In this section we illustrate the potential benefits we can achieve when applying common
subexpression elimination to our four case studies. We formulated each model in the solver-
independent modelling language ESSENCE′ and used Tailor v0.2 to flatten each instance for

1The Plotting constraint model is available at: http://www.cs.st-and.ac.uk/∼andrea/tailor

159

input to the constraint solver Minion v0.7.0 [32]. Tailor provides optional common subex-
pression elimination, hence for every problem instance, we generate one file with common
subexpression elimination and one without. This translation process takes the same amount
of time in both cases since common subexpression elimination is a particularily cheap en-
hancement technique. We solve both instances with the same branching heuristic(action
variables before state variables) and same search heuristic on the same machine (dual-Xeon
5430, 2.66GHz, 8GB RAM, Linux 2.6.18-92.1.13.el5).

 0
 1
 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.1 1 10 100 1000

S
p

ee
d

u
p

 f
ac

to
r

w
it

h
 C

S
 e

li
m

in
at

io
n

Solving Time (sec) with CSE elimination

Sokoban
Settlers
Peg Solitaire Action
Peg Solitaire State
Plotting

Figure 7.8: Solving time speed up. The (logarithmic) x-axis represents the solving time
with elimination. The y-axis gives the factor to multiply this by to obtain the solving time
without elimination. As an example, typical Peg Solitaire Action instances are solved 8×
faster with common subexpression elimination. Points above y = 1 represent instances
which is solved faster with elimination than without. Flattening time is excluded but is
usually similar with or without elimination.

First, we compare runtimes (summarised in Fig. 7.8). We see significant run time improve-
ments in the Plotting problem and both models of Peg Solitaire. Each of these families
can give a 10× or better speedup. The speedups generally improve with problem difficulty.
Benefits are slight on the Sokoban instances, ranging from no improvement to only a 7%
speedup, although the speedup did improve slightly as problems got harder. For Settlers
we saw mixed results: while we did get up to a 15% speedup, a few instances ran up to
6% slower when elimination was used. This slight slowdown may be due to fluctuations
in performance from run to run, or detailed features of Minion performing differently on
the different instances. Speedups are mostly due to reduction in work for the same node-
count. Most instances took the same number of search nodes with and without elimination.
The exceptions were the state model of Peg Solitaire, and Plotting. For those Solitaire in-
stances, nodes searched was reduced by about 2.5 times, so even here we see the runtime
reduction was greater than the nodecount. A small number of Plotting instances showed a
tiny reduction in search.

160

 0

 1

 2

 4

 6

 8

 10

 12

 100 1000 10000

R
ed

u
ct

io
n

 f
ac

to
r

w
it

h
 C

S
 e

li
m

in
at

io
n

Number of Auxiliary Variables with CS elimination

Sokoban
Settlers
Peg Solitaire Action
Peg Solitaire State
Plotting

Figure 7.9: Reduction of Auxiliary Variables. The x-axis represents the number of aux-
iliary variables introduced with common subexpression elimination, and the y-axis the fac-
tor reduction over not using elimination. As an example, Plotting instances with common
subexpression elimination have only 1

6 of the number of auxiliary variables than Plotting
instances without. All points are above y = 1, so we always use less variables when using
elimination. Peg Solitaire instances only differ in the starting hole, so they all have the
same number of auxiliary variables.

Second, we compare the size of problem instances with and without common subexpression
elimination. Results in Fig. 7.9 show that we always use fewer auxiliary variables this way.
The smallest factor is 1.03, i.e. a 3% improvement, and the largest represents a factor of
12.5× fewer auxiliary variables. It is particularly interesting that the reduction in each
family is very consistent across problem size. We obtained similar results (not illustrated)
when we looked at the number of constraints in each instance. Again results were consistent
in each family, the maximum factor being 9.4×. We observe that there is, as we expected,
a strong correlation between families for which we obtain large reductions in the size of
problems, and for which we obtain good runtime improvements.

7.5 Summary

We discussed the general sources of common subexpressions in constraint models of AI
planning problems. For illustration, we considered four case studies of different complex-
ity, in which we formulated constraint models using standard techniques and highlighted
the sources of common subexpressions. Our empirical analysis demonstrated the potential
benefits of eliminating common subexpressions, a computationally cheap procedure. For
the problems that exhibited the greatest overlap, Peg Solitaire and Plotting, the reduction

161

in solving time when common subexpressions were eliminated was dramatic and reached
up to a 18× speedup.

[8] suggest the use of table constraints to express preconditions/effects/frame axioms. While
this would eliminate many common subexpressions, it is not always feasible. Consider the
Plotting problem. The number of state variables involved in, for example, action precon-
ditions would mean that the table constraints required would have a very high arity and
would therefore be very cumbersome to specify and to propagate.

162

CHAPTER 8

EXPERIMENTS

In this chapter we summarise our empirical analysis concerning the model optimisation
techniques proposed in this thesis. We empirically evaluate each optimisation technique
on a large set of examples and give an interpretation of the results. The combination of
all optimisation techniques is summarised in the last section, Sec. 8.6 which outlines the
practical aspects of the contributions of this thesis, Since all experiments share the same
basic setup, we begin with specifying the exact experimental setup.

8.1 Experimental Setup

The basic experimental setup is the same for all our experiments (if it differs it will be
explicitly mentioned). The experiments have been conducted on the same machine, a Mac
Pro 4.2 with 8 GB RAM that contains 2 Quad-Core Intel Xeon 5500 series processors, each
2.26 GHz (note that hyper-threading was turned off).

In all our experiments we used the tailoring tool TAILOR for generating solver input to
either (or both) MINION [32] or (and) Gecode [80]. In the following, we specify the settings
for tailoring, solving and give a detailed overview of the set of problem classes that we have
used in our experiments. Note that all problem instances and tools that we have used in our
experiments are freely available and referenced accordingly.

8.1.1 Tailoring Setup

All problem instances are tailored using TAILORv0.3.2 with Java 1.5.0 on a Mac Pro 4.2
with 8 GB RAM on a 2.26 GHz processor (as mentioned above), where the Java virtual
machine had a memory upper bound of 512MB. All problems are tailored on the same
machine using the same general settings.

163

164

8.1.2 Solving Setup

Problems are solved on either with solver MINION [32] or solver Gecode [80]. Note, that
since the translation to the former is more advanced in TAILOR, the majority of experiments
is conducted on MINION. We apply the default search heuristics in both solvers and use the
same general timeout. Note, that these experiments are not intended to compare solvers,
but to assess the impact of optimisation techniques during tailoring for different solvers.

Solving Setup for MINION

We use MINION 0.9 with a timeout of 20min (1200sec). We use the default search heuris-
tics (ascending, i.e. smallest value first) and search on decision variables before searching
auxiliary variables. Decision variables are searched in order of their declaration in the
problem file (which is the same as for solving in Gecode). Note, that those auxiliary vari-
ables that represent common subexpressions are at the top of the auxiliary variable search
order. When solving satisfaction problems, we search for the first solution, in optimisation
problems we (naturally) search for the best solution.

Solving Setup for Gecode

We use Gecode’s frontend tool ‘fz’, Gecode-FlatZinc interpreter [58](freely available at
[79]), which is a FlatZinc [44] interpreter for Gecode 3.2.2 that creates a Gecode Space
object representing the problem model, executes the object and returns a solution. This
means, that the overall solving process with Gecode is setup as follows: first we gener-
ate FlatZinc output using TAILOR, and then we solve the instance with Gecode using the
Gecode-FlatZinc interpreter that returns the solution(s). Note, that the Gecode-FlatZinc
interpreter works as a simple interpreter without performing any instance manipulations.
The benefits of using Gecode-FlatZinc interpreter is that in most cases, it is much faster
than the alternative approach of first generating a Gecode C++ class with TAILOR, then
compiling the class and finally executing it.

We use Gecode/FlatZinc 3.2.1 that operates on Gecode 3.2.2 with a timeout of 20 minutes
(1200sec). We use the default search settings (smallest domain first), where decision vari-
ables are branched before auxiliary variables, in the order they were defined in the model.

8.1.3 Problem Models

We use a wide selection of problem classes that we divide into three groups that reflect the
scope of possible enhancement and which we describe below. Note, that each problem was
assigned to a group after performing the experiments. All problems are either formulated in
ESSENCE′ (Chapter 2) or in XCSP 2.1 Format [68]. All ESSENCE′ models follow either a

165

model formulation from the literature (which is appropriately cited) or follows descriptions
(or other models in other modelling languages) from CSPlib [36]. Note, that all ESSENCE′

problem models are available online at TAILOR’s homepage [65]. All XCSP 2.1 instances
are taken from the XCSP solver competition benchmark website [50].

In the following, we present each group in more detail, and briefly describe each problem
class. Note, that the abbreviation in parenthesis next to each problem class represents the
abbreviation used in the experiment graphs. The overall selection of problems contains
problems of different flavour: academic combinatorial problems (e.g. n-queens), practical
problems (e.g. crosswords), optimisation problems (e.g. Golomb Ruler), planning prob-
lems (e.g. English Peg Solitaire) and game puzzles (e.g. Plotting).

Problem Group A

All problems in Group A are problems that have no scope for enhancement (wrt our op-
timisation techniques). They are problems of different size: for instance, the Langford
Number Problem has a very concise problem formulation where typical instances have less
than 100 constraints, whereas in the Balanced Incomplete Block Design Problem (BIBD),
typical instances contain several 1000s of constraints. The main reason for including this
kind of problem classes into our experiments is to determine if our optimisation techniques
have a negative impact on the tailoring time when performed in vain.

1. Balanced Incomplete Block Design, (bibd), is CSPlib Problem 28, concerned with
assigning v objects to b blocks such that such that each block contains k different
objects, each object occurs in exactly r different blocks and every 2 distinct objects
occur in exactly λ blocks.

2. Langford Number Problem (langfordN), CSPlib Problem 24 that is to Arrange n
sets of positive integers 1..k to a sequence, such that, following the first occurrence
of an integer i, each subsequent occurrence of i, appears i+1 indices later than the
last. For example, for n=2 and k=4, a solution would be 41312432.

3. Langford Number Problem 2 (langford2), CSPlib Problem 24, where n = 2 which
results in a simplified version of the general model in 2.

4. n-Queens Problem (IP formulation) from [57], which is to place n queens on an
n× n chessboard without attacking each other.

5. Quasigroup Existence Problem 3, idempotent (quasigroup3I), is CSPlib Problem
3: an m order quasigroup is an m ×m multiplication table of integers 1..m, where
each element occurs exactly once in each row and column and certain multiplication
axioms hold (in this case, we want axiom 3 to hold) and enforce idempotency.

6. Quasigroup Existence Problem 5, idempotent (quasigroup5I), is CSPlib Problem
3: an m order quasigroup is an m ×m multiplication table of integers 1..m, where

166

each element occurs exactly once in each row and column and certain multiplication
axioms hold (in this case, we want axiom 5 to hold) and enforce idempotency.

7. Quasigroup Existence Problem 5, non-idempotent (quasigroup5NI), is CSPlib
Problem 3: an m order quasigroup is an m × m multiplication table of integers
1..m, where each element occurs exactly once in each row and column and certain
multiplication axioms hold (in this case, we want axiom 5 to hold) and enforce non-
idempotency.

Problem Group B

Problem Group B contains problems with small to medium scope of enhancement (wrt
our enhancement techniques). This group contains mainly XCSP 2.1 instances (whose
descriptions stem mainly from the corresponding website) and some ESSENCE′ instances.
Some of them are optimisation problems, such as the Peaceful Army of Queens Problem.

1. Chessboard Colouring (cc), XCSP 2.1 benchmark: the task of colouring all squares
of a chessboard composed of r rows and c columns. There are exactly n available
colours and the four corners of any rectangle extracted from the chessboard must not
be assigned the same colour.

2. Crossword Words Puzzle (cwM1), XCSP 2.1 benchmark: given a grid and a dictio-
nary, the problem is to fill the grid with the words contained in the dictionary (using
the dictionary found under /usr/dict/words under Linux) and the puzzles mentioned
in [37].

3. Crossword Herald puzzle (cwHerald), XCSP 2.1 benchmark given a grid and a
dictionary, the problem is to fill the grid with the words contained in the UK cryptic
solvers dictionary and grids taken from the Herald Tribune (Spring, 1999).

4. Knight’s Tour (knightsXCSP), XCSP 2.1 benchmark: a knight is placed on a chess-
board and, moving according to the rules of chess, must visit each square exactly
once.

5. Peaceful Army of Queens, model2 (paq2), from [76]: place two equally sized
‘armies’ of black and white queens on an n × n chessboard such that no pair of
differently-coloured queens exists that attacks another. The objective is to maximise
the size of the armies.

6. Quasigroup Existence Problem 3, non-idempotent (quasigroup3NI), is CSPlib
Problem 3: an m order quasigroup is an m × m multiplication table of integers
1..m, where each element occurs exactly once in each row and column and certain
multiplication axioms hold (in this case, we want axiom 3 to hold) and enforce non-
idempotency.

167

7. Quasigroup Existence Problem 4, idempotent (quasigroup4I), is CSPlib Problem
3: an m order quasigroup is an m ×m multiplication table of integers 1..m, where
each element occurs exactly once in each row and column and certain multiplication
axioms hold (in this case, we want axiom 4 to hold) and enforce idempotency.

8. Quasigroup Existence Problem 4, non-idempotent (quasigroup4NI), is CSPlib
Problem 3: an m order quasigroup is an m × m multiplication table of integers
1..m, where each element occurs exactly once in each row and column and certain
multiplication axioms hold (in this case, we want axiom 4 to hold) and enforce non-
idempotency.

9. Queen Attacking Problem (queenAttacking), problem 29 in CSPlib, XCSP 2.1
benchmark: the task of putting a queen and the n2 numbers 1,...,n2, on an n × n
chessboard so that no two numbers are on the same cell, any number i+1 is reachable
by a knight move from the cell containing i and the number of cells containing a
prime number that are not attacked by the queen is 0.

10. Queens-Knights Problem (queensKnightsMul), XCSP 2.1 benchmark: concerned
with putting q queens and k knights on an n× n chessboard such that no two queens
can attack each other and all knights form a cycle (when considering knight moves).
In this problem version squares on the chessboard may not be shared by queens and
knights.

11. Sokoban (sokoban1 and sokoban2) from [30]: a Japanese warehouse game where
an avatar (the ‘Sokoban’) has to move a set of crates to designated positions in the
warehouse using a specified number of steps (see Sec. 7.3.1 for more details)

Problem Group C

Problem group C contains all problems that have a substantial scope for enhancement.
They contain the most complex problems and largest problem models, include optimisation
problems, planning problems and general puzzles.

1. English Peg Solitaire, action-centric and state-centric Model (pegAction) and
(pegState) from [43]: played on a board with holes and pegs where in the initial
state all holes are filed with pegs except one and following checkers-like moves such
that in the final state all pegs are removed except one that is placed in the hole that
was empty in the initial state. See Sec. 7.3.3 for more details.

2. Golomb Ruler Problem (golomb), naive model from [77], problem 6 from CSPlib:
find a ruler of minimal length such that the distances between all ticks on the ruler
are different.

3. Knight’s Tour (knights), following the C++ model from Gecode’s webpage [80] that
cites Gert Smolka

168

4. n-Queens Model (nQueensNaive), naive model from [57]

5. Peaceful Army of Queens, Model1 and Model 3 (paq1), both models from [76]:
place two equally sized ‘armies’ of black and white queens on an n × n chessboard
such that no pair of differently-coloured queens exists that attacks another. The ob-
jective is to maximise the size of the armies.

6. Plotting (plotting), from [30]: Plotting is a puzzle game played on a 14x14 grid,
where an avatar has to reduce a grid of blocks of different types by throwing blocks
at the grid in a particular number of steps. For further details see Sec. 7.3.4.

8.2 Basic Common Subexpression Elimination

We start with the empirical evaluation of basic common subexpression elimination (CSE)
from Sec. 4.2. Note, that for brevity, we only include our results for targeting solver MIN-
ION in this study. However, we have observed similar results for solver Gecode, which is
demonstrated in Sec. 8.6, where we conduct a thorough study of the combination of all
enhancement techniques that we proposed throughout this thesis, targeting both MINION
and Gecode.

8.2.1 Auxiliary Variable Reduction (Eliminated CSs)

We begin with studying the number of common subexpressions that we can eliminate dur-
ing tailoring. Note, that the reduction of auxiliary variables directly reflects the number
of eliminated common subexpressions: for each common subexpression we eliminate, we
save one auxiliary variable (Sec. 4.2). Therefore, we study the number of eliminated com-
mon subexpressions by considering the reduction of auxiliary variables in each instance.
CSE fires only in group B and C and therefore we exclude group A from this discussion,
since the instances obtained with and without CSE are identical.

Fig. 8.1 shows the reduction of auxiliary variables of group B(top) and group C(bottom). In
both graphs, the x-axis represents the number of auxiliary variables in each instance when
CSE was applied. The y-axis denotes the auxiliary variable reduction factor, i.e. it denotes
with which factor the auxiliary variables are reduced This means that the further a point is
positioned below y = 1, the more CSs (and hence auxiliary variables) could be eliminated.
For example, points along y = 0.5 represent instances where CSE could reduce the number
of auxiliary variables to 50% (i.e. the instance contains half as many auxiliary variables
than without CSE).

169

 0.35

 0.5

 0.7

 0.9

 1

 1.1

 1 10 100 1000 10000 40000

A
u
x
il

ia
ry

 V
ar

ia
b
le

 R
ed

u
ct

io
n
 F

ac
to

r

Number of Auxiliary Variables (with CSE)

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
sokoban2 (Minion)

quasiGroup3NI (Minion)
quasiGroup4I (Minion)

quasiGroup4NI (Minion)
paq2 (Minion)

50% of aux variables (with CSE)
70% of aux variables (with CSE)

same number of auxiliary variables

 0.01

 0.05

 0.1

 0.25

 0.5

 0.8
 1

 1 10 100 1000 10000 40000

A
u
x
il

ia
ry

 V
ar

ia
b
le

 R
ed

u
ct

io
n
 F

ac
to

r

Number of Auxiliary Variables (with BASIC CSE) (sec)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

50% of aux variables (with CSE)
25% of aux variables (with CSE)
5% of aux variables (with CSE)

same number of auxiliary variables

Figure 8.1: Reduction of Auxiliary Variables by tailoring using basic CSE on problem
group B (top) and group C(bottom), which reflects the number of eliminated common
subexpressions (every eliminated CS saves one variable). The y-axis represents the factor
with which the number of auxiliary variables is reduced due to CSE. For instance, points at
y = 0.5 represent instances where the number of auxiliary variables was reduced to 50%
compared to no applying CSE, i.e. CSE has reduced the auxiliary variables by half.

Auxiliary Variable Reduction in Problem Group B

For group B we see that every instance could be reduced with CSE (since all points are
below y = 1). The reduction is not dramatic, but still considerable, ranging from 10%-
20% for crosswords and sokoban, up to over 50% for queenAttacking and Chessboard
Colouring. It is also nice to observe how the percentage of eliminated common subexpres-
sions changes with instance size (i.e. changes with respect to the parameters scaling the
instance): in some problems, such as the quasiGroups or Sokoban, the percentage of elim-
inated CS remains the same, irrespective of the instance size. In other problems, such as
the peaceful Armies of Queens or Chessboard Colouring, the percentage of eliminated CS
increases with instance size. Furthermore, in Knights-Queens we even observe a reduction
of eliminated CSs when the instance increases.

170

Auxiliary Variable Reduction in Problem Group C

The results for group C are even more impressive than those obtained for group B: we
observe dramatic reductions by CSE, reducing the number of auxiliary variables down to
5% of the instance obtained without CSE - in the case of the Knight’s Tour even down
to almost 1%. For illustration, in a medium-sized instance of Peaceful Army of Queens
(Model3), CSE reduced the number of auxiliary variables from 5,952 to 256. Note, that
all instances of Peg Solitaire (both state- and action-centric Models) are equally sized and
therefore represented by only one point. Similar to group B, we can see that in many
problem classes, the number of eliminated common subexpressions increases with the size
of the respective parameters (with the exception of Plotting and Peg Solitaire).

Auxiliary Variable Reduction: Summary

We have considered the reduction of auxiliary variables due to CSE in two problem groups:
group B contains problems with fair to medium scope for enhancement and group C con-
tains problems with large scope for enhancement. In both cases, we have seen impressive
reductions (in group B up to 50% and in group C up to 1% of the number of auxiliary
variables of the unenhanced instance).

In many problem classes, we observed that the number of eliminated auxiliary variables
(i.e. the number of eliminated common subexpressions) increases with the parameters that
scale the problem. This is an important observation that leads to the conclusion that the
benefits of CSE are even greater for large instances of these problem classes.

8.2.2 Reduction in Constraints

Second, we consider the constraint reduction that comes along with CSE. In particular,
the constraint reduction stems from the elimination of those constraints that reify auxiliary
variables that could be eliminated due to CSE. Since CSE fires only on group B and C, we
exclude group A from this discussion.

Fig. 8.2 shows the constraint reduction for problems in group B (top) and group C (bot-
tom). The graphs are set up in the same fashion as the graphs considering the reduction
of auxiliary variables: the x-axis represents the number of constraints with CSE and the
y-axis shows the reduction factor, so that the further a point is positioned below y = 1, the
more constraints could be eliminated. We can immediately see that the constraint reduc-
tion is not as dramatic as the auxiliary variable reduction. In the following, we discuss the
respective reduction in the context of each problem group.

171

 0.4

 0.5

 0.7

 0.9

 1

 10 100 1000 10000 50000

C
o
n
st

ra
in

t
R

ed
u
ct

io
n
 F

ac
to

r

Number of Constraints (with CSE)

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
sokoban2 (Minion)

quasiGroup3NI (Minion)
quasiGroup4I (Minion)

quasiGroup4NI (Minion)
paq2 (Minion)

90% of constraints (with CSE)
50% of constraints (with CSE)

same number of constraints

 0.005
 0.05
 0.1

 0.2

 0.5

 0.8

 1

 50 100 1000 10000 50000

C
o
n
st

ra
in

t
R

ed
u
ct

io
n
 F

ac
to

r

Number of Constraints (with CSE)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

50% of constraints (with CSE)
20% of constraints (with CSE)

same number of constraints

Figure 8.2: Reduction of Constraints by tailoring using basic CSE on problem group
B (top) and group C(bottom). The y-axis represents the factor with which the number of
constraints is reduced due to CSE. For instance, points at y = 0.5 represent instances whose
number of constraints was reduced to 50% of the number of constraints without CSE, i.e.
CSE has reduced the constraints by half.

Constraint Reduction in Problem Group B

As we can see in the top graph of Fig. 8.2, the constraint reduction in group B ranges
between 5% (Sokoban, Herald Crosswords) and 50% (Chessboard Colouring). Most in-
terestingly, we can see how the reduction behaves with increasing parameters: in some
problem classes, like Queen-Attacking and Queens-Knights, the constraint reduction get
smaller as the instance size increases. This happens if the set of constraints that increases
with the problem parameters is not affected by CSE.

172

Constraint Reduction in Problem Group C

The constraint reduction in group C is more dramatic than in group B but not as substantial
as the reduction of auxiliary variables, ranging from 50% (Peg Solitaire State) to 30-20%
for most problems, down to 5% for the Knight’s Tour problem. Similar to the reduction of
auxiliary variables, the constraint reduction increases for most problems with the parameter
size, with the exception of Peg Solitaire and Plotting. As expected, this is the exact same
behaviour as for auxiliary variables.

Constraint Reduction: Summary

In summary, we have seen that the constraint reduction is similar to the auxiliary variable
reduction but less dramatic, yielding a reduction to 95-45% of constraints in instances
of group B and a reduction to 50-5% of constraints in instances of group C. Moreover,
the constraint reduction scales with the problem size, similar to the reduction of auxiliary
variables. In conclusion, the constraint reduction due to CSE is impressive and often scales
with the problem parameters.

8.2.3 Tailoring Time with CSE

After considering the instance reductions, we consider the impact of CSE on the overall
tailoring time on each of our three problem groups. Fig. 8.3 depicts the difference in tai-
loring time when tailoring to solver Minion in three graphs, where each point denotes an
instance. In each graph the x-axis represents the tailoring time with CSE and the y-axis
represents the factor of tailoring time increase and decrease, respectively, when applying
CSE. This means that all points above y = 1 represent instances where tailoring time was
reduced when applying CSE and points below y = 1 show cases where the tailoring time
was increased.

Tailoring Time in Problem Group A Problem Group A contains problems where CSE
does not fire since there is no scope for further enhancement. The topmost graph in Fig. 8.3
depicts the tailoring time difference when applying CSE. We observe that most instances
are evenly positioned between the range of y = 0.9 to y = 1.1 and x = 0.1 to x = 0.5,
i.e. the the difference in tailoring time is about ∓10%, which, in a tailoring time of 0.1-0.5
seconds is marginal and can be expected between two separate runs on the Java virtual
machine. From this we conclude that CSE does not negatively affect tailoring time when
applied to instances in vain.

Tailoring Time in Problem Group B Group B includes problems that have little to
medium scope for enhancement. We see results that are very similar to those obtained

173

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with BASIC CSE (sec)

Problem Classes without CS
langford2 (Minion)
langfordN (Minion)

nQueens (Minion)
bibd (Minion)

quasiGroup3I (Minion)
quasiGroup5I (Minion)

quasiGroup5NI (Minion)
quasiGroup7 (Minion)

10% less time (with CSE)
10% more time (with CSE)

same tailoring time

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with BASIC CSE (sec)

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
sokoban1 (Minion)
sokoban2 (Minion)

quasiGroup3NI (Minion)
quasiGroup4I (Minion)

quasiGroup4NI (Minion)
paq2 (Minion)

10% less time (with CSE)
10% more time (with CSE)

same tailoring time

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with BASIC CSE (sec)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq2 (Minion)

10% less time (with CSE)
10% more time (with CSE)

same tailoring time

Figure 8.3: Tailoring Time Comparison between tailoring no enhancement and tailoring
with basic common subexpression elimination on problem groups A(top), B(middle) and
C(bottom). The y-axis represents the factor with which the tailoring time differs between
both tailoring options: points above y = 1 depict cases where tailoring time was decreased
when applying basic CSE, points below depict cases where tailoring time was increased.

for group A: first, instances that are tailored in 0.5-0.1 seconds are tailored within a time

174

difference of ∓10%, which is marginal and can be expected in two separate runs. More-
over, we can see that instances that are tailored in more than 0.1 seconds, the difference
becomes smaller with a tendency of a slight reduction in tailoring time (more instances
are above y = 1 than below). Second, we observe that instances of classes where the
most common subexpressions are eliminated (cc and queenAttacking), the tailoring time is
always reduced (though just slightly).

Tailoring Time in Problem Group C The results for group C, the group containing those
problem classes with the largest scope of enhancement, are most impressive: first, we notice
that in most cases, tailoring time is reduced. In the case of Plotting even by over 30%. This
demonstrates the tailoring time is actually reduced if CSE is particularly applicable (note
that this makes sense, since the elimination of several subexpressions requires less overall
flattening).

Tailoring Time: Summary

In summary, we have seen that there is no significant penalty for applying CSE during
flattening. More specifically, we observe that applying CSE in vain (i.e. on problem classes
without scope for enhancement) the difference in tailoring time varies within ∓10%, a
figure that further increases with the length of tailoring time. This difference is marginal
and can be expected within separate runs. Furthermore, in cases where CSE can improve
an instance, the tailoring time is reduced proportionally to the number of subexpressions
that are eliminated. Therefore, we conclude that the integration of CSE does not impair
tailoring time, but can actually enhance it in cases where it fires.

8.2.4 Impact on Solving Performance

Finally, we study the most important feature: the impact CSE can have on solving perfor-
mance. We start with the reduction in solving time, followed by the reduction in search
nodes. Since only group B and C are affected by CSE, we exclude group A in this discus-
sion.

Solving Time Speedup

Fig. 8.4 shows the solving time speedup in solver Minion for problems in group B(top) and
C(top). The results are most pronounced - for group C, where we observe speedups of a
factor greater than 2000.

Both graphs are setup in the same way: the x-axis denotes the solving time (in seconds)
for instances tailored with CSE (we used a timeout of 20 minutes). The y-axis gives the

175

 0.5

 0.9
 1

 1.1

 1.5

 2

 3

 5

 0.01 0.1 1 10 100 1200

S
o
lv

in
g
 T

im
e

S
p
ee

d
u
p
 F

ac
to

r

Solving Time with CSE (sec)

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
sokoban1 (Minion)
sokoban2 (Minion)

quasiGroup3NI (Minion)
quasiGroup4I (Minion)

quasiGroup4NI (Minion)
paq2 (Minion)

half the time (with CSE)
50% less time (with CSE)

solved using same time

 1.1

 2

 5

 10

 20

 40

 100

 500

 1000

 2000

 1 10 100 1000

S
o
lv

in
g
 S

p
ee

d
u
p
 F

ac
to

r

Solving Time with CSE (sec)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

1/100 of time (with CSE)
1/10 of time (with CSE)
1/5 of time (with CSE)

solved in same time

Figure 8.4: Solving Time Speedup in solver Minion using the basic CSE during tailoring,
compared to no enhancement for problem Group B (top) and problem Group C (bottom).
The x-axis shows the solving time (in seconds) in case instances were tailored with CSE.
The y-axis represents the solving time speedup factor, for example, points at y = 5 have
been solved 5 times faster with CSE then without.

speedup factor from applying CSE. As an example, instances at y = 5 have been solved 5
times faster with CSE than without.

Solving Time Speedup in group B The top graph in Fig. 8.4 depicts the speedup ob-
tained within group B, where we observe a considerable speedup of up to a factor of almost
5. Note, that some enhanced instances are solved using more time. Since these are single
instances (of which all other instances from the same class are solved using less time) we
do not expect that the enhancements generally impair instances.

176

Solving Time Speedup in group C The bottom graph of Fig. 8.4 shows the solving time
speedup for group C, that are most impressive: most instances are solved far quicker with
CSE than without, mainly by a factor between 2 and 100. Furthermore, in the peaceful
Armies of Queens, we observe speedups up to a factor of 2000.

Reduction in Search Space

In some problem classes of group C we observe considerable search space reductions due
to CSE. Fig. 8.5 illustrates the reduction of search space for Group C: instances of the
Golomb Ruler, Peg Solitaire State, Peaceful Army of Queens Model1 and Model3 are
solved using less search space. Most impressively, the search space for Peaceful Armies of
Queens could be reduced to 1%-0.1% of the search space used without enhancement. This
is probably the main reason of the speed up factor of 2000 that we gain (see Fig. 8.4).

 0.001

 0.01

 0.1

 0.5

 0.8
 1

 100 1000 10000 100000 1e+06 1e+07

S
ea

rc
h
 N

o
d
e

R
ed

u
ct

io
n
 F

ac
to

r

Search Nodes with CSE

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

50% of nodes (with CSE)
10% of nodes (with CSE)
1% of nodes (with CSE)

same number of nodes

Figure 8.5: Reduction in Search Space in solver Minion using basic CSE during tailoring,
compared to no enhancement for problem Group C. The x-axis denotes the numbers of
nodes searched for a solution with CSE. The y-axis represents the factor with which the
number of searched nodes is reduced due to CSE. For instance, points at y = 0.5 represent
instances that were solved using only 50% of the search space of those tailored without
CSE, i.e. CSE has reduced the search space by half.

177

8.3 Active Reformulations to Increase the Number of CS

In this section we investigate the impact of applying a particular kind of instance opti-
misation: active reformulations that can increase the number of common subexpressions
(CS) in a constraint instance, as described in Sec. 4.3. More specifically, we first consider
the active negation reformulation (Sec. 4.3.3), followed by the De Morgan Reformulation
(Sec. 4.3.4) and finally, the Horn Clause Reformulation (Sec. 4.3.5).

8.3.1 Overview

This study investigates two things: first, the impact of the respective reformulation on tai-
loring time - does the attempt of applying the optimisation slow down the tailoring process?
Second, we want to investigate the benefits of the reformulation - can the instance be further
reduced by additional CSE and does the reformulation enhance the solving performance?
In summary, we will analyse (1) the reduction of auxiliary variables (which reflects the
impact of CSE) (2) tailoring time, and (3) solving time. Note that we will not consider
the respective search space, since none of the techniques has resulted in a search space
reduction.

8.3.2 Active Negation Reformulation

First, we investigate active Negation Reformulation that is discussed in Sec. 4.3.3. We start
by investigating the difference in instance size when applying the reformulation.

Auxiliary Variable Reduction with Active Negation Reformulation

We first consider the impact of the active negation reformulation on the instance sizes of
problems where the reformulation fired. In particular, it fired on English Peg Solitaire State,
Peaceful Armies of Queens model 3 and Plotting. Fig. 8.6 depicts the reduction of auxiliary
variables due to the reformulation (which corresponds to the increase of identical common
subexpressions). The x-axis represents the number of auxiliary variables in the respective
instance with active negation reformulation and the y-axis the auxiliary variable reduction
factor wrt the reformulation. Hence, all instances below y = 1 contain fewer auxiliary
variables due to the active negation reformulation.

In Plotting, the active negation reformulation reduces the overall number of auxiliary vari-
ables by ca.8%, for instance, from 11,714 to 11,109 in a medium-sized instance. This
means that about 7% of all subexpressions that required to be flattened could be reduced to
an identical representation due to the active negation reformulation. In the Peaceful Armies
of Queens model 3, the reduction is even greater, where the negation reformulation saves

178

 0.7

 0.8

 0.9

 1

 5 10 100 1000 10000 20000A
u
x
il

ia
ry

 V
ar

ia
b
le

 R
ed

u
ct

io
n
 F

ac
to

r
co

m
p
ar

ed
 t

o
 b

as
ic

 C
S

E

Number of Auxiliary Variables with Active Negation Reformulation (sec)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

10 % less aux variables
30 % less aux variables

same number of auxiliary variables

 0.01

 0.05

 0.1

 0.5

 1

 1 10 100 1000 10000 40000

A
u
x
il

ia
ry

 V
ar

ia
b
le

 R
ed

u
ct

io
n
 F

ac
to

r

Number of Auxiliary Variables (with BASIC CSE+NEG) (sec)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

10% of aux variables
5% aux variables

1% of aux variables
same number of auxiliary variables

Figure 8.6: Reduction of Auxiliary Variables by tailoring using the active negation re-
formulation compared to the reduction achieved by basic CSE (top) and compared to no
enhancement (bottom). The y-axis represents the factor with which the tailoring time dif-
fers between both tailoring options: points below y = 1 depict cases where the number
of auxiliary variables was reduced when applying the active negation reformulation, the
further down, the larger the reduction.

around 25% of auxiliary variables. For instance, in a medium-sized example, basic CSE
reduces the number of auxiliary variables from 8610 to 324 auxiliary variables, which the
active negation reformulation can further reduce to 243 auxiliary variables. In the state-
centric model of English Peg Solitaire, we observe the greatest reduction of about 28%,
where in a typical instance, first, basic CSE yields a reduction from 19,313 auxiliary vari-
ables to 7,533, which the active negation reformulation further reduces to 5,425 auxiliary
variables.

In summary, we observe a considerable reduction of auxiliary variables in three problem
classes, whose effect on solving time we investigate in the following.

179

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with active Negation Reformulation (sec)

Problem Classes (Group A)
langford2 (Minion)
langfordN (Minion)

nQueens (Minion)
bibd (Minion)

quasiGroup3I (Minion)
quasiGroup5I (Minion)

quasiGroup5NI (Minion)
quasiGroup7 (Minion)

10% less time with neg-ref
10% more time with neg-ref

same tailoring time

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with active Negation Reformulation (sec)

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
sokoban1 (Minion)
sokoban2 (Minion)

quasiGroup3NI (Minion)
quasiGroup4I (Minion)

quasiGroup4NI (Minion)
paq2 (Minion)

10% less time with neg-ref
10% more time with neg-ref

same tailoring time

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with active Negation Reformulation (sec)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

10% less time with neg-ref
10% more time with neg-ref

same tailoring time

Figure 8.7: Tailoring Time Comparison between tailoring with basic CSE and tailor-
ing with basic CSE and the active negation reformulation on problem groups A(top),
B(middle) and C(bottom). The y-axis represents the factor with which the tailoring time
differs between both tailoring options: points above y = 1 depict cases where tailoring
time was decreased when applying the active negation reformulation, points below depict
cases where tailoring time was increased.

180

Tailoring Time with Active Negation Reformulation

Fig. 8.7 depicts the increase and decrease in tailoring time when applying the negation
reformulation in addition to the basic CSE procedure. It shows three graphs, one for each
problem group. In each graph, the x-axis represents the tailoring time with the active
negation reformulation and the y-axis depicts the time factor with which tailoring time
has been reduced due to the reformulation: all points above y = 1 represent instances
that have been tailored in less time with the active negation reformulation and all points
below y = 1 represent instances that took longer to tailor with the negation reformulation.
The factor illustrates the percentage of the increase or reduction, respectively. For instance,
instances that are positioned at 1.2 have been tailored using 20% less time with the negation
reformulation than those tailored only with basic CSE.

Problem Group A The top graph shows tailoring time for Problem Group A, that con-
tains problems that can not be further enhanced. The instances are spread equally below
and above y = 1 and most are positioned between 1.1 and 0.9, i.e. the tailoring time differs
mostly around ∓10% which is a small difference (in particular since the main overall tai-
loring time lies in between 0.1-0.5 seconds) that is to be expected between separate runs on
the Java virtual machine. Therefore, we conclude that adding the negation reformulation
to the tailoring process has no significant impact on the overall tailoring time of problems
without scope for enhancement.

Problem Group B The middle graph in Fig. 8.7 shows the tailoring time difference for
problems that have a fair to medium scope for enhancement. Note, that none of these prob-
lems actually profit from the negation reformulation. Similar to Problem Group B, there is
no significant overhead from adding the negation reformulation: instances are positioned
in a balanced way below and above y = 1 with the majority within the ∓10% range of
1.1 to 0.9. Hence, we conclude that adding the negation reformulation to tailoring does not
affect the overall tailoring time of problems in class B.

Problem Group C Problem group C consists of those problems that have the largest
scope for enhancement and the respective tailoring time is given in the bottom graph of
Fig. 8.7. Most interestingly, the tailoring time does not change notably in those cases
where the active negation reformulation applies (Peaceful Army of Queens 3, Peg Solitaire
State and Plotting) and, similar to groups A and B, the overall tailoring time is quite the
same with or without the negation reformulation.

181

 0.8

 1

 1.2

 1.5

 2

 2.5

 0.001 0.01 1 10 100 1000

S
o
lv

in
g
 S

p
ee

d
u
p
 F

ac
to

r

Solving Time active Negation Reformulation (sec)

Problem Classes (Group C)
pegState (Minion)
plotting (Minion)

paq3 (Minion)
solved in 50% less time

solved in half the time
solved in same time

 1.1

 2

 5

 10

 20

 40

 100

 300

 500

 1000

 2000

 3000

 5000

 0.01 1 10 100 1000

S
o
lv

in
g
 S

p
ee

d
u
p
 F

ac
to

r

Solving Time active Negation Reformulation (sec)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

solved in 100x less time
solved in 10x less time
solved in 5x less time

solved in same time

Figure 8.8: Solving Time Speedup in solver Minion using the active negation reformula-
tion during tailoring, compared to the reduction achieved by basic CSE (top) and compared
to no enhancement (bottom). The y-axis represents the solving time speedup factor, for ex-
ample, points at y = 3 have been solved 3 times faster with CSE then without.

Solving Time with Active Negation Reformulation

Finally, we consider the impact on solving time in the three problem classes where the ac-
tive negation reformulation managed to achieve an enhancement. Fig. 8.8 shows the impact
of the active negation reformulation in solver Minion. The top graph depicts the speedup
obtained in comparison to basic CSE (i.e. how much the active negation reformulation
can improve the speedup on top of basic CSE). Here we observe that the active negation
reformulation can achieve a speedup of 2.2, i.e. instances can be solved in less than half
the time than those where only basic CSE is performed. The speedup is also proportional
to the number of reduced auxiliary variables - in Plotting, where we have only a reduction

182

of 7%, the speedup is marginal, while in the peaceful armies of queens, where the active
negation reformulation gains a reduction of almost 30%, we observe the largest speedup.

The bottom graph shows the overall enhancement, comparing basic CSE combined with the
active negation reformulation to tailoring without any optimisations. The benefits we ob-
serve are very significant, reaching speedup factors of almost 3,500. These figures demon-
strate that the combination of basic CSE and the negation reformulation can be extremely
beneficial.

Summary: Active Negation Reformulation

In summary, our experiments have given evidence that the active negation reformulation
does not add any notable overhead to the tailoring process (independent of whether if the
respective reformulation is applicable to the instance) and can achieve impressive speedups
in problem classes where the reformulation can reduce the number of auxiliary variables.
Therefore, we conclude that the active negation reformulation is an effective and important
instance optimisation technique that should be integrated into every tailoring tool.

8.3.3 Active Horn Clause Reformulation

The second active reformulation we consider is the active Horn Clause Reformulation
(Sec. 4.3.5). Similarly as with the active negation reformulation, we start with investi-
gating the difference in tailoring time when applying the reformulation. Note, that we do
not consider the reduction of auxiliary variables since the Horn Clause reformulation does
not reduce the number of auxiliary variables.

Tailoring Time with Active Horn Clause Reformulation

Fig. 8.9 depicts the increase and decrease in tailoring time when applying the active Horn
Clause reformulation in addition to the basic CSE procedure. It shows three graphs, one for
each problem group. In each graph, the x-axis represents the tailoring time with the active
Horn Clause reformulation and the y-axis depicts the factor with which tailoring time has
been reduced due to the reformulation: all points above y = 1 represent instances that have
been tailored in less time with the active Horn Clause reformulation and all points below
y = 1 represent instances that took longer to tailor with the Horn Clause reformulation.
The factor illustrates the percentage of the increase or reduction, respectively. For instance,
instances that are positioned at 1.1 have been tailored using 10% less time with the Horn
Clause reformulation than those tailored only with basic CSE.

In summary, the results are similar to that of the active negation reformulation: the tailoring
times differ mainly within the ∓10% margin, a difference that can be expected between

183

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with active Horn Clause Reformulation (sec)

Problem Classes (Group A)
langford2 (Minion)
langfordN (Minion)

nQueens (Minion)
bibd (Minion)

quasiGroup3I (Minion)
quasiGroup5I (Minion)

quasiGroup5NI (Minion)
quasiGroup7 (Minion)

10% less time
10% more time

same tailoring time

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with CSE+NEG+active Horn Clause Reformulation CSE (sec)

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
sokoban1 (Minion)
sokoban2 (Minion)

quasiGroup3NI (Minion)
quasiGroup4I (Minion)

quasiGroup4NI (Minion)
paq2 (Minion)

10% less time (using horn)
10% more time (using horn)

same tailoring time

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with Active Horn Clause Reformulation (sec)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq2 (Minion)

10% less time (using horn)
10% more time (using horn)

same tailoring time

Figure 8.9: Tailoring Time Comparison between tailoring with basic CSE and tailoring
with basic CSE and the active Horn Clause reformulation on problem groups A(top),
B(middle) and C(bottom). The y-axis represents the factor with which the tailoring time
differs between both tailoring options: points above y = 1 depict cases where tailoring time
was decreased when applying the active Horn Clause reformulation, points below depict
cases where tailoring time was increased.

184

different runs on the Java virtual machine.

 0.4

 0.6

 0.8

 1

 1.2

 0.01 0.1 1 10 100 1200

S
o
lv

in
g
 T

im
e

S
p
ee

d
u
p
 F

ac
to

r

Solving Time with Horn Clause Reformulation (sec)

Problem Classes (Group B)
sokoban1 (Minion)

solved in 20% more time (using horn)
solved in 20% less time (using horn)

solved using same time

 0.4

 0.6

 0.8

 1

 1.2

 0.01 0.1 1 10 100 1200

S
o
lv

in
g
 T

im
e

S
p
ee

d
u
p
 F

ac
to

r

Solving Time with Horn Clause Reformulation (sec)

Problem Classes (Group B)
sokoban1 (Minion)

solved in 20% more time (using horn)
solved in 20% less time (using horn)

solved using same time

Figure 8.10: Solving Time Speedup in solver Minion using the active Horn Clause re-
formulation during tailoring, compared to the reduction achieved by basic CSE (top) and
compared to no enhancement (bottom). The y-axis represents the solving time speedup
factor: points at y = 1 depict cases where the number of auxiliary variables is the same,
points below depict cases where the number was reduced. Note, that only Sokoban1 was
affected by the reformulation.

Solving Time Speedup with the Horn Clause Reformulation

The Horn Clause reformulation fired in only one of all our problem classes: the first model
of the Sokoban problem. The results are very unexpected: the solving performance suffers
(around 40%) from both basic CSE and the active Horn Clause reformulation. So far, we
have no obvious explanation for this. One reason could be that implications are a preferable
representation in solver Minion compared to the disjunctive representation. Another reason
be that our algorithm still requires enhancements, in particular on how to generate the most
effective Horn Clauses from a given disjunction. Therefore, in our implementation, the
active Horn Clause reformulation is not applied as default optimisation technique during
tailoring at present.

185

Summary: Horn Clause Reformulation

In summary, we have seen that performing the Horn Clause reformulation adds no signifi-
cant overhead to the tailoring process. However, the reformulation fired only in one prob-
lem class where it resulted in an increase of solving time, which was quite unexpected.
The observations are inconclusive and require a further investigation into the matter of rep-
resenting expressions in form of disjunctions and implications, which is an item of future
work.

8.3.4 Active De Morgan Reformulation

The active De Morgan Reformulation (Sec. 4.3.4) is another active reformulation that we
propose in order to increase the number of identical common subexpressions and hence
reduce the number of auxiliary variables in an instance. Note, that the De Morgan refor-
mulation fired in none of our problem classes and hence we limit our investigation on the
impact on tailoring time when applying the reformulation.

Tailoring Time with Active De Morgan Reformulation

Fig. 8.7 depicts the increase and decrease in tailoring time when applying the negation
reformulation in addition to the basic CSE procedure. It shows three graphs, one for each
problem group. In each graph, the x-axis represents the tailoring time with the active
negation reformulation and the y-axis depicts the time factor with which tailoring time has
been reduced due to the reformulation: all points above y = 1 represent instances that have
been tailored in less time with the active negation reformulation and all points below y = 1
represent instances that took longer to tailor with the negation reformulation. The factor
illustrates the percentage of the increase or reduction, respectively.

The results are very similar to that of the other active reformulations: the tailoring process
does not suffer from adding the reformulation, independent on the kind of problem.

8.4 Eliminating Argument Common Subexpressions

Argument CS are subexpressions that are shared among the arguments of n-ary commu-
tative and associative expressions. For instance, the following two sums share the the
argument-CS ‘y+z’.

x + y + z = 10 ,
y + z + t > 5

186

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with active De Morgan Reformulation (sec)

Problem Classes (Group A)
langford2 (Minion)
langfordN (Minion)

nQueens (Minion)
bibd (Minion)

quasiGroup3I (Minion)
quasiGroup5I (Minion)

quasiGroup5NI (Minion)
quasiGroup7 (Minion)

10% less time
10% more time

same tailoring time

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with active De Morgan Reformulation (sec)

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
sokoban1 (Minion)
sokoban2 (Minion)

quasiGroup3NI (Minion)
quasiGroup4I (Minion)

quasiGroup4NI (Minion)
paq2 (Minion)
10% less time

10% more time
same tailoring time

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with active De Morgan Reformulation (sec)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq2 (Minion)
10% less time

10% more time
same tailoring time

Figure 8.11: Tailoring Time Comparison between tailoring with basic CSE and tailoring
with basic CSE and the active De Morgan reformulation on problem groups A(top),
B(middle) and C(bottom). The y-axis represents the factor with which the tailoring time
differs between both tailoring options: points above y = 1 depict cases where tailoring time
was decreased when applying the active De Morgan reformulation, points below depict
cases where tailoring time was increased.

187

Plotting Instance Eliminated Common Subexpressions (technique)
(basic CSE) (negation CSE) (argument CSE)

(1,14) 58,662 10,220 420
(1,15) 62,854 10,950 450
(2,10) 41,894 7,300 300
(2,11) 46,086 8,030 330
(2,12) 50,278 8,760 360
(3,7) 29,318 5,110 210
(3,8) 33,510 5,840 240
(3,9) 37,702 6,570 270
(4,13) 54,470 9,490 390
(4,14) 58,662 10,220 420
(4,15) 62,854 10,950 450

Table 8.1: The Number of Eliminated Common Subexpressions in Plotting, tailored to
solver Minion. Note, that the number of eliminated argument-CS makes up less than 1%
of the number of eliminated basic common subexpressions.

We proposed an algorithm that can eliminate a particular kind of argument-CS that also
occur in practical examples (see Sec. 4.4.2 for more details), whose benefits we want to
investigate in this section.

Argument-CS occur in only one of the problem classes we consider: in Plotting (Sec. 7.3.4).
Hence, we investigate their elimination in the following setup: we compare instance size,
solving performance and tailoring time of two different setups: applying all optimisation
techniques versus applying all optimisation techniques excluding argument-CS elimina-
tion.

Eliminated argument-CS

First, we investigate number of eliminated argument-CS. Recall, that eliminating argument-
CS does not reduce the number of auxiliary variables, but reduces the arity of n-ary con-
straints to binary constraints. Hence, we summarise the number of eliminated common
subexpressions in 11 instances of Plotting in Table 8.1. Common subexpressions in Plot-
ting are eliminated by three different techniques: (1) basic CSE (Sec. 4.2), (2) the active
Negation Reformulation (Sec. 4.3.3) and (3) argument CSE. Tab. 8.1 lists the number of
common subexpressions that can be eliminated using each technique. Evidently, basic CSE
is the most powerful technique, followed by the active negation reformulation and finally,
argument CSE. Since the common subexpressions eliminated by argument-CSE only make
out less than 1% of those eliminated by basic CSE and 10% of those eliminated by the
active negation reformulation, we do not expect outstanding solving performance improve-
ments.

188

 0.3

 0.5

 0.8

 1

 1.2

 1.5

 1.7

 0.1 1 10 100 1000

S
o
lv

in
g
 S

p
ee

d
u
p
 F

ac
to

r

Solving Time with argument-CS Elimination (sec)

Problem Classes (Group C)
plotting (Minion)

20% less solving time (with arg-CSE)
20% more solving time (with arg-CSE)

solved in same time

Figure 8.12: Solving Time Speedup in Plotting due to Argument-CS Elimination in
solver Minion.

Impact of Argument-CSE on Solving Performance

Now we consider the impact of argument CSE on the overall solving performance of the
Plotting instances. We only consider solving time, since the search space stays the same in
all considered Plotting instances.

Fig. 8.12 illustrates the difference in solving time with and without argument-CSE. The
x-axis shows the solving time (in seconds) with argument CSE, and the y-axis depicts
the factor with which solving time differs between instances tailored with and without
argument CSE. More specifically, all points above y = 1 depict instances that are solved in
less time using argument CSE, points below denote the opposite case.

First, we observe that most instances could be solved quicker with argument CSE, with
the exception of two instances. However, the improvement is moderate, ranging from a
speedup of about 50% for smaller instances and about 25% for larger ones. However, since
the number of argument CS is not particularly high, this is a considerable positive result
and shows the potential of improvement through argument CSE.

Impact of Argument-CS on Tailoring Time

Finally, we investigate the impact of argument CSE on tailoring time. Fig. 8.13 depicts the
differences between tailoring with and without argument CSE: as illustrated, the differences
lie within a ∓5% margin, and are evenly distributed, which leads to the conclusion that
performing argument CSE has a negligible impact on the tailoring performance and does

189

 0.9

 0.95

 1

 1.05

 1.1

 1 2 3

T
ai

lo
ri

n
g
 T

im
e

F
ac

to
r

Tailoring Time with Argument-CSE (sec)

Problem Classes (Group C)
plotting (Minion)

5% less time (with arg CSE)
5% more time (with arg CSE)

same tailoring time

Figure 8.13: Tailoring Time differences between tailoring with and without Argument-
CS Elimination, considering the Plotting problem class targeting solver Minion.

not generally increase tailoring time.

Argument CSE: Summary

We have investigated the effects of argument CSE on the Plotting problem class, the only
class that contained argument CS in the set of examples we consider in our empirical analy-
sis. In this analysis we have observed a fair number of eliminated common subexpressions
from applying argument CSE (corresponding to about 1% of the number of common subex-
pressions that basic CSE detects and eliminates). However, the elimination of this small
number of argument-CS has resulted in a considerable speedup: we observe solving time
reductions up to 70% from argument CSE. Furthermore, we observe that the tailoring time
does not suffer from the addition of argument CSE to tailoring which leads to the conclu-
sion that the integration of argument CSE does not impair the tailoring performance and
can be applied as general optimisation technique for every tailoring step.

8.5 Loop Optimisations: Inside vs. Outside Representa-
tion

In this section we assess the differences between quantifications where loop-invariant ex-
pressions are inside and those where loop-invariant expressions are outside the quantifica-
tion (see Sec. 4.6.3 for more details). Note, that only one loop optimisation (∀-⇒) was
applicable to the vast set of problem classes that we consider in our empirical study. There-
fore, we limit this analysis to this case, since the remaining loop optimisations could only

190

 0.5

 0.7
 0.8

 1

 1.7

 2

 5

 10

 15

 50 100 1000 5000

A
u
x
 V

ar
ia

b
le

 R
ed

u
ct

io
n
 w

it
h
 I

n
si

d
e

R
ep

re
se

n
ta

ti
o
n

Number of Aux Variables with Inside-Representation

Problem Classes
paq1 with CSE (Minion)
paq1 with CSE (Gecode)
paq3 with CSE (Minion)
paq3 with CSE (Gecode)

30% less aux variables
20% less aux variables

same number of aux variables

 0.5

 1

 2

 5

 10

 15

 500 1000 5000 10000 30000

C
o
n
st

ra
in

t
R

ed
u
ct

io
n
 w

it
h
 I

n
si

d
e

R
ep

re
se

n
ta

ti
o
n

Constraints with Inside Representation (Forall-Impl)

Problem Classes
paq1 with CSE (Minion)
paq1 with CSE (Gecode)
paq3 with CSE (Minion)
paq3 with CSE (Gecode)

5 times more constraints (inside)
10 times more constraints (inside)

same number of constraints

Figure 8.14: Instance Comparison between the inside and outside representation of the
(∀-⇒) case. The top graph gives a comparison of auxiliary variables, the bottom graph
shows the difference in constraints, for both solvers MINION and Gecode. The x-axis
denotes the number of auxiliary variables/constraints in the inside-representation and the
y-axis represents the factor of reduction/increase compared to the outside-representation.
The graphs illustrate how the number of auxiliary variables is reduced while the number of
constraints increases in the inside-representation.

be tested on constructed examples, which would not provide any meaningful insights for
practical examples. We analyse Case 3 from Sec. 4.6.3, where we consider a quantification
of the form

∀IA ⇒ EI

where A is loop-invariant and can hence be moved outside the quantification, yielding the
equivalent representation

A ⇒ ∀IEI

191

In this study, we compare both representations in a practical example: in two different
models of the Armies of Queens Problem [76]. We assess the reformulation in two dif-
ferent solvers: Gecode and Minion, for which we get very similar results. We start with
considering the difference in instance size between the inside- and outside-representation.

Difference in Instance Size Fig. 8.14 depicts the differences in instance size when apply-
ing the instance and outside representation. First, note, that using the inside-representation,
we get a reduction in auxiliary variables, but an increase of constraints, compared to the
outside representation. Furthermore, the reduction/increase is exactly the same for both
constraint solvers.

 0.5

 0.7

 1

 1.3

 1.5

 2

 2.5

 3

 0.01 0.1 1 10 50 100 1000

S
o
lv

in
g
 T

im
e

R
ed

u
ct

io
n
 w

it
h
 I

n
si

d
e

R
ep

re
se

n
ta

ti
o
n

Solving Time with inside-representation (sec)

Problem Classes
paq1 with CSE (Minion)
paq1 with CSE (Gecode)
paq3 with CSE (Minion)
paq3 with CSE (Gecode)

30% less solving time (inside)
30% more solving time (inside)

same solving time

Figure 8.15: Solving Time Comparison between inside and outside-representation in
for solvers MINION and Gecode on the Peaceful Armies of Queens Models (1+3). The
y-axis represents the solving time speedup factor: points at y = 1 depict cases where the
number of auxiliary variables is the same, points below depict cases where the number was
reduced. Note, that only Sokoban1 was affected by the reformulation.

Solving Performance We illustrate the solving performance in Fig. 8.15, summarising
results for both solver Gecode and MINION, which are very similar: The x-axis shows
the solving time for the inside-representation (in seconds) and the y-axis gives the factor
over which the solving time for inside-representation differs from the solving time for the
outside-representation. As an example, points at y = 2 denote those cases where the inside-
representation instance was solved in half the time of the outside-representation variant.
Therefore, all points above y = 1 denote cases, where the inside-representation has been
more successful than the outside representation, by means of solving time.

First, we note that most instances, with the exception of two small instances in Gecode,

192

have been solved quicker using the inside representation. Second, we observe that the
inside-representation provides a stronger benefit in solver MINION than in Gecode: for
MINION we observe speedup factors up to almost 3, while in Gecode we only observe a
moderate improvement, of about 30%. This difference might stem from the vast amount of
constraints that the inside representation contains, compared to the outside representation,
since Gecode and MINION post propagators (i.e. constraints) in a different fashion.

However, in summary, we can see that, unlike our expectations, keeping the loop-invariant
expression inside the universal quantification is actually beneficial.

8.6 The Power of Instance Optimisations

In this section we present the power of the combination of all optimisation techniques
that we have seen in this chapter (excluding the active Horn Clause reformulation), as
they are implemented in TAILOR. This means we will tailor instances with and without
optimisations, and investigate the differences in

1. Instance Size

2. Solving Performance (solving time and search space)

3. Tailoring Time

in two different constraint solvers: Minion and Gecode. Note, that we only consider a
subset of each problem group for solver Gecode, since the translation is still restricted on
one hand, and due to some current restrictions in Gecode on the other.

All our problem models come either from the literature or the XCSP solver competition
benchmark or follow a standard model from CSPlib, hence this study is based on authen-
tic problem models. We placed our problems into three problem groups: group A, B and
C, where group A contains problems with no scope for enhancement, group B a small to
medium scope of enhancement, while the problems in group C have a large scope of en-
hancement. Note, that the enhancements only fire in problems in group B and C, hence we
will consider group A only in the analysis of tailoring time (since the generated instances
in group A are identical in both tailoring approaches). For more details on the general
experimental setup, see Sec. 8.1.

The results in this section highlight the practical aspects of the contributions of this thesis.

8.6.1 Instance Reductions

The instance reductions reflect how much a problem class could be enhanced. First, we
investigate the reduction in auxiliary variables (that also reflects the number of eliminated

193

 0.3

 0.5

 0.7

 1

 1 10 100 1000 10000 40000

A
u
x
il

ia
ry

 V
ar

ia
b
le

 R
ed

u
ct

io
n
 F

ac
to

r

Number of Auxiliary Variables with all Optimisations

Problem Classes (Group B)
cc (Gecode)

knightsXCSP (Gecode)
queensKnightsMul (Gecode)
70% aux variables (with opt)
50% aux variables (with opt)

same number of aux variables

 0.3

 0.5

 0.7

 1

 1 10 100 1000 10000 40000

A
u
x
il

ia
ry

 V
ar

ia
b
le

 R
ed

u
ct

io
n
 F

ac
to

r

Number of Auxiliary Variables with Optimisations

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
sokoban1 (Minion)
sokoban2 (Minion)

quasiGroup3NI (Minion)
quasiGroup4I (Minion)

quasiGroup4NI (Minion)
paq2 (Minion)

70% aux variables (with opt)
50% aux variables (with opt)

same number of aux variables

Figure 8.16: Reduction of Auxiliary Variables in group B by tailoring using all opti-
misation techniques for solver Gecode (top) and solver MINION (bottom). Note that the
reduction of auxiliary variables reflects the number of eliminated common subexpres-
sions (every eliminated CS saves one variable). The x-axis depicts the number of auxiliary
variables with optimisations; the y-axis represents the factor with which the number of
auxiliary variables is reduced due to the optimisations. For instance, points at y = 0.5
represent instances where the number of auxiliary variables was reduced to 50% compared
to not applying optimisations.

194

common subexpressions). Second, we consider the reduction in constraints.

Reduction in Auxiliary Variables

A reduction in auxiliary variables is typically desirable and reflects the number of elimi-
nated common subexpressions, since for every eliminated common subexpression, we save
one auxiliary variable. Fig. 8.16 shows the auxiliary reduction for group B, while Fig. 8.17
shows the reduction for group C. In both figures, the top graph shows results for solver
Gecode, while the bottom graph shows results for solver MINION.

First, we notice that the reduction is very similar in both solvers, which demonstrates that
our optimisation techniques are generally beneficial and do not compensate for a specific
feature in just one solver.

Second, we notice the magnitude of the reduction: for problems in group B, we see re-
ductions down to less than half the number of auxiliary variables. In group C, enhanced
instances of some problem classes only contain about 2% of the equivalent unenhanced
instance.

In summary, we observe a vast reduction in auxiliary variables due to our optimisation
techniques, that are similar in solver MINION and Gecode.

Reduction of Constraints

Second, we consider the reduction in constraints: results for group B are illustrated in
Fig. 8.18, those for group C are illustrated in Fig. 8.19.

Similar to the reduction in auxiliary variables, we observe a similarities in the results of
solver Gecode and MINION.

Both figures illustrate, how the constraint reduction is related to the parameters that scale
the problem: in many classes, the reduction increases with the parameters (e.g. Chessboard
Colouring); in other classes, the constraint reduction is independent of the parameters, like
in the Peg Solitaire models. Note, that in some problem classes, like Queen-Knights, the
constraint reduction linearly decreases with the instance size. This is easily explained: this
kind of problem classes contain parameters that scale constraints that are not affected by
CSE. Hence the larger those parameters get, the smaller is the number of constraints saved
by CSE in proportion to the number of constraints added by increasing the parameter.

In summary, we see impressive constraint reductions that are similar in both constraint
solvers, where the enhanced instances contain about 95%-45% of constraints in group B
and 50-1% of constraints in group C, when compared to the respective unenhanced in-
stance.

195

 0.01

 0.03

 0.05

 0.1

 0.3

 0.5

 1

 5 10 100 1000 10000 40000

A
u
x
il

ia
ry

 V
ar

ia
b
le

 R
ed

u
ct

io
n
 F

ac
to

r

Number of Auxiliary Variables with all Optimisations

Problem Classes (Group C)
knights (Gecode)

paq1 (Gecode)
paq3 (Gecode)

50% aux variables (with opt)
10% aux variables (with opt)
5% aux variables (with opt)

same number of aux variables

 0.01

 0.02

 0.05

 0.1

 0.5

 1

 1 10 100 1000 10000 40000

A
u
x
il

ia
ry

 V
ar

ia
b
le

 R
ed

u
ct

io
n
 F

ac
to

r

Number of Auxiliary Variables with Optimisations

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

10% aux variables (with opt)
5% aux variables (with opt)
2% aux variables (with opt)

same number of aux variables

Figure 8.17: Reduction of Auxiliary Variables in group C by tailoring using all opti-
misation techniques for solver Gecode (top) and solver MINION (bottom). Note that the
reduction of auxiliary variables reflects the number of eliminated common subexpres-
sions (every eliminated CS saves one variable). The x-axis depicts the number of auxiliary
variables with optimisations; the y-axis represents the factor with which the number of
auxiliary variables is reduced due to the optimisations. For instance, points at y = 0.5
represent instances where the number of auxiliary variables was reduced to 50% compared
to not applying optimisations.

196

 0.5

 0.7

 1

 10 100 1000 10000 40000

C
o
n
st

ra
in

t
R

ed
u
ct

io
n
 F

ac
to

r

Number of Constraints with all Optimisations

Problem Classes (Group B)
cc (Gecode)

knightsXCSP (Gecode)
queensKnightsMul (Gecode)
90% of constraints (with opt)
70% of constraints (with opt)
50% of constraints (with opt)

same number of constraints

 0.4

 0.5

 0.7

 0.9

 1

 10 100 1000 10000 50000

C
o
n
st

ra
in

t
R

ed
u
ct

io
n
 F

ac
to

r

Number of Constraints with Optimisations

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
sokoban1 (Minion)
sokoban2 (Minion)

quasiGroup3NI (Minion)
quasiGroup4I (Minion)

quasiGroup4NI (Minion)
paq2 (Minion)

90% of constraints (with opt)
70% of constraints (with opt)
50% of constraints (with opt)

same number of constraints

Figure 8.18: Reduction of Constraints in group B by tailoring using all optimisation
techniques for solver Gecode (top) and solver MINION (bottom). The x-axis depicts the
number of constraints with optimisations; the y-axis represents the factor with which the
number of constraints is reduced due to the optimisations. For instance, points at y = 0.5
represent instances where the number of constraints was reduced to 50% (i.e. by half)
compared to not applying optimisations.

8.6.2 Tailoring Time

Tailoring time is an important feature that assesses the efficiency of applying our tech-
niques. We compare the tailoring times on all three problem groups.

197

 0.01

 0.1

 0.4

 0.5

 1

 50 100 1000 10000 40000

C
o
n
st

ra
in

t
R

ed
u
ct

io
n
 F

ac
to

r

Number of Constraints with Optimisations

Problem Classes (Group C)
knights (Gecode)

paq1 (Gecode)
paq3 (Gecode)

40% of constraints (with opt)
10% of constraints (with opt)
1% of constraints (with opt)
same number of constraints

 0.01

 0.1

 0.4

 0.5

 1

 50 100 1000 10000 40000

C
o
n
st

ra
in

t
R

ed
u
ct

io
n
 F

ac
to

r

Number of Constraints with Optimisations

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

40% of constraints (with opt)
10% of constraints (with opt)
1% of constraints (with opt)
same number of constraints

Figure 8.19: Reduction of Constraints in group C by tailoring using all optimisation
techniques for solver Gecode (top) and solver MINION (bottom). The x-axis depicts the
number of constraints with optimisations; the y-axis represents the factor with which the
number of constraints is reduced due to the optimisations. For instance, points at y = 0.5
represent instances where the number of constraints was reduced to 50% (i.e. by half)
compared to not applying optimisations.

198

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g

 T
im

e
F

ac
to

r

Tailoring Time with all Optimisations

Problem Classes
langford2 (Minion)
langfordN (Minion)

nQueens (Minion)
bibd (Minion)

quasiGroup3I (Minion)
quasiGroup5I (Minion)

quasiGroup5NI (Minion)
quasiGroup7 (Minion)

10% less time (with opt)
10% more time (with opt)

same tailoring time

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g

 T
im

e
F

ac
to

r

Tailoring Time with all Optimisations

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
sokoban1 (Minion)
sokoban2 (Minion)

quasiGroup3NI (Minion)
quasiGroup4I (Minion)

quasiGroup4NI (Minion)
paq2 (Minion)

10% less time (with opt)
10% more time (with opt)

same tailoring time

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g

 T
im

e
F

ac
to

r

Tailoring Time with all Optimisations

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq2 (Minion)

10% less time (with opt)
10% more time (with opt)

same tailoring time

Figure 8.20: Tailoring Time Comparison between tailoring to solver MINION with
and without using all optimisation techniques on problem groups A(top), B(middle) and
C(bottom). The x-axis represents the tailoring time used for tailoring with optimisations.
The y-axis represents the factor with which the tailoring time differs between both tailoring
options: points above y = 1 depict cases where tailoring time was reduced when tailoring
with optimisations and points below depict the opposite case.

Fig. 8.20 illustrates the tailoring times for solver MINION, Fig. 8.21 illustrates the tailoring
times for solver Gecode. Both figures show that tailoring time is not strongly affected

199

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g

 T
im

e
F

ac
to

r

Tailoring Time with all Optimisations (sec)

Problem Classes
langford2 (Gecode)
langfordN (Gecode)

nQueens (Gecode)
10% less time (with opt)

10% more time (with opt)
same tailoring time

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g

 T
im

e
F

ac
to

r

Tailoring Time with all Optimisations (sec)

Problem Classes (Group B)
cc (Gecode)

knightsXCSP (Gecode)
queensKnightsMul (Gecode)

paq2 (Gecode)
10% less time (with opt)

10% more time (with opt)
same tailoring time

 0.65

 0.8

 0.9

 1

 1.1

 1.2

 1.35

 0.05 0.1 0.5 1 5 10 80

T
ai

lo
ri

n
g

 T
im

e
F

ac
to

r

Tailoring Time with all Optimisations (sec)

Problem Classes (Group C)
golomb (Gecode)
knights (Gecode)

nQueensNaive (Gecode)
paq1 (Gecode)
paq3 (Gecode)

10% less time (with opt)
10% more time (with opt)

same tailoring time

Figure 8.21: Tailoring Time Comparison between tailoring to solver Gecode with and
without using all optimisation techniques on problem groups A(top), B(middle) and
C(bottom). The x-axis represents the tailoring time used for tailoring with optimisations.
The y-axis represents the factor with which the tailoring time differs between both tailoring
options: points above y = 1 depict cases where tailoring time was reduced when tailoring
with optimisations and points below depict the opposite case.

by integrating all the optimisation techniques: the instances are distributed evenly below
and above y = 1, most of them in a margin of ∓10% for MINION and 20% for Gecode.

200

Furthermore, for group C, to which most enhancements apply, the tailoring time is actually
reduced for some problem classes.

In summary, the tailoring time analysis shows that the difference in tailoring with or without
optimisations is marginal, and mainly lies within a margin of around∓10%, which is fairly
small, in particular considering the brevity of the tailoring times. Therefore, we conclude
that there is no general penalty for integrating all instance optimisations into tailoring.

8.6.3 Impact on Solving Performance

Finally, we investigate the most important feature: the impact of our instance optimisations
on solving performance. We start with the difference in solving time and then consider the
search space reduction.

Solving Time

The speedups in solving time are most impressive, for both Gecode and MINION. We
illustrate the speedups in Fig. 8.22 for group B, and in Fig. 8.23 for group C. Since MINION
benefits slightly more from the enhancements (due to particular limitations of its constraints
repertory), the results for MINION are better than those for Gecode: In group B we observe
speedups up to 2.7 for Gecode and 3.5 for MINION, while for group C we see speedups
ranging up to 1,300 for Gecode and 3,400 for MINION. Note, that these speedups are
mainly gained ‘for free’, since tailoring time hardly suffers from applying optimisation.

We give an overview of the observed speedup factors in Tab. 8.2 for Problem Group B and
in Tab. 8.3 for Problem Group C. Each table illustrates the smallest, average and largest
speedup factor observed for the respective problem class. Note that instances with timeouts
are not included in these speedups (i.e. if an enhanced instance was solved without timeout,
but the unenhanced instances has timed out, we do not add this difference in solving time,
since it is not useful). As the tables demonstrate, there can be a big difference in speedups
between instances of the same class.

Reduction of Search Space

The instance optimisations even resulted in search space reductions for some problem
classes (only in group C), for both MINION and Gecode, which are depicted in Fig. 8.24.
The most impressive search space reduction is obtained in the Peaceful Armies of Queens
Problem, where both in Gecode and MINION some enhanced instances requires only 1%
of the search space unenhanced instances require. This demonstrates the potential benefit
our instance optimisations can have on the search space.

201

Problem Group B Speedup Factor
Smallest Average Largest

Chessboard Colouring 1.08 1.64 3.24
Crosswords Words 1.00 1.07 1.53
Crosswords Herald 1.00 1.06 1.46
Knight’s Tour XCSP 1.31 1.86 2.51
Queens Knights Mul 1.70 1.70 1.70
Queen Attacking 1.35 1.64 1.82
Quasigroup 3 non-idem 1.00 1.02 1.06
Quasigroup 4 idem 1.02 1.18 1.52
Quasigroup 4 non-idem 0.96 1.02 1.06
Peaceful Army of Queens 1.16 1.235 1.31

Table 8.2: Speedup Overview for Problem Group B, showing smallest, average and
largest speedup observed in the set of instances drawn from the respective class. Timed out
instances are excluded from this discussion.

Problem Group C Speedup Factor
Smallest Average Largest

Golomb Ruler naive 1.96 22.02 57.82
Peg Solitaire State 2.12 4.76 8.71
Peg Solitaire Action 4.67 6.21 7.27
Plotting 4.83 6.58 7.34
Knights 16.47 20.37 26.32
n-Queens naive 1.15 2.89 8.12
Peaceful Army Queens 1 108.84 1,213.40 3,418.61
Peaceful Army Queens 3 90.86 707.43 1,852.23

Table 8.3: Speedup Overview for Problem Group C, showing smallest, average and
largest speedup observed in the set of instances drawn from the respective class. Timed out
instances are excluded from this discussion.

202

 0.9
 1

 1.1

 1.5

 2

 2.5

 3

 3.5

 0.01 0.1 1 10 100 1200

S
o
lv

in
g
 T

im
e

S
p
ee

d
u
p
 F

ac
to

r

Solving Time with all Optimisations (sec)

Problem Classes (Group B)
cc (Gecode)

knightsXCSP (Gecode)
queensKnightsMul (Gecode)

paq2 (Gecode)
1/2 solving time (with opt)
3/4 solving time (with opt)

solved using same time

 0.9
 1

 1.1

 1.5

 2

 2.5

 3

 3.5

 0.01 0.1 1 10 100 1200

S
o
lv

in
g
 T

im
e

S
p
ee

d
u
p
 F

ac
to

r

Solving Time with all Optimisations (sec)

Problem Classes (Group B)
cc (Minion)

cwM1 (Minion)
cwHerald (Minion)

knightsXCSP (Minion)
queensKnightsMul (Minion)

queenAttacking (Minion)
quasiGroup3NI (Minion)

quasiGroup4I (Minion)
quasiGroup4NI (Minion)

paq2 (Minion)
1/2 solving time (with opt)
3/4 solving time (with opt)

solved using same time

Figure 8.22: Solving Time Speedup by tailoring using all optimisation techniques for
solver Gecode (top) and solver MINION (bottom). The x-axis depicts the solving time (in
seconds) with optimisations; the y-axis shows the solving time speed up factor of instances
tailored using all optimisations. For instance, points at y = 5 represent instances that were
solved 5 times faster with optimisations than without.

203

 1

 2

 5

 10

 20

 50

 100

 500

 1000

 2000

 1 10 100 1000

S
o
lv

in
g
 T

im
e

S
p
ee

d
u
p
 F

ac
to

r

Solving Time with all Optimisations (sec)

Problem Classes (Group C)
knights (Gecode)

paq1 (Gecode)
paq3 (Gecode)

1/100 solving time (with opt)
1/10 solving time (with opt)
1/5 solving time (with opt)

solved in same time

 1

 2

 5

 10

 20

 50

 100

 500

 1000

 2000

 5000

 1 10 100 1000

S
o
lv

in
g
 T

im
e

S
p
ee

d
u
p
 F

ac
to

r

Solving Time with all Optimisations (sec)

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

1/100 solving time (with opt)
1/10 solving time (with opt)
1/5 solving time (with opt)

solved in same time

Figure 8.23: Solving Time Speedup by tailoring using all optimisation techniques for
solver Gecode (top) and solver MINION (bottom). The x-axis depicts the solving time (in
seconds) with optimisations; the y-axis shows the solving time speed up factor of instances
tailored using all optimisations. For instance, points at y = 5 represent instances that were
solved 5 times faster with optimisations than without.

204

 0.001

 0.01

 0.1

 0.5

 0.8
 1

 100 1000 10000 100000 1e+06 1e+07

S
ea

rc
h
 N

o
d
e

R
ed

u
ct

io
n
 F

ac
to

r

Search Nodes applying all Optimisations

Problem Classes (Group C)
knights (Gecode)

paq1 (Gecode)
paq3 (Gecode)

50% of nodes (with opt)
10% of nodes (with opt)
1% of nodes (with opt)
same number of nodes

 0.001

 0.01

 0.1

 0.5

 0.8
 1

 100 1000 10000 100000 1e+06 1e+07

S
ea

rc
h
 N

o
d
e

R
ed

u
ct

io
n
 F

ac
to

r

Search Nodes applying all Optimisations

Problem Classes (Group C)
golomb (Minion)

pegState (Minion)
pegAction (Minion)

plotting (Minion)
knights (Minion)

nQueensNaive (Minion)
paq1 (Minion)
paq3 (Minion)

50% of nodes (with opt)
10% of nodes (with opt)
1% of nodes (with opt)
same number of nodes

Figure 8.24: Search Space Reduction by tailoring using all optimisation techniques on
group C, in solver Gecode (top) and solver MINION (bottom). The x-axis depicts the search
nodes with optimisations; the y-axis shows the search node reduction factor of instances
tailored using all optimisations. For instance, points at y = 0.01 represent instances that
were solved using only 1% of the search space of the search space used to solve the same
instance without optimisation

CHAPTER 9

CONCLUSIONS

This dissertation has defended the thesis that the compilation from solver-independent
constraint model to solver input can be automated and extended with light-weight model
optimisations by presenting an automated modelling framework that automatically tailors
problems formulated in a solver-independent modelling language to solver input while per-
forming model enhancements that can result in substantial solving time speedups. This
framework clearly facilitates the access to Constraint Programming techniques for novices
to the area, since the user requires no particular knowledge of the target solver and poor
modelling choices from inexperience can be compensated for by the automated optimisa-
tions.

The central contributions are threefold: first, we thoroughly discussed the process of tailor-
ing, the compilation of solver-independent constraint models to low-level solver formats.
We presented a generic and easily-extendable approach that can process both problem in-
stances and problem classes. The second contribution was the integration of light-weight
optimisation techniques into the process of tailoring. These techniques add negligible over-
head to tailoring time and can produce instances that are solved in fractions of the time that
unenhanced instances take. The third contribution was the implementation of all these
techniques in the tool TAILOR, that is freely available online. Note, that TAILOR has al-
ready contributed in rendering constraint programming techniques more accessible to non-
experts, for instance, by providing assistance in scheduling machines that are used in cancer
research [52]:

“Tailor’s implementation of the expressive Essence’ constraint modelling language
allowed the use of the powerful Minion solver by non experts”

(taken from the abstract of [52])

The final chapter is organised as follows. First, in Sec. 9.1, we summarise the main features
of this work and describe the central contributions in more detail. Then, we outline ideas
for future work with respect to this thesis in Sec.9.2.

205

206

9.1 Summary

This thesis has presented a framework in which solver-independent constraint models are
automatically tailored to solver input and additionally enhanced, which in practice, can
result in spectacular solving time speedups. In the following, we summarise the core con-
tributions and features of this thesis.

9.1.1 Specification of ESSENCE′

First, we gave in Chapter 2 a detailed overview of the solver-independent constraint mod-
elling language ESSENCE′. ESSENCE′ is a derivative of the problem specification language
ESSENCE, and has not been explictly defined to date. Appendix A gives a formal syntax
specification in BNF notation.

9.1.2 Tailoring Constraint Models

Second, we presented the overall structure of a generic tailoring engine: by following an
approach similar to Compiler Construction, a generic architecture is introduced that allows
us to easily extend the tailoring engine with further input- and output-languages, as well
as reusing core parts of the translation (preprocessing and flattening) for any target solver.
The generalisation of the core is achieved by the use of solver profiles that summarise a
target solver’s features. The tailoring engine TAILOR incorporates this general architecture
and demonstrates the efficiency of its structure, supporting 2 modelling languages as input
and generating 3 solver formats as output.

Furthermore, we consider tailoring of both problem instances and whole problem classes.
The latter is a completely novel approach that, to the best of our knowledge, has not yet
been investigated. Tailoring classes has two main applications: first, to support solvers
that are libraries of programming languages (like C++, Java or Prolog) in which problems
can be formulated as classes and parameters specified at runtime, after compilation. The
second application is that of class-wise tailoring, which denotes an alternative approach for
targeting solvers to the standard tailoring method of instance-wise tailoring. Class-wise
tailoring first generates a flat problem class, which is then used to generate instances from.
This can be a faster tailoring approach than instance-wise tailoring, since particular ex-
pensive operations, such as flattening, are only performed once for the problem class and
need not be repeated for every instance. However, tailoring classes is a more advanced
translation process than tailoring instances, and still has limitations, like the introduction
of unconstrained auxiliary variables that are generated for particular kinds of guards. For-
tunately, in our empirical analysis, we have observed that this redundancy does not heavily
affect the tailoring process, as long as the auxiliary variables are not included in search. In
summary, we showed that tailoring classes is a powerful technique which we expect to be

207

more significant in the future.

9.1.3 Optimisation during Tailoring

Third, we presented a set of cheap but effective instance optimisation techniques that were
mainly inspired by code optimisations in Compiler Construction. We started with a dis-
cussion on related work, in particular, enhancement techniques that stem from the areas
of Constraint Programming and Compiler Construction, emphasising connections to the
techniques we propose.

Removing Duplicate Constraints

The first optimisation technique is that of removing duplicate constraints that often occur
in models of inexperienced users as a result of weak Boolean guards. This technique was
discussed both at instance and class level. At instance level, the elimination is simple, since
preprocessing assists in detecting duplicates: ordering of constraints places duplicates next
to another. At class level, duplicate constraints can only be avoided by strengthening the
Boolean guard, hence reasoning over the quantified expression is necessary. Therefore, we
propose an algorithm for strengthening guards, exploiting unification, which assists us in
determining the set of conditions that need to be added to the guard in order to prevent
duplicates. In our empirical evaluation, we examined the consequences of duplicate con-
straints in two naive constraint models and observed that duplicates can cause a doubling
of solving time, if not eliminated. In summary, removing duplicate constraints in models
of novices is an important optimisation technique that can prevent a considerable increase
in runtime.

Common Subexpression Elimination

The second optimisation technique is the most powerful technique of our instance optimisa-
tions: common subexpression elimination (CSE). CSE is an already wide-spread technique
in related areas, such as SAT or Proof Theory, so its integration into the context of Con-
straint Programming was an obvious step (a step we were surprised to find that no-one
else has taken before us). CSE-techniques in SAT or Proof Theory are performed using
Directed Acyclic Graphs (DAGs) through which common subexpressions can be easily de-
tected. However, since our aim is to include instance optimisations during tailoring, we
proposed a novel approach: the elimination of common subexpression during flattening.
We show that CSE-flattening is a light-weight approach that for many instances even lies in
the same complexity class as standard flattening. Furthermore, in our experimental results,
we observe that tailoring time actually decreases with the number of subexpressions that
are eliminated, since fewer expressions need to be flattened. However, the most impressive
results are the benefits we obtain from CSE during solving: in our empirical analysis, we

208

observe dramatic solving time speedups (up to a factor of 2,000) and in some cases even
a vast reduction of search space (down to 1% of the search space unenhanced instances
require).

We considered CSE at both instance and class level: though CSE from instance level is
directly applicable at class level, it does not detect all common subexpressions that are
detected at instance level. Therefore, we propose three different CSE-approaches at class
level that each provide particular benefits but also drawbacks. The first two approaches can-
not detect shifted common subexpressions, which are a particular family of subexpressions
that are equivalent in different ‘iterations’ of a quantification. The detection of shifted com-
mon subexpressions requires to either reason over the quantifying domains that dereference
arrays, or to approximate the respective quantifying domain, a concept that is embodied in
the third approach. The third CSE approach detects the most common subexpressions at
class level, but, in the worst case, can introduce redundancies (that however, hardly occur
in practice). In summary, we have proposed a set of CSE approaches for class level that
aim at detecting the same set of common subexpressions as we detect at instance level.

In conclusion, CSE is a powerful technique that can easily be embedded into flattening
for practically no overhead. It is particularly successful, even on expert models, and can
provide speedups of an order of a magnitude that sometimes come along with dramatic
search space reductions.

Increasing the Number of Identical Subexpressions

In order to extend the benefits from common subexpressions by CSE-flattening, which de-
tects only identical subexpressions (i.e. syntactically equivalent expressions), we extend
CSE by adding measures that reformulate equivalent, but not identical expressions into an
identical format. The detection of equivalence between two subexpressions can be arbi-
trarily complex, hence we restrict our investigations to simple cases of equivalence, that,
nevertheless, often occur in practice.

Active Negation Reformulation The first reformulation is the most successful reformu-
lation: the active negation reformulation, which is concerned with detecting subexpressions
where one subexpression is the negation of the other. In that case, one subexpression can
be replaced with the negated auxiliary variable that represents the other (and vice versa).
The detection of this equivalence can be easily embedded into tailoring, and also adds no
overhead to the basic CSE procedure, since it lies in the same complexity class. This is
also confirmed by our experimental results, that illustrate that the reformulation does not
cause an overhead in tailoring time, but results in a considerable reduction of solving time,
in some cases, to more than half the solving time without the reformulation. In summary,
the active negation reformulation is a successful and cheap technique that should be part of
a standard tailoring system.

209

Active Horn Clause Reformulation The second reformulation exploits the equivalence
between implications and Horn Clauses. The important observation in this context is that a
disjunction of relational constraints can typically always be represented as a Horn Clause,
since we can ‘move’ the negation ‘outside’ the relational expression by flipping the rela-
tional operator, e.g. reformulating (x < y) into ¬(x ≥ y) for all but one disjoint argument,
leaving one argument positive. The choice of positive literal is the main difficulty in this
approach, since an optimal choice has to take other subexpressions of the instance into ac-
count. For now, we apply a simple heuristic that chooses the positive literal according to
its expression order. This heuristic, however, has not brought the expected benefits: in our
empirical analysis we observe an impairment of solving performance by about 40% (i.e.
it took 40% more time to solve the instances with the Horn Clause reformulation). The
reason for this might be the consequence of some internal feature of MINION, of which we
are not aware of, or, more likely, stem from the immatureness of our heuristic. Improving
our heuristic on how to generate the most effective Horn Clause from a disjunction, is an
important item of future work.

Active De Morgan Reformulation The third reformulation is the active De Morgan Re-
formulation which uses the equivalence between expressions through De Morgan’s Law.
In particular, since expressions are normalised to Negation Normal Form (where negations
are propagated to the leaves of expressions trees) during preprocessing, De Morgan’s Law
can only be applied one-way, which can yield further common subexpressions if one the
arguments is negated somewhere else in the model. In other words, the active De Morgan
reformulation can be considered an extension of the active negation reformulation. Un-
fortunately, the reformulation did not fire in any of our examples in our empirical analysis,
however, since attempting it added no overhead to tailoring time, we have chosen to include
it as standard optimisation technique during tailoring.

Undetected Common Subexpressions

A discussion on which equivalent subexpressions we can detect cannot lack the discussion
on which equivalent subexpressions we do not detect. Therefore, this discussion has been
included, evolving around the scope of CSE.

First, we mention the detection of equivalences between a global constraint and its de-
composed representation, which would be a powerful equivalence to exploit. However,
detecting these kind of equivalences is typically very expensive (e.g. detecting a maximal
clique of disequalities to match with alldifferent is NP-complete) and therefore not useful
at instance level. However, at class level, a higher detection effort would be worthwhile,
since every instance drawn from the enhanced class would benefit from the enhancement.
Unfortunately, a thorough investigation of detecting this type of equivalence was out of
scope of this thesis and is expected to be a fruitful item of future work.

Second, there is a family of common subexpressions that we only detect in limited cases:

210

argument common subexpressions (argument-CS). Argument-CS are arguments that are
shared among n-ary associative and commutative expressions, e.g. b + c + d and a + b + c
share the argument-CS b+c. Detecting this kind of common subexpression does not provide
the same improvement as CS detected by basic CSE, since their elimination does not save
an auxiliary variable, but only reduces the arity of the respective constraint. There exist
examples where the general elimination of argument-CS is beneficial and can even improve
search, however, in practice, we have only encountered one particular kind of argument-CS
that occurs in special kinds of quantified expressions. We proposed an algorithm in order
to detect these argument-CS and our empirical analysis shows that their elimination can
yield a notable solving time reduction of about 50% for small instances and 25% for larger
instances. These were significant results, since the number of argument-CS was very small
(compared to the number of common subexpressions eliminated by basic CSE or the active
negation reformulation). However, the question of whether it is worthwhile to detect all
argument-CS in general is difficult and requires further investigation.

Quantification Optimisations

The third optimisation technique is concerned with expression representations involving
quantifications, which are a powerful tool when modelling in a solver-independent mod-
elling language, such as ESSENCE′.

First, we investigate the issue of weak Boolean guards, and show that the first two optimi-
sation techniques, CSE and elimination of duplicates, already take care of the redundancies
stemming from weak guards.

Second, we consider loop-invariant expressions, which are expressions in quantifications,
that are independent of the quantifying variable and can hence be moved outside the quan-
tification. The choice of moving a loop-invariant expression inside or outside a quantifica-
tion is the main objective of our discussion on quantification optimisations.

Initially, we expected that moving a loop-invariant expression outside the respective quan-
tification would generally be the better choice. However, we have encountered cases, where
the inside representation outperforms the outside representation, in particular, expressions
involving universal quantification and implications. We have tested this particular case on
the Peaceful Armies of Queens Problem and have seen that the inside representation clearly
dominates the outside representation in solving performance. These results are particularly
interesting, since they refute a common belief and demonstrate how little we yet know
about the right representation of complex, quantified constraint expressions.

9.1.4 The tool TAILOR

Almost all tailoring features in this thesis are implemented in the tool TAILOR, which is
a major contribution, in particular since it is freely available on the web. TAILOR and the

211

optimisation techniques it contains have been thoroughly assessed in our empirical analysis,
which has shown very satisfactory results, tailoring most problem instances within fractions
of a second and providing speedups factors of up to 3,400. Furthermore, the ease of use of
TAILOR is another important feature of our implementation: by providing an inter-active
modelling environment, where problems can be modelled in a clean way, using powerful
constructs like quantifications, and the problem solution is just a button click away. We
hope that the proposed techniques will spread among other tailoring tools and help make
Constraint Programming techniques more accessible from outside out community.

9.1.5 The Missing Link in Automated Constraint Modelling

The last and probably most significant contribution of this thesis was the identification
and automation of the missing link automated modelling, i.e. the automated translation
from solver-independent constraint model to solver input. To date, automated constraint
modelling has mainly focussed on how to formulate a given problem as a constraint model,
an essential task to reduce the modelling bottleneck. This is, however, not enough. In order
for a (generated) model to be solved, it has to be formulated in the solver language, a non-
trivial step that constitutes another challenge to the modeller, a challenge that has not yet
been recognised and investigated for automation.

9.2 Future Work

In this section we briefly outline our plans for future work with respect to the work pre-
sented in this thesis.

9.2.1 Addressing Redundancies when Tailoring Classes

As we have noted in Sec. 5.3.2 our approach of tailoring classes can introduce redundancies
in form of unconstrained auxiliary variables, if the respective quantified subexpression is
guarded by a Boolean guard that evaluates to true in particular cases. For instance, in the
example below,

g iven n ,m : i n t (1 . .)
f i n d x ,y : matrix indexed by [i n t (1 . . n)] of i n t (1 . . m)

such t h a t
f o r a l l i ,j : i n t (1 . . n) .

(i<j) => (x [i]∗x [j] != y [i]∗y [j])

flattening will introduce 2n2 auxiliary variables (one array of length n2 for each multi-
plication, since both i and j range over (1..n)). However, since (i < j) will evaluate to

212

false in n(n+1)
2 cases, only 2(n2 − n(n+1)

2) auxiliary variables are actually used, the rest are
unconstrained.

This is a considerable limitation that needs to be addressed. We have discussed different
possible approaches as how to treat this issue:

1. Introducing new data structures that allow ‘holes’

2. Extending the modelling language to support local auxiliary variables and investigate
if preventing CSE (since local auxiliary variables have a limited scope) affects the
solving performance of the class

3. Extending the modelling language with high-level comprehensions to allow us to
explicitly state a mapping between the quantifying variable’s assignments and the
indices of the corresponding auxiliary array.

Exploring these three possibilities as well as considering other approaches will be an im-
portant item of our future work.

9.2.2 Extending the set of Model Optimisations

In this work, we have considered a number of useful optimisation techniques during tai-
loring, however, there is much scope for extending the optimisations that are performed to
date.

Integrating further Optimisations into Tailoring

There exist many more possibilities of optimisations that could be made available during
tailoring. First, we could explore further equivalence relations/properties (like Distributiv-
ity) that we could exploit in order to formulate further active reformulation techniques.

Second, it would be very valuable to detect decomposed representations of global con-
straints and replace them with their respective global constraint representation. This would
be very beneficial for two main reasons: first, global constraints typically provide a better
solving performance than their decomposed representation. Second, inexperienced mod-
ellers are often not aware of the existence of particular global constraints and simply make
no use of them. Therefore, automatically replacing (or proposing a replacement to the user
in an inter-active way) would facilitate modelling, in particular for novice users. Evidently,
such a detection would be far more expensive than the techniques that we have proposed in
this work, so some might have to be integrated in a restricted fashion.

213

Restricted Optimisations during Tailoring

Many optimisation techniques fire only for a small selection of problems. For instance, the
algorithm to learn a global gcc constraint [13] is a specific optimisation that is particularly
valuable for special problem models. However, since these techniques can be very costly,
it is preferable to apply them only in a restricted fashion during tailoring. In other words,
some optimisation techniques should only be applied if there is a high probability that the
technique fires on the respective instance/class. For example, this could be achieved by
introducing heuristic approaches that interpret the model structure (e.g. constraint graph,
expression tree structures, etc) and give an estimate of how applicable a given optimisation
technique is on the problem model. This estimate can then guide the choice of which
optimisation technique to apply to a constraint model.

Exploring Non-deterministic Reformulations for Optimisations

In some cases, there are several different possibilities of how to enhance a problem formu-
lation. We have seen this in two cases during this work:

Active Horn Clause Reformulation In the active Horn Clause reformulation (Sec. 4.3.5),
the issue arises that there are several different ways to represent a disjunction as a
Horn Clause. More specifically, an n-ary disjunction of relational constraints has
n + 1 different Horn Clause representations (since any of the n arguments can be
chosen as the positive literal, in addition to the Horn Clause with no positive literal).
The choice of which argument to select as positive literal can be vital (as our em-
pirical results have shown), and depends on other subexpressions in the constraints
instance/class. Therefore, it would be useful to explore possibilities on how to per-
form this choice in an efficient way.

Conflicting Common Subexpressions A similar issue arises with conflicting common
subexpressions in argument common subexpressions (argument-CS) (Sec. 4.4.2).
Common subexpressions are conflicting [6] if there are different possibilities of elim-
inating them. For instance, in the example below, if we eliminate the common subex-
pression ‘x+y’, we cannot eliminate the common subexpressions ‘y+z’ or ‘x+y+z’.

f i n d x ,y ,z ,s ,r : i n t (−5 . . 5)
f i n d t ,u ,v : i n t (1)
f i n d w : i n t (2)

such t h a t
x + y + z + t = v ,
x + y + z + u = w ,
x + y + t + s = r

One possibility would be to eliminate the common subexpression with the most oc-
currences (which is ‘x+y’ in the example above), however, this does not necessarily

214

provide the greatest benefits (if we would eliminate ‘x + y + z’, then propagation
would immediately detect unsatisfiability). Investigating heuristics on how to deal
with conflicting common subexpressions would be a valuable contribution.

Optimising the Choice of Search Strategies

A notable limitation of this work is that the selected search strategy is not adapted to the
specific problem that is tailored, but the default heuristic is selected. Note, that this is not a
limitation for the expert modeller using a tailoring tool, since she can (and probably wants
to) try out different search heuristics by editing the solver input manually. However, this
can pose a problem for inexperienced users that are not aware of the effects of different
search strategies.

Finding a general approach of automatically determining an efficient search strategy for a
given constraint model is probably as difficult as finding a general strategy on determining
the best constraint model formulation for a given combinatorial problem. However, we
hope in future we will be able to perform reasoning of some form in order to determine a
good heuristic as to what heuristics to choose.

BIBLIOGRAPHY

[1] M. Arangu A. Garrido, E. Onaindia. Using constraint programming to model complex
plans in an integrated approach for planning and scheduling. In UK Planning and
Scheduling SIG Workshop (PLANSIG), pages 137–144, 2006.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques,
and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools, chapter 9, pages 583–705. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[4] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, 1970.

[5] Frances E. Allen. A basis for program optimization. In IFIP Congress (1), pages
385–390, 1971.

[6] Ignacio Araya, Bertrand Neveu, and Gilles Trombettoni. Exploiting common subex-
pressions in numerical csps. In CP ’08: Proceedings of the 14th international confer-
ence on Principles and Practice of Constraint Programming, pages 342–357, Berlin,
Heidelberg, 2008. Springer-Verlag.

[7] Fahiem Bacchus and Toby Walsh, editors. Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005,
Proceedings, volume 3569 of Lecture Notes in Computer Science. Springer, 2005.

[8] Roman Barták and Daniel Toropila. Reformulating constraint models for classical
planning. In Wilson and Lane [88], pages 525–530.

[9] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit. Global
constraint catalogue: Past, present and future. Constraints, 12(1):21–62, 2007.

[10] Christian Bessiere. Handbook of Constraint Programming (Foundations of Artificial
Intelligence), chapter Propagation, pages 29–83. Elsevier Science Inc., New York,
NY, USA, 2006.

[11] Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. Acquiring
constraint networks using a sat-based version space algorithm. In AAAI’06: pro-
ceedings of the 21st national conference on Artificial intelligence, pages 1565–1568.
AAAI Press, 2006.

215

216

[12] Christian Bessière, Remi Coletta, Barry O’Sullivan, and Mathias Paulin. Query-
driven constraint acquisition. In Veloso [85], pages 50–55.

[13] Christian Bessière, Remi Coletta, and Thierry Petit. Learning implied global con-
straints. In Veloso [85], pages 44–49.

[14] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby
Walsh. Range and roots: Two common patterns for specifying and propagating count-
ing and occurrence constraints. Artif. Intell., 173(11):1054–1078, 2009.

[15] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

[16] Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors. ECAI
2006, 17th European Conference on Artificial Intelligence, August 29 - September
1, 2006, Riva del Garda, Italy, Including Prestigious Applications of Intelligent Sys-
tems (PAIS 2006), Proceedings, volume 141 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 2006.

[17] Alan Bundy. A science of reasoning. In Computational Logic - Essays in Honor of
Alan Robinson, pages 178–198, 1991.

[18] John Charnley, Simon Colton, and Ian Miguel. Automatic generation of implied
constraints. In Brewka et al. [16], pages 73–77.

[19] Choco. Choco constraint programming system, 2009. http://choco.emn.fr.

[20] John Cocke. Global common subexpression elimination. SIGPLAN Not., 5(7):20–24,
1970.

[21] Maria Garcia de la Banda and Enrico Pontelli, editors. Logic Programming, 24th In-
ternational Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings,
volume 5366 of Lecture Notes in Computer Science. Springer, 2008.

[22] Minh Binh Do and Subbarao Kambhampati. Solving planning-graph by compiling it
into csp. In AIPS, pages 82–91, 2000.

[23] Henry Ernest Dudeney. Send more money puzzle. Strand Magazine, 68:97, 214,
1924.

[24] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming. Duxbury Press / Brooks/Cole Publishing Company,
2002.

[25] Christopher W. Fraser and David R. Hanson. A retargetable compiler for ansi c. C.
SIGPLAN Notices, 26:29–43, 1991.

BIBLIOGRAPHY 217

[26] Alan Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martı́nez-Hernández, and
Ian Miguel. Essence : A constraint language for specifying combinatorial problems.
Constraints, 13(3):268–306, 2008.

[27] Alan M. Frisch, Christopher Jefferson, Bernadette Martı́nez Hernández, and Ian
Miguel. The rules of constraint modelling. In Kaelbling and Saffiotti [45], pages
109–116.

[28] Alan M. Frisch, Ian Miguel, and Toby Walsh. Cgrass: A system for transforming
constraint satisfaction problems. In O’Sullivan [59], pages 15–30.

[29] Alan M. Frisch and Peter J. Stuckey. The proper treatment of undefinedness in con-
straint languages. In Gent [31], pages 367–382.

[30] I. P. Gent, I. Miguel, A. Rendl, and P. Gregory. Enhancing constraint models of plan-
ning problems by common subexpression elimination. In V. Bulitko and J. C. Beck,
editors, Proceedings of the Syposium on Abstraction, Reformulation and Approxima-
tion, pages 128–135, 2009.

[31] Ian P. Gent, editor. Principles and Practice of Constraint Programming - CP 2009,
15th International Conference, CP 2009, Lisbon, Portugal, September 20-24, 2009,
Proceedings, volume 5732 of Lecture Notes in Computer Science. Springer, 2009.

[32] Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable constraint
solver. In Brewka et al. [16], pages 98–102.

[33] Ian P. Gent, Ian Miguel, and Peter Nightingale. Generalised arc consistency for the
alldifferent constraint: An empirical survey. Artif. Intell., 172(18):1973–2000, 2008.

[34] Ian P. Gent, Ian Miguel, and Andrea Rendl. Tailoring solver-independent constraint
models: A case study with essence’ and minion. In Miguel and Ruml [56], pages
184–199.

[35] Ian P. Gent, Karen Petrie, and Jean-Francois Puget. Handbook of Constraint Pro-
gramming (Foundations of Artificial Intelligence), chapter Symmetry in Constraint
Programming, pages 329–376. Elsevier Science Inc., New York, NY, USA, 2006.

[36] Ian P. Gent and Toby Walsh. Csplib: A benchmark library for constraints. Technical
Report APES-09-1999, 1999.

[37] Matthew L. Ginsberg. Dynamic backtracking. J. Artif. Intell. Res. (JAIR), 1:25–46,
1993.

[38] Georg Gottlob and Toby Walsh, editors. IJCAI-03, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August
9-15, 2003. Morgan Kaufmann, 2003.

[39] P. Gregory and A. Rendl. A constraint model for the settlers planning domain. In
R. Aylett, editor, Proceeding of the UK PlanSIG. Herriot Watt University, December
2008.

218

[40] Warwick Harvey and Peter J. Stuckey. Improving linear constraint propagation by
changing constraint representation. Constraints, 8(2):173–207, 2003.

[41] Brahim Hnich. Function variables for Constraint Programming. PhD thesis, Uppsala
University, 2003.

[42] Alan J. Hu and Andrew K. Martin, editors. Formal Methods in Computer-Aided De-
sign, 5th International Conference, FMCAD 2004, Austin, Texas, USA, November 15-
17, 2004, Proceedings, volume 3312 of Lecture Notes in Computer Science. Springer,
2004.

[43] C. Jefferson, A. Miguel, I. Miguel, and A. Tarim. Modelling and solving english peg
solitaire. Computers and Operations Research, 33(10):2935–2959, 2006.

[44] Peter J.Stuckey, Ralph Becket, Sebastian Brand, Mark Brown, Thibaut Feydy, Julien
Fischer, Maria Garcia de la Banda, Kim Marriott, and Marc Wallace. The evolving
world of minizinc. In Workshop on Constraint Modelling and Reformulation, pages
156–170, 2009.

[45] Leslie Pack Kaelbling and Alessandro Saffiotti, editors. IJCAI-05, Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, July 30-August 5, 2005. Professional Book Center, 2005.

[46] Donald E. Knuth. The Art of Computer Programming 3. Sorting and Searching: The
Classic Work Newly Updated and Revised. Addison-Wesley Longman, Amsterdam,
2. a. edition, June 1998.

[47] Thorsten Koch. Rapid Mathematical Programming. PhD thesis, Technische Univer-
sität Berlin, 2004. ZIB-Report 04-58.

[48] Janet Kolodner. Case-based reasoning. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1993.

[49] Timo Latvala, Armin Biere, Keijo Heljanko, and Tommi A. Junttila. Simple bounded
ltl model checking. In Hu and Martin [42], pages 186–200.

[50] Christophe Lecoutre. Xcsp 2.1 benchmarks, December 2009. http://www.cril.
univ-artois.fr/˜lecoutre/benchmarks.html.

[51] James Little, Cormac Gebruers, Derek G. Bridge, and Eugene C. Freuder. Using
case-based reasoning to write constraint programs. In Rossi [66], page 983.

[52] Andrew Loewenstern. Scheduling the cb1000 nanoproteomic analysis system with
python, tailor, and minion. In Gent [31], pages 65–72.

[53] D. Long and M. Fox. The 3rd international planning competition: Results and analy-
sis. Journal of AI Research, 20:1–59, 2003.

[54] Adriana Lopez and Fahiem Bacchus. Generalizing graphplan by formulating planning
as a csp. In Gottlob and Walsh [38], pages 954–960.

BIBLIOGRAPHY 219

[55] Darko Marinov, Sarfraz Khurshid, Suhabe Bugrara, Lintao Zhang, and Martin C.
Rinard. Optimizations for compiling declarative models into boolean formulas. In
Bacchus and Walsh [7], pages 187–202.

[56] Ian Miguel and Wheeler Ruml, editors. Abstraction, Reformulation, and Approxima-
tion, 7th International Symposium, SARA 2007, Whistler, Canada, July 18-21, 2007,
Proceedings, volume 4612 of Lecture Notes in Computer Science. Springer, 2007.

[57] B.A. Nadel. Representation selection for constraint satisfaction: A case study using
n-queens. IEEE Expert, 5, issue 3:16–23, 1990.

[58] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. Minizinc: Towards a standard cp modelling language. In
Christian Bessiere, editor, CP, volume 4741 of Lecture Notes in Computer Science,
pages 529–543. Springer, 2007.

[59] Barry O’Sullivan, editor. Recent Advances in Constraints, Joint ERCIM/CologNet
International Workshop on Constraint Solving and Constraint Logic Programming,
Cork, Ireland, June 19-21, 2002. Selected Papers, volume 2627 of Lecture Notes in
Computer Science. Springer, 2003.

[60] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form trans-
lation. J. Symb. Comput., 2(3):293–304, 1986.

[61] Thierry Le Provost and Mark Wallace. Generalized constraint propagation over the
clp scheme. J. Log. Program., 16(3):319–359, 1993.

[62] Jean-Francois Puget. A fast algorithm for the bound consistency of alldiff constraints.
In AAAI/IAAI, pages 359–366, 1998.

[63] Jean-Charles Régin. A filtering algorithm for constraints of difference in csps. In
AAAI, pages 362–367, 1994.

[64] Jean-Charles Régin and Michel Rueher, editors. Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, First Inter-
national Conference, CPAIOR 2004, Nice, France, April 20-22, 2004, Proceedings,
volume 3011 of Lecture Notes in Computer Science. Springer, 2004.

[65] Andrea Rendl. TAILOR: Tailoring constraint models to solvers, December 2009.
http://www.cs.st-andrews.ac.uk/˜andrea/tailor.

[66] Francesca Rossi, editor. Principles and Practice of Constraint Programming - CP
2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 - Oc-
tober 3, 2003, Proceedings, volume 2833 of Lecture Notes in Computer Science.
Springer, 2003.

[67] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Program-
ming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY,
USA, 2006.

220

[68] Olivier Roussel and Christophe Lecoutre. Xml representation of constraint networks
format XCSP 2.1. http://www.cril.univ-artois.fr/CPAI08/XCSP2_
1Competition.pdf, 2008.

[69] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (Second
Edition), chapter Inference in First-Order Logic, pages 272–319. Prentice Hall, 2003.

[70] Oscar Sapena, Eva Onaindia, Antonio Garrido, and Marlene Arangu. A distributed
csp approach for collaborative planning systems. Eng. Appl. Artif. Intell., 21(5):698–
709, 2008.

[71] Hermann Schichl and Arnold Neumaier. Interval analysis on directed acyclic graphs
for global optimization. J. of Global Optimization, 33(4):541–562, 2005.

[72] Christian Schulte and Peter J. Stuckey. When do bounds and domain propagation lead
to the same search space? ACM Trans. Program. Lang. Syst., 27(3):388–425, 2005.

[73] Christian Schulte and Peter J. Stuckey. Dynamic analysis of bounds versus domain
propagation. In de la Banda and Pontelli [21], pages 332–346.

[74] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling with gecode,
November 2009. http://www.gecode.org/doc-latest/modeling.
pdf.

[75] Leon Shapiro and Ehud Y. Sterling. The Art of PROLOG: Advanced Programming
Techniques. The MIT Press, April 1994.

[76] Barbara M. Smith, Karen E. Petrie, and Ian P. Gent. Models and symmetry breaking
for ’peaceable armies of queens’. In Régin and Rueher [64], pages 271–286.

[77] Barbara M. Smith, Kostas Stergiou, and Toby Walsh. Modelling the golomb ruler
problem. In IJCAI-99 Workshop on Non-binary Constraints, 1999.

[78] Java Sun. Java api 1.5.0, November 2009. http://java.sun.com/j2se/1.
5.0/docs/api/.

[79] Guido Tack. Gecode-flatzinc interpreter, December 2009. http://www.gecode.
org/flatzinc.html.

[80] Gecode Team. Gecode: Generic constraint development environment, 2006. Avail-
able from http://www.gecode.org.

[81] Peter van Beek. Handbook of Constraint Programming (Foundations of Artificial
Intelligence), chapter Backtracking Search Algorihthms, pages 85–133. Elsevier Sci-
ence Inc., New York, NY, USA, 2006.

[82] Peter van Beek and Xinguang Chen. Cplan: a constraint programming approach to
planning. In AAAI ’99/IAAI ’99: Proceedings of the sixteenth national conference

BIBLIOGRAPHY 221

on Artificial intelligence and the eleventh Innovative applications of artificial intel-
ligence conference innovative applications of artificial intelligence, pages 585–590,
Menlo Park, CA, USA, 1999. American Association for Artificial Intelligence.

[83] Pascal Van Hentenryck. The OPL optimization programming language. MIT Press,
Cambridge, MA, USA, 1999.

[84] Willem-Jan van Hoeve and Irit Katriel. Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence), chapter Global Constraints, pages 169–207. Else-
vier Science Inc., New York, NY, USA, 2006.

[85] Manuela M. Veloso, editor. IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, 2007.

[86] Vincent Vidal and Héctor Geffner. Branching and pruning: an optimal temporal pocl
planner based on constraint programming. Artif. Intell., 170(3):298–335, 2006.

[87] Mark Wallace, Stefano Novello, and Joachim Schimpf. Eclipse: A platform for con-
straint logic programming, 1997.

[88] David Wilson and H. Chad Lane, editors. Proceedings of the Twenty-First Interna-
tional Florida Artificial Intelligence Research Society Conference, May 15-17, 2008,
Coconut Grove, Florida, USA. AAAI Press, 2008.

[89] Pieter Wuille and Tom Schrijvers. Monadic constraint programming with gecode. In
Workshop on Constraint Modelling and Reformulation, pages 171–185, 2009.

222

APPENDIX A

THE SYNTAX OF ESSENCE′

ESSENCE′ is a solver-independent constraint modelling language, which is a subset of the
abstract specification language ESSENCE [26]. Hence ESSENCE′ can be used to

• formulate constraint problem models

• specify parameter values

• summarise problem solutions

This grammar specification outlines each of these different specifications in the way they
are supported by the ESSENCE′ translator TAILOR [34].

A.1 Grammar Specification

An ESSENCE′ problem model consists of two separate specifications: a problem specifi-
cation defining decision variables, domains and constraints, and a parameter specification
giving parameter values to specify the problem instance. The solution(s) of a problem in-
stance can then be summarised by a solution specification. Hence we have three different
types of specifications:

1. problem model

2. parameter specification

3. solution specification

Comments in ESSENCE′ are preceded by $, which can be placed everywhere in the gram-
mar. $ is a line-wise comment. Before giving a concise grammar for each part, we want to
give an overview of the notation that is used.

223

224

A.1.1 Notation

• Terms written in italic font are non-terminals and terms written in typewriter
font or special characters that are underlined (such as :) are terminals.

• A letter is an alphabetic character. An identifier is a string whose first character is a
letter and the rest of its characters are alphanumeric or “ ”. Identifier recognition is
case sensitive.

• A number is any string whose elements are the numeric characters.

• {a} stands for a non-empty list of as.

• {a}’ stands for a non-empty list of as separated by commas.

• [a] stands for one or zero occurences of a.

A.1.2 Grammar: Problem Specification

Below is the specification for both problem model and parameter specification syntax. Note
however, that only constant definitions are extracted from parameter specifications - objec-
tives/variable declarations/constraints will be ignored.

Model

Model ::= Header
[{Declaration}’]
[Objective]
[such that { RelationalExpression }’]

Header ::= ESSENCE′ number . number
Declaration ::= given { DomainIdentifier }’|

where { Expression }’ |
letting { Constant }’ |
find { DomainIdentifier }’

Objective ::= maximising ArithmeticExpression |
minimising ArithmeticExpression

DomainIdentifier ::= { identifier }’ : Domain
Constant ::= identifier be domain Domain |

identifier [: Domain] be Expression

APPENDIX A. THE SYNTAX OF ESSENCE′ 225

Domains

SimpleDomain :: bool |
int ({ RangeDomain }’) |
identifier

Domain ::= (Domain) |
SimpleDomain |
matrix indexed by [{ SimpleDomain }’] of SimpleDomain

RangeDomain ::= BoundedDomain |
..Expression | Expression ..

BoundedDomain ::= Expression | { Expression }’ |
Expression .. Expression |

226

Constraint Expressions

Expression ::= (Expression) |
RelationalExpression |
ArithmeticExpression

RelationalExpression ::= false | true |
AtomExpression |
! RelationalExpression |
Expression Relop Expression |
RelationalExpression Boolop RelationalExpression |
QuantifiedExpression |
GlobalConstraint

ArithmeticExpression ::= number |
AtomExpression |
− ArithmeticExpression |
| ArithmeticExpression |
ArithmeticExpression Mulop ArithmeticExpression |
QuantifiedSum |
(min | max) (ArithmeticExpression, ArithmeticExpression)

AtomExpression ::= identifier | ArrayElement
ArrayElement ::= identifier [{ IndexRangeExpression }’]

QuantifiedExpression ::= (forall | exists) { identifier } ′ : BoundedDomain .
RelationalExpression

QuantifiedSum ::= sum { identifier } ′ : BoundedDomain .
ArithmeticExpression

GlobalConstraint ::= alldiff (AtomExpression) |
element (AtomExpression , AtomExpression , AtomExpression) |
table ([{ AtomExpression }′] , [{ [{ number }′] }′]) |
atleast (AtomExpression , ConstantList , ConstantList) |
atmost (AtomExpression , ConstantList , ConstantList)

MulOp ::= + | - | / | * | ˆ | %
BoolOp ::= \/ | /\ | => | <=>

RelOp ::= = | != | <= | < | >= | > |
<lex | <=lex | >lex | >=lex

Further Restrictions

• Quantifications may not range over decision variables, i.e. Expressions in Bounded-
Domains may not contain decision variables

APPENDIX A. THE SYNTAX OF ESSENCE′ 227

Operator Functionality Associativity
, comma Left
: colon Left
() left and right parenthesis Left
[] left and right brackets Left
! not Right
/\ and Left
\/ or Left
=> if (implication) Left
<=> iff (logical equality) Left
- unary minus Right
ˆ power Left
* / % multiplication, integer division, modulo Left
+ - addition, substraction Left
< <= > >= (lex)less, (lex)less or equal,
<lex <=lex >lex >=lex (lex)greater, (lex)greater or equal none
= != equality, disequality none
. dot Right

Table A.1: Operator precedence in ESSENCE′

A.1.3 Grammar: Solution Specification

SolutionSpecification ::= Header
[{Solution}’]

Header ::= ESSENCE′ number . number
Solution ::= variable identifier is { SolutionExpression}’

SolutionExpression ::= number |
ConstantArray |

ConstantArray ::= [{ number }’] |
[{ ConstantArray }’]

A.2 Operator Precedence

Table 1 describes the precedence of the operators that are arranged by decreasing order of
precedence (the operators on top have highest precedence)

228

A.3 Examples

To illustrate the grammar specified above, we give some examples. These examples can be
found at TAILOR’s website at http://www.cs.st-and.ac.uk/˜andrea/tailor.

