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Abstract 
 
Understanding how atoms interact is a fundamental aspect of chemistry, biology and materials 

science. There have been great advances in the knowledge of covalent and ionic bonding over the 

past twenty years but one of the major challenges for chemistry is to develop full understanding of 

weak interatomic/intermolecular forces. This thesis describes fundamental studies that develop the 

basic understanding of weak interactions between heavier polarisable elements. The chosen 

methodology is to constrain heavy atoms using a rigid naphthalene backbone. 

 

When substituents larger than hydrogen, are positioned at close proximity at the peri-positions of a 

naphthalene molecule they experience steric strain; the extent of which is dictated by 

intramolecular interactions. These interactions can be repulsive due to steric hindrance or attractive 

due to weak or strong bonding.  

 

In efforts to understand the factors which influence distortion in sterically crowded naphthalenes 

and study possible weak intramolecular interactions between peri-atoms, investigations focussed 

on previously unknown mixed 1,8-disubstituted naphthalene systems. Mixed phosphorus-

chalcogenide species were initially studied; three mixed phosphine compounds of the type 

Nap[ER][PPh2] were prepared along with their chalcogenides and a series of metal complexes.  

 

The study of interactions between heavy atoms was progressed by investigations into a series of 

mixed chalcogenide compounds of the type Nap[EPh][E’Ph] (E = S, Se, Te). Subsequent reaction 

of the chalcogenide systems with the di-halogens, dibromine and diiodine, afforded a mixture of 

charge transfer and insertion adducts displaying an array of different geometries around the 

chalcogen atom.  

 

From molecular structural studies, a collection of intramolecular peri-interactions were found, 

extending from no interaction due to repulsive effects, weak attractive 3c-4e type interactions and 

one example containing a strong covalent peri-bond. Further weak intramolecular interactions 

observed include CH-π and E···E’ type interactions plus π-π stacking between adjacent phenyl 

rings. It was discovered that the bulk of the peri-atoms is influential on the distance between them, 

but this is not the only factor determining the naphthalene geometry. Inter- and intramolecular 

interactions can also have an impact and furthermore the number, size and electronic properties of 

substituents attached to the peri-atoms can determine molecular distortion.  
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Chapter 1 - Introduction 

The structure and properties of peri-disubstituted naphthalenes 

Naphthalene. 

Naphthalenes are members of a class of aromatic bidentate ligands with rigid C3-backbones. 

Substituted naphthalenes have potential significance as ligands in transition metal-catalysed 

reactions.1 Unsubstituted naphthalene is known to be rigidly planar with the bond lengths and bond 

angles having been accurately determined (Figure 1.1).2 In contrast to benzene, the C-C bond 

lengths in naphthalene are not all equal, giving naphthalenes a unique geometry.2  

 

Fig. 1.1 Unsubstituted naphthalene is known to be rigidly planar with unequal bond lengths and 

angles.2 

 

The peri-carbon atoms (1- and 8- positions) of naphthalene are separated by a distance of between 

2.4 and 2.5 Å. This is considerably less than in other aromatic molecules where the non-bonded 

substituent distance is approximately 3 Å.2 This peri-distance is sufficient to accommodate two 

hydrogen atoms but it is reasonable to expect that with larger substituents at the peri-positions 

there will be considerable steric hindrance.3 

 

Substituted naphthalenes – intramolecular interactions. 

Despite the presence of steric hindrance between the peri-atoms, chemists have encountered no 

difficulties in synthesising a large and diverse collection of peri-disubstituted naphthalenes. As 

early as 1969, Franck and Leser succeeded in synthesising 1,3,6,8-tetra(t-butyl)naphthalene 

(Figure 1.2).4  

 
Fig. 1.2 The structure of 1,3,6,8-tetra(t-butyl)naphthalene as reported by Franck and Leser in 

1969.4 
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The ability to synthesise peri-substituted naphthalenes, despite the presence of peri-atom steric 

hindrance, can be explained by intramolecular or transannular interactions between the peri-

substituents caused by their close proximity to one another.3 These interactions can be repulsive 

steric effects caused by crowding of substituents, or attractive effects caused by weak or strong 

bonding.5 Consequently steric interactions in peri-substituted naphthalenes has received a large 

amount attention.3,6  

 

Strain relief – naphthalene distortion. 

Steric strain between peri-atoms is relieved via naphthalene distortions which effectively change 

the geometry observed in unsubstituted naphthalene. Relief can be accomplished by stretching of 

the peri-atom bonds (a), in-plane (b) or out-of-plane (c) deflection of the peri-substituents or 

distortion or buckling of the naphthalene ring (d) (Figure 1.3). Large amounts of energy are 

associated with even a small change in bond length so few examples of peri-atom bond stretching 

are known. The most common form of naphthalene distortions are in-plane and out-of-plane 

deviations of the exocyclic bonds with few examples of buckled naphthalene ring systems 

reported. This can be accounted for because relatively large relief of steric interaction is 

accomplished by minor molecular distortions.3 

 
Fig. 1.3 Steric strain relief via stretching of bonds, in-plane and out of plane distortion and 

buckling of the naphthalene plane.3 

 

In 1974, Roberts et al. determined the structure of 1,8-bis(bromomethyl)naphthalene (Figure 1.4). 

They reported the non-bonding distance between the methylene carbon atoms to be 3.05 Å which 

is 0.55 Å larger than the peri-distance in naphthalene and evidence for steric hindrance forcing the 

naphthalene skeleton into distortion.7 

8a

4a
5

6

7
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2

3

4

Br Br
3.05 Å

 
Fig. 1.4 1,8-bis(bromomethyl)naphthalene reported by Roberts et al. in 1974.7 
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Similarly, a planar model of 1,8-dinitronaphthalene results in a very short non-bonded O···O 

distance of ~0.5 Å, much shorter than the normal distance [2.7 Å]. The incredible steric strain 

which would result is avoided in a number of ways. Firstly the C-N bonds are rotated about their 

axis by 45° and the N···N distance is increased from 2.42 Å (as in the planar model) to 2.93 Å by 

the splaying apart of the C-N bonds (in-plane distortion) and the deviation of the C-N bonds away 

from the aromatic plane in opposite directions by 0.37 Å (out-of-plane distortion). A slight nuclear 

distortion also occurs with the peri-carbon atoms forced out-of-plane in the direction of the nitro 

groups.3,8 

 

Assessing intramolecular interactions and strain relief  

X-ray structural data is central in assessing the crowding of peri-substituents and therefore 

quantifying the repulsive steric effects in substituted naphthalenes. Various concepts are used to 

describe the extent of steric strain occurring in these compounds. However the peri-distance is the 

primary parameter. To give a greater idea of the overall naphthalene distortion taking place in a 

given molecule, the amount of in-plane distortion, out-of-plane distortion and buckling of the 

naphthalene plane can also be measured and compared to the geometry of naphthalene (Figure 

1.5).9  

 

Fig. 1.5 Measuring steric interactions and naphthalene distortions: peri-distance, sum of the bay 

region angles, distance of the peri-atoms from the mean naphthalene plane and torsion angles 

around the C5-C10 bond. 
 

The distance of the peri-atoms above and below the naphthalene mean plane indicates the degree 

of out-of-plane deformation and by comparing the sum of the angles in the bay region (splay 

angles) the amount of in-plane distortion can be deduced. Torsion angles show the level of 

planarity in the molecule and give an insight into the degree of buckling taking place in the 

naphthalene ring system (as depicted by the C(1)-C(10)-C(5)-C(6) angle in Figure 1.5). In  

naphthalene the splay angles sum to 357.2° and torsion angles are either 0° or 180° depicting total 

planarity.2,9  
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Uses of peri-substituted naphthalenes. 

The unique geometry and steric strain responsible for the appearance of transannular interactions 

gives peri-disubstituted naphthalenes distinctive properties, which have resulted in a great deal of 

attention.3,6 The rigid C3-backbone of the naphthalene molecule strictly defines the locations of the 

peri-substituted atoms in space. However by attaching bulky or electronically dissimilar 

substituents around the ring system the properties of the molecule can be altered leading to many 

different uses.6 

 

For example Maruoka et al. reported a novel non-catalysed allylation of aldehydes and ketones 

using 1,8-bis(allylstannyl)naphthalene derivatives as neutral, bidentate, chelation-induced Lewis 

acids (Figure 1.6).10  

 

Sn Sn

O

 
Fig. 1.6 Non-catalysed allylation of aldehydes and ketones using 1,8-

bis(allylstannyl)naphthalenes.10 

 

Zoltewicz et al. reported the synthesis of five new atropisomerically chiral, cofacial 1,8-

diheteroarylnaphthalenes which mimic stacked/cofacial heteroaromatic ring systems found in a 

number of natural products, most importantly in nucleic acids (Figure 1.7).11 

 

N

N

 

Fig. 1.7 The 1,8-diheteroarylnaphthalenes which mimic heteroaromatic ring systems found in 

many natural products.11 
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Whiting et al. reported the first preparation of bifunctional Lewis acid-Lewis base derivatives, 

based up aryldifluoroborane and arylamine functions using the 1,8-naphthalene backbone (Figure 

1.8).12  

 

 
Fig. 1.8 Bifunctional Lewis acid-Lewis base derivatives based on a 1,8-naphthalene backbone.12 

 

A literature study of peri-substituted naphthalenes 

Peri-substituted bis-borane and bis-amino naphthalenes. 

In 1985, Katz reported the synthesis and hydride-abstracting ability of 1,8-

naphthalenediylbis(dimethylborane), the first example of a multidentate Lewis acid that was both 

rigid and uncharged.13 This novel borane may be viewed as the electron-deficient counterpart of 

the non-nucleophilic base 1,8-bis(dimethylamino)naphthalene (dman) known as ‘proton sponge’ 

(Figure 1.9).14,15 

 
Fig. 1.9 1,8-bis(dimethylamino)naphthalene (‘proton sponge’) and its electron-deficient 

counterpart 1,8-naphthalenediylbis(dimethylborane).13,14 

 

Katz demonstrated that the ‘hydride sponge’ (1,8-naphthalenediylbis(dimethylborane)) forms 

stable, bridged complexes by abstracting H-, F- and OH-. However NMR data suggested that the 

interaction of the hydride sponge with Cl- is weak or nonexistent.16 

 

Driven by the importance of Cl- chelation by organotin17 and organomercury18 bidentate Lewis 

acids and the catalytic significance of chloride-abstracting Lewis acids in Friedel-Crafts 

reactions,19 Katz went on to prepare a bis(borane) that forms chelated complexes with Cl-. It was 

evident from previous studies that such a compound would have to be a stronger Lewis acid than 

the hydride sponge and so 1,8-naphthalenediylbis(dichloroborane) was synthesised and its 

interaction with Cl- was investigated (Figure 1.10).20 
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Fig. 1.10 1,8-naphthalenediylbis(dichloroborane) reported by Katz.20 

 

Lewis acid-carbonyl group interactions have long been investigated due to their dramatic effect on 

reactivity and selectivity in a variety of reactions.21 One recent development has been in the area of 

asymmetric catalysis by Lewis acids.22 In 1995, Reilly and Oh reported the simultaneous 

coordination of a carbonyl group (a) by the bimetallic chiral Lewis acid 1,8-

naphthalenediylbis(dichloroborane) and coordination of a chiral ligand and a carbonyl group (b). 

Each boron atom (Lewis acid) was shown to play an organizational role doubly activating the 

substrate (Figure 1.11).23 

 
Fig. 1.11 The simultaneous coordination of a carbonyl group by a bimetallic chiral Lewis acid.23 

 

Peri-substituted bis-phosphine naphthalenes. 

Over the last 30 years, a novel class of bidentate bis-phosphine ligands has been developed and 

reported. These compounds utilise a rigid C3-backbone by placing phosphino groups peri-

substituted on a naphthalene ring. The first of this new type of 1,8-bis(phosphino)naphthalene to 

be published, 1,8-bis(dimethylphosphino)naphthalene (dmpn) was reported by Costa and 

Schimdbaur in 1982 (Figure 1.12).24 

 

 
Fig. 1.12 1,8-bis(dimethylphosphino)naphthalene (dmpn) and 1,8-

bis(diphenylphosphino)naphthalene (dppn).24,25 
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Roughly a decade later whilst working on 1,8-bis(phosphino)naphthalene ligands, Pringle’s group 

reported the preparation of 1,8-bis(diphenylphosphino)naphthalene (dppn) by a similar route to 

dmpn, along with its X-ray structure and some preliminary results on its reaction chemistry 

(Figure 1.12).25 An easier route to dppn was later reported by Brandsma et al. in 1994 starting from 

commercially available 1-bromonaphthalene and avoiding the painstaking synthesis of 1,8-

dibromonaphthalene.26  

 

These 1,8-bis(phosphanyl)naphthalene compounds, which can be regarded as phosphorus 

analogues of the ‘proton sponge’ (dman), have received great attention because they form six- 

membered palladium(II) chelates active for catalytic CO/ethylene co-polymerisation.25,27  

 

 
Scheme 1.1 The first synthesis of a 1,8-bis[(dialkylamino)phosphanyl]naphthalene.28 

 

Schmutzler et al. have been highly active in this field of research over the last decade and in 1997 

reported the first synthesis of a 1,8-bis[(dialkylamino)phosphanyl]naphthalene (Scheme 1.1).28 

This compound is important because it provides a starting material for the synthesis of the 

previously unknown 1,8-bis(dichlorophosphanyl)naphthalene which is not accessible via the direct 

reaction of 1,8-dilithionapthalene with phosphorus dichloride (Scheme 1.1).28 

 

With the emphasis on introducing bulky alkyl substituents in the peri-positions, Schmutzler et al. 

went on to synthesise and characterise a series of 1,8-bis(phosphino)naphthalene ligands which 

included the previously reported 1,8-bis(diphenylphosphino)naphthalene (dppn) and 1,8-

bis(dimethylphosphino)naphthalene (dmpn) (Scheme 1.2).24-26,29 The rac-isomer of 1,8-

bis(phosphino)naphthalene e has the potential to act as a rigid, P-chiral, C3-ligand in asymmetric 

synthesis so deserves special interest.30 
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Schmutzler et al. continued their study of 1,8-bis(phosphino)naphthalene ligands by investigating 

the behaviour of their previously prepared series of phosphines (Scheme 1.2) towards oxygen, 

sulfur, selenium and tellurium.31 

 

  

Scheme 1.2 Synthesis of 1,8-bis(phosphino)naphthalenes a-g reported by Schmutzler et al..29 

 

In 2001 they reported a series of naphthalenediyl-1,8-bis(phosphine oxides) prepared by oxidation 

of the corresponding bis(phosphine) with either molecular oxygen or H2O2·(H2N)2C(:O) (Scheme 

1.3). 

 

 

 

 

 

 

Scheme 1.3 The behaviour of the 1,8-bis(phosphino)naphthalene ligands towards oxygen.31 

 

During their studies they tested the behaviour of 1,8-bis(diphenylphosphino)naphthalene (dppn) 

towards the heavier chalcogens and found that reactivity decreased as the atomic size grew 

(Scheme 1.4). Whilst reaction with excess sulfur afforded the bis(phosphine sulfide), the 

corresponding reaction with selenium, even under forcing conditions (reflux), did not afford the 

bis(phosphine selenide). Instead the product formed contained two different phosphorus moieties 

with only one 4 co-ordinate phosphorus due to the P=Se bond. Due to the increased size and 

inherent instability of tellurophosphinyl groups no reaction was observed between dppn and 

tellurium and neither the bis- nor mono- telluride were formed (Scheme 1.4).31,32 

 

 a b c d e f g 

R Me Et iPr Cy tBu Ph tBu 

R’ Me Et iPr Cy Ph Ph tBu 

 a b c d e f g 

R Me Et iPr Cy tBu Ph tBu 

R’ Me Et iPr Cy Ph Ph tBu 
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Scheme 1.4 The behaviour of the 1,8-bis(diphenylphosphino)naphthalene towards sulfur, selenium 

and tellurium.31 

 

In 2001 Schmutzler et al. reported the synthesis of 1,8-bis[(dimethoxy)phosphino]naphthalene 

(dmeopn) (Figure 1.13), the first example in a series of bis-phosphonite naphthalene ligands.33 The 

electron-withdrawing nature of the oxygen substituents in phosphites weakens their σ-donor 

characteristics but results in a stronger π-acceptor ability compared with corresponding 

phosphines.34 Bis-phosphonites have intermediate properties between bis-phosphines and bis-

phosphites and form electron-poor transition metal complexes exhibiting shorter bonds between 

the metal centre and the phosphorus atom compared to corresponding phosphines.35 Schmutzler et 

al. went on to study the oxidation and ligand capabilities of 1,8-

bis[(dimethoxy)phosphino]naphthalene (dmeopn) towards Mo0 and PdII metal centres.33  
 

 

 

Fig. 1.13 The structure of 1,8-bis[(dimethoxy)phosphino]naphthalene (dmeopn).33 
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A leading topic of research in peri-disubstituted naphthalenes is the controversial discussion by 

Chuit, Corriu and Schiemenz among others regarding the possible occurrence of intramolecular 

bond formation and hypercoordination.67-82 This will be discussed fully, later in the introduction. 

The initial work was carried out on compounds containing the 8-dimethylaminonaphth-1-yl 

(DAN) fragment (Figure 1.14) including phosphorus compounds containing a possible N→P 

interaction. 71-82 

  

 
Fig. 1.14 The structure of 8-dimethylaminonaphth-1-yl (DAN). 

 

The potential for hypercoordination occurring across the peri-space should be greatly enhanced in 

1,8-diphosphorus-substituted naphthalenes forming a P→P donor-acceptor interaction. The fact 

that both P-CNap bonds are of equal length and both interacting atoms are of the same size means 

the two phosphorus atoms have an easier approach compared to two different atoms. Phosphorus-

phosphorus bond lengths are also nearer to the ideal peri-distance [2.5 Å] than the P-N bonds in 

equivalent DAN compounds.36 Also, from hard soft acid bases (HSAB) principles a P→P 

interaction is more favourable than a N→P interaction. The potential for hypercoordination by 

P→P donor-acceptor interaction across the peri-space is therefore greatly enhanced.37  

 

Schmutzler et al. carried out protonation and alkylation reactions of dppn to prepare 

unsymmetrical phosphine-phosphonium substituted systems of the type [1-Ph2P(C10H6)-8-

PRPh2]
+X- (R = H, alkyl group, X = non-coordinating anion) (Figure 1.15).36  

 

 
Fig. 1.15 Unsymmetrical systems of the type [1-Ph2P(C10H6)-8-PRPh2]

+X-  investigated by 

Schmutzler et al. for the occurrence of P→P hypercoordination.36 
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The greater electrophilic acceptor character of a phosphonium phosphorus atom compared to a 

phosphorus atom in phosphines means these mixed cations should be better models for studying 

intramolecular dative P→P+ interactions.36 The two possible structures for these types of 

compounds are shown in Figure 1.15. From X-ray crystal structure analysis Schmutzler et al. 

concluded that repulsive steric effects predominated and there was no evidence to confirm the 

existence of a dative P→P+ type interaction.36 

 

Peri-substituted bis-thio/seleno/telluro naphthalenes. 

Naphtho[1,8-cd]-1,2-dithiole (Figure 1.16) was first reported by Lanfrey in 1911, after interacting 

naphthalene and sulfur within a hot iron tube.38 Seventeen years later, Price and Smiles reported a 

new route, starting with 1-aminonaphthalene-8-sulfonic acid.39 

 

 
Fig. 1.16 The structure of naphtho[1,8-cd]-1,2-dithiole.38,39 

 

In 1965 Zweig and Hoffman re-examined the synthesis of naphtho[1,8-cd]-1,2-dithiole by 

repeating the method reported by Price and Smiles. Investigations of its polarographic oxidation 

and reduction potentials were carried out and charge-transfer compounds were prepared with 

donor molecules such as tetracyanoethylene (TCNE) and p-chloranil.40 

 

Later in 1977, Meinwald et al. reported a more efficient one-step synthesis of naphtho[1,8-cd]-1,2-

dithiole by the reaction of 1,8-dilithionaphthalene with sublimed sulfur. Comparable reactions 

with elemental selenium and tellurium led to the formation of a series of naphthalene derivatives 

containing a pair of identical Group 16 atoms bridged at the peri-positions (Scheme 1.5).41  

 

     

Scheme 1.5 The one-step synthesis of the group of peri-bridged naphthalene 1,8-

dichalcogenides.41 
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The bridged compounds react readily with methyllithium in tetrahydrofuran to produce a range of 

different alkylation products. Naphtho[1,8-cd]-1,2-dithiole reacts to form 1,8-

bis(methylthio)naphthalene as the sole product. However under the same conditions naphtho[1,8-

cd]-1,2-diselenole yields 1,8-bisselenomethylnaphthalene and 1-selenomethyl-8methylnaphthalene 

in a ratio of 4:1. The alkylation of naphtho[1,8-cd]-1,2-ditellurole results in the formation of 1,8-

dimethylnaphthalene (Scheme 1.6).41 

 

SMe SMe

SeMe SeMe SeMe Me

Me Me

S S

Te Te

Se Se

1. MeLi, THF.

1. MeLi, THF.

1. MeLi, THF.

+

Ratio 4:1

 
Scheme 1.6 The alkylation of the bridged naphthalene 1,8-dichalcogenides by reaction with 

methyllithium.41  

 

In a subsequent paper, Meinwald et al. developed their ideas by reporting the synthesis of three 

unsymmetrical members of the series, naphtho[1,8-cd]-1,2-selenathiole, naphtho[1,8-cd]-1,2-

tellurathiole and naphtho[1,8-cd]-1,2-telluraselenole (Scheme 1.7).42 

 

 
Scheme 1.7 The synthesis of the unsymmetrical chalcogen bridged naphthalenes.42 

 

Following their synthesis of the six naphthalene dichalcogenides, Meinwald et al. developed the 

series of compounds to include the acenaphthalene analogues (Figure 1.17).43  
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Fig. 1.17 The synthesis of the unsymmetrical chalcogen bridged acenaphthalenes.43 

 

The doubly bridged analogue of naphtho[1,8-cd]-1,2-dithiole, namely tetrathionaphthalene (TTN), 

is a member of a group of ‘tetrathiolene’ ligands (TTL). These planar compounds with extensive 

π-delocalization are attractive ligands in organometallic chemistry. Each compound contains two 

S-S bonds which can simultaneously coordinate to two metal complexes, therefore 

accommodating up to four electrons.44 

 

 
Fig. 1.18 Tetrathiotetracene (TTT), tetrathionaphthalene (TTN) and 

tetrachlorotetrathionaphthalene (TCTTN).44 

 

In 1979, Teo and Robinson prepared a set of bridging transition metal complexes containing a 

delocalized π-system from oxidative addition reactions of low-valent platinum complexes with 

tetrathiotetracene (TTT), tetrathionaphthalene (TTN) and tetrachlorotetrathionaphthalene 

(TCTTN) and their selenium analogues (Figure 1.18).44  

 

 

 

Fig. 1.19 The electron donor binaphtho[1,8-de]-1,3-dithiin-2-ylidene.45 
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Binaphtho[1,8-de]-1,3-dithiin-2-ylidene (Figure 1.19) can be thought of as an extended form of a 

1,8-dichalcogen-bridged naphthalene containing an ethylene conjunction. The synthesis and 

electrochemical properties were reported in the 1980s by Ogura et al. along with those of its 

selenium analogue which was expected to have enhanced electron transfer capabilities due to the 

more polarisable chalcogen atom.45 Cyclic voltammetry studies however, revealed that these 

symmetrical compounds are actually poor donors, but unsymmetrical compounds (Figure 1.20) 

possess considerable donor abilities capable of forming crystalline charge-transfer complexes.46 

 

 
Fig. 1.20 Unsymmetrical analogues of binaphtho[1,8-de]-1,3-dithiin-2-ylidene with considerable 

donor abilities.46 

 

Attractive interactions in peri-substituted naphthalenes 

Intramolecular transannular interactions in peri-naphthalenes. 

Transannular interactions are intramolecular interactions between two atoms in a monocyclic ring. 

If the interaction between the two atoms is strong enough, bond formation will occur and a 

bicyclic molecule will be created. Transannular intramolecular interactions occurring in organic 

compounds bearing two or more heteroatoms in close proximity has received considerable 

attention.47,48 Since the pioneering works of Musker and Asmus who employed the reaction 

systems of 1,5-dithiacyclooctane and related cyclic and acyclic sulfur compounds, the research of 

transannular interactions between two sulfur atoms has developed.48 Musker showed that 1,5-

dithiocane is easily oxidized to form an unusually stable radical cation and dication due to the 

presence of destabilization as a result of transannular lone-pair lone-pair repulsion and 

stabilization of the oxidized products by neighbouring-group participation, i.e. bond formation 

between two sulfur atoms (Figure 1.21).48 

 

 
Fig. 1.21 The unusually stable radical cation and dication from the oxidation of 1,5-dithiocane.48 
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Glass et al. proposed that a geometrically constrained derivative of 1,5-dithiocane, naphtho[1,8-

b,c]-1,5-dithiocin (Figure 1.22) would enhance the effects seen in 1,5-dithiocane. The geometry 

and rigidity of the naphthalene ring places the sulfur atoms in close proximity with greater overlap 

of the p type lone pair orbitals subsequently increasing the lone-pair lone-pair interaction.49 

 

S S

 
Fig. 1.22 Naphtho[1,8-b,c]-1,5-dithiocin, a geometrically constrained derivative of 1,5-

dithiocane.49 

 

Furukawa et al. reported the structure of dinaphtho[1,8-b,c]-1,5-diselenocin (Figure 1.23), a 

selenium compound containing the same structural motif as naphtha[1,8-b,c]-1,5-dithiocin. This 

compound, along with 1,8-bis(methylselanyl)naphthalene prepared for structural comparison, 

places selenium atoms in close contact allowing for possible peri-interactions to take place (Figure 

1.23).50 

 

              

Fig. 1.23 Dinaphtho[1,8-b,c]-1,5-diselenocin and 1,8-bis(methylselanyl)naphthalene.50 

 

Oxidation with concentrated H2SO4 revealed distinct differences in the reactivity of the two 

selenium compounds. Upon work up with ice-H2O, the dication formed from dinaphtho[1,8-b,c]-

1,5-diselenocin afforded the mono-selenoxide depicted in Scheme 1.8.50 
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Scheme 1.8 Reaction of dinaphtho[1,8-b,c]-1,5-diselenocin with concentrated H2SO4 via cation 

radical and dication species.50 

 

In contrast the addition of concentrated H2SO4 to 1,8-bis(methylselanyl)naphthalene produced the 

demethylated cation radical which after reaction with water converted to the radical species. Two 

radical species subsequently dimerised to generate demethylated coupling product (Scheme 1.9).50     

 

Scheme 1.9 Reaction of 1,8-bis(methylselanyl)naphthalene with concentrated H2SO4 via cation 

radical and radical species to form a demethylated coupling product.50 

 

The group of Furukawa developed their series of selenium compounds by synthesising a group of 

new macrocyclic polyselenides including the selenium analogue of naphtha[1,8-b,c]-1,5-dithiocin 

previously reported by Glass et al.49 (Figure 1.24). In these compounds the trimethylene bridges 

help to align the selenium orbitals which enhances the possibility for peri Se-Se interactions.51 

 

 
Fig. 1.24 Macrocyclic polyselenides have the potential for peri Se-Se interactions due to the 

alignment of selenium orbitals by the presence of trimethylene bridges.51 
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1,8-dithia- and 1,8-diselena- naphthalene derivatives have been utilized for generating active 

species and developing new reactions which are initiated by the transannular interactions between 

sulfur or selenium atoms. The majority of work done in this field of research has been developed 

by the group of Furukawa et al.. In 1994 they reported the photo-oxygen rearrangement of 

naphtho[1,8-de]dithiin monoxides which released carbonyl compounds quantitatively together 

with naphthalene-1,8-dithiole.52  

 

Continuing their research they prepared a series of N-p-tosylsulfilimines of naphtho[1,8-de]dithiin 

and demonstrated their ability to afford the corresponding N-sulfonylaldimines upon photolysis 

(Scheme 1.10).53 

 

 
Scheme 1.10 Photolysis of N-p-tosylsulfilimines of naphtho[1,8-de]dithiin via intramolecular 

imino group rearrangement affords the corresponding N-sulfonylaldimines.53 

 

In an extension to this work, Furukawa et al. prepared a range of naphtho[1,8-de][1,3]dithiin-1-

bis(ethoxycarbonyl)methylides which undergo similar photo-rearrangements to yield olefins and 

naphthalene-1,8-dithiole in quantitive yields (Scheme 1.11).54 

 

Scheme 1.11 Photo-rearrangement of naphtho[1,8-de][1,3]dithiin-1-

bis(ethoxycarbonyl)methylides.54 
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Fig. 1.25 Geometrically constrained derivatives of 1,5-dithiocane.55 

 

In 1991, Glass et al. studied the nature of non-bonded S···S transannular interactions in 

geometrically constrained derivatives of 1,5-dithiocane (Figure 1.25).55 They proposed that lone 

pairs of sulfur atoms in naphtho[1,8-b,c]-1,5-dithiocin derivatives interact directly with each other 

since the two orbitals lie on the naphthyl plane (a), whilst those in the unconstrained 1,8-

bis(methylsulfanyl)naphthalene mainly interact with its π-system (b) (Figure 1.26).49,55 

 

 
Fig. 1.26 Lone-pairs of sulfur atoms in naphtho[1,8-b,c]-1,5-dithiocin and 1,8-

bis(methylsulfanyl)naphthalene.49,55,56 

 

Non-bonded interactions of sulfur are especially interesting with known S···X distances ranging 

from no interaction (where the S···X distance is greater or equal to the sum of the van der Waals 

radii) through to strong covalent bonding. The trend observed experimentally is that for interacting 

atoms S···X distances are less than the sum of the van der Waals radii for the respective interacting 

atoms and R-S···X angles approach 180°.55  

 

Non-bonded intramolecular interactions across the peri-gap. 

Non-bonded intramolecular interactions can also occur across the peri-gap where interacting atoms 

are constrained only by the naphthalene ring system, i.e. non-transannular. Non-bonded lone-pair 

lone-pair interactions can be fundamental in determining the geometry, reactivity and biological 

properties of organic molecules containing heteroatoms.57  
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When heteroatoms are located at positions in rigid organic molecules where the distance between 

them is less than the sum of their van der Waals radii (for instance the peri-positions in 

naphthalene), non-bonded interactions take place between overlapping orbitals leading to steric 

compression.48,49,56-58 There is particular interest in intramolecular interactions between chalcogen 

atoms in naphthalene compounds containing group 16 elements at the peri-positions. Current 

research in this area has been mainly led by the group of Nakanishi et al..56-58,60,62-65  

 

Fig. 1.27 Chalcogen lone pair orbital representations.56 

 

The lone-pair orbitals of chalcogen atoms can be portrayed by either two sp3-hybrid orbitals (a) or 

p- and s-type orbitals (p- and sp2-hybrid orbitals) (b) (Figure 1.27).56 Interactions can occur 

between chalcogen lone-pair orbitals and orbitals of other atoms or other lone-pair orbitals. When 

two p-type lone-pair orbitals overlap, σ-bonds can be formed.56,59 If the orbitals are closely located 

and align linearly then it is possible to form a weak unsymmetrical hypervalent bond between a 

lone-pair orbital of a heteroatom (Z) interacting with a σ*(E-C) (Figure 1.28). This σ-type 

(Z)···σ*(E-C) bond is known as a three center-four electron (3c-4e) interaction.60 When all the 

orbitals taking part are filled with electrons, non-bonded interactions are repulsive. However, if all 

the orbitals are not filled with electrons, for example in the σ-type 3c-4e interaction, then the 

interactions can be attractive.48,56,57,60,61 

Z E C

(Z)··· *(E-C)

 
Fig. 1.28 Lone-pair orbital of a heteroatom (Z) interacting with a σ*(E-C) orbital.56,59 

 

Nakanishi et al. focused their initial studies on organoselenium compounds which showed typical 

examples of the lone-pair lone-pair interactions described previously. Bis[8-

(phenylselanyl)naphthyl]-1,1’-diselenide and 1-(methylselanyl)-8-(phenylselanyl)naphthalene 

were prepared as the first step in their investigation (Figure 1.29).56,62 The molecular structure of 

bis[8-(phenylselanyl)naphthyl]-1,1’-diselenide revealed a quasi-linear arrangement of four 

selenium atoms whilst in 1-(methylselanyl)-8-(phenylselanyl)naphthalene the Se-C(Me) and Se-

C(Ph) bonds were shown to lie at 50° and 40° from the naphthyl plane, respectively.56,62 
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Fig. 1.29 Bis[8-(phenylselanyl)naphthyl]-1,1’-diselenide and 1-(methylselanyl)-8-

(phenylselanyl)naphthalene.56,62 

 

To help rationalise the two structures, Nakanishi et al. performed ab initio MO calculations and 

proposed the linear alignment of four selenium atoms was a result of an energy lowering effect due 

to the construction of a four center-six electron bond (4c-6e).56,62   

 

In a subsequent paper Nakanishi and co-workers revealed the structure of 8-fluoro-1-(p-

anisylselanyl)naphthalene (Figure 1.30) exhibiting a linear alignment of the type F···Se-C(An) 

with an F-Se-C angle of 175.0°. From ab initio MO calculations the linear arrangement was found 

to result from a charge-transfer from the fluorine atom to the σ*-orbital of selenium.63 

 

 
Fig. 1.30 8-fluoro-1-(p-anisylselanyl)naphthalene exhibits a linear F···Se-C(An) arrangement.63 

 

Expanding their research, Nakanishi et al. went on to study a wide range of compounds with the 

same 8-G-1-(p-YC6H4Se)C10H6 structural motif (Figure 1.31). Both the Y dependence and G 

dependence on the ‘type’ of structure adopted were investigated.57,64 

 

 
Fig. 131 A new array of (arylselanyl)naphthalenes of the type 8-G-1-(p-YC6H4Se)C10H6.

57,64 
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Each structure was classified as either type A, B or C depending upon the position of the Se-CAr 

bond relative to the mean naphthalene plane. In type A the Se-CAr bond lies almost perpendicular 

to the naphthalene plane whilst in type B the bond is located on the plane. The type C structure is 

intermediate between type A and type B (Figure 1.32).57,64   

 

 
type A: θ ≤ 90o              type B: θ ≈ 180o           type C: θ ≈ 135o  

Fig. 1.32 Types of structures in 8-G-1-(p-YC6H4Se)C10H6 naphthalenes.57,64 

 

Nakanishi et al. concluded that naphthalene systems with Z-R = Se-C at the 1-position and G = 

halogens at the 8-position satisfy the conditions for non-bonded interactions to take place. 

Compounds where G = Cl or Br were found to always adopted the type B structure irrespective of 

what occupied the Y position and thus contain the linear non-bonded G···Se-C arrangement. From 

ab initio MO calculations Nakanishi et al. concluded that ‘the linear alignment of the three atoms 

must be the result of the non-bonded G···Se-C 3c-4e type interaction’.57,64  

 

Nakanishi et al. have recently reported the linear alignment of four sulfur atoms in bis[8-

(phenylthio)naphthyl]-1,1’-disulfide the sulfur analogue of bis[8-(phenylselanyl)naphthyl]-1,1’-

diselenide. The linear S4 alignment is accounted for by the 4c-6e model with the linear form shown 

to be substantially more stable than the zig-zag conformer (Figure 1.33).65 

 

 
Fig. 1.33 The linear alignment of four sulfur atoms in bis[8-(phenylthio)naphthyl]-1,1’-disulfide.65 
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Intramolecular dative (coordination) bond formation and hypercoordination.  

Intramolecular interactions occurring between peri-heteroatoms in rigidly constrained 

naphthalenes could be strong enough for bond formation to occur. A leading topic of current 

research and one which has seen much controversy, concerns the possible occurrence of 

intramolecular dative bond formation leading to hypercoordination.67-71,75-82 Most of the pertinent 

work in this field has been investigated using 8-dimethylaminonaphth-1-yl (DAN) compounds 

where the nitrogen atom can donate a pair of electrons for the formation of a coordination bond 

with acceptor heteroatoms such as Si or P.66 Upon bond formation the acceptor species finds itself 

with a greater than normal co-ordination number and is termed hypercoordinate.66    

 

8-dimethylamino-naphth-1-yl silanes (DAN-silanes). 

It is widely recognised that silicon can obtain a greater than normal coordination number and in 

many cases this can be achieved by the intramolecular coordination of a donor group.67 In 1989, 

Corriu and co-workers reported the molecular structures of three novel DAN-silanes where the 

nitrogen lone pairs were directed towards the silicon central atom in each case (Figure 1.34). The 

formation of a hexacoordinated silicon complex due to the presence of dative N→Si bonds was 

proposed for each compound based on their experimental N···Si bond lengths.68,69 

 

 
Fig. 1.34 Bis(8-(dimethylamino)-naphthyl)silane, bis(8-dimethylaminonaphthyl)fluorosilane and 

(2-((dimethylamino)methyl)phenyl)(8-(dimethylamino)-naphthyl)difluorosilane.68 

 

In a subsequent paper Corriu and co-workers found the 1H NMR study of bis(8-

(dimethylmino)naphthyl)fluorosilane and related compounds (Figure 1.35) was in agreement with 

previous findings and gave evidence for hexacoordination in solution.70  
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N SiMe

Me

Y

X

N
Me

Me

a X = H, Y = OCH3
b X = H, Y = CH3
c X = CH3, Y = C6H5  

Fig. 1.35 The series of DAN-silanes studied by 1H NMR spectroscopy by Corriu and co-workers to 

determine the existence of hexacoordinated silicon.70 

 

In 1998, Schiemenz et al. reexamined the DAN-silanes which Corriu and co-workers described as 

hexacoordination at silicon.70,71 When comparing their own results of the DAN-silanes with a 

closely related carbon analogue, bis(8-dimethylamino-naphth-1-yl)carbinol (Figure 1.36), 

Schiemenz et al. discovered that the bonding of Si and C was essentially the same with the carbon 

compound exhibiting a similar structure.71 

 

N CMe

Me

OH

H

N
Me

Me

 
Fig. 1.36 Bis(8-dimethylamino-naphth-1-yl)carbinol was found to exhibit similar bonding 

characteristics to the DAN-silanes reported by Corriu and co-workers.70,71 

 

From their findings Schiemenz et al. were left with two conclusions. Either to accept the 

interpretation by Corriu and co-workers67,68,70 and present ‘proof’ of a hexacoordinated carbon 

atom or to remain with the acknowledged theory of carbon tetracovalency, thus disproving the 

hypervalency of silicon in the DAN-silanes.71 

 



Chapter 1 - Introduction                                 
                           

                                                                                                                    24 

 

DAN-phosphorus compounds. 

The debate on dative bond formation and hypercoordination in peri-naphthalenes between 

Schiemenz and Corriu later developed to incorporate DAN-phosphine (Figure 1.37) and its 

derivatives; phosphorus conceivably becoming hypercoordinate as a consequence of electron 

donation from nitrogen.  

 
Fig. 1.37 (8-dimethylamino-naphth-1-yl)diphenylphosphine (DAN-phosphine).71 

 

As early as 1974, Hellwinkel et al. had concluded from 31P NMR signal positions that no dative 

N→P bond existed in DAN-phosphorus compounds.72 This was later corroborated by Day and 

Holmes who determined the P···N distance [2.81 Å] and concluded that although shorter than the 

sum of the two interacting atoms [3.4 Å] this was not conclusive of a bonding interaction.74 

Nevertheless, Corriu and co-workers re-opened the debate by studying the structure of DAN-

phosphine and related compounds (Figure 1.38) and reaching a similar conclusion to their view of 

DAN-silanes.75 

 
Fig. 1.38 DAN-phosphorus compounds investigated by Corriu and co-workers for the occurrence 

of hypercoordination at phosphorus.75 

 

They found that intramolecular donor-acceptor interactions exist between the nitrogen and 

phosphorus atoms in DAN-phosphine without the deformation of the naphthyl group. Corriu and 

co-workers also indicated the ability of the phosphorus atom to undergo an extension of 

coordination in bis(DAN)(phenyl)phosphine and tris(DAN)phosphine (Figure 1.38).75 In (DAN)3P 

the phosphorus is claimed to be “pseudo-seven-coordinate due to three P-C bonds, three dative 

N→P interactions and to the lone pair acting as a pseudo-substituent”.75 
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In 1998, Chuit and Reyé reviewed a series of phosphanes, phosphane derivatives and 

phosphenium salts based on the DAN-phosphine motif (Figure 1.39). In all cases the rigid 

geometry of the naphthalene strategically fixes the NMe2 groups close to the phosphorus centre. 

This close proximity was the explanation for hypercoordination at the phosphorus centre by 

intramolecular coordination.76  

 

 
Fig. 1.39 Dan-phosphorus compounds reviewed by Chuit and Reyé during their studies into 

hypercoordination.76 

 

Over the last decade Schiemenz et al. have been highly active in the field of DAN-phosphorus 

chemistry in an attempt to draw a conclusion to the controversial debate of hypercoordination. 

Sceptical of the claims made by Corriu, Chuit and others, they investigated the structure of DAN-

phosphine and its related compounds (Figure 1.40).77  

 

NMe2

PPh3-n
n

a n = 1
b n = 2
c n = 3  

Fig. 1.40 Dan-phosphorus compounds re-examined by Schiemenz.77 
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Several structural and chemical properties of the DAN-phosphorus compounds led them to 

conclude that an intramolecular dative bond was highly unlikely and no hexacoordination would 

be anticipated.77 Firstly the dimethylamino group in DAN compounds is a poor nucleophile 

compared with organo lithium compounds; it is widely accepted that the positively charged 

phosphorus in tetraarylphosphonium cations is sufficiently electrophilic to react with only very 

strong nucleophiles such as aryl lithium reagents.77,78 Schiemenz also believed that the rigid 

structural geometry of naphthalene was detrimental for hypercoordination in these compounds. 

The peri-substituents in an ‘ideal’ DAN-phosphorus compound lie at a distance of ~2.5 Å, much 

longer than the sum of the covalent radii [N 0.74 Å, P 1.1 Å], and therefore too long for any 

appreciable bonding.71 For a dative bond to occur, the peri-distance would have to be considerably 

reduced requiring distortion of the C10 skeleton. The cost in energy for this to occur could only be 

achieved by forming a strong peri-bond such as a C-C or an amide N-CO bond.79,80  

 

Schiemenz et al. developed their investigation to elucidate whether Helliwinkel or Corriu had the 

correct interpretation.72,75 The 31P NMR data for a series of peri-substituted diphenylphosphines 

(Figure 1.41) was studied and compared with DAN-phosphorus compounds.77 The conclusion they 

drew was that the chemical shifts in (8-(dimethylamino-naphth-1-yl)phosphines are the result of 

the “high field ortho-effect” and “a low field peri-substituent effect” of about the same 

magnitude.77 31P NMR therefore does not support the claim that dative N→P interactions are 

present in DAN-phosphines.77 

 

 
Fig. 1.41 Peri-substituted diphenylphosphines investigated in a 31P NMR study by Schiemenz.77 

 

In an attempt to definitively answer the question of the presence of hypercoordination in DAN-

phosphorus compounds, Schiemenz et al. strived for a peri-N,P-substituted naphthalene which 

unambiguously contained both hypercoordinate phosphorus and a dative N→P bond. Such a 

compound, DAN-P(O2C6H4)2, was synthesised by the reaction of chloro-bis(1,2-

phenylenedioxy)phosphorane with 8-dimethylamino-naphth-1-yl-lithium (Figure 1.42).81 
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    Fig. 1.42 DAN-P(O2C6H4)2 exhibiting a hypercoordinate phosphorus and a dative N→P bond 

reported by Schiemenz et al..81 

 

The short N-P distance [2.13 Å] although not much shorter than the ‘ideal’ peri-distance [2.50 Å] 

is much closer to known N-P distances in phosphatanes and evidence for bond formation and 

hypercoordination.81 Furthermore the distance matches the value found in a similar compound 

exhibiting certain features of phosphatanes (Figure 1.43).74 As a consequence of the N-P distance 

being shorter than the ideal peri-distance the three bay region angles have been reduced and are 

significantly shorter than 120°.81     

 

 

    Fig. 1.43 A compound exhibiting similar features to DAN-P(O2C6H4)2 and a similar N-P 

distance.74 

 

Schiemenz et al. concluded that under favourable conditions DAN-phosphorus compounds can 

form dative N→P bonds and hexacoordination at phosphorus can occur. The N-P distance is found 

to be 0.6-0.9 Å, shorter than other DAN-phosphorus compounds and the naphthalene skeleton is 

forced into distortion. DAN-phosphines and their derivatives are found to act normally with steric 

repulsion dominating the structures and no dative bonds forming. From these results, Schiemenz et 

al. extended their findings to the DAN-silanes and found that most exhibit N-Si distances greater 

than the ideal peri-distance and contained substantial splay angles, the criteria for steric 

hindrance.81-82    
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Metal coordination and hemilability in peri-substituted naphthalenes 

Transition metal complexes. 

A significant property of peri-disubstituted naphthalenes is their ability to form complexes with 

transition metals (MLx). Coordination occurs when metal ions acting as Lewis acids accept lone 

pairs of electrons donated by ligands (Lewis bases), as defined by the original acid-base definition 

as stated by Lewis.83 When the two peri-substituents are both electron pair donors the ligand 

becomes bidentate and can form ring complexes (chelates) with the metal. The enhanced stability 

of a system containing chelate rings compared to the stability of a system that is similar but 

contains no or fewer rings is known as the ‘chelate effect’.84  

 

Many transition metal complexes are important tools in organic synthesis allowing apparently 

unfeasible reactions to occur without difficulty. Complexes of the platinum group metals (Ru, Os, 

Rh, Ir, Pd, and Pt) have been shown to act as active homogeneous catalysts in reactions of 

industrial importance, including hydrogenation,85 hydrosilylation,86 hydroformylation,87 oxidative 

hydrolysis of olefins88 and the carbonylation of methanol.89 

 

Hemilability. 

A class of chelate ligand of great interest and one which has become a popular topic of research, 

places two or more donor atoms with very different electronic properties close to the metal atom. 

These mixed donor, hemilabile ligands possess two types of bonding groups which differ in their 

hard and soft characteristics based on Pearson’s HSAB principle.37,90 Hard metal ions are small in 

size with closely held orbitals with high oxidation states (Cr3+, Al3+) are low in electron density 

and require good σ donors such as NH3, H2O, or F- (hard ligands). Large low oxidation state (soft) 

metals (Ag+, Hg2+) with less closely held orbitals, having excess electron density from their 

reduced state form strong complexes with unsaturated polarisable (soft) ligands (I-, PPh3, or 

C2H4).
37  

 

For hemilabile ligand-metal complexes to be thermodynamically stable, one group of the 

hemilabile ligand must be a substitutionally inert soft donor which binds strongly to the (soft) 

transition metal atom. However the second bonding group is a hard donor atom which binds less 

strongly and is thus coordinatively or substitutionally labile.90,91 The ability of this hard donor 

group to equilibrate between a coordinated ‘closed’ and a dissociated ‘open’ form with the metal 

centre (‘windscreen wiper action’),134 is the key property of this special type of chelating ligand 

and ideal for inducing changes in the properties of the metal centre.90,91  



Chapter 1 - Introduction                                 
                           

                                                                                                                    29 

 

The ability of metal complexes to catalyse reactions of organic substrates is dependent on the ease 

with which the substrate (S) can enter the coordination sphere of the metal ion.92 In complexes 

containing hemilabile ligands the hard donor atom (Z) dissociates from the metal, on the request of 

a competing substrate, forming a free coordination site where the substrate can bind. This 

dissociative ability of one arm of the chelate is referred to as the ‘arm off’ mechanism (Figure 

1.44).91 

 

 

Fig. 1.44 The hemilabile character of the hybrid bidentate ligand D-Z.90,91 

 

Hemilabile ligands were first described in 1979 by Jefferey and Rauchfuss while investigating the 

chemistry of phosphine-amine and phosphine-ether ligands.90 They envisaged that these ligands 

would bind well enough to allow isolation but would readily dissociate the ‘hard’ ligand 

component, thus generating a vacant site for substrate binding.90  

 

Since the conception of using hemilabile ligands in coordination chemistry and homogeneous 

catalysis was established at the end of the 1970s, there has been continuous interest in mixed donor 

ligands.93 Mixed donor hemilabile chelating ligands are of great interest owing to the increased 

catalytic activity of their transition metal complexes in certain homogeneously catalysed reactions. 

The most commonly employed hemilabile ligands are bidentate phosphines.94 

 

Phosphines are neutral two electron donors and as such are one of the most versatile ligands that 

can bind to late transition metals. They produce stable metal-phosphorus bonds via sigma donation 

of the lone pair to an empty metal orbital and back-donation from a filled orbital on the metal to an 

empty orbital on the phosphine ligand.95 The steric characteristics of the ligand can be easily 

controlled allowing the reactivity of the metal complex to be tuned. Increasing the electron-

withdrawing capability of the groups surrounding the phosphorus atom decreases the σ-donating 

capacity whilst lowering the π-acceptor (σ*) of the phosphorus, thus increasing its back-bonding 

ability. Phosphines can therefore exhibit a range of σ-donor and π-acceptor capabilities and the 

electronic properties of the metal centre can be altered by the substitution of electronically 

differing phosphines.95,96 
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The group of Scmutzler has developed compounds of the type 1-Ph2P(C10H8)P(:E)PPh2 (E = O, S, 

Se, NR”) containing the rigid 1-P-C10H8-8-P naphthalene backbone (Figure 1.45).97 Compared to 

the parent diphosphines which form coordinatively stable six-membered chelates with the 

catalytically active transition metal centres,25 these compounds containing diphosphine mono-

chalcogenides should form more labile seven-membered chelates, advantageous for certain 

catalytic reactions.  

 

PPh2 PPh2

E

E = S, Se  

Fig. 1.45 Ligands investigated by Schmutzler containing the rigid naphthalene backbone.97 

 

 

Previous work on peri-substituted naphthalenes in the Woollins Research 

Group  

 

In 1987, the Woollins Group reported the first example of a six-membered organothiophosphate 

heterocycle containing a C3P2S ring at the peri-positions on naphthalene (Figure 1.46).98 

  

 
Fig. 1.46 The structure of 1,3-epithionaphtho[1,8-cd][1,2λ5,6λ5]thiadiphosphine-1,3-dithione, the 

first example of a six-membered organothiophosphate heterocycle.98 

 

Since then numerous analogues have been prepared and the subsequent P2S2 ring cleavage 

reactions these compounds undergo have been reported (Scheme 1.12).99 
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Scheme 1.12 A few of the reactions of 1,3-epithionaphtho[1,8-cd][1,2λ5,6λ5]thiadiphosphine-1,3-

dithione reported by the Woollins Group.99 

 

 

Of particular interest was the reaction of NapP2S2 with chlorine gas due to the versatile synthons 

such a reaction could produce. At the time of writing, only two methods were known for 

introducing two phosphorus moieties at the peri-positions of naphthalene, one starting from 1,8-

dilithionaphthalene and the other as described from P2S4.
98,100

 The initial reaction of NapP2S2 with 

chlorine gas afforded Nap(PCl2)(PCl4)] containing a very rare σ4P-σ6P bond (Figure 1.47).101 

Further refluxing this compound in toluene with a slight excess of methyldichlorophosphite 

(MeOPCl2) afforded Nap(PCl2)2 known to be a versatile synthetic intermediate in 

organophosphorus chemistry.28 Further reactions of Nap(PCl2)(PCl4)] were also reported.102 
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Fig. 1.47 Reaction of NapP2S2 with chlorine gas gave a novel naphthalene compound containing a 

rare σ4P-σ6P bond.101 

 

The investigation into sterically constrained bis-phosphorus naphthalene systems was developed 

further with the synthesis of 1,8-bis(dimethylphosphonito)naphthalene, Nap[P(E)(OMe)2]2, along 

with a complete series of mono- and di-oxidised phosphonato counterparts (Figure 1.48).103 

 

 

Fig. 1.48 Sterically constrained Nap[P(E)(OMe)2]2 (E = O, S, Se) (Nap = naphthalene-1,8-diyl) 

systems.103 

 

Whilst carrying out investigations on phosphorus-based naphthalene systems a parallel study was 

undertaken on chalogenide-based systems. A preliminary study of the coordination chemistry of 

some chalcogenides was initially undertaken by reacting a collection of chalcogen containing 

naphthalenes with a range of platinum bisphosphine complexes (Scheme 1.13).104 A more 

comprehensive structural study was then performed on a range of disubstituted systems including 

[1,8-cd][1,2]dithiole,  naphtho[1,8-cd][1,2]diselenole, naphtho[1,8-cd][1,2]ditellurole and some 

oxidised species (Figure 1.49). Comparison of the molecular structures showed a variation in the 

E-E distance loosely indicating the degree of distortion imposed by the naphthalene backbone and 

the extent of oxidation at the sulfur (Figure 1.49).105 
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Scheme 1.13 Initial coordination reactions of chalcogenide-based systems with platinum 

bisphosphine complexes.104 
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Fig. 1.49 A structural study of chalcogen-substituted naphthalenes revealed a variation in E-E 

length.105 

 

As a extension, a number of dinuclear Ir(III) dimers containing an Ir-Ir bond were prepared via the 

oxidative addition of naphtha[1,8-cd][1,2]dithiole (and a series of related compounds) to [{Ir(µ-

Cl)(cod)}2] (Scheme 1.14).106  
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Scheme 1.14 Oxidative addition reactions of naphtha[1,8-cd][1,2]dithiole (and a series of related 

compounds) to [{Ir(µ-Cl)(cod)}2].106 
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Studying distortion in sterically crowded 1,8-disubstituted naphthalenes 

 

As an extension of the work previously carried out in the Woollins group, this thesis reports on the 

synthesis and characterisation of two novel series of mixed sterically crowded peri-substituted 

naphthalenes. As discussed previously, extensive work has been carried out on bis-phosphines24-33 

as well as DAN-phosphorus compounds71-82 containing nitrogen and phosphorus at the peri-

positions on naphthalene. To date there are very few examples of phosphorus-oxygen, phosphorus-

sulfur and phosphorus-selenium peri-substituted naphthalenes in the literature.   

 

In efforts to understand the factors which influence the degree of distortion in sterically crowded 

1,8-disubstituted naphthalenes, investigations focussed on phosphorus-chalcogenide species and a 

series of mixed chalcogenide systems (Figure 1.50). 

 

Fig. 1.50 Investigations focussed on phosphorus-chalcogenide ligands and a series of mixed 

chalcogenide systems. 

 

The availability of X-ray structural data has played a crucial role in assessing substituent effects on 

steric strain and naphthalene distortion. To quantify the extent of naphthalene distortion taking 

place the geometry of the naphthalene compounds was compared with that of unsubstituted 

naphthalene. In-plane distortion was calculated by observing the sum of angles in the bay region 

(splay angles); in the ‘ideal’ geometry these angles sum to 357.2°.2 If the sum of the splay angles 

is greater than this value we can conclude the bonds have moved apart, indicating steric repulsion, 

but if the sum is lower, then the atoms have come closer as a result of favourable interactions. 

Likewise, out-of-plane distortion can be measured from the distance the peri-substituents reside 

above and below the naphthalene plane; in ‘ideal’ naphthalene the peri-hydrogens lie on the 

naphthyl plane.2 Lastly, torsion angles can indicate the move away from planarity by buckling of 

the naphthyl plane. For clarity, two torsion angles have been used as a guide to planarity; C(6)-

C(5)-C(10)-C(1), C(4)-C(5)-C(10)-C(9) (Figure 1.51). The three types of distortion are expressed 

cumulatively by the value of the peri-distance which is used as the primary parameter when 

describing the distortion away from ‘ideal’.  
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Fig. 1.51 Torsion angles C(6)-C(5)-C(10)-C(1) and C(4)-C(5)-C(10)-C(9) are used as a guide to 

the naphthalene planarity. 

 

The size of peri-atoms as well as the number and size of substituents attached to them are 

important factors influencing the degree of strain. The mixed phosphorus-chalcogenide and mixed 

chalcogenide systems offer a good model with which to study substituent affects on steric 

repulsion, favourable intramolecular interactions and the possibility of bond formation and 

hypercoordination and hypervalency. Furthermore the bidenticity and rigid C3 backbone these 

ligands possess makes them suitable candidates for metal coordination and the design of ligands 

for catalysis.     
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Chapter 2 

Preparation and chemistry of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 

 

Scheme 2.1 The reaction scheme for the preparation of (8-ethylsulfanylnaphth-1-

yl)diphenylphosphine 3 from 8-bromonaphthalen-1-amine 1. 

 

Initial attempts to synthesise (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 revolved around 8-

bromonaphthalen-1-amine 1 as the key starting point for this reaction sequence (Scheme 2.1). Our 

first attempts to synthesise 1 used the procedure of Fieser and Seligman from 1939.1 This synthesis 

converts commercially available 1,8-diaminonaphthalene 4 to 1 via the Sandmeyer reaction 

(Scheme 2.2).1  

 
Scheme 2.2 Synthesis of 8-bromonaphthalen-1-amine 1 from 1,8-diaminonaphthalene 4.1 

 

We found that the reaction proceeded in 21% yield and 1 was fully characterised by melting point 

determination, elemental analysis, infra-red spectroscopy, 1H and 13C NMR spectroscopy and mass 

spectrometry.1 The black crude product was recrystallized from 40:60 petroleum ether to afford 

pink crystals which were characterised by single crystal X-ray crystallography (Figure 2.1).2   

 

 

Fig. 2.1 The crystal structure of 8-bromonaphthalen-1-amine 1.2 
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Compared to other 1,8-disubstituted naphthalene compounds,3 1 exhibits a somewhat unstrained 

intramolecular non-bonded Br(1)···N(1) distance of 3.070(3) Å. An intramolecular hydrogen 

bonding interaction between the N(1)-H(1a)···Br(1) enables a close non-bonding Br(1)···N(1) 

distance and at the same time leaves the molecule relatively unstrained. The other NH proton is 

involved in an intermolecular hydrogen bond (Table 2.1) N(1)-H(1b)···N(1) and forms an infinite 

zigzag chain. These chains have normal hydrophobic contact to each other with the naphthalene 

units arranged in a herring-bone stacking motif (Figure 2.2). 

 

 

Fig. 2.2 The crystal structure of 8-bromonaphthalen-1-amine 1 showing the intra- and 

intermolecular hydrogen bonding and the herring-bone stacking motif of the naphthalene units.2 

 

The peri-atoms display a minor out-of-plane distortion, N(1) lying 0.02(1) Å above the plane of 

the naphthalene ring and Br(1) lying -0.16(1) Å below the plane. Bond angles and distances (Table 

2.1) also confirm the existence of in-plane distortion with all three peri-area angles being greater 

than those expected for the ideal naphthalene geometry [in naphthalene these angles are 118.3(1)°, 

120.6(1)°, 118.3(1)° with a sum of 357.2°].4 The two torsion angles associated with the central 

C10-C5 naphthalene bond show only a slight buckling of the naphthalene backbone with angles 

only varying from a planar geometry by 1.6-2.0°. Further details of the crystal structure can be 

found in Appendix 1. 
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Table 2.1 Selected bond lengths [Å] and angles [°] of 8-bromonaphthalen-1-amine 1.2 
________________________________________________________________________________ 

  
Br(1)···N(1)    3.070(3) Br(1)-C(1)-C(10) 123.4(4)  

Br(1)-C(1) 1.939(4) C(1)-C(10)-C(9) 124.1(4)  

N(1)-C(9)                                1.400(5) N(1)-C(9)-C(10) 121.2(4)  

   Σ = 368.7(8)  

     

Distance from naphthalene mean plane     

Br(1) -0.16(1)    

N(1) 0.02(1)    

          

Torsion angles          

C(6)-C(5)-C(10)-C(1) -178.0(5) C(4)-C(5)-C(10)-C(9) -178.4(5)   

     

Hydrogen bond geometry [ Å, °]     

D-H···A D-H H···A D···A D-H···A 

N(1)-H(1a)···Br(1) 0.98 2.27 3.070(3) 138 

N(1)-H(1b)···N(11) 0.98 2.2 3.073(5) 148 

 

 

Concerns with the relatively low yield for the synthesis of 8-bromonaphthalen-1-amine 1 from 1,8-

diaminonaphthalene 4 led to the investigation of new routes to the target compound. In 1987 

Herbert, Woodgate and Denny published a synthesis starting from 8-bromo-1-naphthoic acid 7 

(Scheme 2.3).5  

 

Scheme 2.3 Synthesis of 8-bromo-1-naphthoic acid 7.6 
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Unlike 1,8-diaminonaphthalene in the previous reaction, 8-bromo-1-naphthoic acid is not 

commercially available but is accessible from the cheap and available naphthalic anhydride 5. We 

tested this method, following the procedure of Bailey et al. naphthalic anhydride was reacted with 

mercuric acetate under acidic conditions to give the colourless anhydro-8-(hydroxymercuri)-1-

naphthoic acid 6 in nearly quantitative yield, via the release of large amounts of carbon dioxide 

(Scheme 2.3).6 

 

We then reacted anhydro-8-(hydroxymercura)-1-naphthoic acid 6 with sodium bromide and 

bromine under acidic conditions to give 8-bromo-1-naphthoic acid 7 in 34% yield.6  7 was 

characterised by 1H NMR spectroscopy and melting point analysis (173-175 °C) and gave values 

which were in accord with the literature.6 Conversion of 7 to the desired starting material, 8-

bromonaphthalen-1-amine 1, was achieved under acidic conditions via reaction with sodium azide 

following the procedure from Herbert, Woodgate and Denny (Scheme 2.4).5  In our hands, the 

reaction proceeded in 73% yield. The 1H NMR spectrum and melting point (85-87 °C) of 1 were in 

agreement with the literature and the results from the previous synthesis from 4.1,5  

 

 
Scheme 2.4 Synthesis of 8-bromonaphthalen-1-amine 1 from 8-bromo-1-naphthoic acid 7.5 

 

1-bromo-8-(ethylsulfanyl)naphthalene 2 was prepared via a standard diazotisation and substitution 

reaction of 8-bromonaphthalen-1-amine 1 (Scheme 2.5) following the procedure reported by Oki 

and Yamada.7 The diazotised compound reacted with a solution of sodium ethanethiolate to 

produce the product 2 as yellow crystals in 41% yield.7 Elemental analysis, mass spectrometry, 1H 

and 13C NMR spectroscopy and melting point analysis (47-49 °C) values matched those in the 

literature.7 

 

 

Scheme 2.5 Synthesis of 1-bromo-8-(ethylsulfanyl)naphthalene 2.7 
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The crystal structure of 2 shows two independent molecules in the asymmetric unit with similar 

conformations (Figure 2.3).8  

 

 

Fig. 2.3 The crystal structure of 1-bromo-8-(ethylsulfanyl)naphthalene 2 showing two independent 

molecules in the asymmetric unit.8 

 

Intramolecular Br···S(ethyl) distances are 3.056(2) Å and 3.050(2) Å. The bromine and sulfur 

atoms show minor deviations above/below their attached ring planes; S(9) [0.04(1) Å] and Br(21) 

[0.01(1) Å] above the plane of the naphthalene ring and Br(1) [-0.14(1) Å] and S(29) [-0.04(1) Å] 

below the plane. In-plane distortion is observed in both molecules with the three peri-region angles 

(Table 2.2) being greater than those of naphthalene.4 From the sum of these angles it is observed 

that the degree of in-plane distortion is similar in both independent molecules and that there is 

more distortion in 2 compared to in 8-bromonaphthalen-1-amine 1. The four torsion angles 

associated with the C10-C5 and C30-C25 bonds show that a limited amount of naphthalene ring 

buckling has taken place making the two molecules near planar, slightly more so than in 1.8  

 

The molecules pack in a herringbone array with no significant π-π interactions. The shortest 

intermolecular S···S distance is 4.199(2) Å and there is a weak intermolecular C-H···Br interaction 

[for C(22)-H(22a)···Br(1): H···Br = 3.025 Å, C-H···Br = 167°]. Bond lengths and angles can be 

found in Table 2.2 and further details of the crystal structure can be found in Appendix 2.8 
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Table 2.2 Selected bond lengths [Å] and angles [°] of 1-bromo-8-(ethylsulfanyl)naphthalene 2.8 
_______________________________________________________________________________ 

10

5
6

7

8

91

2

3

4

Br1 S9
11

2A

12

 

30

25
26

27

28

2921

22

23

24

Br21 S29
31

32

2B  

Br(1)-S(9) 3.0561(18) Br(21)-S(29) 3.0505(19)  

Br(1)-C(1)                              1.901(6) Br(21)-C(21) 1.897(6)  

S(9)-C(9) 1.770(6) S(29)-C(29) 1.778(6)  

     

Br(1)-C(1)-C(10) 124.5(4) Br(21)-C(21)-C(30) 124.1(4)  

C(1)-C(10)-C(9) 128.8(5) C(21)-C(30)-C(29) 128.1(5)  

S(9)-C(9)-C(10) 121.2(4) S(29)-C(29)-C(30) 122.9(5)  

 Σ = 374.5(9)  Σ = 375.1(10)  

     

Distance from naphthalene mean plane    

Br(1) -0.14(1) Br(21) 0.01(1)  

S(9) 0.04(1) S(29) -0.04(1)  

     

Torsion angles     

C(6)-C(5)-C(10)-C(1) -179.2(5) C(26)-C(25)-C(30)-C(21) 179.2(5)  

C(4)-C(5)-C(10)-C(9) -178.4(6) C(24)-C(25)-C(30)-C(29) 179.1(5)  

     

Hydrogen-bond geometry [ Å, °]    

D-H···A D-H H···A D···A D-H···A 

C(22)-H(22A)···Br(1) 0.95 3.025 3.957(2) 167 

 

We achieved the conversion of 1-bromo-8-(ethylsulfanyl)naphthalene 2 to the desired naphthalene 

structure 3 substituted with sulfur and phosphorus moieties peri to one another by following a 

similar procedure to that reported by Riihimäki et al..9 1-bromo-8-(ethylsulfanyl)naphthalene 2 

was reacted with n-butyllithium (1 equivalent) and chlorodiphenylphosphine (1 equivalent) to give 

the novel (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 in 11% yield (Scheme 2.6). 3 was 

characterised by elemental analysis, infra-red spectroscopy, 1H, 13C and 31P NMR spectroscopy 

and mass spectrometry. 
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The 31P NMR spectrum for the compound showed a single peak at δ = -5.26 ppm, in the correct 

region for this type of phosphine.10 

 

 
Scheme 2.6 Synthesis of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3.9  

 

Analysis of the structure via single crystal X-ray crystallography (Figure 2.4) shows two 

independent molecules in the asymmetric unit with similar conformations. Intramolecular 

P···S(ethyl) distances are 2.9737(14) Å and 2.9469(15) Å. Minor relief of steric strain is observed 

in both independent molecules with the phosphorus and sulfur atoms having undergone out-of-

plane distortion. P(1) [-0.11(1) Å] and S(39) [-0.03(1) Å] lie below the mean naphthalene plane 

and S(9) [0.16(1) Å] and P(31) [0.05(1) Å]  lie above the plane. From these values it can be seen 

that there is more distortion of the peri-atoms taking place in 3A compared to 3B where the atoms 

lie close to the naphthalene plane. 

 
Fig. 2.4 The crystal structure of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 showing two 

independent molecules in the asymmetric unit. 
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Selected bond lengths and bond angles of the crystal structure are shown in Table 2.3. The size of 

the peri-region angles indicates in-plane distortion has occurred and the sum of these angles shows 

the distortion is comparable in the two molecules. The torsion angles suggest there is more 

buckling of the naphthalene ring system in molecule 3A compared to 3B. Further details of the 

crystal structure can be found in Appendix 3. 

 

Table 2.3 Selected bond lengths [Å] and angles [°] of (8-ethylsulfanylnaphth-1-

yl)diphenylphosphine 3. 

_______________________________________________________________________________ 

    

P(1)···S(9) 2.9737(14) P(31)···S(39) 2.9469(15) 

P(1)-C(1)              1.838(4) P(31)-C(31) 1.848(3) 

S(9)-C(9) 1.779(4) S(39)-C(39) 1.776(4) 

    

P(1)-C(1)-C(10) 123.6(3) P(31)-C(31)-C(40) 122.4(3) 

C(1)-C(10)-C(9) 126.9(3) C(39)-C(40)-C(31) 126.0(3) 

S(9)-C(9)-C(10) 121.2(3) S(39)-C(39)-C(40) 123.0(3) 

 Σ = 371.7(6)  Σ = 371.4(6) 

    

Distance from naphthalene mean plane  

P(1) -0.11(1) P(31) 0.05(1) 

S(9) 0.16(1) S(39) -0.03(1) 

    

Torsion angle     

C(6)-C(5)-C(10)-C(1) -177.1(3) C(36)-C(35)-C(40)-C(31) 179.8(4) 

C(4)-C(5)-C(10)-C(9) -176.5(3) C(34)-C(35)-C(40)-C(39) -177.2(4) 

  

Our initial route to (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 although successful was 

achieved via four intermediates. The yields for the preparation of these intermediates when 

combined gave concerns over the efficiency of the overall reaction scheme and so a new improved 

route containing fewer steps to the target molecule was desirable.  
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Scheme 2.7 The general synthesis of pentacoordinate disilanes from the group of Toshimitsu.11 

 

In 2001, Toshimitsu et al. reported the synthesis of a series of pentacoordinate disilanes bearing an 

(8-chalcogeno-1-naphthyl) group synthesised through the stepwise halogen-lithium exchange 

reactions of 8-bromo-1-iodonaphthalene (Scheme 2.7).11 The key compound in this synthesis is 1-

bromo-8-(phenylsulfanyl)naphthalene 9. Being able to synthesise compounds of this type in a one 

step process would give a more efficient route to our desired ligands, (8-alkylsulfanylnaphth-1-

yl)dialkylphosphines. Our first experiments using this new method followed a similar procedure, 

but utilised the more accessible 1,8-dibromonaphthalene 11 as the starting material for these 

reactions (Scheme 2.8).  

 

 

Scheme 2.8 The reaction scheme for the preparation of (8-alkylsulfanylnaphth-1-

yl)dialkylphosphines from 1,8-dibromonaphthalene 11. 

 

11 was synthesised from 1,8-diaminonaphthalene 4 via a diazotisation followed by reaction with 

hydrobromic acid (Scheme 2.9)12 and was characterised by elemental analysis, infra-red 

spectroscopy, 1H and 13C NMR spectroscopy. The melting point (107-109 °C) was also in accord 

with the literature (106-108 °C).12 

 

 
Scheme 2.9 Synthesis of 1,8-dibromonaphthalene 11 from 1,8-diaminonaphthalene 4.12 

 

Reacting 1,8-dibromonaphthalene 11 with n-butyllithium (1 equivalent) via the stepwise halogen-

lithium exchange reaction, it is possible to replace one of the bromine atoms with a lithium atom. 
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This gives the opportunity for single substitution reactions to take place between the lithium metal 

and the incoming species. Reaction of 11 with one equivalent of n-butyllithium followed by one 

equivalent of diethyl disulfide gave 1-bromo-8-(ethylsulfanyl)naphthalene 2 in 43% yield (Scheme 

2.10).11  

 

Scheme 2.10 Synthesis of 1-bromo-8-(ethylsulfanyl)naphthalene 2 and (8-ethylsulfanylnaphth-1-

yl)diphenylphosphine 3.11 

 

Characterisation of the product by 1H NMR spectroscopy and mass spectrometry found values in 

accord with those of the initial reaction which started from 1. (8-ethylsulfanylnaphth-1-

yl)diphenylphosphine 3 was subsequently synthesised as described above giving an overall higher 

yielding route (4%) to the desired product. In an analogous series of reactions, (8-

ethylsulfanylnaphth-1-yl)diphenylphosphine 3 was synthesised from 1,8-diiodonaphthalene 14 

(Scheme 2.12).13   

 

 
Scheme 2.11 Synthesis of 1,8-diiodonaphthalene 14 from 1,8-diaminonaphthalene 4.13 

 

14 was synthesised following a similar procedure to 1,8-dibromonaphthalene 11. Starting from 

1,8-diaminonaphthalene 4, diazotisation was achieved by reaction with aqueous NaNO2 and 

subsequent reaction with potassium iodide gave the desired compound (Scheme 2.11).13  

 

Scheme 2.12 Synthesis of 1-iodo-8-(ethylsulfanyl)naphthalene 15 and (8-ethylsulfanylnaphth-1-

yl)diphenylphosphine 3.11 
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The reaction of 14 with n-butyllithium (1 equivalent) and diethyl disulfide (1 equivalent) yielded 

the novel 1-iodo-8-(ethylsulfanyl)naphthalene 15 in 42% yield. Further reaction of 15 with n-

butyllithium and chlorodiphenylphosphine (as described earlier starting from 2) afforded 

compound 3 in 51% yield. 

 

 

Fig. 2.5 The crystal structure of 1-iodo-8-(ethylsulfanyl)naphthalene 15. 

 

15 was characterised by elemental analysis, infra-red spectroscopy, 1H and 13C NMR spectroscopy 

and mass spectrometry. The structure of 15 (Figure 2.5) was analysed by single crystal X-ray 

crystallography and compared to its analogous bromo- counterpart 2.  

 

With the increase in size of the peri-substituent from bromine to iodine it can be seen that 15 

exhibits a greater degree of distortion and therefore additional strain. The intramolecular peri-

distance between the sulfur and iodine atoms of 15 is 3.243(2) Å putting the peri-atoms further 

apart compared to those in 2 [3.0561(18) Å, 3.0505(19) Å]. Out-of-plane distortion is observed to 

a greater extent in 15 with S(1) [-0.17(1) Å] and I(1) [0.36(1) Å] lying further from the mean 

naphthalene plane than the S(1) and Br(1) atoms in 2. Similarly the sum of the peri-area angles 

(Table 2.4) shows a greater in-plane distortion in 15 [376.9°(9)] and a comparison of the torsion 

angles around the central naphthalene bond shows greater buckling of the naphthalene system for 

the larger atom. More information regarding the crystal structure can be found in Appendix 4.  
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Table 2.4 Selected bond lengths [Å] and angles [°] for 1-iodo-8-(ethylsulfanyl)naphthalene 15 and 

1-bromo-8-(ethylsulfanyl)naphthalene 2. 
_______________________________________________________________________________ 

10
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7
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3

4

I1 S9

11

15

12

  

10

5
6

7

8

91

2

3

4

Br1 S9
11

2A

12

  

30

25
26

27

28

2921

22

23

24

Br21 S29
31

32

2B  

I(1)···S(1) 3.2436(17) Br(1)···S(9) 3.0561(18) Br(21)···S(29) 3.0505(19) 

I(1)-C(1) 2.126(6) Br(1)-C(1) 1.901(6) Br(21)-C(21) 1.897(6) 

S(1)-C(9) 1.773(6) S(9)-C(9) 1.770(6) S(29)-C(29) 1.778(6) 

      

I(1)-C(1)-C(10) 127.1(4) Br(1)-C(1)-C(10) 124.5(4) Br(21)-C(21)-C(30) 124.1(4) 

C(1)-C(10)-C(9) 128.2(5) C(1)-C(10)-C(9) 128.8(5) C(21)-C(30)-C(29) 128.1(5) 

S(1)-C(9)-C(10) 121.6(4) S(9)-C(9)-C(10) 121.2(4) S(29)-C(29)-C(30) 122.9(5) 

 Σ = 376.9(9)  Σ = 374.5(9)  Σ = 375.1(10) 

      

Distance from naphthalene mean plane     

I(1) 0.36(1) Br(1) -0.14(1) Br(21) 0.01(1) 

S(1) -0.17(1) S(9) 0.04(1) S(29) -0.04(1) 

      

Torsion angle       

C:(6)-(5)-(10)-(1) -177.0(5) C:(6)-(5)-(10)-(1) -179.2(5) C:(6)-(5)-(10)-(1) 179.2(5) 

C:(4)-(5)-(10)-(9) -177.9(5) C:(4)-(5)-(10)-(9) -178.4(6) C:(4)-(5)-(10)-(9) 179.1(5) 
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Phosphorus(V) chalcogenides of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 

 

 
Scheme 2.13 Synthesis of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine oxide 16, (8-

ethylsulfanylnaphth-1-yl)diphenylphosphine sulfide 17 and (8-ethylsulfanylnaphth-1-

yl)diphenylphosphine selenide 18. 
 

Compound 3 reacts to form a series of three phosphorus(V) chalcogenide counterparts. Under 

atmospheric conditions the phosphorus atom was oxidised and the novel compound (8-

ethylsulfanylnaphth-1-yl)diphenylphosphine oxide 16 was obtained (Scheme 2.13, Figure 2.6).  

 

 
Fig. 2.6 The crystal structure of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine oxide 16. 

 

Reaction of 3 with one equivalent of sulfur in toluene gave the novel (8-ethylsulfanylnaphth-1-

yl)diphenylphosphine sulfide 17 and similarly 3 reacted under reflux with one equivalent of 

selenium in toluene to produce (8-ethylsulfanylnaphth-1-yl)diphenylphosphine selenide 18 

(Scheme 2.13).14 For all three compounds, 31P NMR showed phosphine 3 was converted to the 

respective phosphorus chalcogenide with a 100% conversion. 
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All three compounds were characterised by elemental analysis, infra-red spectroscopy, mass 

spectrometry and 1H, 13C and 31P NMR spectroscopy. The 31P NMR signals show a significant 

difference between compounds with all three 4-coordinate phosphorus compounds seeing a 

downfield shift compared to the 3-coordinate ligand 3 [3 PR3: δ = -5.3 ppm, 16 R3P=O: δ = 36.3 

ppm, 17 R3P=S: δ = 51.8 ppm, 18 R3P=Se: δ = 41.9 ppm]. Additionally the 77Se NMR spectrum of 

18 was analysed and shows a doublet at δ = -172.3 ppm. The NMR signals for the three 

compounds are in accord with values for similar compounds found in the literature.15   

 
Fig. 2.7 The crystal structure of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine sulfide 17. 

 

The structures of the three chalcogenides were studied and compared by single crystal X-ray 

crystallography to phosphine 3 (Figure 2.6, 2.7 and 2.8). All three compounds show an increase in 

intramolecular interaction compared to phosphine 3 as denoted by the degree of distortion in the 

molecules. In all three cases the peri-distance is considerably greater than for 3 and increases with 

the increasing size of the chalcogen attached to the phosphorus atom P(1) [3A 2.9737(14) Å 3B 

2.9469(15) Å, 16 3.1349(13) Å, 17 3.2083(14) Å, 18 3.2283(19) Å]. The length of the phosphorus 

chalcogen double bond in all three compounds is found to be in accord with average literature 

values and also increases with the size of the chalcogen [P=O 1.487(2) Å 16, P=S 1.9550(14) Å 

17, P=Se 2.1103(17) Å 18].16  

 

Comparison of the sums of the peri-region angles (Table 2.6) shows similar in-plane distortion has 

taken place in oxide 16 and selenide 18 with an increase by a couple of degrees compared to 3. 

Sulfide 17 shows less in-plane distortion compared to its analogous chalcogenides with peri-region 

angles being comparable to the non-oxidised compound 3.  
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Out-of-plane distortion is observed in all three compounds and is comparable with the peri-atoms 

lying at similar distances from the naphthalene plane. There is a notable increase in distortion 

compared to 3 with sulfide 17 showing the greatest change. In all three cases the P(1) atom lies 

below the plane and the S(1) atom lies above the naphthalene plane [P(1) -0.5656(41) Å 16, -

0.620(4) Å 17, -0.5993(65) Å 18; S(1) 0.4038(42) Å 16, 0.744(4) Å 17, 0.5272(64) Å 18].  

 

 
Fig. 2.8 The crystal structure of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine selenide 18. 

 

The chalcogen atoms bonded to P(1) all lie below the plane of the naphthalene with distances from 

the plane increasing with the increasing size of the atom [O(1) -1.7200(51) Å 16, S(2) -2.019(5) Å 

17, Se(1) -2.3022(69) Å 18]. In all cases the chalcogen atom bonded to P(1) is situated above the 

peri-gap in close proximity to S(1) (Figure 2.9) with the non-bonded S(1)···E distance increasing 

down the series due to sterics [S(1)···O(1) 3.033(2) Å 16, S(1)···S(2) 3.2951(15) Å 17, S(1)···Se(1) 

3.43(1) Å 18]. Nevertheless the non-bonded S(1)···E distances are smaller than the sum of the van 

der Waals radii for the two interacting atoms [SO = 3.32 Å, SS 3.60 Å, SSe 3.70 Å]17 suggesting 

the non-bonded distance is close enough for possible intramolecular interactions.18  

 

The literature contains a large number of organosulfur compounds where conformations are 

considerably influenced by intramolecular sulfur-nucleophile interactions such as non-bonded 

S···O, S···N, S···S and S···π interactions. In these molecules the S···nucleophile distance is 

significantly shorter than the sum of the sulfur and nucleophile van der Waals radii.17,18  
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While the S(1)···E distances in the phosphorus(V) chalcogenides are in the range for 

intramolecular interaction, the values are close enough to the van der Waals radii sum of the 

interacting atoms to suggest very weak interaction.17,18 A closer look at the structures reveals that 

rotating around the C(1)-P(1) bond could bring the two interacting moieties closer together and 

give distances more in line with known non-bonded interaction values in the literature.18 The fact 

that this does not occur suggests that if the S(1)···E interaction does take place in the oxides it is 

very weak and not the fundamental influence on the geometry of the molecules.  

 

  

Fig. 2.9 The crystal structures of the (8-ethylsulfanylnaphth-1-yl)diphenylphosphine chalcogenides 

16, 17 and 18 showing the non-bonded S(1)···E distance. 

 

The two torsion angles around the C5-C10 central naphthalene bond in the three compounds 

shows oxide 16 and selenide 18 have a similar degree of buckling in the naphthalene ring, only 

slightly greater in the selenide [16 175.4(3)°, 175.0(3)°, 18 -173.7(6)°, -175.3(6)°]. Sulfide 17 

however is greatly buckled [17 -168.4(3)°, -171.0(3)°] and the least planar of all our studied 

compounds (Figure 2.10). 

 

 

Fig. 2.10 The crystal structures of the (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 

chalcogenides 16, 17and 18 showing the buckling of the naphthalene planes. 
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The structures of the chalcogenides show distinct differences in the position of the ethyl moiety 

when compared to that of 3 and also with each other. The repulsive distortion taking place to 

accommodate the increasingly large chalcogen atoms forces the ethyl group away from the 

naphthalene plane, adjacent and in close proximity to one of the phenyl π-systems on P(1) in all 

three cases. The short distance between the ethyl group and the phenyl π-system could suggest 

CH-π type interactions.19 These are weak non-covalent attractive ‘hydrogen-bond type’ 

interactions between soft acids (CH) and soft bases (π-system) which have previously been shown 

to be important in self-assembly and molecular recognition processes, in determining 

conformations, selectivities of reactions and crystal structures.19  

 

  
Fig. 2.11 The crystal structures of the (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 

chalcogenides 16 and 18 showing similar alignment of the S(ethyl) groups. 

 

In oxide 16 and selenide 18 the ethyl groups align so that the C(23)-C(24) bond points directly 

away from the closest phenyl ring on P(1). In both cases the distance of the C(23) atom from the 

centre of the phenyl ring [16 C(23)···centroid 3.644(1) Å, 18 C(23)···centroid 3.578(1) Å], when 

compared to similar compounds from the literature is small enough to suggest possible CH-π 

interaction between the two moieties could occur  (Figure 2.11).19 

 

Conversely the ethyl group in 17 aligns so that the C(23)-C(24) bond lies parallel to the phenyl 

ring and at a slightly further distance compared to 16 and 18. The proximity of the two groups is 

still small enough to envisage CH-π interaction between the π-system and the protons on the ethyl 

group [17 C(23)···centroid 4.041(1) Å, C(24)···centroid 3.790(1) Å] (Figure 2.12).19 CH-π 

Hydrogen bond distances can be found in Table 2.5. 
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Table 2.5 Non-bonded intramolecular ethyl-π interactions [Å] and angles [°] for the (8-

ethylsulfanylnaphth-1-yl)diphenylphosphine chalcogenides 16-18. 

Hydrogen bond geometry [ Å, o]   

Compound D-H···A D-H H···A D···A D-H···A 

C(23)-H(23a)···Cg(17-23) 0.990 3.084 3.644(1) 117.2 
16 

C(23)-H(23b)···Cg(17-23) 0.990 3.588 3.644(1) 85.4 

      

C(23)-H(23b)···Cg(17-23) 0.990 3.834 4.041 94.9 
17 

C(24)-H(24b)···Cg(17-23) 0.980 2.900 3.790(1) 151.5 

      

C(23)-H(23a)···Cg(17-23) 0.990 3.421 3.578(1) 91.0 
18 

C(23)-H(23b)···Cg(17-23) 0.990 3.164 3.578(1) 106.8 

Cg(17-23) is the centroid of atoms C(17)-C(22). 

 

 

 
Fig. 2.12 The crystal structure of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine sulfide 17 

showing the alignment of the S(ethyl) group. 

 

In the two independent molecules of 3 there is very little distortion or buckling of the naphthalene 

ring. This places the ethyl groups coplanar with the naphthalene ring with the C(23)-C(24) and 

C(53)-C(54) bonds pointing directly up and away from the phenyl rings. The closest phenyl rings 

on P(1) and P(31) respectively lie at a much greater distance from the plane than for any of the 

chalcogenide compounds leaving a larger distance between the two moieties and no possible CH-π 

interaction [3A C(23)···centroid 5.561(1) Å, 3B C(53)···centroid 5.749(1) Å] (Figure 2.13).19 
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Fig. 2.13 The crystal structure of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 showing the 

alignment of the S(ethyl) groups in the two independent molecules. 

 

Selected bond lengths and bond angles of the crystal structures are shown in Table 2.6 and further 

details can be found in Appendices 5-7. 
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Table 2.6 Selected bond lengths [Å] and angles [°] for (8-ethylsulfanylnaphth-1-

yl)diphenylphosphine oxide 16, (8-ethylsulfanylnaphth-1-yl)diphenylphosphine sulfide 17 and (8-

ethylsulfanylnaphth-1-yl)diphenylphosphine selenide 18. 
_______________________________________________________________________________ 

   

P(1)···S(1) 3.1349(13) P(1)···S(1) 3.2083(14) P(1)···S(1) 3.2283(19) 

P(1)-C(1) 1.832(3) P(1)-C(1) 1.837(3) P(1)-C(1) 1.843(5) 

S(1)-C(9)    1.772(3) S(1)-C(9) 1.783(4) S(1)-C(9) 1.771(6) 

      

S(1)···O(1) 3.033(2) S(1)···S(2) 3.2951(15) S(1)···Se(1) 3.43(1) 

P(1)=O(1) 1.487(2) P(1)=S(2) 1.9550(14) P(1)=Se(1) 2.1103(17) 

      

P(1)-C(1)-(10) 123.9(2) P(1)-C(1)-(10) 124.5(2) P(1)-C(1)-C(10) 124.2(3) 

C(1)-C(10)-(9) 126.5(3) C(1)-C(10)-(9) 126.0(3) C(1)-C(10)-C(9) 127.2(4) 

S(1)-C(9)-(10) 122.7(2) S(1)-C(9)-(10) 121.4(2) S(1)-C(9)-C(10) 122.4(4) 

 Σ = 373.1(5)  Σ = 371.9(5)  Σ = 373.8(8) 

C(9)-S(1)-C(23) 102.1(2) C(9)-S(1)-C(23) 97.39(19) C(9)-S(1)-C(23) 99.7(3) 

O(1)-P(1)-C(1) 112.50(15) S(2)-P(1)-C(1) 114.17(12) Se(1)-P(1)-C(1) 111.67(19) 

          

Distance from naphthalene mean plane     

S(1) 0.404(4) S(1) 0.744(4) S(1) 0.527(6) 

P(1) -0.566(4) P(1) -0.620(4) P(1) -0.599(7) 

O(1) -1.720(5) S(2) -2.019(5) Se(1) -2.302(7) 

          

Torsion angle        

C:(6)-(5)-(10)-(1) 175.4(3) C:(6)-(5)-(10)-(1) -168.4(3) C:(6)-(5)-(10)-(1) -173.7(6) 

C:(4)-(5)-(10)-(9) 175.0(3) C:(4)-(5)-(10)-(9) -171.0(3) C:(4)-(5)-(10)-(9) -175.3(6) 

 

 

 

 

 

 



Chapter 2 - Preparation and chemistry of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 
                           

                                                                                                                             65 

 

Summary 

 

Repulsive steric strain caused by inserting larger atoms than hydrogen at the 1,8-positions on  

naphthalene is known to be relieved by in-plane and out-of-plane distortion and buckling of the 

naphthalene ring. The primary parameter used to quantify the amount of strain relief in non-ideal 

naphthalenes is the peri-distance which encapsulates all molecular deviations in one entity. As the 

size of the peri-atoms increases it could be expected that the repulsion and steric strain increases 

forcing the atoms further apart, thus increasing the peri-distance. 

 

This trend is observed in the Nap[SEt][R] compounds (Figure 2.17); as the peri-atom of the R 

group increases in size (covalent radii) [3 P(1.07 Å), 2 Br(1.20 Å), 15 I(1.39 Å)]20 the size of the 

peri-distance also increases [3A(2.95 Å), 3B(2.97 Å), 2A(3.05 Å), 2B(3.06 Å), 15(3.24 Å)]. 

 

Figure 2.17 shows the comparison of all the peri-distances of the compounds in this chapter and 

show two main anomalies from the trend described above. Compound 1 has a larger than expected 

peri-distance when compared to 2. By replacing SEt in 2 with NH2 in 1 the covalent radii of the 

peri-atom decreases from sulfur to nitrogen [S(1.05 Å), N(0.71 Å)].20 This should mean less steric 

interaction, less repulsion and a smaller peri-distance. The peri-distances of the two compounds 

however are very similar [1(3.07 Å), 2A(3.05 Å), 2B(3.06 Å)] with a larger than expected distance 

for 1.  

 

Hydrogen bonding between the protons on the amine moiety and the Br(1) atom in 1 forces the 

N(1) and Br(1) atoms to be further apart and less strained than other similar molecules. The 

chalcogenides 16, 17 and 18 all have larger peri-distances than the non-oxidised phosphine 3 and 

increase as the size of the chalcogen bonded to P(1) increases (Figure 2.15). This can be accounted 

for by repulsive forces caused by the presence of the chalcogen atom and shows that not only the 

size of the peri-atoms dictates the size of the peri-distance.  

 

The degree of buckling in the naphthalene ring system varies greatly within the series of S(ethyl) 

substituted naphthalenes. Figure 2.14 shows the two extremities with 2 having the greatest 

planarity and sulfide 17 the most amount of distortion.    
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Fig. 2.14 The greatest and least planar naphthalene ring systems of the Nap[SEt][R] compounds. 

 

Figure 2.15 quantifies the degree of in-plane distortion found in the compounds of this chapter by 

comparing the sum of the peri-region angles. As peri-atom size increases the degree of in-plane 

distortion increases.  

 

Comparing the amount of in-plane distortion in Nap[NH2][Br] and the Nap[SEt][R] compounds 
by the sum of the peri -region angles
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Fig. 2.15 Comparing the in-plane distortion in Nap[NH2][Br] and the Nap[SEt][R] compounds. 
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Out-of-plane distortion is compared in Figure 2.16 by looking at the deviation of the peri-atoms 

above and below the mean naphthalene plane. The greatest distortion is found in the chalcogenides 

16-18 followed by compound 15 containing the large iodine atom.  

 

Out-of-plane distortion - deviation of the peri -atoms above and below the naphthalene plane for 
Nap[NH2][Br] and the compounds Nap[SEt][R]
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Fig. 2.16 Comparing the out-of-plane distortion in Nap[NH2][Br] and the Nap[SEt][R] 

compounds. 
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Peri -distances for Nap[NH2][Br] and the Nap[SEt][R] 
compounds

3.228(2)

3.208(1)

3.135(1)

3.244(2)

2.947(2)

2.974(1)

3.051(2)

3.056(2)

3.070(3)

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

peri -distance [Å]

 
Fig. 2.17 Comparing the peri-distances for Nap[NH2][Br] and the Nap[SEt][R] compounds. 



Chapter 2 - Preparation and chemistry of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 
                           

                                                                                                                             69 

 

References 

1 L. F. Fieser and A. M. Seligman, J. Am. Chem. Soc., 1939, 61, 136. 

2 A. L. Fuller, F. R. Knight, A. M. Z. Slawin and J. D. Woollins, Acta Crystallogr., 

Sec. E, 2008, E64, o977. 

3 S. M. Aucott, H. M. Milton, S. D. Robertson, A. M. Z. Slawin and J. D. Woollins, 

Heteroat. Chem., 2004, 15, 531. 

4 J. Oddershede and S. Larsen, J. Phys. Chem. A, 2004, 108, 1057. 

5 J. M. Herbert, P. D. Woodgate and W. A. Denny, Heterocycles, 1987, 26, 1037. 

6 R. J. Bailey, P. J. Card and H. Shechter, J. Am. Chem. Soc., 1983, 105, 6096. 

7 M. Oki and Y. Yamada, Bull. Chem. Soc. Jpn., 1988, 61, 1191. 

8 A. L. Fuller, F. R. Knight, A. M. Z. Slawin and J. D. Woollins, Acta Crystallogr. Sec. 

E, E63, o3957. 

9 H. Riihimäki, P. Suomalainen, H. K. Reinius, J. Suutari, S. Jääskeläinen, A. O. I. 

Krause, T. A. Pakkanen and J. T. Pursiainen, J. Mol. Catal. A: Chem., 2003, 200, 69. 

10 F. Micoli, L. Salvi, A. Salvini, P. Frediani and C. Giannelli, J. Organomet. Chem., 

2005, 690, 4867; A. Benefiel and D. M. Roundhill, Inorg. Chem., 1986, 25, 4027; R. 

D. Jackson, S. James, A. G. Orpen and P. G. Pringle, J. Organomet. Chem., 1993, 

458, C3; W. Nakanishi and S. Hayashi, Phosphorus, Sulfur Silicon Relat. Elem., 

2002, 177, 1833. 

11 A. Toshimitsu, S. Hirao, T. Saeki, M. Asahara and K. Tamao, Heteroat. Chem., 

2001, 12, 392. 

12 D. Seyferth and S. C. Vick, J. Org. Chem., 1977, 141, 173. 

13 H. O. House, D. G. Koepsell and W. J. Campbell, J. Org. Chem., 1972, 37(7), 1003. 

14 P. Kilian, A. M. Z. Slawin and J. D. Woollins, Dalton Trans., 2003, 3876. 

15 A. Karacar, M. Freytag, H. Thonnessen, J. Omelanczuk, P. G. Jones, R. Bartsch and 

R. Schmutzler, Z. Anorg. Allg. Chem., 2000, 626, 2361. 

16 F. H. Allen, O. Kennard and D. G. Watson, J. Chem. Soc. Perkin Trans. II, 1987, 12, 

S1. 

17 A. Bondi, J. Phys. Chem., 1964, 68, 441. 

18 N. Lozac’h, Adv. Heterocycl. Chem., 1971, 13, 161; R. E. Rosenfield, Jr., R. 

Parthasarathy and J. D. Dunitz, J. Am. Chem. Soc., 1977, 99, 4860; A. Kálmán and L. 

Párkányi, Acta Crystallogr., Sect. B, 1980, B36, 2372; Á. Kucsman and I. Kapovits, 

in Organic Sulfur Chemistry: Theoretical and Experimental Advances, ed. I. G. 

Csizmadia, A. Mangini and F. Bernardi, Elsevier, Amsterdam, 1985, pp. 191; J. G. 



Chapter 2 - Preparation and chemistry of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 
                           

                                                                                                                             70 

 

Ángyán, R. A. Poirier, Á. Kucsman and I. G. Csizmadia, J. Am. Chem. Soc., 1987, 

109, 2237; R. S. Glass, L. Adamowicz and J. L . Broeker, J. Am. Chem. Soc., 1991, 

113, 1065; F. T. Burling and B. M. Goldstein, Acta Crystallogr., Sect. B, 1993, B49, 

738; Y. Nagao, T. Hirata, S. Goto, S. Sano, A. Kakehi, K. Iizuka and M. Shiro, J. 

Am. Chem. Soc., 1998, 120, 3104; K. Ohkata, M. Ohsugi, K. Yamamoto, M. Ohsawa 

and K. Akiba, J. Am. Chem. Soc., 1996, 118, 6355.        

19 M. Nishio, CrystEngComm., 2004, 6(27), 130; C. Fischer, T. Gruber, W. Seichter, D. 

Schindler and E. Weber, Acta Crystallogr. Sec. E, 2008, E64, o673; M. Hirota, K. 

Sakaibara, H. Suezawa, T. Yuzuri, E. Ankai and M. Nishio, J. Phys. Org. Chem., 

2000, 13, 620; H. Tsubaki, S. Tohyama, K. Koike, H. Saitoh and O. Ishitani, Dalton 

Trans., 2005, 385. 

20 B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. 

Barragán and S. Alvarez, Dalton Trans., 2008, 2832.  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 - Preparation and chemistry of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 
                           

                                                                                                                             71 

 

Chapter 3  

Preparation and chemistry of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19  

 

Following the successful synthesis of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 we 

envisaged that a halogen-lithium exchange reaction of 8-bromo-1-(phenylsulfanyl)naphthalene 9, 

followed by reaction with chlorodiphenylphosphine, would afford the novel S(phenyl) analogue 

(8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 (Scheme 3.1).1,2  

 

Scheme 3.1 The reaction scheme for the preparation of the novel compound (8-

phenylsulfanylnaphth-1-yl)diphenylphosphine 19.  
 

Our first task was to prepare 9 which we achieved by reaction of 11 with n-butyllithium (1 

equivalent) and diphenyl disulfide (1 equivalent).1 The reaction proceeded in 51% yield and 

characterisation by 1H and 13C NMR spectroscopy found values in accord with those in the 

literature.1 The final step in our synthesis converted 9 into the novel phosphine 19 using the 

Riihimäki et al. procedure we implemented when synthesising 3 in the previous chapter.2 9 reacted 

with one equivalent of n-butyllithium followed by one equivalent of chlorodiphenylphosphine to 

give the novel (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 in 64% yield.  

 

 

Fig. 3.1 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19. 
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Full characterisation of 19 was accomplished using elemental analysis, infra-red spectroscopy, 1H, 
13C and 31P NMR spectroscopy and mass spectrometry. The 31P NMR spectrum shows a single 

peak at δ = -5.30 ppm which is in the appropriate region for a phosphine of this type and 

corresponds with the signal found for 3 [δ = -5.26 ppm].3  

 

The disparity of electronic and steric affects of phenyl and ethyl groups results in dissimilar 

intramolecular interactions, naphthalene distortion and structural arrangement of 19 and 3. Figure 

3.1 shows the X-ray crystal structure of 19 and Table 3.1 compares selected bond lengths and 

angles for the two analogous compounds.   

 

The peri-region angles are greater in the S(phenyl) compound 19 showing an increase in in-plane 

distortion has taken place to accommodate the larger substituent [19 374.1(3)°, 3A 371.7(6)°, 3B 

371.4(6)°]. This forces the peri-atoms in 19 further apart giving a slightly larger peri-distance of 

3.0330(17) Å compared to the S(ethyl) containing compound [3A 2.9737(14) Å, 3B 

2.9469(15) Å]. Out-of-plane distortion is comparable in the two compounds with the degree of 

peri-atom deviation in 19, between that of the two independent molecules of 3. Deviation of P(1) 

and S(1) in 19 however, occurs on the same face of the naphthalene plane; P(1) undergoing a very 

minor deviation [P(1) 0.007(1) Å, S(1) 0.127(1) Å]. 

 

 

Fig. 3.2 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 showing the 

planarity of the naphthalene backbone. 

 

In an unusual twist, torsion angles relating to the central C(5)-C(10) naphthalene bond show a 

greater degree of planarity in the ring system of the S(phenyl) compound (Figure 3.2) compared to 

3 whose two independent molecules show varying degrees of buckling in the naphthalene system.  
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The distortion of the naphthalene geometry and the position of the peri-atoms in 19 places the 

phenyl group attached to S(1) on the same side of the naphthalene plane and in close proximity to 

one of the phenyl groups on P(1). Although the non-bonded intramolecular C···C distance is only 

3.5-3.6 Å, the rings lie at angles to one another with no significant overlap for π···π interaction to 

occur.4 The positioning of the phenyl groups must therefore be put down as electronic or steric 

effects of the system with possible influences coming from the crystal packing. Further 

information on the crystal structure of 19 can be found in Appendix 8. 

 

 

Table 3.1   Selected bond lengths [Å] and angles [°] for (8-ethylsulfanylnaphth-1-

yl)diphenylphosphine 3 and (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19. 

_______________________________________________________________________________ 

      19

10

5
6

7

8

91

2

3

4

P1 S
1

17

11
23

1615

14

13 12

18

19

20

21

22

28 27

26

2524

 
P(1)···S(9) 2.9737(14) P(31)···S(39) 2.9469(15) P(1)···S(1) 3.0330(7) 

P(1)-C(1)              1.838(4) P(31)-C(31) 1.848(3) P(1)-C(1) 1.8548(19) 

S(9)-C(9) 1.779(4) S(39)-C(39) 1.776(4) C(9)-S(1) 1.785(2) 

      

P(1)-C(1)-C(10) 123.6(3) P(31)-C(31)-C(40) 122.4(3) P(1)-C(1)-C(10) 124.1(1) 

C(1)-C(10)-C(9) 126.9(3) C(39)-C(40)-C(31) 126.0(3) C(1)-C(10)-C(9) 126.9(2) 

S(9)-C(9)-C(10) 121.2(3) S(39)-C(39)-C(40) 123.0(3) S(1)-C(9)-C(10) 123.1(1) 

 Σ = 371.7(6)  Σ = 371.4(6)  Σ = 374.1(3) 

      

Distance from naphthalene mean plane [ Å]    

P(1) -0.11(1) P(31) 0.05(1) P(1) 0.007(1) 

S(9) 0.16(1) S(39) -0.03(1) S(1) 0.127(1) 

      

Torsion angle       

C:(6)-(5)-(10)-(1) -177.1(3) C:(36)-(35)-(40)-(31) 179.8(4) C:(6)-(5)-(10)-(1) 178.49(16) 

C:(4)-(5)-(10)-(9) -176.5(3) C:(34)-(35)-(40)-(39) -177.2(4) C:(4)-(5)-(10)-(9) -179.5(2) 
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To complete the series of reactions we also synthesised (8-phenylsulfanylnaphth-1-

yl)diphenylphosphine 19  using 1,8-diiodonaphthalene 14 as starting material (Scheme 3.2).1,2 14 

reacted with n-butyllithium (1 equivalent) and diphenyl disulfide (1 equivalent) to afford the novel 

1-iodo-8-(phenylsulfanyl)naphthalene 20 in 30% yield.1 Characterisation was reached by 

elemental analysis, infra-red spectroscopy, 1H and 13C NMR spectroscopy and mass spectrometry. 

Subsequent reaction of 20 with a single equivalent each of n-butyllithium and 

chlorodiphenylphosphine afforded compound 19 in 74% yield.2 

 

Scheme 3.2 The reaction scheme for the preparation of (8-phenylsulfanylnaphth-1-

yl)diphenylphosphine 19 from 1,8-diiodonaphthalene 14.  
 
 

The X-ray structure of 20 is shown in Figure 3.3. The structural dissimilarity between 20 and its 

S(ethyl) counterpart 15 mirrors that of compounds 3 (SEt) and 19 (SPh) and shows the effect the 

S(alkyl) group has on the overall structure of the molecule.  

 

Fig. 3.3 The crystal structure of 1-iodo-8-(phenylsulfanyl)naphthalene 20. 

 

The intramolecular I···S(phenyl) peri-distance is again greater than the I···S(ethyl) distance [20 

3.338(11) Å, 15 3.2436(17) Å] and the sum of the peri-region angles shows in-plane distortion is 

greater in the S(phenyl) compound compared to its S(ethyl) counterpart [20 380.8(17)°, 15 

376.9(9)°].  
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Only minimal deviation of the peri-atoms from the naphthalene plane in 20, results in less out-of-

plane distortion compared to 15. However torsion angles show the planarity of the two compounds 

is similar. Comparison of selected bond lengths and angles of compounds 15 and 20 can be found 

in Table 3.2. Further information of the crystal structure of 20 can be seen in Appendix 9.  

 

Table 3.2 Bond lengths [Å] and angles [°] for 1-iodo-8-(ethylsulfanyl)naphthalene 15 and 1-iodo-

8-(phenylsulfanyl)naphthalene 20. 

_______________________________________________________________________________ 

10

5
6

7

8

91

2

3

4

I1 S9

11

15

12

 

10

5
6

7

8

91

2

3

4

I1 S9

11

16

15

14

13

12

20      
I(1)···S(1) 3.2436(17) I(1)···S(9) 3.338(11) 

I(1)-C(1) 2.126(6) I(1)-C(1) 2.118(11) 

S(1)-C(9) 1.773(6) S(9)-C(9) 1.765(11) 

    

I(1)-C(1)-C(10) 127.1(4) I(1)-C(1)-C(10) 127.2(8) 

C(1)-C(10)-C(9) 128.2(5) C(1)-C(10)-C(9) 128.4(10) 

S(1)-C(9)-C(10) 121.6(4) S(9)-C(9)-C(10) 125.2(8) 

 Σ = 376.9(9)  Σ = 380.8(17) 

       

Distance from naphthalene mean plane   

I(1) 0.36(1) I(1) -0.072(1) 

S(1) -0.17(1) S(9) 0.049(1) 

      

Torsion angle      

C(6)-C(5)-C(10)-C(1) -177.0(5) C(6)-C(5)-C(10)-C(1) 176.9(10) 

C(4)-C(5)-C(10)-C(9) -177.9(5) C(4)-C(5)-C(10)-C(9) -178.3(9) 
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Phosphorus(V) chalcogenides of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 

 

 
Scheme 3.3 Synthesis of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine oxide 21, (8-

phenylsulfanylnaphth-1-yl)diphenylphosphine sulphide 22, (8-phenylsulfanylnaphth-1-

yl)diphenylphosphine selenide 23. 

 

In a series of parallel reactions to those observed for compound 3, 19 also reacted to form a series 

of three phosphorus(V) chalcogenides. Under atmospheric conditions the three-coordinate 

phosphorus atom of 19 oxidised to form the novel compound (8-phenylsulfanylnaphth-1-

yl)diphenylphosphine oxide 21 (Scheme 3.3).  

 

 

Fig. 3.4 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine oxide 21. 

 

Reaction of 19 with one equivalent of sulfur in toluene produced the novel (8-

phenylsulfanylnaphth-1-yl)diphenylphosphine sulfide 22. Similarly 19 reacted under reflux with 

one equivalent of selenium in toluene to produce the novel (8-phenylsulfanylnaphth-1-

yl)diphenylphosphine selenide 23 (Scheme 3.3).5 For all three compounds, 31P NMR showed 

phosphine 19 was converted to the respective phosphorus chalcogenide with 100% conversion. 
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The 31P NMR signals for the three compounds were found to lie at similar values to the S(ethyl) 

chalcogenides with all three 4-coordinate phosphorus compounds seeing a downfield shift 

compared to the 3-coordinate ligand 19 [19 PR3: δ = -5.3 ppm, 21 R3P=O: δ = 37.0 ppm, 22 

R3P=S: δ = 52.5 ppm, 23 R3P=Se: δ = 42.4 ppm]. The NMR signals for the three compounds are in 

accord with values for similar compounds found in the literature.6 The X-ray structures of the three 

compounds were studied (Figure 3.4, 3.6 and 3.8) and compared to the structures of phosphine 19 

and the S(ethyl) chalcogenides (16-18). All three compounds show a greater degree of steric strain 

relief than the non-oxidised phosphine 19 as indicated by the extent of molecular distortion in their 

structures.  

 

Comparing the peri -distances for Nap[PPh2][SEt] and Nap[PPh2][SPh] and their mono-oxides
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18 R = Et

23 R = Ph

Se

 
Fig. 3.5 Comparing the peri-distances for the Nap[PPh2][SR] and Nap[E=PPh2][SR] compounds. 

 

Intramolecular peri-distances (Figure 3.5) are greater in all three compounds compared to 19 with 

oxide 21 and selenide 22 having lengths comparable to their S(ethyl) counterparts. The peri-atoms 

in selenide 23 lie closer together than expected with the peri-distance similar in size to the sulfide 

compounds [19 3.0339(13) Å, 21 3.1489(9) Å, 22 3.1909(1) Å, 23 3.190(1) Å]. The length of the 

phosphorus chalcogen double bonds in the S(phenyl) oxides are in accord with average literature 

values and very similar to the values found for the S(ethyl) oxides, increasing in length with the 

size of the chalcogen atom  [P=O 1.492(2) Å 21, P=S 1.9585(12) Å 22, P=Se 2.1181(11) Å 23].7  
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Fig. 3.6 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine sulfide 22. 

 

Figure 3.7 shows a comparison of the in-plane distortion occurring in phosphines 3 and 19 and 

their respective chalcogenides by contrasting the sums of the peri-region angles (Table 3.3). The 

S(ethyl) chalcogenides have all undergone a greater amount of in-plane distortion compared to the 

free ligand 3, with sulfide 17 showing a lower than expected value. Conversely the three S(phenyl) 

chalcogenides all display less distortion than 19 but the degree of distortion increases with 

increasing size of the chalcogen atom attached to P(1).  

 

Comparison of in-plane distortion in Nap[PPh2][SR] and Nap[E=PPh2][SR] compounds

364

366

368

370

372

374

376

378

380

su
m

 o
f 

th
e 

p
er

i
-r

eg
io

n 
an

gl
es

 [
°]

 
Fig. 3.7 In-plane distortion in the Nap[PPh2][SR] and Nap[E=PPh2][SR] compounds. 
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Fig. 3.8 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine selenide 23. 

 

Out-of-plane distortion is observed in all three compounds to a similar extent and is considerably 

greater than in 19 with the peri-atoms lying at similar distances from the naphthalene plane (Figure 

3.9). The degree of deviation is also similar to the S(ethyl) chalcogenides. In all three cases the 

P(1) atom lies above the plane and the S(1) atom lies below the naphthalene plane [P(1) 

0.6312(37) Å 21, 0.633(4) Å 22, 0.621(47) Å 23; S(1) -0.582(4) Å 21, -0.451(4) Å 22, -0.433(5) Å 

23]. 

 

Out-of-plane distortion in the Nap[PPh2][SR] and Nap[E=PPh2][SR] compounds

-1.2

-0.7

-0.2

0.3

0.8

de
vi

at
io

n 
of

 th
e 

p
er

i
-a

to
m

s 
ab

ov
e 

an
d 

be
lo

w
 th

e 
na

ph
th

al
en

e 
pl

an
e 

[Å
]

 
Fig. 3.9 Out-of-plane distortion in the Nap[PPh2][SR] and Nap[E=PPh2][SR] compounds. 
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The chalcogen atoms bonded to P(1) all lie above the plane of the naphthalene with distances from 

the plane increasing with the increasing size of the atom [O(1) 1.6231(46) Å 21, S(2) 2.1977(43) 

Å 22, Se(1) 2.3457(51) Å 23]. Following a similar orientation to the S(ethyl) chalcogenides, the 

chalcogen atom bonded to P(1) aligns above the peri-gap in close proximity to S(1) (Figure 3.10) 

with the non-bonded S(1)···E distance increasing as the size of the chalcogen atom increases 

[S(1)···O(1) 2.9612(17) Å 21, S(1)···S(2) 3.3142(11) Å 22, S(1)···Se(1) 3.3974(10) Å 23].  

 

 

 Fig. 3.10 The crystal structures of the (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 

chalcogenides 21, 22 and 23 showing the non-bonded S(1)···E distance. 

 

The intramolecular S(1)···E distances are comparable to those found for the S(ethyl) oxides and 

smaller than the sum of the van der Waals radii for the two interacting atoms [SO = 3.32 Å, SS 

3.60 Å, SSe 3.70 Å].8 This once again suggests the non-bonded distance is close enough for 

possible weak intramolecular interactions to occur.9 

 

The two torsion angles around the C5-C10 central naphthalene bond in the three compounds 

shows the naphthalene ring systems of the chalcogenides are considerably more buckled than 

phosphine 19 with an increase in the planarity moving from oxide 21 to selenide 23 (Figure 3.11). 

The degree of buckling of the naphthalene ring in 21 is greater than in its S(ethyl) counter part 16. 

However, sulfide 22 is much more planar than 17. The two selenide compounds (18 and 23) have a 

similar degree of buckling in the naphthalene ring [21 171.7(2)°, 170.3(2)°, 22 173.7(2)°, 

173.4(2)°, 23 175.4(3)°, 173.1(3)°]. 
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Fig. 3.11 The crystal structures of the (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 

chalcogenides 21, 22 and 23 showing the buckling of the naphthalene planes. 

 

Neighbouring aromatic ring systems tend to associate through π-π non-bonded inter- and 

intramolecular interactions known as π-π stacking.4 These non-covalent aromatic-aromatic/π-π 

interactions are important forces similar to hydrogen bonding. They play a key role in self 

assembly and molecular recognition processes,10 when extended structures are formed from 

building blocks with aromatic moieties. Molecular associations utilising π-π stacking have been 

well documented in organic,11 biological12 and polymer chemistry.13 

  

Weaker than the hydrogen bonds, calculations give an energy of about 2 kJ mol-1 for a typical 

aromatic-aromatic π-stacking interaction with typical hydrogen bonds between neutral molecules 

ranging from 15-40 kJ mol-1.14 Aromatic rings can be arranged and interact either in a stacked 

arrangement or an edge- or point-to-face arrangement, which is a T-shaped conformation. The 

stacked arrangement known as face-to-face can be arranged with perfect alignment or slipped 

packing, known as parallel displacement.4 The T-shaped conformation is a result of C-H···π 

interactions.15 Typical centroid-centroid π-stacking distances range between 3.3-3.8 Å (Figure 

3.12).4  

 
Fig. 3.12 Schematic illustration of perfect alignment face-to-face, offset or slipped packing 

(parallel displacement) and point-to-face (T-shaped) arrangements in π-π stacking.4 
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The structures of the chalcogenides show distinct differences in the position and orientation of the 

S(phenyl) moiety when compared to that of 19 and also with one another. The small amount of 

out-of-plane distortion in 19 aligns the peri-atoms with the naphthalene plane so the phenyl rings 

on S(1) and P(1) point in the same direction and align so they are stacked in a close to perfect 

alignment. The reason no π-π stacking occurs is the large centroid···centroid distance and the 

twisting of the phenyl rings and thus no uniform stacked arrangement.  

 

Conversely in the chalcogenides, the repulsive distortion taking place to accommodate the 

increasingly large chalcogen atoms forces the S(1) and P(1) atoms to lie on opposite sides of the 

naphthalene plane. Again both phenyl rings point in the same direction. However this time they 

align in a slipped packing arrangement (Figure 3.13) due to the difference in the position of the 

two peri-atoms. This is extenuated in oxide 21 due to the degree of buckling in the naphthalene 

backbone. The phenyl rings in oxide 21 do not align parallel; both rings twist in towards one 

another and the distance between the two centroids is much higher than for known π-π stacking 

(3.3-3.8 Å)4 resulting in no observed π-π interaction [Cg(17-22)···Cg(23-28): 21 4.397(1) Å].  

 

 
Fig. 3.13 The crystal structures of the (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 

chalcogenides 21, 22 and 23 showing orientation of phenyl rings and possible π-π stacking.  

 

The alignment of the rings in 22 and 23 is closer to a parallel alignment and similar to the face-to-

face offset arrangement (Figure 3.13).4 The distances between the two interacting centroids 

however is slightly longer than the range for typical centroid-centroid π-stacking (3.3-3.8 Å)4 and 

so no π-π stacking is envisaged [Cg(17-22)···Cg(23-28): 22 3.955(1) Å, 23 3.995(1) Å]. 
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Table 3.3 Bond lengths [Å] and angles [°] for (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 

chalcogenides 21-23. 
_______________________________________________________________________________ 

 
S(1)···P(1) 3.1489(9) S(1)···P(1) 3.191(1) S(1)···P(1) 3.190(1) 

P(1)-C(1) 1.835(3) P(1)-C(1) 1.837(3) P(1)-C(1) 1.836(4) 

S(1)-C(9)    1.777(3) S(1)-C(9) 1.779(3) S(1)-C(9) 1.782(4) 

      

P(1)=O(1) 1.492(2) P(1)=S(2) 1.9585(12) P(1)=Se(1) 2.1181(11) 

S(1)···O(1) 2.9612(17) S(1)···S(2) 3.3142(11) S(1)···Se(1) 3.3974(10) 

      

P(1)-C(1)-C(10) 124.6(2) P(1)-C(1)-C(10) 124.2(2) P(1)-C(1)-C(10) 125.0(3) 

C(1)-C(10)-C(9) 126.2(3) C(1)-C(10)-C(9) 127.3(3) C(1)-C(10)-C(9) 126.6(3) 

S(1)-C(9)-C(10) 121.6(2) S(1)-C(9)-C(10) 122.2(2) S(1)-C(9)-C(10) 122.5(3) 

 Σ = 372.4(5)  Σ = 373.7(5)  Σ = 374.1(6) 

C(9)-S(1)-C(23) 102.66(15) C(9)-S(1)-C(23) 101.96(16) C(9)-S(1)-C(23) 101.51(19) 

O(1)-P(1)-C(1) 114.34(14) S(2)-P(1)-C(1) 113.09(10) Se(1)-P(1)-C(1) 112.29(12) 

      

Distance from naphthalene mean plane [ Å]    

P(1) 0.6312(37) P(1) 0.633(4) P(1) 0.621(5) 

S(1) -0.582(4) S(1) -0.451(4) S(1) -0.433(5) 

O(1) 1.6231(46) S(2) 2.1977(43) Se(1) 2.3457(51) 

      

Torsion angle       

C:(6)-(5)-(10)-(1) 171.7(2) C:(6)-(5)-(10)-(1) 173.7(2) C:(6)-(5)-(10)-(1) 175.4(3) 

C:(4)-(5)-(10)-(9) 170.3(2) C:(4)-(5)-(10)-(9) 173.4(2) C:(4)-(5)-(10)-(9) 173.1(3) 
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Complexes of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 

 

The theory of hemilability was introduced in the late 1970s16 and since then there has been great 

interest in mixed ligands containing different donor atoms17 and their uses associated with 

coordination chemistry and homogenous catalysis. The difference in electronic properties of the 

two donor atoms ensures they have distinctive interactions with the metal center. One site offers a 

‘soft’ donor atom which binds strongly to a ‘soft’ transition metal atom such as Rh(I), Pt(II) or 

Ru(II), whilst a ‘hard’ donor atom is less strongly bound and is thus coordinatively labile. The 

significance of hemilabile ligands in homogeneous catalysis lies in the susceptibility of the weak 

donor atom to dissociate from the metal, forming a free coordination site for the incoming 

substrate, and the increased stability of the catalyst precursor due to the chelating ability of these 

bidentate ligands.18 

  

The ever-increasing demand for novel catalytic systems has focused attention on preparing low-

valent transition-metal complexes containing mixed bidentate ligands with a significant contrast 

between the properties of coordinating groups.19 Ligands possessing one strong and one weak 

donor atom such as P,O-5  and P,N-donor6 ligands have been extensively applied in catalysis and 

there is a growing interest with respect to potential applications of  P,S-ligands.22 Additionally, the 

electronic differences of the P and S donors of the chelate ligand might control reaction 

selectivities via operation of the trans effect. In this context, (8-phenylsulfanylnaphth-1-

yl)diphenylphosphine 19 is a suitable candidate because it is an asymmetric chelating ligand with 

substantial electronic and steric differences between the two donor atoms. We have prepared a 

series of platinum(II) dihalides, a series of copper(I) dimers and a ruthenium(I) p-cymene 

complex. 

 

(8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum dihalides 24, 25, 26 

Ligand 19 reacts with the well known precursors [PtX2(cod)] to afford a series of 

dihaloplatinum(II) complexes, 24, 25, 26 (Scheme 3.4).23  

 
Scheme 3.4 The reaction scheme for the preparation of the (8-phenylsulfanylnaphth-1-

yl)diphenylphosphine platinum dihalides 24, 25, 26. 
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25

Ph2P SPh

Pt
BrBr

19 displaces the cyclooctadiene component, binding via sulfur and phosphorus to form bidentate 

complexes containing six-membered rings, with platinum adopting a square planar geometry. The 

phosphorus NMR spectra show single peaks with platinum satellites (Figure 3.14). Chemical shifts 

move upfield as the electronegativity of the halide decreases from chlorine to iodine and a 

decrease in the coupling constants of the platinum satellites is observed. [24 Cl δ = 1.37 ppm, 
1J{31P-195Pt} = 3521 Hz, 25 Br δ = 0.98 ppm, 1J{31P-195Pt} = 3408 Hz, 26 I δ = 0.343 ppm, 1J{31P-
195Pt} = 3263 Hz]. The values for the chloride coupling constant lie between the values for 

[Pt(dppe)Cl2] (
1J{31P-195Pt} = 3620 Hz)24 and [Pt(dppp)Cl2] (

1J{31P-195Pt} = 3406 Hz)25 and are in 

the range for similar sulfur/phosphorus platinum dihalide complexes in the literature.26 

 

 

 

J(P-Pt) 3521.2 Hz 

 

 

 

 

J(P-Pt)  3408.6 Hz 

 

 

 

 

J(P-Pt)  3263.1 Hz 

 

 

Fig. 3.14 31P-{1H} NMR spectra for the platinum halide complexes of 19 showing the upfield shift 

with decreasing electronegativity of the halide and decrease in the platinum-phosphorus coupling 

constant.  

 

The decrease in the coupling constants from the dichloride complex to the diiodide species is fully 

consistent with the larger trans influence of iodide relative to chloride. The term trans influence, 

also termed the structural trans effect,27
 describes the ability of a ligand to selectively weaken the 

bond between a metal and another ligand trans to itself.28 In our case the two bonds between the 

platinum metal and the two peri-atoms.  
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Although bond weakening is often assumed to be synonymous with bond lengthening, this is not 

necessarily the case as shown by the P-Pt bond lengths of the three complexes [24 Cl 2.22 Å, 25 

Br 2.23 Å, 26 I 2.23 Å].  

 

Trans influence should not be confused with the ‘kinetic trans-effect’ (KTE) which is the capacity 

of a ligand to alter the lability of a ligand trans to itself. Much of the best evidence for trans effects 

and the majority of work has concentrated on square planar complexes of platinum (II) with many 

reviews having been written on this subject.29 

 

 

Fig. 3.15 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum 

dichloride 24. 
 

The molecular structures of the platinum complexes were determined from single crystal X-ray 

diffraction studies (Figure 3.15, 3.17 and 3.19). Selected bond lengths and angles are listed in 

Table 3.4 and further details for the crystal structures can be found in Appendices 13-15. The 

structures involve monomeric chelated metal complexes with typical square planar metal 

environments. The unsymmetrical phosphino-sulfanyl ligand 19 acts as a bidentate ligand 

coordinating via phosphorus(III) and the sulfur atom to form six-membered chelate rings.  

 

The halogen atoms in the three complexes arrange in a cis-orientation as required by the structure 

of the ligand. Square planar geometry around the platinum metal is consistent throughout the series 

with angles around the platinum metal varying only slightly from 90° (Table 3.4, Figure 3.16).  
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The Pt-X(1) bond [24 2.38 Å, 25 2.48 Å, 26 2.66 Å] trans to P(1) is longer in all three species 

compared to the Pt-X(2) bond [24 2.30 Å, 25 2.42 Å, 26 2.61 Å] trans to S(1), which is consistent 

with the greater trans influence of phosphorus compared to sulfur.29 With increasing size of the 

halide the Pt-X bond lengths increase, in the correct range for similar compounds in the 

literature.26 

 

Fig. 3.16 The angles [°] and distances [Å] associated with the square planar geometry of the 

platinum metal in the dihalide complexes 24, 25 and 26.  

 

Non-bonded intramolecular halide-halide distances increase from the dichloride complex to the 

diiodide species, accommodating the larger atoms. The remaining non-bonded intramolecular 

distances around the platinum core (Figure 3.16) subsequently increase to maintain the square 

planar geometry.  

 

 

Fig. 3.17 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum 

dibromide 25  
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The non-bonded peri-distance between P(1) and S(1) increases across the series and is much larger 

than compared to the uncoordinated phosphine [19 3.0339(13) Å, 24 3.182(6) Å, 25 3.191(3) Å, 

26 3.203(2) Å] (Figure 3.18). These values for the peri-distances also give an indication of the 

greater degree of distortion in the naphthalene structures of the metal complexes compared to the 

free ligand. The presence of the metal species and the geometry it imposes together with the 

increasing size of the halides causes enhanced steric interactions and so extra molecular distortion 

has to occur to relieve this strain.   

 

 

 

Peri -distances of the Platinum Halide Complexes of Nap[PPh2][SPh]

3.191(3)

3.182(6)

3.0330(7)

3.203(2)

2.9 2.95 3 3.05 3.1 3.15 3.2 3.25

Peri -distance [Å]

 

 

 
Fig. 3.18 Comparing the peri-distances in the platinum halide complexes 24, 25 and 26. 

 

 

The widening of the bay in the platinum species depicted by the sum of the angles [24 378.1(32)°, 

25 378.3(19)°, 26 379.9(10)°] shows a greater degree of in-plane distortion is observed in the 

metal complexes compared to the uncoordinated phosphine 19 [374.3(3)°]. 
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Fig. 3.19 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum 

diiodide 26. 

 

Out-of-plane distortion is similar in the dichloride and dibromide complexes and much greater 

than for the diiodide complex which shows very little deviation of its peri-atoms from the 

naphthalene plane (Figure 3.20). 

 

 

Fig. 3.20 The crystal structures of the (8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum 

dihalides showing the degree of out-of-plane distortion and naphthalene ring planarity. 

 
The two torsion angles associated with the central naphthalene C5-C10 bond indicates a greater 

buckling of the naphthalene ring in the dibromide complex compared to the less buckled 

dichloride shown by slightly larger torsion angles. The angles of the diiodide deviate only slightly 

from ± 180° resulting in a very planar naphthalene backbone (Table 3.4, Figure 3.20).  
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Fig. 3.21 Crystal structures of the platinum halide complexes 24, 25 and 26 illustrating the 

centroid-centroid distance resulting in π-π stacking. 

 

The distinct square planar geometry around the central platinum atom together with the affects of 

steric hindrance from the halide atoms influences the location and arrangement of the aromatic 

phenyl groups in the three platinum complexes. One phenyl group attached to P(1) and the π-

system attached to S(1) lie in close proximity in an offset or slipped packing arrangement of π-π 

stacking (Figure 3.21).4 The distance between the two interacting centroids increases with the 

increasing size of the halogen atoms but in all cases this distance is within the known range for 

typical centroid-centroid π-stacking distances (3.3-3.8 Å)4 [Cg(17-22)···Cg(23-28): 24 3.536(1) Å, 

25 3.574(1) Å, 26 3.598(1) Å]. 
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Table 3.4   Selected bond lengths [Å] and angles [°] for (8-phenylsulfanylnaphth-1-

yl)diphenylphosphine platinum dihalides 24-26 
_______________________________________________________________________________ 

                                        
S(1)···P(1) 3.182(6) S(1)···P(1) 3.191(3) S(1)···P(1) 3.203(2) 

P(1)-C(1) 1.80(2) P(1)-C(1) 1.807(13) P(1)-C(1) 1.837(6) 

S(1)-C(9)    1.76(2) S(1)-C(9) 1.763(13) S(1)-C(9) 1.770(7) 

      

P(1)-Pt(1) 2.221(4) P(1)-Pt(1) 2.232(3) P(1)-Pt(1) 2.2326(15) 

S(1)-Pt(1) 2.261(4) S(1)-Pt(1) 2.256(3) S(1)-Pt(1) 2.2752(16) 

Pt(1)-Cl(1) 2.376(4) Pt(1)-Br(1) 2.4817(14) Pt(1)-I(1) 2.6553(4) 

Pt(1)-Cl(2) 2.300(5) Pt(1)-Br(2) 2.4244(15) Pt(1)-I(2) 2.6052(4) 

      

P(1)-C(1)-C(10) 128.7(14) P(1)-C(1)-C(10) 126.9(8) P(1)-C(1)-C(10) 125.9(4) 

C(1)-C(10)-C(9) 125.0(18) C(1)-C(10)-C(9) 125.6(11) C(1)-C(10)-C(9) 127.8(6) 

S(1)-C(9)-C(10) 124.4(14) S(1)-C(9)-C(10) 125.8(8) S(1)-C(9)-C(10) 126.2(4) 

 Σ = 378.1(32)  Σ = 378.3(19)  Σ = 379.9(10) 

P(1)-Pt(1)-S(1) 90.46(17) P(1)-Pt(1)-S(1) 90.61(11) P(1)-Pt(1)-S(1) 90.56(5) 

P(1)-Pt(1)-Cl(2) 92.55(17) P(1)-Pt(1)-I(2) 92.92(8) P(1)-Pt(1)-I(2) 92.43(4) 

Cl(1)-Pt(1)-Cl(2) 89.39(17) I(1)-Pt(1)-I(2) 90.09(4) I(1)-Pt(1)-I(2) 90.163(15) 

S(1)-Pt(1)-Cl(1) 87.77(16) S(1)-Pt(1)-I(1) 86.26(8) S(1)-Pt(1)-I(1) 87.42(4) 

      

Distance from naphthalene mean plane    

P(1) 0.212(23) P(1) 0.303(14) P(1) -0.003(8) 

S(1) -0.294(22) S(1) -0.299(13) S(1) -0.074(9) 

      

Torsion angle       

C:(6)-(5)-(10)-(1) 175.9(16) C:(6)-(5)-(10)-(1) 170.8(10) C:(6)-(5)-(10)-(1) -178.2(7) 

C:(4)-(5)-(10)-(9) 176.9(16) C:(4)-(5)-(10)-(9) 174.7(10) C:(4)-(5)-(10)-(9) -177.2(7) 
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(8-phenylsulfanylnaphth-1-yl)diphenylphosphine copper halide dimers 27, 28, 29 

 

Copper(I) complexes are of special interest in bioinorganic chemistry due to the involvement of 

Cu(I) in biological redox reactions.30 The inclination for Cu(I) atoms to adopt a pseudo four-

coordinate geometry as a result of dimer formation is of particular importance which is enhanced 

by the additional possibility of studying metal-metal interactions between the two d10 metal centres 

in these compounds.31 Subsequently a vast range of dimeric adducts have been studied and 

structurally characterized.32 

 

(8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 reacts with the copper(I) halides (CuCl, 

CuBr, CuI) in methanol to afford a series of novel copper(I) dimers, 27, 28, 29 (Scheme 3.5).33 

 

 
Scheme 3.5 The reaction scheme for the preparation of the (8-phenylsulfanylnaphth-1-

yl)diphenylphosphine copper halide dimers 27, 28, 29. 

 

In a similar fashion to the series of platinum complexes (24-26), 19 binds via phosphorus and 

sulfur forming a series of bidentate metal complexes containing six-membered rings with copper 

adopting a tetrahedral-like geometry. The 31P NMR spectra show single peaks with similar 

chemical shifts for the three compounds with values in the range for similar sulfur/phosphorus 

copper dihalide complexes in the literature [27 Cl δ = 27.78 ppm, 28 Br δ = 27.73 ppm, 29 I δ 

=28.68 ppm].34  

 

The molecular structures of the copper dimers were determined from single crystal X-ray 

diffraction studies (Figure 3.22, 3.24, 3.31). Selected bond lengths and angles are listed in Table 

3.5 and further details for the crystal structures can be found in Appendices 16-18.  
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Fig. 3.22 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine copper chloride 

dimer 27.  

 

The copper atom is coordinated by one halogen atom and by the bidentate ligand 19 via sulfur and 

phosphorus forming a three coordinated unit containing a six-membered ring 

[CuX{Nap(PPh2)(SPh)}]. Two of these units dimerize via halide atoms to form a halide-bridged 

dimer with ligand 19 terminally bonded [Cu2(µ-X)2{Nap(PPh2)(SPh)}2]. The two copper atoms 

joined by the two halide bridges form a strictly planar Cu2X2 rhombus core in the form of a 

parallelogram containing two unequal Cu-X bond distances [27 2.37 Å, 2.40 Å, 28 2.43 Å, 2.46 Å, 

29 2.58 Å, 2.61 Å] (Figure 3.23). With increasing size of the halide the Cu-X bond lengths 

increase, in the correct range for similar bridged compounds in the literature (2.33-2.82 Å).35  

 

 

Fig. 3.23 Two copper atoms are joined by two halide bridges to form a strictly planar Cu2X2 

rhombus core, in the form of a parallelogram, containing two unequal Cu-X bond distances. 

 

The unequal Cu-X bond distances gives these binuclear molecules a centre of symmetry and 

results in both of the copper(I) atoms having identically distorted tetrahedral environments. 

Copper(I) has a stereochemical preference for tetrahedral coordination with ideal angles around 

the copper of 109.5°. The copper dimers (27-29) show a greater distorted tetrahedral geometry 

compared with other similar compounds containing the Cu2X2 rhombus core (Figure 3.23).35  
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Angles around the copper are similar throughout the range and deviate further from the ideal 

tetrahedral angle of 109.5° [27 81.6-128.4°, 28 82.9-126.6°, 29 81.5-125.0°] than similar 

compounds (95.9-124.9°).35 

 

Fig. 3.24 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine copper bromide 

dimer 28 

 
P-Cu-S bond angles are comparable in the three dimers [27 81.55 Å, 28 82.90 Å, 29 81.52 Å] but 

are considerably more acute than similar compounds containing no rigid backbone (109.7-119.8 

Å). This suggests the naphthalene backbone plays a role in the geometry around the copper atom 

and keeps the phosphorus and sulfur atoms from moving further apart and attaining a more ideal 

tetrahedral. This is seen in similar compounds in the literature containing fixed atoms around the 

copper.36 Cu-P bond lengths are as expected [27 2.20 Å, 28 2.22 Å, 29 2.25 Å] and in the range for 

similar compounds (2.21-2.26 Å).35 Cu-S bond lengths although comparable with one another [27 

2.48 Å, 28 2.44 Å, 29 2.44 Å] are longer than in similar compounds from the literature (2.27-2.34 

Å) (Figure 3.25).35 

1(1)Br Cu(1)1

(1)Cu Br(1)

2.46

2.43

73.56

106.43

(1)P

(1)S

2.44

2.22

2.93
3.92

S(1)1

P(1)1

 
Fig. 3.25 A schematic illustration of the distances [Å] and angles [°] around the central diamond 

shaped core of the copper halide dimers. 
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The increase in steric bulk from chloride to iodide causes the halide atoms to move further apart 

increasing the non-bonded intramolecular X···X distance across the series [27 3.710(2) Å, 28 

3.9193(14) Å, 29 4.3287(8) Å] (Figure 3.25). As a result the two copper atoms are forced closer 

together with Cu···Cu distances approaching the sum of the van der Waals radii of two interacting 

copper atoms (2.80 Å)8 [27 2.990(1) Å, 28 2.9296(14) Å, 29 2.8568(11) Å]. This increases the 

X(1)-Cu(1)-X(1)1 angle and decreases the Cu(1)-X(1)-Cu(1)1 angle (Table 3.5, Figure 3.25).  

 

 
Fig. 3.26 The positioning of the copper atom in relation to the naphthalene plane. 

 

The conformation of the central six-membered ring of the copper dimers can be described as an 

open envelope (Figure 3.26). P(1), S(1), C(1), C(10) and C(9) are approximately co-planar with  

the copper atom sitting in the peri-gap above the level of this plane. The distance of the copper 

from the P(1)-S(1) plane is comparable in all three compounds as shown by the angle between the 

Cu(1)-P(1)-S(1) plane and the P(1)-C(1)-C(10)-C(9)-S(1) plane [27 60.28°, 28 59.72°, 29 59.60°] 

(Figure 3.26).    

 

    

Fig. 3.27 The crystal structure of 27 showing alignment and orientation of the naphthalene rings. 

 

The angle of the copper atom above the naphthalene plane determines the orientation of the two 

molecules of ligand 19; one flipped horizontally and vertically compared to the other. The 

naphthalene ring systems align parallel with one pointing up and the other pointing downwards 

(Figure 3.27). The steric bulk of the inner parallelogram core forces the phenyl rings to point away 

from the centre of the complex avoiding steric interactions with the large copper and halide atoms 

and no π-π interactions are observed. 
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The planar parallelogram comprising two copper atoms and the two halide bridges approaches a 

perpendicular arrangement with the sulfur/phosphorus plane (Figure 3.28). The copper-halide core 

is found to be most perpendicular in the chloride complex with angles between the plane and the 

core decreasing to the iodine complex [27 85.16°, 28 84.41°, 29 83.44°]. 

 

 

Fig. 3.28 The crystal structures of the copper halide dimers showing the orientation of the copper-

halide parallelogram with the sulfur-phosphorus plane.  

 

The geometry of the dimers and the unequal bond lengths between the copper atom and P(1) and 

S(1) forces the two copper atoms of the parallelogram to lie at an angle compared to the two 

parallel naphthalene planes. The greatest degree of perpendicular alignment with the naphthalene 

backbone is found in the iodine dimer (Figure 3.29) as shown by the angle between the 

naphthalene plane and the direction of the planar copper-halide core [27 77.06°, 28 79.02°, 29 

79.81°]. 

 

 

 

Fig. 3.29 An illustration showing the orientation of the Cu2X2  parallelogram with the naphthalene 

planes. 
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Unlike the square planar arrangement and influences of platinum on the geometry of the 

naphthalene in the platinum dihalide complexes, the presence of the copper-halide core in the 

dimers bares no influence on distortion of the naphthalene ring system and if anything reduces the 

distortion.  

 

       Fig. 3.30 The crystal structures of the copper halide dimers showing the out-of-plane 

distortion of the peri-atoms and the planarity in the naphthalene rings.  

 

Peri-distances in the three dimers are comparable and very similar to the free ligand [19 3.0330(7) 

Å, 27 3.081(2) Å, 28 3.089(3) Å, 29 3.067(2) Å] and in-plane distortion is equivalent with the 

peri-region angles of similar magnitudes. The position of the peri-atoms from the mean 

naphthalene plane are of a similar degree and torsion angles approaching ±180° for the dimers and 

greater than those in 19 show the copper compounds have more planarity in the naphthalene 

backbone (Figure 3.30). 

 

Fig. 3.31 The crystal structure of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine copper iodide 

dimer 29. 
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Table 3.5   Selected bond lengths [Å] and angles [°] for (8-phenylsulfanylnaphth-1-

yl)diphenylphosphine copper halide dimers 27, 28 and 29 

_______________________________________________________________________________ 

10

5
6

7

8

91

2

3

4

P1 S1
23

28
27

26

25
24

11
12

13

14

15
16

17

22

2120

19

18
Cu1
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Cu1

I 1 I
11

Cu11

29  
S(1)-P(1) 3.081(2) S(1)-P(1) 3.089(3) S(1)-P(1) 3.067(2) 

P(1)-C(1) 1.833(8) P(1)-C(1) 1.837(8) P(1)-C(1) 1.847(8) 

S(1)-C(9) 1.806(8) S(1)-C(9) 1.815(8) S(1)-C(9) 1.805(8) 

      

Cu(1)-Cu(1)1 2.990(1) Cu(1)-Cu(1)1 2.9296(14) Cu(1)-Cu(1)1 2.8568(11) 

Cl(1)-Cl(1)1 3.710(2) Br(1)-Br(1)1 3.9193(14) I(1)-I(1)1 4.3287(8) 

P(1)-Cu(1) 2.201(2) P(1)-Cu(1) 2.217(2) P(1)-Cu(1) 2.248(2) 

S(1)-Cu(1) 2.475(2) S(1)-Cu(1) 2.443(2) S(1)-Cu(1) 2.444(2) 

Cu(1)-Cl(1) 2.3706(18) Cu(1)-Br(1) 2.4303(14) Cu(1)-I(1) 2.5809(11) 

Cu(1)-Cl(1)1 2.395(2) Cu(1)-Br(1)1 2.4634(16) Cu(1)-I(1)1 2.6055(12) 

      

P(1)-C(1)-C(10) 124.4(5) P(1)-C(1)-C(10) 124.1(6) P(1)-C(1)-C(10) 124.1(6) 

C(1)-C(10)-C(9) 127.7(5) C(1)-C(10)-C(9) 129.0(7) C(1)-C(10)-C(9) 129.1(7) 

S(1)-C(9)-C(10) 122.5(5) S(1)-C(9)-C(10) 121.4(5) S(1)-C(9)-C(10) 121.1(5) 

 Σ = 374.6(10)  Σ = 374.5(13)  Σ = 374.3(13) 

P(1)-Cu(1)-S(1) 81.55(6) P(1)-Cu(1)-S(1) 82.90(7) P(1)-Cu(1)-S(1) 81.52(7) 

P(1)-Cu(1)-Cl(1)1 120.50(8) P(1)-Cu(1)-Cl(1)1 116.53(9) P(1)-Cu(1)-Cl(1)1 113.00(7) 

Cl(1)-Cu(1)-Cl(1)1 102.26(6) Cl(1)-Cu(1)-Cl(1)1 106.43(4) Cl(1)-Cu(1)-Cl(1)1 113.15(3) 

S(1)-Cu(1)-Cl(1) 108.23(7) S(1)-Cu(1)-Cl(1) 108.46(7) S(1)-Cu(1)-Cl(1) 106.70(6) 

      

Distance from naphthalene mean plane   

P(1) -0.229(8) P(1) -0.1958(99) P(1) 0.1856(92) 

S(1) 0.071(8) S(1) 0.1115(98) S(1) -0.090(9) 

      

Torsion angle       

C:(6)-(5)-(10)-(1) -179.4(11) C:(6)-(5)-(10)-(1) 179.4(8) C:(6)-(5)-(10)-(1) 179.0(7) 

C:(4)-(5)-(10)-(9) 179.8(6) C:(4)-(5)-(10)-(9) 179.7(7) C:(4)-(5)-(10)-(9) -179.0(7) 
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(8-phenylsulfanylnaphth-1-yl)diphenylphosphinechlororuthenium(II)chloride 30 

Organometallic complexes containing ruthenium species have been shown to be active as catalysts 

in a number of important industrial reactions, for example olefin metathesis, hydrogenation and 

hydrogen generation.37 Ruthenium arene chemistry was first introduced with the discovery of 

[Ru(η6-arene)2]
2+ complexes in 195738 and these compounds have recently been established as 

mono- and dinuclear tumor inhibitors (Figure 3.32)39 and show promise as anticancer agents.40 
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Fig. 3.32 The structures of ruthenium compounds which have been shown to exhibit anticancer 

potential.39 

 

Treatment of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 with [Ru(η6-MeC6H4
iPr)Cl2]2 

dimer in dichloromethane led to the formation of the air-stable mononuclear ruthenium(II) 

complex 30 (Scheme 3.6).  

 
Scheme 3.6 The reaction scheme for the preparation of [Nap(PPh2)(SPh)Ru(Cl)(η6-

MeC6H4
iPr)]+Cl- 30. 
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The most common oxidation states for ruthenium are +2 and +3 and although oxidation states 

lower than +2 are known they are rare and formed mainly with carbonyls, phosphines and 

derivatives thereof.41 

 

 

Fig. 3.33 The 1H NMR spectrum of the [Ru(η 6-C10H14)Cl2]2 dimer. 

 

The 1H NMR spectrum shows a loss of the two-fold symmetry of the p-cymene ligand, similar to 

other reported p-cymene complexes.42 The stereogenic ruthenium atom is due to the coordination 

of four different ligand atoms which results in the methyl protons of the isopropyl group and the 

aromatic protons of the p-cymene ligand being diastereotopic. This gives rise to the unusual 

pattern observed in the 1H NMR spectrum (Figure 3.33).43 The four aromatic hydrogen atoms of 

the p-cymene ligand appear as four sets of doublets at ca. δ = 5.5-4.9 ppm instead of two doublets 

as in the starting material (a Figure 3.33). The two isopropyl methyls of the p-cymene are also 

inequivalent, appearing as two doublets at δ = 0.93 and 0.69 ppm instead of one doublet as in the 

starting complex (d Figure 3.33). The 31P NMR spectrum shows a single peak at δ = 37.99 ppm in 

accordance with compounds of this type.44 

a 

b 

c 

d 
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The molecular structure of 30 is shown in Figure 3.34, and selected bond lengths and bond angles 

are listed in Table 3.6. The ruthenium(II) adopts a classical piano-stool geometry with the metal 

centre being coordinated by the aromatic p-cymene ligand, a terminal chloro ligand and  the 

chelating phosphorus/sulfur substituted 19. The chlorine atom and the peri-atoms of 19 act as the 

legs of the piano stool and point away from the p-cymene ligand to avoid steric overcrowding. The 

six-membered ring formed by the ruthenium and the bidentate 19 adopts an envelope like structure 

with the ruthenium atom lying above the plane of the atoms in the naphthalene bay region. A 

chloride counteranion is present in the structure counter balancing the charge of the ruthenium 

cation complex. 

 

The degree of distortion in the naphthalene geometry is similar to the free ligand. The distance 

between the peri-atoms [3.013(3) Å] is similar to the distance found in 19 [3.0339(16) Å] and the 

sum of the bay region angles [373.9(16)°] shows similar in-plane distortion has taken place. Out-

of-plane distortion is slightly greater in the complex and torsion angles show a greater degree of 

buckling has taken place in the naphthalene of the ruthenium species. Further information for the 

crystal structure can be found in Appendix 19.   

 

Fig. 3.34 The crystal structure of [Nap(PPh2)(SPh)Ru(Cl)(η6-MeC6H4
iPr)]+Cl- 30,(counteranion 

Cl- omitted for clarity). 
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Table 3.6   Selected bond lengths [Å] and angles [°] for (8-phenylsulfanylnaphth-1-

yl)diphenylphosphinechlororuthenium(II)chloride 30. 
_______________________________________________________________________________ 

 

S(1)-P(1) 3.013(3) P(1)-C(1)-C(10) 124.9(7) 

P(1)-C(1) 1.816(10) C(1)-C(10)-C(9) 127.7(9) 

S(1)-C(9) 1.829(10) S(1)-C(9)-C(10) 121.3(7) 

   Σ = 373.9(16) 

P(1)-Ru(1) 2.319(2) P(1)-Ru(1)-S(1) 80.22(8) 

S(1)-Ru(1) 2.356(2) P(1)-Ru(1)-Cl(1) 89.03(9) 

Ru(1)-Cl(1) 2.396(2) S(1)-Ru(1)-Cl(1) 89.61(8) 

Ru(1)-centroid 1.744(1)   

    

Distance from naphthalene mean plane  

P(1) -0.096(10)   

S(1) 0.217(10)   

    

Torsion angle     

C(6)-C(5)-C(10)-C(1) 176.9(7)   

C(4)-C(5)-C(10)-C(9) 177.5(7)   
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Summary 
 

The Nap[SPh][R] compounds show interesting patterns of molecular deviations associated with 

the relief of steric strain caused by the presence of large peri-atoms and the influence of the metal 

center. The largest peri-distances observed were 3.34 Å for molecule 20. This could be due to the 

presence of the larger iodine atom at the second peri-position compared to the smaller phosphorus 

atom of the Nap[SPh][PPh2] compounds. The preference of platinum to form square planar 

compounds influences the geometry of the dihalide complexes 24-26 and forces the peri-atoms 

further apart compared to the non-coordinated ligand 19. The presence of the chalcogen atoms in 

the chalcogenides 21-23 also increases the steric interactions and results in a greater degree of 

relief. The peri-distances for these six compounds [3.15-3.20 Å] are therefore found to be larger 

than for the free ligand 19 [3.03 Å]. The copper complexes 27-29 and the ruthenium complex 30 

have peri-distances equivalent to that of 19 [3.01-3.09 Å] showing the geometry around the metal 

center is not an overriding factor on the molecular distortion taking place in the compound. The 

peri-distances of the Nap[SPh][R] compounds are compared in Figure 3.37. 

        

Comparing the amount of in-plane distortion in Nap[SPh][R] compounds
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Fig. 3.35 Comparing the amount of in-plane distortion in the Nap[SPh][R] compounds. 
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Figure 3.35 quantifies the degree of in-plane distortion found in the Nap[SPh][R] compounds of 

this chapter by comparing the sum of the peri-region angles. The greatest degree of in-plane 

distortion is observed in compound 20 and in the platinum dihalides. This can be attributed to the 

large size of the iodine atom in 20 and the forced square planar geometry in compounds 24-26. 

The degree of in-plane distortion in the copper complexes 27-29, the ruthenium complex 30 and 

the chalcogenides 21-23 is similar to that found in the free ligand 19.  

 

Out-of-plane distortion is compared in Figure 3.36 by looking at the deviation of the peri-atoms 

above and below the mean naphthalene plane. The greatest distortion is found in the chalcogenides 

21-23 and the least amount of distortion is found in 19. The metal complexes undergo a similar 

degree of deviation to one another, slightly greater than for the free ligand.  

 

Out-of-plane distortion - deviation of the peri -atoms above and below the plane of the 
naphthalene in compounds Nap[SPh][R]
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Fig. 3.36 Comparing the amount of out-of-plane distortion in the Nap[SPh][R] compounds. 
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Peri -distance for Nap[SPh][R] compounds and complexes
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Fig. 3.37 Comparing the peri-distances in the Nap[SPh][R] compounds. 
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Chapter 4 

Preparation and chemistry of (8-phenylselenylnaphth-1-yl)diphenylphosphine 32 
 

In the previous chapters we have shown that mixed donor ligands containing sulfur and 

phosphorus moieties in the peri-positions of naphthalene (3, 19) can be synthesised without 

difficulty starting from dihalo-naphthalenes. This chapter describes the novel route to the selenium 

analogue of 19 preparing the known compound (8-phenylselenylnaphth-1-yl)diphenylphosphine 

32,1 following similar procedures developed for the sulfur species. The preparation of a series of 

phosphorus(V) chalcogenides is also reported and the molecular structures of the products are 

compared with those of the analogous sulfur compounds of Chapter 3 (21-23). 

 

Compound 32 and its mono-oxide 34, were previously reported by Warô Nakanishi et al. whilst 

investigating non-bonded interactions with the aid of ab initio MO calculations. Their main focus 

was on the possible attractive O···Se-C 3c-4e type interaction in 34 as well as the P···Se interaction 

in the 1,8-position.1 

 

Scheme 4.1 The reaction scheme for the preparation of (8-phenylselenylnaphth-1-

yl)diphenylphosphine 32 from 1,8-dibromonaphthalene 11.  
 

Following similar methods to those used for the preparation of the sulfur-containing compounds 2 

and 9, 1,8-dibromonaphthalene was reacted with n-butyllithium (1 equivalent) and diphenyl 

diselenide (1 equivalent) to afford the known compound 1-bromo-8-(phenylselenyl)naphthalene 31  

in 63% yield (Scheme 4.1).2,3,4 Characterisation of 31 was achieved by elemental analysis, infra- 

red spectroscopy, 1H, 13C and 77Se NMR spectroscopy and mass spectrometry and was found to be 

in accord with the literature.5  

 

Conversion of 31 to the target compound was achieved using the procedure adopted in the 

preparation of the sulfur-phosphorus compounds 3 and 19.6 31 reacted with one equivalent of n-

butyllithium followed by one equivalent of chlorodiphenylphosphine to give (8-

phenylselenylnaphth-1-yl)diphenylphosphine 32 as an oil in 40% yield (Scheme 4.1).6 
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Characterisation of 32 was accomplished by 1H, 13C, 31P and 77Se NMR spectroscopy and mass 

spectrometry. The phosphorus NMR spectrum shows a signal at δ = -12.94 ppm and the selenium 

NMR spectrum shows a peak at δ = 439.6 ppm (4J(P,Se) = 391.0 Hz). Both values are in agreement 

with the literature (31P NMR δ = -12.51 ppm, 77Se NMR δ = 446.2 ppm (4J(P,Se) = 380.9 Hz).1 

 

Scheme 4.2 The reaction scheme for the preparation of (8-phenylselenylnaphth-1-

yl)diphenylphosphine 32 from 1,8-diiodonaphthalene 14.  

 

For completeness, 32 was also synthesised in an analogous reaction starting from 1,8-

diiodonaphthalene 14, via the novel intermediate 1-iodo-8-(phenylselenyl)naphthalene 33. The 

reaction of 14 with one equivalent each of n-butyllithium and diphenyl diselenide produced the 

novel compound in 60% yield. Characterisation was accomplished by elemental analysis, infra-red 

spectroscopy, 1H, 13C and 77Se NMR spectroscopy and mass spectrometry. The selenium NMR 

spectrum showed a single peak at δ = 430.8 ppm, slightly upfield from the signal for the bromine 

analogue 31 [δ = 447.8 ppm]. The subsequent reaction of 33 with a single equivalent each of n-

butyllithium and chlorodiphenylphosphine afforded compound 32 in 60% yield.6 

 

 

Fig. 4.1 The molecular structure of 1-bromo-8-(phenylselenyl)naphthalene 31.4 
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The molecular structure of 31 (Figure 4.1)4 shows an intramolecular bromine-selenium peri-

distance of 3.1136(5) Å. Out-of-plane distortion is observed with the selenium atom Se(1) -0.42(1) 

Å and the bromine atom Br(1) 0.40(1) Å lying from the mean plane of the naphthalene backbone. 

The heavy atoms are further accommodated by in-plane distortions in the C-C-C group between 

the Br and Se atoms as shown by the sum of the bay region angles [373.0(6)°]. As expected from 

the heavy atom displacement, the phenylselenyl group lies on one side of the naphthalene plane, 

the phenyl ring being inclined at 88° to the naphthalene plane. Selected bond lengths and bond 

angles are shown in Table 4.1; further information can be seen in Appendix 20. 

 

The molecular structure of 33 (Figure 4.2) is similar to its bromine analogue with the 

phenylselenyl group lying on one side of the naphthalene plane and the phenyl ring inclined by 82° 

to the naphthalene plane. Compared to 33, the iodine compound exhibits greater strain relief via 

naphthalene distortion due to increased steric repulsion between the peri-atoms. The larger iodine 

atom is accommodated by a longer intramolecular non-bonded I···Se(phenyl) distance [3.2524(8) 

Å] compared to the Br···Se(phenyl) distance of 3.1136(6) Å. An increase in the splay of the bay 

region is seen by comparison of the sums of the peri-region angles [31 373.0(6)°, 33 374.9(8)°] 

and shows a greater in-plane distortion occurs in the iodine compound. Out-of-plane distortion in 

the two analogues is observed to a similar degree with the I(1) and Se(1) atoms of 33 lying 0.50(1) 

Å and -0.42(1) Å from the plane respectively. The degree of planarity in the two naphthalene 

backbones is also comparable with similar C(5)-C(10) torsion angles in the two compounds. 

Selected bond lengths and bond angles for 31 and 33 are shown in Table 4.1, further details for the 

crystal structure of 33 can be found in Appendix 21. 

 

 
Fig. 4.2 The molecular structure of 1-iodo-8-(phenylselenyl)naphthalene 33. 
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In Chapter 1 non-bonded intramolecular interactions occurring between the lone pair orbitals of 

closely arranged heteroatoms in peri-substituted naphthalenes was introduced. Most of the 

pertinent work in this field has recently been reported by the group of Nakanishi and co-workers. 

During a wider study of non-bonded intramolecular interactions in sterically crowded naphthalenes 

of the type 8-G-1-(p-YC6H4Se)C10H6 (Figure 4.3), Nakanishi et al. reported the structure of 31.5   
 

 
Fig. 4.3 The series of sterically crowded naphthalenes (8-G-1-(p-YC6H4Se)C10H6) investigated by 

Nakanishi et al. as part of their study of intramolecular interactions.5 

 

Nakanishi et al. alleged that systems with Z-R = Se-C at the 1-position and G = (halogens) at the 

8-position satisfied the conditions for non-bonded interactions to take place.5,7 They found that 

compounds where G = Cl or Br, such as 31, always adopted the ‘type B’ structure (see Chapter 1, 

Figure 1.32) irrelevant of what occupied the Y position and thus formed the linear non-bonded 

G···Se-C arrangement. From ab initio MO calculations Nakanishi et al. concluded that ‘the linear 

alignment of the three atoms must be the result of the non-bonded G···Se-C 3c-4e type 

interaction’.5 Additionally, Toshimitsu et al. have also reported 31 as an intermediate in the 

synthesis of a series of pentacoordinate disilanes.2,3 

 

 
Fig. 4.4 Comparing the orientation of the phenyl group in the molecular structures of compounds 

31 and 33. 
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The geometric orientation of the iodine compound 33 mimics that of its bromine analogue 31. 

Thus assuming the ‘type B’ structure described by Nakanishi et al..5,7 The Se(phenyl) moieties in 

both compounds sit in a similar location producing a linear arrangement of the type X···Se-C, with 

angles of 31 175.7(1)° and 33 174.3(1)° (Figure 4.4). The observed non-bonded distances between 

halide X and the selenium atom are shorter than sum of van der Waals radii of the atoms by 0.64 Å 

for 31 and 0.63 Å for 33 [31 3.1136(6) Å, {3.75 Å}; 33 3.2524(8) Å, {3.88 Å}].8 The X···Se-C 

linearity and the close proximity of the peri-atoms is conducive to non-bonded interactions.5,7,9 

According to Nakanishi et al. the linearity given by the ‘type B’ structure can be attributed to a 3c-

4e type interaction taking place.5 

 

 

Table 4.1   Bond lengths [Å] and angles [°] for 1-bromo-8-(phenylselenyl)naphthalene 31 and 1-

iodo-8-(phenylselenyl)naphthalene 33. 
_______________________________________________________________________________ 

10

5
6

7

8

91

2

3

4

Br1 Se1

11

16

15

14

13

12

31   

10

5
6

7

8

91

2

3

4

I1 Se1

11

16

15

14

13

12

33  
Br(1)···Se(1) 3.1136(6) I(1)···Se(1)  3.2524(8) 

Br(1)-C(1) 1.919(3) I(1)-C(1) 2.122(4) 

Se(1)-C(9) 1.948(3) Se(1)-C(9) 1.958(4) 

    

Br(1)-C(1)-C(10) 122.1(3) I(1)-C(1)-C(10) 124.2(3) 

C(1)-C(10)-C(9) 128.3(3) C(1)-C(10)-C(9) 128.3(4) 

Se(1)-C(9)-C(10) 122.6(2) Se(1)-C(9)-C(10) 122.4(4) 

 Σ = 373.0(6)  Σ = 374.9(8) 

    

Distance from naphthalene mean plane  

Br(1) 0.40(1) I(1) 0.50(1) 

Se(1) -0.42(1) Se(1) -0.42(1) 

    

Torsion angle     

C(6)-C(5)-C(10)-C(1) 175.8(3) C(6)-C(5)-C(10)-C(1) 174.9(5) 

C(4)-C(5)-C(10)-C(9) 173.8(3) C(4)-C(5)-C(10)-C(9) 174.6(5) 

 

 



Chapter 4 - Preparation and chemistry of (8-phenylselenylnaphth-1-yl)diphenylphosphine 32 
                           

                                                                   117 

 

Phosphorus(V) chalcogenides of (8-phenylselenylnaphth-1-yl)diphenylphosphine 32 
 

Phosphine 32 readily oxidises in the atmosphere to afford the known four coordinate (8-

phenylselenylnaphth-1-yl)diphenylphosphine oxide 34 with 100% conversion as seen by 31P NMR 

(Scheme 4.3).  

 

 
Scheme 4.3 Synthesis of (8-phenylselenylnaphth-1-yl)diphenylphosphine chalcogenides 34, 35, 

and 36. 

 

Following similar procedures for the preparation of the phosphorus(V) sulfides (17 and 22) and 

selenides (18 and 23), 32 reacted with stoichiometric amounts of sulfur and selenium powder 

under reflux, selectively affording the novel phosphorus(V) chalcogenides 1-P(:S)Ph2(C10H6)-8-

SePh 35 and 1-P(:Se)Ph2(C10H6)-8-SePh 36 in almost quantitative yields (Scheme 4.3).10  

 

The three chalcogenide derivatives were characterised by a combination of elemental analysis, 

infra-red spectroscopy, mass spectrometry and 1H, 13C, 31P and 77Se NMR spectroscopy. The 
31P{1H} NMR spectra showed single peaks at δ = 37.99 ppm 34, δ = 51.01 ppm 35, and δ = 40.50 

ppm 36, with expected 1J and 4J values for phosphorus-selenium coupling in 36 [1JP(1)-Se(2) = 715.3 

Hz, 4JP(1)···Se(1) = 23.9 Hz]. Phosphorus-selenium coupling was not observed in the spectra for 34 

and 35 with the small 4JP(1)···Se(1) value within the line-width of the signal (Table 4.2).  

 

Table 4.2   Phosphorus-31 and selenium-77 NMR spectroscopic data for phosphine 32 and its 

phosphorus V chalcogenides 34-36 [δ (ppm), J (Hz)] 

  chemical shifts coupling constants 

  δP δSe δSe 4JPSe 1JPSe 

1-PPh2(C10H6)-8-SePh 32 -12.94 439.6 n/a 391 n/a 

1-P(:O)Ph2(C10H6)-8-SePh 34 37.99 450.4 n/a - n/a 

1-P(:S)Ph2(C10H6)-8-SePh 35 51.01 448.5 n/a 19 n/a 

1-P(:Se)Ph2(C10H6)-8-SePh 36 40.50 451.4 -162.8 24 715 
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The 77Se NMR spectra for 34 showed a single peak at δ = 450.4 ppm with the expected small 
4JSe(1)···P(1) value also hidden within the line-width of the signal. The 77Se NMR spectra for 35 

showed a doublet at δ = 448.5 ppm with a small value for selenium-phosphorus coupling 

[4JSe(1)···P(1) 19.1 Hz]. The 77Se NMR spectrum of 36 showed two sharp doublets at δ = 451.4 ppm 

and δ = -162.8 ppm for the two selenium atoms with 1J and 4J values for selenium-phosphorus 

coupling [1JSe(2)-P(1) = 715.3 Hz, 4JSe(1)···P(1) = 23.9 Hz] (Table 4.2). Data for oxide 34 was found to 

be in accord with literature values for both 31P [δ = 37.47 ppm]1 and 77Se NMR spectra [δ = 457.9 

ppm].1
 

 

Suitable single crystals for the three compounds were grown by diffusion of pentane into saturated 

solutions of the chalcogenides in dichloromethane. The molecular structures are shown in Figures 

4.5, 4.7 and 4.13. Selected bond distances and angles for the three compounds are compared in 

Table 4.4 and further crystallographic information on each structure can be found in Appendices 

22-24.  

 

 
Fig. 4.5 The crystal structure of (8-phenylselenylnaphth-1-yl)diphenylphosphine oxide 34. 

 

In all three compounds the P(:E)Ph2 and SePh groups lie in close proximity to each other, with 

non-bonded peri-distances (P···Se) of 3.215(2) Å 34, 3.2803(8) Å 35 and 3.278(2) Å 36, all shorter 

than the sum of van der Waals radii for phosphorus and selenium [3.70 Å] by 0.42-0.49 Å (Table 

4.3).8   
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Throughout the series, the chalcogen atom resides in the peri-gap pointing away from the 

naphthalene plane (Figure 4.6).8 E···Se non-bonded distances of 2.770(3) Å 34, 3.3490(7) Å 35 

and 3.4217(8) Å 36, increase with the size of the chalcogen attached to phosphorus(V) but are 

considerably shorter than the sum of the van der Waals radii of the atoms in all cases [OSe 3.42 Å, 

SSe 3.70 Å, SeSe 3.80 Å] (Table 4.3).8 P=E bond lengths 1.476(4) Å 34, 1.9567(10) Å 35 and 

2.1165(16) Å 36, are as expected.11  

 

 

Fig. 4.6 The crystal structures of the (8-phenylselenylnaphth-1-yl)diphenylphosphine 

chalcogenides 34, 35 and 36 showing the non-bonded Se(1)···E distance. 
 

The close proximity of the two bulky substituents leads to in-plane and out-of-plane distortion of 

the peri-atoms with respect to the naphthalene ring system. The amount of in-plane distortion of 

the substituents, indicated by a widening of the bay angles, increases from the oxide to the selenide 

[375.5(7)° 34, 376.8(4)° 35, 377.3(9)° 36]. The level of displacement of the peri-atoms to opposite 

sides of the best naphthalene plane shows out-of-plane distortion is consistent throughout the 

series. P(1) lies below the plane in 34 and above the plane in 35 and 36. 

 
Fig. 4.7 The crystal structure of (8-phenylselenylnaphth-1-yl)diphenylphosphine sulfide 35. 
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The displacement of the phosphorus and selenium substituents within and out of the plane is 

accompanied by a distortion of the usually planar and rigid C10-unit by a twist into a non-planar 

conformation. This is illustrated by the torsion angles associated with the central C(5)-C(10) bond 

(Table 4.4). Buckling of the plane is greatest in the oxide species (torsion angles further from the 

linear 180°) with the selenide compound retaining the most planar naphthalene ring system of the 

three compounds (Figure 4.8). 

  

 

Fig. 4.8 The crystal structures of the (8-phenylselenyylnaphth-1-yl)diphenylphosphine 

chalcogenides 34, 35 and 36 showing the buckling of the naphthalene planes. 

 

Oxide 34 assumes a different orientation to that of the sulfide 35 and selenide 36, which adopt 

identical structural motifs (Figure 4.9). In all three compounds the orientation of the phenyl groups 

around the phosphorus align in a similar way placing the chalcogen bonded to phosphorus pointing 

away from the naphthalene plane in the peri-gap. The difference between the two orientations is 

the positioning of the phenyl group attached to Se(1).  

 

 

Fig. 4.9 The crystal structures of the (8-phenylselenylnaphth-1-yl)diphenylphosphine 

chalcogenides showing the linear arrangement of the type O···Se-C in 34 and Se···P-C in 35 and 

36. 
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In 35 and 36 the Se(1)phenyl group aligns parallel with one of the phenyl rings on P(1) (Figure 

4.9, 4.10). The alignment of the rings is face-to-face offset arrangement with slipped packing, 

known as parallel displacement (see Chapter 3, Figure 3.12).12 The distances between the two 

interacting centroids, however, are longer than the range for typical centroid-centroid π-stacking 

(3.3-3.8 Å)12 and so no π-π stacking is envisaged [Cg(17-22)···Cg(23-28): 41 4.034(1) Å, 42 

4.075(1) Å] (Figure 4.10). 

 

            

Fig. 4.10 The crystal structures of (8-phenylselenylnaphth-1-yl)diphenylphosphine sulfide 35 and 

selenide 36 showing the phenyl ring orientation. 

 

The parallel orientation of the phenyl rings produces a linear arrangement of the type Se···P-C with 

angles of 35 173.5(1)° and 36 172.9(1)° (Table 4.3, Figure 4.9). The observed non-bonded 

distances between P(1) and Se(1) in both compounds [35 3.2803(8) Å, 36 3.278(2) Å] are also 

shorter than sum of van der Waals radii of the atoms [3.70 Å].8 These results therefore fit within 

the parameters set by Nakanishi et al. for a 3c-4e bonding interaction to occur.5,7,9  

 

Table 4.3   Non-bonded distances [Å] and angles [°] showing the linear arrangement of E···Se(1)-

C(23) and Se(1)···P(1)-C(11) for (8-phenylselenylnaphth-1-yl)diphenylphosphine chalcogenides 

34, 35 and 36.  

 34 35 36 

E···Se(1)-C(23) 178.1(1) 145.0(1) 148.4(1) 

Se(1)···P(1)-C(11) 167.9(1) 173.5(1) 172.9(1) 

E···Se(1) 2.770(3) [3.42 Å] 3.3490(7) [3.70 Å] 3.4217(8) [3.80 Å] 

P(1)···Se(1) [3.70 Å] 3.215(2) 3.2803(8) 3.278(2) 

[sum of van der Waals radii of interacting atoms] 
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The Se(1)phenyl moiety in oxide 34 is twisted and there is no possible parallel overlap with the 

P(17)phenyl group. This reduces the linearity of the Se···P-C arrangement with an angle of 

167.9(1)°, however a linear arrangement of the type E···Se-C with an angle of 178.1(1)° is formed. 

The observed non-bonded distance between Se(1) and O(1) [2.770(3) Å], shorter than sum of van 

der Waals radii of the two atoms [3.42 Å],8 also suggests a 3c-4e interaction could result.  

 

As mentioned, compound 32 and its oxide 34, were previously reported by Warô Nakanishi et al. 

whilst studying ab initio MO calculations of non-bonded interactions.1 Determining the structure 

of 34 by x-ray crystallography, they reported that the three O···Se-C atoms align linearly [OSeC = 

168.8°]. Ab initio calculations were then performed and the conclusion reached based on 

molecular orbitals was that ‘the structure of 34 is determined by the predominant 3c-4e type 

interaction of the linear O···Se-C atoms’.1 In order to reach our own conclusions regarding the 

possibility of 3c-4e non-bonded interactions in 34 and also to look at the potential for non-bonded 

interactions in the different linear type arrangement observed in 35 and 36, calculations were 

performed for us by Prof. M. Bühl in St Andrews (Figure 4.11). 

 

 

 
 

Fig. 4.11 Results of ab initio MO Calculations performed on (8-phenylselenylnaphth-1-

yl)diphenylphosphine chalcogenides 34-36 evaluated at the B3LYP/6-31+G* level using H-

relaxed X-ray geometries. 

 

Figure 4.11 shows the results of the ab initio MO calculations. For each compound both linear 

type arrangements [E···Se-C and Se···P-C] were evaluated using B3LYP/6-31+G* level, using H-

relaxed X-ray geometries. Experimental data is preceded by fully optimised data in parentheses. 

The Wiberg bond index (WBI), which measures the covalent bond order, was calculated for both 

linear arrangements in all three compounds.13 WBI values of 0.02-0.04 indicate a very minor 

interaction taking place between non-bonded atoms. For strong interactions these values would be 

approaching 0.20.13 We are therefore unable to conclude 3c-4e non-bonded interactions are taking 

place in these molecules.  
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Further calculations were performed on the radical cations of (8-phenylselenylnaphth-1-

yl)diphenylphosphine chalcogenides 34-36. The results are shown in Figure 4.12 with calculated 

data preceded by the values for the neutral homologue in parentheses.  

  

P

Se

Ph

S

Ph

Ph

d = 3.41 (3.37) Å
= 162º (178º)

WBI = 0.01 (0.03) d

d = 2.86 (3.27) Å
= 129º (169º)

WBI = 0.19 (0.05)   
  

 

Fig. 4.12 Results of ab initio MO Calculations performed on radical cations of (8-

phenylselenylnaphth-1-yl)diphenylphosphine chalcogenides 34-36 evaluated at the B3LYP/6-

31+G* level.  

 

Wiberg bond index values for the E···Se-C linear arrangement in all three radical cation species 

have increased to 0.14-0.19, showing a greater degree of interaction compared to in the neutral 

species. The WBI value for the Se···P-C linear arrangement in all three compounds is 0.01 

showing no or limited interaction. For each species the adiabatic ionisation potential is shown 

followed by the vertical ionisation potential in parentheses. The values for the three species 6.58-

6.20 (6.90-6.70) eV can be compared to the known compound naphtho[1,8-cd]-1,2-dithiole which 

has an IP value of 7.82(8.03) eV (Figure 4.13). From previous unpublished work from the 

Woollins group it was shown that naphtho[1,8-cd]-1,2-dithiole acts as an inorganic donor and 

forms crystals of [C10H6S2
+]3[BF4

-]3 using electrocrystallisation techniques.14 The IP values for the 

three chalogenides 34-36 suggests these compounds may have similar electrochemical reactivity to 

naphtho[1,8-cd]-1,2-dithiole and may be able to form charge transfer compounds.    

 

 
Fig. 4.13 Electrochemical reactivity of naphtho[1,8-cd]-1,2-dithiole was previously studied within 

the Woollins Group.14  

 

Figure 4.14 shows the molecular orbitals for both the neutral and radical cation species of (8-

phenylselenylnaphth-1-yl)diphenylphosphine selenide 36 at the B3LYP/6-31+G* level. 
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           neutral     radical cation 

 
     HOMO (MO Nr. 136), -5.38 eV                    SOMO (MO Nr. 136), -8.71 eV 

 
               MO Nr. 134 , -5.70 eV                  MO Nr. 125, -11.40 eV 
 
 

Fig. 4.14 The molecular orbitals for (8-phenylselenylnaphth-1-yl)diphenylphosphine selenide 36 

(B3LYP/6-31+G* level). 
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Fig. 4.15 The crystal structure of (8-phenylselenylnaphth-1-yl)diphenylphosphine selenide 36. 
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Table 4.4   Bond lengths [Å] and angles [°] for (8-phenylselenylnaphth-1-yl)diphenylphosphine 

chalcogenides 34, 35 and 36. 

_______________________________________________________________________________ 

 
Se(1)···P(1) 3.215(2) Se(1)···P(1) 3.2803(8) Se(1)···P(1) 3.278(2) 

P(1)-C(1) 1.826(5) P(1)-C(1) 1.837(3) P(1)-C(1) 1.825(6) 

Se(1)-C(9) 1.937(4) Se(1)-C(9) 1.916(3) Se(1)-C(9) 1.917(6) 

      

Se(1)···O(1) 2.770(3) Se(1)···S(1) 3.3490(7) Se(1)···Se(2) 3.4217(8) 

P(1)-O(1) 1.476(4) P(1)-S(1) 1.9567(10) P(1)-Se(2) 2.1165(16) 

      

P(1)-C(1)-C(10) 123.6(3) P(1)-C(1)-C(10) 125.4(2) P(1)-C(1)-C(10) 126.5(4) 

C(1)-C(10)-C(9) 126.8(4) C(1)-C(10)-C(9) 126.7(2) C(1)-C(10)-C(9) 126.3(5) 

Se(1)-C(9)-C(10) 125.1(3) Se(1)-C(9)-C(10) 124.7(2) Se(1)-C(9)-C(10) 124.5(4) 

 Σ = 375.5(7)  Σ = 376.8(4)  Σ = 377.3(9) 

      

Distance from naphthalene mean plane    

P(1) -0.578(6) P(1) 0.601(3) P(1) 0.578(7) 

Se(1) 0.450(6) Se(1) -0.420(3) Se(1) -0.397(7) 

O(1) -1.458(8) S(1) 2.179(4) Se(2) 2.314(8) 

      

Torsion angle       

C:(6)-(5)-(10)-(1) 174.4(5) C:(6)-(5)-(10)-(1) 174.9(2) C:(6)-(5)-(10)-(1) 175.7(5) 

C:(4)-(5)-(10)-(9) 170.5(5) C:(4)-(5)-(10)-(9) 173.6(2) C:(4)-(5)-(10)-(9) 175.1(5) 
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Summary 
Within each series of phosphorus(V) chalcogenides there is a general increase in the peri-distance 

with increasing size of the chalcogen bonded to phosphorus (Figure 4.17). The values for the two 

series of compounds Nap[PPh2=E][SPh] 21-23 and Nap[PPh2=E][SePh] 34-36 also shows the 

importance of peri-atom size on the peri-distance (Figure 4.17). As the peri-atom size increases 

from sulfur (21-23) to selenium (34-36) there is greater steric interaction which forces the peri-

atoms further apart thus increasing the values for the peri-distance. The values for the two series 

Nap[PPh2=E][SEt] 16-18 and Nap[PPh2=E][SPh] 21-23 are similar which implies that the ethyl 

group (16-18) and the phenyl group (21-23) attached to S(1) have a similar influence on the 

overall structure and therefore the peri-distance. 
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Fig. 4.16 Comparing the in-plane distortion in the Nap[ER][PPh2=E1]compounds 16-18, 21-23 

and 34-36. 

 

Figure 4.16 quantifies the degree of in-plane distortion found in the three series of chalcogenides 

Nap[PPh2=E][ER] by comparing the sum of the peri-region angles. A general increase in the splay 

angles is observed in each group due to the increasing size of chalcogen bonded to P(1). The sulfur 

compounds have similar in-plane distortions but the greatest degree of in-plane distortion is found 

when selenium occupies one of the peri-atom positions and can be attributed to its larger size 

compared to sulfur. 
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Comparison of the peri -distances in the chalcogenides of 
compounds 3, 19 and 32
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Fig. 4.17 Comparing the peri-distances in the Nap[ER][PPh2=E1]compounds 16-18, 21-23 and 

34-36. 
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Out-of-plane distortion is compared in Figure 4.18 by looking at the deviation of the peri-atoms 

above and below the mean naphthalene plane. The distortion is found to be not only consistent 

throughout the three groups of compounds but also between groups. This suggests out-of-plane 

distortion is not the major factor contributing to the differing peri-distances as seen in Figure 4.17. 

The greatest out-of-plane distortion is observed in Nap[PPh2=S][SEt] (Figure 4.18). 

     

Comparing the out-of-plane distortion in the chalcogenides of compounds 3, 19 and 32

-1.2

-0.7

-0.2

0.3

0.8

D
is

ta
nc

e 
of

 t
he

 p
er

i
-a

to
m

s 
fr

om
 t

he
 n

ap
ht

ha
le

ne
 p

la
ne

 [Å
]

S

S

S

 
Fig. 4.18 Comparing out-of-plane distortion in the Nap[ER][PPh2=E1]compounds 16-18, 21-23 

and 34-36. 

 

The degree of naphthalene backbone distortion in the chalcogenides is varied with no apparent 

pattern to indicate the reasons. The S(phenyl) chalcogenides are found to contain naphthalene ring 

systems with the greatest buckling whilst the least distorted are found overall to be the Se(phenyl) 

chalcogenides. Figure 4.19 shows the two compounds with the greatest (17) and least (42) 

amounts of naphthalene backbone distortion in the nine chalcogenide compounds 

Nap[ER][PPh2=E1] 16-18, 21-23 and 34-36.  
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Fig. 4.19 The greatest 17 and least 42 amount of naphthalene backbone distortion in the 

Nap[ER][PPh2=E1]compounds 16-18, 21-23 and 34-36. 
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Chapter 5 

Preparation of 1,8-(arylchalcogeno)naphthalenes 

In the first half of this thesis we have shown that mixed donor ligands containing either sulfur or 

selenium and phosphorus moieties at the peri-positions of naphthalene (3, 19, 32) can be 

synthesised easily starting from dihalo-naphthalenes. In this chapter we build on the reactions 

already undertaken in Chapters 1-3 to describe novel routes to the known series of 1,8-

bis(phenylchalcogeno)naphthalenes 37-39 and the synthesis of the novel 1,8-

bis(ethylsulfanyl)naphthalene 40 (Figure 5.1). The routes to three related novel mixed 1,8-

(phenylchalcogeno)naphthalenes 41-43 are also described (Figure 5.1). Finally, the oxidation of 37 

with different molar equivalents of meta-chloroperoxybenzoic acid (mCPBA) to prepare two novel 

oxides 44 and 45 is discussed. 
 

 
Fig. 5.1 1,8-bis(phenylchalcogeno)naphthalenes 37-39, mixed 1,8-

(phenylchalcogeno)naphthalenes 41-43, 1,8-(ethylsulfanyl)naphthalene 40 and oxides 44 and 45. 

 
A literature study of 1,8-bis(phenylchalcogeno)naphthalenes 37-39. 

The synthesis and molecular structure of 1,8-bis(phenylsulfanyl)naphthalene 37 was first reported 

in 2002 by Kálmán et al. during their investigations into S···S and S···O non-bonded interactions in 

the series of compounds 46-54 (Figure 5.2).1 The four compounds contain sulfur peri-atoms with 

different valence states resulting in different S···S close contacts. 

 

Fig. 5.2 The three 1,8-disubstituted naphthalene derivatives 46-48 reported along with 43 by 

Kálmán et al. during their investigations into S···S and S···O non-bonded interactions.1 

 



Chapter 5 - Preparation of 1,8-(arylchalcogeno)naphthalenes 
                           

                                                                                                   134 

 

Preparation of 37 was achieved by reacting 1,8-diiodonaphthalene 14 with benzenethiol 49 and 

copper(I) oxide (Scheme 5.1). The molecular structure of 37 was found to be free from molecular 

symmetry and peri-sulfur atoms were found to lie within the sum of van der Waals radii for the 

two atoms. Only one favourable quasi-linear arrangement of C(17)-S(2)···S(1) was observed with 

an angle of 168.5°.1 

 

Scheme 5.1 The reaction scheme for the preparation of 1,8-diphenylsulfanylnaphthalene 37 as 

reported by Kálmán et al..1 

 

Compound 37 was also reported in 2008 by Nakanishi et al. as part of a wider study of 

homonuclear Z···Z (Z = O, S, Se and Te) interactions between peri-atoms in 1,8-disubstituted 

naphthalenes.2 They synthesised and studied the molecular structures of a series of compounds 

(Figure 5.3), including 37, the first reported structure of 1,8-bis(phenylselanyl)naphthalene 38 and 

the known compound 1,8-bis(phenyltellurenyl)naphthalene 39. Each structure was classified by 

the orientation of the Z-CR bond relative to the naphthalene plane (see Chapter 4).2,3 

 

 
Fig. 5.3 The 1,8-disubstituted naphthalene derivatives reported by Nakanishi et al. during their 

investigations into Z···Z homonuclear interactions.2 

 

Compounds 37 and 38 were reported to adopt an ‘AB type’ orientation with one Z-CR bond lying 

on the naphthyl plane and one Z-CR bond lying perpendicular to the plane (Figure 5.4).2 39 adopts 

a ‘CC type’ structure with both Z-CR bonds lying at roughly 135° to the plane and trans to one 

another (Figure 5.4).2 Based on quantum chemical calculations Nakanishi et al. concluded that the 

‘AB type’ structures of 37 and 38 are stabilised by 3c-4e interactions.2,3  
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Fig. 5.4 The orientation of the Z-CR bond in structure types AB and CC as reported by Nakanishi 

et al..2,3 

 

1,8-bis(phenyltellurenyl)naphthalene 39 first appeared in the literature in 1995 from the group of 

Furukawa et al. and as such was the first 1,8-ditellurenylnaphthalene to be reported.4 

Electrochemical oxidation of 39 via cyclic voltammetry produced one reversible oxidation peak at 

a very low oxidation potential of +0.16 V.4 Furukawa et al. attributed this to ‘the destabilisation of 

39 by peri lone pair-lone pair repulsion and the stabilisation of the oxidised species by 

neighbouring-tellurium participation’.4  

 

 
Scheme 5.2 The oxidation reactions of 39 as reported by Furukawa et al..4 

 

The 125Te NMR spectrum of 39 in CDCl3 showed a peak at δ = 617 ppm whilst a solution of 39 in 

D2SO4 gave a downfield shift to δ = 964 ppm relating to the dication 50 (Scheme 5.2).4 Furukawa 

et al. were also able to show the interaction between telluronio-tellurenyl groups at the peri-

positions of cation 51.4  The 125Te NMR spectrum of 51 showed two peaks at δ = 557 ppm (Te) 

and δ = 656 ppm (Te+), each peak exhibiting satellites due to 125Te-125Te coupling with coupling 

constants of JTe-Te = 1093 Hz.4 

 



Chapter 5 - Preparation of 1,8-(arylchalcogeno)naphthalenes 
                           

                                                                                                   136 

 

In house preparation of 1,8-bis(phenylchalcogeno)naphthalenes 37-39  

 

In the first three chapters we utilised single substitution reactions of 1,8-dihalonaphthalenes via 

lithium halogen exchanges followed by addition of a suitable diaryl dichalcogenide to afford 

compounds of the type Nap[X][ER] (Scheme 5.3).5 

 

 

Scheme 5.3 The preparation of 1-halo-8-(arylchalcogeno)naphthalenes.5 

 

Treatment of 1,8-dibromonaphthalene 11 with two equivalents of n-butyllithium resulted in a 

double lithium halogen exchange reaction and afforded the doubly substituted 1,8-

dilithionaphthalene. Two equivalents of diphenyl disulfide reacted with the lithium species and 

formed 1,8-bis(phenylsulfanyl)naphthalene 37 in 22% yield (Scheme 5.4). Similar reactions were 

undertaken with analogous starting materials, diphenyl diselenide and diphenyl ditelluride, to 

afford 1,8-bis(phenylselanyl)naphthalene 38 (75% yield) and 1,8-bis(phenyltellurenyl)naphthalene 

39 (37% yield) respectively (Scheme 5.4).   

 

 

Scheme 5.4 The preparation of 1,8-bis(phenylchalocgeno)naphthalenes 37-39.5 

 

For completeness 37-39 were also synthesised from 1,8-diiodonaphthalene 14 using the same 

procedure as adopted for 1,8-dibromonaphthalene 11 [Yield: 37 20%, 38 82%, 39 23%]. Due to 

the low yielding nature of synthesising 1,8-dibromo- and 1,8-diiodonaphthalene a new route to 

compounds 37-39 was desired starting from a cheaper and more accessible starting material. The 

key intermediate in the synthesis of the bis-chalcogen compounds is 1,8-dilithionaphthalene. The 

ability to synthesise this compound without the laborious and time consuming preparation of the 

dihalide compounds should make the overall reaction more efficient.  
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1-bromonaphthalene 52 is cheap and commercially available and reacts with one equivalent of n-

butyllithium to form the mono-substituted 1-naphthyllithium.6,7 Further treatment with n-

butyllithium, as in many cases of 1-substituted naphthalenes, leads to the introduction of the 

second lithium into the 2-position.7  

 

In the presence of tetramethylethylenediamine (TMEDA) 53, 1-bromonaphthalene 52 undergoes 

specific metallations through consecutive equivalents of n-butyllithium with the second lithium 

directed to the adjacent peri-position. TMEDA has an affinity for lithium and when 1-

naphthyllithium and BuLi.TMEDA are refluxed for 3 hours, a bidentate complex 

dilithionaphthalene·tmeda 54 is formed as the exclusive product in high yield (Scheme 5.5). So far 

the observed regio-preferences of this reaction have not been adequately determined.6,7  

 

 

Scheme 5.5 The preparation of 1,8-dilithionaphthalene·tmeda 54.6,7 

 

The reaction of 1,8-dilithionaphthalene·tmeda 54 with two molar equivalents of diphenyl disulfide 

affords the corresponding 1,8-bis(phenylsulfanyl)naphthalene 37 in 13% yield (Scheme 5.6). A 

similar reaction with diphenyl diselenide produced 1,8-bis(phenylselenyl)naphthalene 38 in 14% 

yield, whilst the preparation of the tellurium analogue 39 from diphenyl ditelluride using the same 

method was unsuccessful. 

 

 
Scheme 5.6 The preparation of 37 and 38 from 1,8-dilithionaphthalene·tmeda 54. 
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This route to 37 provides a higher yielding pathway (13% yield) compared to the combined yields 

of synthesising 1,8-dibromonaphthalene (26 + 22 = 6%) or 1,8-diiodonaphthalene (10 + 20 = 2%) 

followed by the subsequent lithium halogen exchange reaction to form the product. Preparing 38 

by this method affords a higher yielding route (14%) compared to going via 1,8-diiodonaphthalene 

(10 + 82 = 8%), but the route via 1,8-dibromonaphthalene as an intermediate is higher yielding (26 

+ 75 = 20%).   

 

The three 1,8-bis(phenylchalcogeno)naphthalenes 37-39 were fully characterised by elemental 

analysis, infra-red spectroscopy, 1H and 13C NMR spectroscopy and mass spectrometry. 38 was 

also analysed by 77Se NMR spectroscopy [δ = 428.6 ppm (lit.,2 δ = 435.4 ppm)] and similarly 39 

was analysed by 125Te NMR spectroscopy [δ = 619.7 ppm, J(Te---Te) 52.7 Hz (lit.,4 δ = 617 ppm)]. 
1H and 13C NMR spectroscopy values for 37-39 were in accord with literature values.2,4   

 

Crystal structure data was obtained for compounds 37 and 38. The data for 39, used throughout 

this thesis for comparison, is taken from the literature4 (Table 5.1). Molecular structures of 37-39 

are shown in Figures 5.5-5.7.4 The structures and data obtained for 37 and 38 were in close 

agreement to those reported in the literature.1,2 Further crystallographic information for 37 and 38 

can be found in Appendices 25 and 26. 

 

Fig. 5.5 The crystal structure of 1,8-bis(phenylsulfanyl)naphthalene 37. 

 

In all three compounds the E(phenyl) groups lie in close proximity to each other, with non-bonded 

peri-distances (E···E) of 3.0036(13) 37, 3.1332(9) 38 and 3.287(1) 39,4 shorter than the sum of van 

der Waals radii of the atoms [3.60 Å, 3.80 Å, 4.12 Å] by 0.60-0.83 Å (Table 5.1) suggesting the 

possible existence of intramolecular interactions.8  



Chapter 5 - Preparation of 1,8-(arylchalcogeno)naphthalenes 
                           

                                                                                                   139 

 

The close proximity of the two bulky substituents leads to in-plane and out-of-plane distortion of 

the peri-atoms with respect to the naphthalene ring system. The amount of in-plane distortion of 

the substituents, indicated by a widening of the bay angles, increases from the bis-sulfide to the 

bis-telluride compound [373.1(5)° 37, 373.9(11)° 38, 375.0(2)° 394]. The level of displacement of 

the peri-atoms to opposite sides of the best naphthalene plane shows out-of-plane distortion is also 

enhanced with the increasing size of the peri-atoms (Table 5.1).  

 
Fig. 5.6 The crystal structure of 1,8-bis(phenylselenyl)naphthalene 38. 

 

The displacement of the peri-atoms within and out of the plane is accompanied by a distortion of 

the usually planar and rigid C10-unit by a twist into a non-planar conformation. This is illustrated 

by the torsion angles associated with the central C(5)-C(10) bond (Table 5.1). Buckling of the 

plane is greatest in 38 and 39 (torsion angles further from the linear 180°) with 37 retaining the 

most planar naphthalene ring system of the three compounds (Figure 5.8). 

 

 

Fig. 5.7 The crystal structure of 1,8-bis(phenyltellurenyl)naphthalene 39.4 
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Fig. 5.8 The structures of 1,8-bis(phenylsulfanyl)naphthalene 37, 1,8-

bis(phenylselenyl)naphthalene 38 and 1,8-bis(phenyltellurenyl)naphthalene 39,4 showing the 

planarity of the naphthalene backbone. 

 

Molecular structures 37 and 38, as reported by Nakanishi et al.,2 adopt similar orientations of the 

‘type AB’ with one E-CPh bond aligning close to the naphthyl plane and one roughly perpendicular 

to it. The tellurium analogue 39 adopts the ‘CC-t type’ structure with both E-CPh bonds lying at 

roughly 135° to the naphthyl plane (Figure 5.9).2,4 Although 37 and 38 both adopt the ‘AB type’ 

arrangement the phenyl rings in 37 lie across the naphthalene plane (trans) and in 38 lie on the 

same side of the naphthalene plane (cis) (Figure 5.9). The ‘CC-t type’ orientation in 39 sees the 

phenyl rings trans to one another.2,4 

 

 

Fig. 5.9 The structures of 37-39 showing the orientation of the E(phenyl) groups, the type of 

structure and the linear arrangement CPh-E···E’ (37,38).2,4 

 

Only one attractive quasi-linear arrangement [C(11)-S(1)···S(2)] is observed in 37 with an angle of 

168.4(1)° and again only one [C(11)-Se(1)···Se(2)] appears in 38 with an angle of 171.3(1)°. There 

are no similar linear arrangements found in 39 with angles of 145.7(1)° [C(11)-Te(1)···Te(2)] and  

154.2(1)° [C(17)-Te(2)···Te(1)].4  
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Table 5.1 Selected bond lengths [Å] and angles [°] for 1,8-bis(phenylsulfanyl)naphthalene 37, 1,8-

bis(phenylselenyl)naphthalene 38 and 1,8-bis(phenyltellurenyl)naphthalene 39.4 

_______________________________________________________________________________ 

 

S(1)-S(2) 3.0036(13) Se(1)-Se(2) 3.1332(9) Te(1)-Te(2) 3.287(1) 

S(1)-C(1) 1.794(3) Se(1)-C(1) 1.922(7) Te(1)-C(4) 2.14(1) 

S(2)-C(9) 1.783(4) Se(2)-C(9) 1.930(7) Te(2)-C(6) 2.14(2) 

      

S(1)-C(1)-C(10) 121.8(2) Se(1)-C(1)-C(10) 123.5(5) Te(1)-C(1)-C(10) 123(1) 

C(1)-C(10)-C(9) 126.8(3) C(1)-C(10)-C(9) 126.6(6) C(1)-C(10)-C(9) 128(1) 

S(2)-C(9)-C(10) 124.5(2) Se(2)-C(9)-C(10) 123.8(5) Te(2)-C(9)-C(10) 124(1) 

 Σ = 373.1(5)  Σ = 373.9(11)  Σ = 375.0(2) 

      

Distance from naphthalene mean plane    

S(1) 0.270(4) Se(1) 0.468(9) Te(1) -0.506(1) 

S(2) -0.163(4) Se(2) -0.327(9) Te(2) 0.565(1) 

      

Torsion angle       

C:(6)-(5)-(10)-(1) 178.6(3) C:(6)-(5)-(10)-(1) 173.5(6) C:(9)-(10)-(5)-(4) 174.2(1) 

C:(4)-(5)-(10)-(9) 177.2(3) C:(4)-(5)-(10)-(9) 174.6(6) C:(1)-(10)-(5)-(6) 175.1(1) 
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Preparation of the novel compound 1,8-bis(ethylsulfanyl)naphthalene 40 
 
The novel compound 1,8-bis(ethylsulfanyl)naphthalene 40 was synthesised following similar 

procedures to those used for the preparation of the 1,8-bis(phenylchalcogeno)naphthalenes 37-39. 

1,8-dibromonaphthalene 11 reacted with two molar equivalences of n-butyllithium followed by 

two equivalences of diethyl disulfide to give 40 in 27% yield (Scheme 5.7). The analogous 

reaction employing 1,8-diiodonaphthalene 14 as the starting point afforded the product in 80% 

yield (Scheme 28). 40 was fully characterised by elemental analysis, infra-red spectroscopy, 1H 

and 13C NMR spectroscopy and mass spectrometry.   

 

 
Scheme 5.7 The preparation of 1,8-bis(ethylsulfanyl)naphthalene 40. 

 

The molecular structure of 40 is shown in Figure 5.10 and selected bond lengths and bond angles 

are listed in Table 5.2. Compared to its S(phenyl) analogue 37, the degree of distortion in the 

naphthalene geometry of 40 is notably reduced.  

 

 
Fig. 5.10 The crystal structure of 1,8-bis(ethylsulfanyl)naphthalene 40. 
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The distance between the peri-atoms [2.9323(13) Å] is smaller than the distance found in 37 

[3.0336(13) Å] and much shorter than the sum of the van der Waals radii of two sulfur atoms [3.60 

Å].8 The sum of the bay region angles shows there is also a reduction in the in-plane distortion 

going from the S(phenyl) compound 37 [373.1(5)°] to the S(ethyl) compound 40 [370.8(5)°]. 

Displacement of the two sulfur atoms from the naphthalene plane is seen to be larger in the 

S(phenyl) compound with the peri-atoms of 40 lying 0.182(4) Å and -0.176(5) Å from the 

naphthalene plane respectively. In both 37 and 40 (Figure 5.11) the naphthalene backbones are 

relatively planar. Torsion angles for the C(10)-C(5) bond for both compounds also indicates a 

greater distortion in the S(phenyl) analogue. Selected bond angles and distances for 37 and 40 are 

compared in Table 5.2, further information for the crystal structure of 40 can be found in 

Appendix 27.   

 
Fig. 5.11 The molecular orientation of 1,8-bis(ethylsulfanyl)naphthalene 40. 

 
Figure 5.11 shows the orientation of 1,8-bis(ethylsulfanyl)naphthalene 40 which adopts the ‘BB 

type’ arrangement with the two ethyl moieties lying trans to one another.2 This is different from 

that observed for the S(phenyl) analogue 37 which adopts the ‘type AB’.2 There is no observed 

linear arrangement of atoms with angles C(11)-S(1)···S(2) 157.3(1)° and C(13)-S(2)···S(1) 

159.6(1)°. Figure 5.12 illustrates the ethyl moieties in 40 adopting different orientations, the 

C(11)-C(12) bond points up in line with the naphthalene plane and the C(13)-C(14) bond lies 

roughly perpendicular to the plane.   

 

 

Fig. 5.12 The molecular orientation of 1,8-bis(ethylsulfanyl)naphthalene 40 showing out-of-plane 

distortion and naphthalene planarity. 
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Table 5.2 Selected bond lengths [Å] and angles [°] for 1,8-bis(ethylsulfanyl)naphthalene 40 and 

1,8-bis(phenylsulfanyl)naphthalene 37. 

_______________________________________________________________________________ 

  

S(1)-S(2) 2.9323(13) S(1)-S(2) 3.0036(13) 

S(1)-C(1) 1.776(4) S(1)-C(1) 1.794(3) 

S(2)-C(9) 1.778(4) S(2)-C(9) 1.783(4) 

    

S(1)-C(1)-C(10) 122.6(2) S(1)-C(1)-C(10) 121.8(2) 

C(1)-C(10)-C(9) 126.1(3) C(1)-C(10)-C(9) 126.8(3) 

S(2)-C(9)-C(10) 122.1(2) S(2)-C(9)-C(10) 124.5(2) 

 Σ = 370.8(5)  Σ = 373.1(5) 

     

Distance from naphthalene mean plane  

S(1) 0.182(4) S(1) 0.270(4) 

S(2) -0.176(5) S(2) -0.163(4) 

      

Torsion angle      

C(6)-C(5)-C(10)-C(1) -178.7(3) C(6)-C(5)-C(10)-C(1) 178.6(3) 

C(4)-C(5)-C(10)-C(9) -178.9(3) C(4)-C(5)-C(10)-C(9) 177.2(3) 
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Preparation of 1-halo-8-(phenyltellurenyl)naphthalenes 53,54 

 

In Chapters 2 and 3 we described the single substitution reactions of 1,8-dibromo- 11 and 1,8-

diiodonaphthalene 14 in the synthesis of compounds 9, 20, 31 and 33 (Figure 5.13). To complete 

the series the tellurium analogues 55 and 56 were prepared following the same procedure. 

  

 
Fig. 5.13 The products of single substitution reactions of 1,8-dibromo and 1,8-diiodonaphthalene 

with diphenyl dichalcogenides. 

 

1,8-dibromonaphthalene 11 and 1,8-diiodonaphthalene 14 both reacted with one equivalent each of 

n-butyllithium and diphenyl ditelluride to give the novel compounds 1-bromo-8-

(phenyltellurenyl)naphthalene 55 (32% yield) and 1-iodo-8-(phenyltellurenyl)naphthalene 56 

(18% yield) respectively. Both compounds were characterised by elemental analysis, infra-red 

spectroscopy, 1H, 13C and 125Te NMR spectroscopy and mass spectrometry. The 125Te NMR 

spectra gave signals at δ = 731.23 ppm for 55 and δ = 698.26 ppm for 56. 

 

 Fig. 5.14 The molecular structure of 1-bromo-8-(phenyltellurenyl)naphthalene 55. 

 

The molecular structure of 55 (Figure 5.14) shows an intramolecular bromine-tellurium peri-

distance of 3.1909(10) Å, much shorter than the sum of the van der Waals radii for the two peri-

atoms [3.91 Å].8  
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Out-of-plane distortion is observed with the tellurium atom Te(1) -0.53(9) Å and the bromine atom 

Br(1) 0.406(8) Å lying from the mean plane of the naphthalene backbone (Table 5.3). The heavy 

atoms are further accommodated by in-plane distortions in the C-C-C group between the Br and Se 

atoms as shown by the sum of the bay region angles [373.6(11)°]. As expected from the heavy 

atom displacement, the phenyltellurenyl group lies on one side of the naphthalene plane, the 

phenyl ring being inclined at 87° to the naphthalene plane.  

 
Fig. 5.15 The molecular structure of 1-iodo-8-(phenyltellurenyl)naphthalene 56. 

 

The molecular structure of 56 (Figure 5.15) is similar to its bromine analogue with the 

phenyltellurenyl group lying on one side of the naphthalene plane and the phenyl ring inclined by 

88° to the naphthalene plane. Compared to 55, the iodine compound exhibits greater strain relief 

via naphthalene distortion due to increased steric repulsion between the peri-atoms. The larger 

iodine atom is accommodated by a longer intramolecular non-bonded I···Te(phenyl) distance 

[3.3146(6) Å] compared to the Br···Te(phenyl) distance of 3.1909(10) Å, but this distance is still 

considerably shorter than the sum of the van der Waals radii of the interacting atoms [4.04 Å].8  

 

An increase in the splay of the bay region is seen by comparison of the sums of the peri-region 

angles [55 373.6(11)°, 56 376.2(10)°] and shows a greater in-plane distortion occurs in the iodine 

compound. Out-of-plane distortion in the two analogues is observed to a similar degree with the 

I(1) and Te(1) atoms of 56 lying -0.415(9) Å and 0.536(9) Å from the plane respectively. The 

degree of planarity in the two naphthalene backbones is also comparable with similar C(5)-C(10) 

torsion angles in the two compounds. Selected bond lengths and angles for 55 and 56 are 

compared in Table 5.3, further information on the molecular structures can be found in 

Appendices 28 and 29. 
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The difference in the naphthalene distortion when replacing bromine for iodine in compounds 55 

and 56 matches the pattern found in the selenium analogues (31 and 33) as discussed in Chapter 3.  

In both cases replacing bromine for iodine increases the amount of steric interaction and therefore 

naphthalene distortion, best observed by comparing their peri-distances [31 3.1136(6) Å (BrSe), 

33 3.2524(8) Å (ISe), 55 3.1909(10) Å (BrTe), 56 3.3146(6) Å (ITe)]. These values also illustrate 

that replacing the selenium peri-atom for tellurium also increases the degree of steric interaction 

between the heavy atoms and therefore the amount of strain relief.  

 

                

Fig. 5.16 The orientation of compounds 31, 33, 55 and 56 showing the ‘type B structure’. 

 

All four compounds adopt the same orientation, described by Nakanishi et al. as ‘type B’ structure 

with E-C bonds lying close to the naphthalene plane (Figure 5.16).2,3 The E(phenyl) moieties sit in 

a similar location and produce a linear arrangement of the type X···E-C with similar angles 

approaching 180° throughout [31 Br···Se-C 175.7(1)°, 33 I···Se-C 174.3(1)°, 55 Br···Te-C 

173.1(1)°, 56 I···Te-C 175.1(1)°] (Figure 5.16). The observed non-bonded distances between X 

and E in all compounds are shorter than sum of van der Waals radii of the atoms by 0.64 Å for 31, 

0.63 Å for 33, 0.72 Å for 55, 0.73 Å for 56.8 As described in Chapter 3, according to Nakanishi et 

al., the linearity of the three atoms X···E-C and the close proximity of the peri-atoms is conducive 

to non-bonded interactions and can be attributed to a 3c-4e type interaction taking place.2,3 

 

 

 

 

 

 

 

 



Chapter 5 - Preparation of 1,8-(arylchalcogeno)naphthalenes 
                           

                                                                                                   148 

 

Table 5.3 Selected bond lengths [Å] and angles [°] for 1-bromo-8-(phenyltellurenyl)naphthalene 

55 and 1-iodo-8-(phenyltellurenyl)naphthalene 56. 

_______________________________________________________________________________ 

                                 

10

5
6

7

8

91

2

3

4

I1 Te1

11

16

15

14

13

12

56   

Br(1)···Te(1) 3.1909(10) I(1)···Te(1)  3.3146(6) 

Br(1)-C(1) 1.917(6) I(1)-C(1) 2.108(6) 

Te(1)-C(9) 2.153(6) Te(1)-C(9) 2.151(6) 

    

Br(1)-C(1)-C(10) 121.7(6) I(1)-C(1)-C(10) 123.4(5) 

C(1)-C(10)-C(9) 128.6(6) C(1)-C(10)-C(9) 129.2(5) 

Te(1)-C(9)-C(10) 123.3(4) Te(1)-C(9)-C(10) 123.6(4) 

 Σ = 373.6(11)  Σ = 376.2(10) 

       

Distance from naphthalene mean plane  

Br(1) 0.4058(84) I(1) -0.4152(86) 

Te(1) -0.529(88) Te(1) 0.5355(86) 

      

Torsion angle      

C(6)-C(5)-C(10)-C(1) 174.8(6) C(6)-C(5)-C(10)-C(1) -174.5(6) 

C(4)-C(5)-C(10)-C(9) 173.4(6) C(4)-C(5)-C(10)-C(9) -175.1(6) 
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Preparation of mixed chalcogen ligands: 1,8-(chalcogeno)naphthalenes 41-43 

 

On completing the synthesis of the series of compounds Nap[X][EPh] (X = Br, I; E = S, Se, Te) 9, 

20, 31, 33, 55 and 56, further substitution reactions were carried out to afford three novel mixed 

chalcogen ligands. Following the same procedure used in their own preparation, the mono-

substituted compounds were reacted via a second substitution reaction involving a lithium halogen 

exchange and treatment with a suitable dichalcogenide.  

 
Preparation of 1-(phenylselenyl)-8-(phenylsulfanyl)naphthalene 41. 

1-bromo-8-(phenylsulfanyl)naphthalene 9 and 1-iodo-8-(phenylsulfanyl)naphthalene 20 reacted 

with n-butyllithium and diphenyl diselenide to afford the novel compound 1-(phenylselenyl)-8-

(phenylsulfanyl)naphthalene 41 in 75% and 63% yield respectively (Scheme 5.8). 

 

 
Scheme 5.8 The reaction scheme for the preparation of 1-(phenyltellurenyl)-8-

(phenylsulfanyl)naphthalene 41 from 1-halo-8-(phenylsulfanyl)naphthalenes 9 and 20. 

 

Analogous reactions starting from 1-bromo-8-(phenylselenyl)naphthalene 31 and 1-iodo-8-

(phenylselenyl)naphthalene 33 afforded the desired product 41, upon treatment with diphenyl 

disulfide, in lower yields of 34% and 15% respectively (Scheme 5.9). The clear crystals of 41 

obtained were characterised by elemental analysis, infra-red spectroscopy, 1H, 13C and 77Se NMR 

spectroscopy and mass spectrometry. The 77Se NMR spectrum showed a single peak at δ = 455.3 

ppm. 
 

 
Scheme 5.9 The reaction scheme for the preparation of 1-(phenyltellurenyl)-8-

(phenylsulfanyl)naphthalene 41 from 1-halo-8-(phenylselenyl)naphthalenes 31 and 33. 
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Preparation of 1-(phenyltellurenyl)-8-(phenylsulfanyl)naphthalene 42. 

The novel compound 1-(phenyltellurenyl)-8-(phenylsulfanyl)naphthalene 42 was synthesised from 

1-bromo-8-(phenylsulfanyl)naphthalene 9 and 1-iodo-8-(phenylsulfanyl)naphthalene 20 upon 

treatment with diphenyl ditelluride in 51% and 88% yield respectively (Scheme 5.10).  

 

 
Scheme 5.10 The reaction scheme for the preparation of 1-(phenyltellurenyl)-8-

(phenylsulfanyl)naphthalene 42. 

 

The preparation of 42 starting from 1-bromo-8-(phenyltellurenyl)naphthalene 55 followed by the 

addition of diphenyl disulfide was unsuccessful and gave 1-bromo-8-(phenylsulfanyl)naphthalene 

9 as the major product. This may indicate the facile cleavage of the Te-CNap bond is more 

susceptible to attack by n-butyllithium. For this reason the reaction of the iodide analogue 56 was 

not undertaken. Characterisation of 42 was accomplished by elemental analysis, infra-red 

spectroscopy, 1H, 13C, and 125Te NMR spectroscopy and mass spectrometry. The 125Te NMR 

spectrum showed a single peak at δ = 715.2 ppm. 

 

Preparation of 1-(phenyltellurenyl)-8-(phenylselenyl)naphthalene 43. 

Comparable to the synthesis of 42, 1-(phenyltellurenyl)-8-(phenylselenyl)naphthalene 43 could 

only be prepared upon reaction of either 1-bromo-8-(phenylselenyl)naphthalene 31 or 1-iodo-8-

(phenylselenyl)naphthalene 33 with diphenyl ditelluride [81%, 18% yield] (Scheme 5.11). 

 

  
Scheme 5.11 The reaction scheme for the preparation of 1-(phenyltellurenyl)-8-

(phenylselenyl)naphthalene 43. 
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Characterisation was carried out by elemental analysis, infra-red spectroscopy, 1H, 13C, 77Se and 
125Te NMR spectroscopy and mass spectrometry. 77Se NMR and 125Te NMR spectra showed single 

peaks at δ = 362.8 ppm and δ = 687.6 ppm respectively which were in similar ranges compared to 

compounds 41 [77Se NMR δ = 455.3 ppm] and 42 [125Te NMR δ = 715.2 ppm].  

 

Reaction of 1-bromo-8-(phenyltellurenyl)naphthalene 55 with n-butyllithium and diphenyl 

diselenide gave 1,8-bis(phenylselenyl)naphthalene as the major product, again suggesting the Te-

CNap bond is susceptible to attack and cleavage.  

 

Crystal structure analysis of compounds 41-43 

 

The molecular structures of the mixed chalcogen ligands 41-43 are shown in Figures 5.17-5.19 and 

a comparison of selected bond lengths and angles can be found in Tables 5.4 and 5.5. Both 

compounds 42 and 43 crystallise with two independent molecules in the asymmetric unit showing 

similar conformations and distortions. Further information for the three crystal structures can be 

found in Appendices 30-32.  

 

Fig. 5.17 The crystal structure of 1-(phenylselenyl)-8-(phenylsulfanyl)naphthalene 41. 

 

Throughout the series there is a general trend for increasing naphthalene distortion with increasing 

peri-atom size. This is best observed by looking at the change in peri-distance for the three 

compounds [41 3.063(2) Å, 42A 3.0684(13) Å, 42B 3.0984(11) Å, 43A 3.1919(11) Å, 43B 

3.1580(12) Å]. This finding is supported by comparing the peri-distances of the series of bis-

chalcogenides 37-39 [37 3.004(1) Å, 38 3.1332(9) Å, 39 3.287(1) Å].  
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Fig. 5.18 The crystal structure of 1-(phenyltellurenyl)-8-(phenylsulfanyl)naphthalene 42 showing 

two independent molecules in the unit cell. 

 
The degree of in-plane distortion is comparable for 41 [372.4(13)°] and the two independent 

molecules of 42 [A 371.8(7)°, B 372.2(9)°]. A slight increase is observed for the independent 

molecules of 43 which exhibit a greater widening of their splay angles [A 374.3(18)°, B 

374.7(17)°]. The displacement of the peri-atoms above and below the naphthalene plane is found 

to occur in all five structures for the three compounds with out-of-plane distortion comparable 

throughout (Tables 5.4 and 5.5). 

   

  

Fig. 5.19 The crystal structure of 1-(phenyltellurenyl)-8-(phenylselenyl)naphthalene 43. 
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With increasing size of the peri-atom across the series there is an unusual increase in the planarity 

of the naphthalene backbone with the sulfur-selenium containing 41 having the most buckled 

frame and the selenium-tellurium analogue 43A having the most planar (see torsion angles, Tables 

5.4 and 5.5). 

 

Fig. 5.20 The orientation of the E(phenyl) groups and type of structure of the mixed compounds 

41-43 and the CPh-E···E’ angle.2 

 

All five structures adopt the ‘AB type’ arrangement2 with one E-CPh bond lying close to the 

naphthyl plane and one approaching perpendicular to the plane (Figure 5.20). The E(Phenyl) 

groups in 41 adopt a similar (cis) arrangement to that of the bis-selenide 38 whilst the independent 

molecules of 42 and 43 all adopt a trans orientation similar to the bis-sulfide analogue 37. Only 

one quasi-linear arrangement of the type C-E···E’ is observed for each structure, similar to 37 and 

38, with angles in the range of 169-172° (Figure 5.20).    
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Table 5.4   Selected bond lengths [Å] and angles [°] for 41, and the two independent molecules 42 

A & B. 

_______________________________________________________________________________ 

   

Se(1)-S(2) 3.063(2) Te(1)-S(1) 3.0684(13) S(2)-Te(2) 3.0984(11) 

Se(1)-C(1) 1.907(9) Te(1)-C(1) 2.141(5) Te(1)-C(23) 2.100(5) 

S(2)-C(9) 1.813(8) S(1)-C(9) 1.770(5) S(2)-C(31) 1.771(5) 

      

Se(1)-C(1)-C(10) 122.3(6) Te(1)-C(1)-C(10) 122.9(3) Te(2)-C(23)-C(32) 123.2(4) 

C(1)-C(10)-C(9) 127.8(7) C(1)-C(10)-C(9) 126.1(4) C(23)-C(32)-C(31) 126.1(5) 

S(1)-C(9)-C(10) 122.3(6) S(1)-C(9)-C(10) 122.8(4) S(2)-C(31)-C(32) 122.9(3) 

 Σ = 372.4(13)  Σ = 371.8(7)  Σ = 372.2(9) 

      

Distance from naphthalene mean plane    

Se(1) 0.432(11) S(1) 0.1460(67) S(1) 0.4491(67) 

S(2) -0.320(11) Te(1) -0.565(7) Te(1) -0.406(7) 

      

Torsion angle       

C:(6)-(5)-(10)-(1) -175.2(8) C:(6)-(5)-(10)-(1) -176.9(6) C:(28)-(27)-(32)-(23) 176.7(6) 

C:(4)-(5)-(10)-(9) -174.5(8) C:(4)-(5)-(10)-(9) -174.6(6) C:(26)-(27)-(32)-(31) 173.8(5) 
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Table 5.5   Selected bond lengths [Å] and angles [°] for the two independent molecules 43 A & B. 

_______________________________________________________________________________ 
 

    

Te(1)-Se(1) 3.1919(11) Te(3)-Se(3) 3.1580(12) 

Te(1)-C(1) 2.137(11) Te(3)-C(31) 2.124(10) 

Se(1)-C(9) 1.920(12) Se(3)-C(39) 1.925(10) 

    

Te(1)-C(1)-C(10) 125.2(9) Te(3)-C(31)-C(40) 126.4(6) 

C(1)-C(10)-C(9) 125.5(10) C(31)-C(40)-C(39) 124.9(9) 

Se(1)-C(9)-C(10) 123.6(7) Se(3)-C(39)-C(40) 123.4(9) 

 Σ = 374.3(18)  Σ = 374.7(17) 

    

Distance from naphthalene mean plane   

Te(1) 0.372(15) Te(3) -0.500(14) 

Se(1) -0.425(15) Se(3) 0.170(14) 

    

Torsion angle    

C(6)-C(5)-C(10)-C(1) -177.4(12) C(36)-C(35)-C(40)-C(31) -174.8(13) 

C(4)-C(5)-C(10)-C(9) -175.0(12) C(34)-C(35)-C(40)-C(39) -176.9(13) 
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Oxidation reactions of 1,8-bis(phenylsulfanyl)naphthalene 37 

 

Compounds 47 and 48 (Figure 5.21), as revealed earlier in the chapter, were reported in 2002 by 

Kálmán et al. during investigations into non-bonded S···S and S···O interactions.1  

 

 
Fig. 5.21 The 1,8-disubstituted naphthalene derivatives 47 and 48 reported by Kálmán et al. 

during investigations into S···S and S···O non-bonded interactions.1 

 

We envisaged that reacting 1,8-bis(phenylsulfanyl)naphthalene 37 with different molar equivalents 

of mCPBA would afford a series of mono, di, tri and tetra-oxides similar in design to 47 and 48. 

Reaction of 37 with a single equivalence of mCPBA in diethyl ether afforded the novel mono-

substituted oxide 44 (Scheme 5.12). Two equivalents of mCPBA reacting with 37 produced the di-

oxide 45 with both sulfur atoms mono-oxidised (Scheme 5.12). The reaction of further equivalents 

(3-6) of mCPBA with 37 gave compound 45 exclusively and no higher oxidation to form the tri- 

or tetra-oxide was observed.  

 

 

Scheme 5.12 The reaction scheme for the preparation of the oxidised compounds 44 and 45. 

 

44 and 45 were fully characterised by elemental analysis, infra-red spectroscopy, 1H and 13C NMR 

spectroscopy and mass spectrometry.  

 

Notable differences are observed in the 1H NMR spectra for the two oxides with peaks for non-

equivalent phenyl rings easily distinguished for 44 as well as individual naphthyl proton peaks.  
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The data for 45 is consistent for an NMR symmetrical compound and shows half the number of 

signals than the spectra of 44. Suitable single crystals for the two compounds were grown by 

diffusion of pentane into saturated solutions of the oxides in dichloromethane. The molecular 

structures are shown in Figures 5.22 and 5.23. Selected bond distances and angles are listed in 

Table 5.6 and further crystallographic information can be found in Appendices 33 and 34. 

 

Although these two oxides contain sulfur atoms of different valence states positioned at the peri-

positions, the close proximity of these atoms is comparable1 between the two compounds [44 

3.0460(11) Å, 45 3.0757(13) Å]. These non-bonded peri-distances are found to be slightly higher 

than the non-oxidised ligand 37 [3.0036(13) Å], but still within the sum of van der Waals radii for 

two interacting sulfur atoms [3.60 Å].8  

 

 
Fig. 5.22 The molecular structure of 1-(phenylsulfinyl)-8-(phenylsulfanyl)naphthalene 44. 

 

The close proximity of the two bulky substituents leads to in-plane and out-of-plane distortion of 

the peri-atoms with respect to the naphthalene ring system. The amount of in-plane distortion of 

the sulfur atoms, indicated by a widening of the bay angles, is virtually the same in both oxides 

[375.3(5)° 44, 375.2(6)° 45] and greater than the distortion taking place in the non-oxidised 37 

[373.1(5)°]. The level and orientation of peri-atom displacement above and below the naphthalene 

plane occurs differently in the two oxides. Out-of-plane distortion in 44 is observed with S(1), S(2) 

and O(1) all lying above the naphthalene plane whilst in 45 S(1), S(2) and O(1) lie below the plane 

and O(2) lies above the plane (Table 5.6). The degree to which these atoms are displaced is also 

different with greater distortion found in di-oxide 45 (Table 5.6). 



Chapter 5 - Preparation of 1,8-(arylchalcogeno)naphthalenes 
                           

                                                                                                   158 

 

 

Fig. 5.23 The molecular structure of 1,8-bis(phenylsulfinyl)naphthalene 45. 

 

Torsion angles associated with the central C(5)-C(10) naphthalene bond (Table 5.6) show both 

oxides contain relatively planar backbones with the mono-oxide 44 containing the most distortion 

(Figure 5.26). Both compounds have naphthalene structures which are more planar than the non-

oxidised compound 37. 

 

 

Fig. 5.24 Comparing the orientation of 1,8-bis(phenylsulfanyl)naphthalene 37 and oxides 44 and 

45.2 

 

Oxides 44 and 45 adopt different structural arrangements compared to the ‘AB-t type’ 

arrangement2 of the non-oxidised 37 (Figure 5.24).2 In 44, both S-CPh bonds lie roughly 

perpendicular to and on the same side of the naphthyl plane (‘AA-cis type’)2 with the linear 

arrangement O(1)=S(1)···S(2) lying along the naphthyl plane [174.3(1)°] (Figure 5.24/5.25). 45 

adopts a similar structure but one of the S-CPh bonds lies closer to 135° and so is thus classified as 

adopting the ‘AC-cis type’ arrangement2 (Figure 5.24/5.25).2  
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The same linear arrangement of the type O(1)=S(1)···S(2) [171.9°] is observed and the second 

oxygen atom taking up position on the opposite side of the naphthalene plane gives an 

S(1)···S(2)=O(2) angle of 120.8(1)°. Again the linearity of the three atoms O(1)=S(1)···S(2) and 

the close proximity of the sulfur atoms is conducive to non-bonded interactions and could be 

attributed to a 3c-4e type interaction taking place.5 

 

                               

Fig. 5.25 The crystal structures of 44 and 45 showing the orientation of the phenyl substituents. 

 

The arrangement of the ‘type AA-cis’2 in compound 44 allows for the close configuration and 

overlap of the two phenyl rings.9 The alignment of the rings is face-to-face offset arrangement 

with slipped packing, known as parallel displacement (see Chapter 3, Figure 5.26/5.27).9 The 

distance between the two interacting centroids [3.821(1) Å] is at the top end of the range for 

typical centroid-centroid π-stacking [3.3-3.8 Å]9 so possible π-π stacking could be envisaged 

(Figure 5.27).9 

 

 

                                     

Fig. 5.26 The crystal structures of 44 and 45 showing the planarity of the naphthalene backbones 

and the overlap of the phenyl rings. 
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Fig. 5.27 The crystal structure of 44 showing the overlap of the phenyl rings. 

 

The ‘AC type’ arrangement2 in 45 inhibits phenyl ring overlap with the S-CPh moiety of the ‘C 

type’ arrangement being inclined at a greater angle from the naphthalene plane compared to the 

moiety adopting the ‘A type’ arrangement2 (phenyl ring on S(1)). The phenyl ring bonded to S(2) 

is also twisted upwards impeding phenyl ring interaction resulting in no π-π stacking taking place 

(Figure 5.25/5.26).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 - Preparation of 1,8-(arylchalcogeno)naphthalenes 
                           

                                                                                                   161 

 

Table 5.6   Selected bond lengths [Å] and angles [°] for the oxides of 1,8-bis(phenylsulfanyl) 

naphthalene 37, 44 and 45. 

_______________________________________________________________________________ 

    

S(1)-S(2) 3.0460(11) S(1)-S(2) 3.0757(13) 

S(1)-C(1) 1.830(3) S(1)-C(1) 1.814(3) 

S(2)-C(9) 1.774(3) S(2)-C(9) 1.804(3) 

    

S(1)-O(1) 1.500(2) S(1)-O(1) 1.497(3) 

  S(2)-O(2) 1.486(3) 

    

S(1)-C(1)-C(10) 126.8(2) S(1)-C(1)-C(10) 125.7(2) 

C(1)-C(10)-C(9) 126.4(3) C(1)-C(10)-C(9) 128.0(3) 

S(2)-C(9)-C(10) 122.1(2) S(2)-C(9)-C(10) 121.5(3) 

 Σ = 375.3(5)  Σ = 375.2(6) 

       

Distance from naphthalene mean plane    

S(1) 0.0095(39) S(1) 0.1206(45) 

S(2) 0.2103(39) S(2) -0.2127(44) 

O(1) 0.0203(51) O(1) 0.1291(58) 

  O(2) -0.15452(56) 

    

Torsion angle     

C(6)-C(5)-C(10)-C(1) -179.4(3) C(6)-C(5)-C(10)-C(1) -179.5(3) 

C(4)-C(5)-C(10)-C(9) -177.7(3) C(4)-C(5)-C(10)-C(9) 179.0(3) 
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77Se and 125Te NMR Studies 

 

As previously mentioned, with the help of 125Te NMR spectroscopy studies, Furukawa et al. 

reported the oxidation of 1,8-bis(phenyltellurenyl)naphthalene 39 and proposed the formation of 

the dication species 50 (Scheme 5.13).4 The 125Te NMR signal of a solution of 39 in D2SO4 [δ = 

964 ppm] showed a significant downfield shift compared to the signal for a solution of 39 in 

CDCl3 [δ = 617 ppm].4 The large shift was proposed to be due to the formation of the dication.4  

 

 
Scheme 5.13 The oxidation reaction of 39 with D2SO4 as reported by Furukawa et al..4 

 

Following the synthesis of 1,8-bis(phenylselenyl)naphthalene 38 and the three mixed chalcogen 

compounds 41-43, 77Se and 125Te NMR spectra were run in D2SO4 to try and elucidate if similar 

cationic species could be created from these compounds (Scheme 5.14).   
 

 
Scheme 5.14 The oxidation reaction of chalcogen compounds with D2SO4.

4 

 

The results of the 77Se and 125Te NMR studies are shown in Table 5.7. For each NMR experiment 

there is a significant downfield shift in the signal for spectra run in D2SO4 compared to the signal 

for the spectra run in CDCl3. These results are in agreement with the work undertaken by 

Furukawa et al. and the downfield shift could be due to the formation of the cationic species 

depicted in Scheme 5.14.4     
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Table 5.7   77Se and 125Te NMR spectroscopy data [δ (ppm)] run in CDCl3 and D2SO4 for 38 and 

41-43 

  38 41 42 43 

peri-atoms SeSe SeS TeS TeSe 
77Se NMR (CDCl3) 428.6 455.3 - 362.8 
77Se NMR (D2SO4) 828.0 927.3 - 554.7 
125Te NMR (CDCl3) - - 715.2 687.6 
125Te NMR (D2SO4) - - 1018.3 1279.6 
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Summary 
 

Repulsive steric strain caused by inserting increasingly larger atoms at the 1,8-positions in the six 

chalcogen analogues 37-39 and 41-43 is shown to be relieved to a greater extent as the overall 

combined size of the peri-atoms increases. The primary parameter used to quantify the amount of 

strain relief in non-ideal naphthalenes is the peri-distance which encapsulates all molecular 

deviations in one entity. Table 5.8 lists the six chalcogen containing compounds in order of peri-

atom combined size and compares the change in peri-distance as the combined atom size 

increases.8 The values suggest that increasing degrees of steric strain occurring in the molecule due 

to enhanced peri-atom size are relieved by greater naphthalene distortions, observed by a general 

increase in the peri-distance.  

 

Table 5.8   Comparison of the peri-distance [Å] and the sum of van der Waals radii of peri-atoms 

[Å] for the chalcogen containing compounds 37-39 and 41-438  

compound peri-atoms VDWs8 peri-distance 

    

37 S···S 3.60 3.00 

41 S···Se 3.70 3.06 

38 Se···Se 3.80 3.13 

42A S···Te 3.86 3.07 

42B S···Te 3.86 3.10 

43A Se···Te 3.96 3.19 

43B Se···Te 3.96 3.16 

39 Te···Te 4.12 3.29 

   

The chalcogenides generally adopt a similar structure with one phenyl moiety aligning with the 

naphthyl plane and one perpendicular to it (‘AB type’).2 The bis-telluride 39 with the largest steric 

interaction between its peri-atoms adopts a different arrangement and places its two phenyl rings 

at angles close to 135° to the plane (‘CC type’).2  

 

Upon oxidation, the structure of bis-sulfide 37 is dramatically changed and adopts either an ‘AA 

type’ arrangement 44 or ‘AC type’ arrangement 45.2 The overriding factor in these two structures 

is the linear arrangement of the type O(1)=S(1)···S(2) which forces the two phenyl rings in both 

cases to align on the same side of the naphthalene plane. In compound 44 this overlap is close 

enough for possible π-π stacking to occur.9 
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In all compounds in this chapter (excluding bis-telluride 39) there is one quasi-linear arrangement 

of three atoms, two of which are the peri-atoms. In each case the non-bonded distance is well 

within the sum of van der Waals radii of the two interacting atoms. The linearity and close 

proximity of non-bonded atoms could suggest that possible 3c-4e bonding as reported by 

Nakanishi et al. could occur.2,10 
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Chapter 6 

Hypervalent adducts of chalcogen substituted naphthalenes 

Reactions of sulfur, selenium and tellurium with dihalogens 

 

Organic molecules containing the Group 16 donor atoms sulfur, selenium and tellurium react with 

dihalogens (Br2, I2) and inter-halogens (IBr, ICl) to form a variety of addition complexes with 

wide structural diversity. Although well-known, reactions of this type have received renewed 

attention over the last few years due to both the structural interest in the addition products as well 

as perceived applications in a wide array of research fields including synthetic, biological, material 

and industrial chemistry.1,2  

 

Experimental conditions control the pathway these reactions take and subsequently the structural 

motifs and geometry around the Group 16 atoms in the addition products. Factors such as the type 

of chalcogen donor atom, the form of the dihalogen or inter-halogen, the stoichiometry of the 

reactants and the nature of the donor atoms R group(s) all play a role in determining the structure 

of these compounds.1,2 

 

To date these reactions have produced products exhibiting charge-transfer (C.-T.) ‘spoke’ and 

‘extended spoke’ adducts, polyiodide, see-saw, ionic, ‘T-shaped’, bent, mixed-valence, dication-

bridged and dimeric structural motifs. Three classical ionic structures are also known for products 

having chalcogen–halogen terminal bonds ([RE–X]+),1-4 two chalcogen-halogen coordinated 

complexes ([RE–X–ER]+),1,2,5–7 and dications incorporating a chalcogen–chalcogen single bond 

([RE–ER]2+).1-3,8 These ionic compounds are often accompanied by counteranions of polyhalides 

which adopt unusual and sometimes complex structures.1,2,4,5 

 

Husebye proposed that the final structure from reactions between chalcogen-donors [RE] and di- 

and inter-halogens could be predicted because the end products were derived from a common 

intermediate species [RE–X]+ and followed a general reactive pathway.1,2,9 In this way the dication 

species [RE–ER]2+ along with the C.-T. ‘spoke’ and ‘T-shaped’ hypervalent adducts could be 

prepared; nucleophilic attack occurring at the chalcogen or the halogen site of the [RE–X]+ 

cation.1,2  
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The neutral charge-transfer (C.-T.) ‘spoke’ adduct featuring a quasi-linear E–X–Y alignment (X = 

Y = I, Br; X = I, Y = Br, Cl)1,2,10,11 and the ‘T-shaped’ X–E–Y fragment of the insertion adduct (X 

= Y = I, Br, Cl; X = I, Y = Br)1,8,12,13 are the two most common structural motifs generated from 

the reaction of chalcogen-donors [RE] with inter- or di-halogens. Both linear arrangements are 

similar to the linear trihalide anions (I3
-, Br3

-, IBr2
-, and ICl2

-) with the chalcogen atom having the 

ability to acquire more than the required octet of electrons in the valence shell. These types of 

compounds are termed hypervalent.14,15  

 

Hypervalency of the ‘higher’ main group elements continues to intrigue chemists and the reasons 

behind its existence are still under debate. For a considerable period, the availability of low-lying 

unfilled d-orbitals which could accommodate the additional electrons was thought to occur. This is 

known as valence shell or octet expansion.14 The rarity of hypervalency in Period 2 was therefore 

attributed to the lack of 2d orbitals. This however, could just as easily be due to the difficulty of 

packing more than four atoms around a small central atom.14  

 

Another explanation is aptly demonstrated by the molecular orbital energy diagram for the 

octahedral and hypervalent SF6 molecule, containing a hexacoordinate sulfur atom (Figure 6.1). A 

simple basis set consisting of ten atomic orbitals (the valence shell s and p orbitals of sulfur and 

one p orbital from each of the six fluorine atoms) can be used to create ten molecular orbitals. 

Calculations by Reed and Weinhold indicate that four of these orbitals are bonding, two are non-

bonding and four are antibonding.16 As illustrated by Figure 6.1, four bonding orbitals and two 

non-bonding orbitals are occupied by the twelve electrons without the use of the antibonding 

orbitals. This theory therefore accounts for hypervalency and the formation of SF6 without the use 

of low lying 3d orbitals on sulfur.14 

 

S SF6 F6

a1g

t2u
eg

a1g

t1u

 
Fig. 6.1 The molecular orbital energy diagram for the hypervalent SF6 molecule.14 
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Recently, based on quantum chemical calculations, the concept of a three centre four-electron 

bond (3c-4e) has become a favoured concept for explaining the existence of hypervalency. The 3c-

4e bond was first proposed by Rundle during structural studies of XeF4 and XeF2.
17  

 

 

Fig. 6.2 An approximate representation of a molecular orbital model for hypervalent X-E-X 3c–4e 

bonds.17,18 

 

Figure 6.2 is an approximate representation of the molecular orbitals for a hypervalent X-E-X 

three centre-four electron bond as proposed by Rundle and shows bonding (ψ1), non-bonding (ψ2) 

and anti-bonding (ψ3) orbitals.17 The four electrons occupy the bonding (ψ1) and the non-bonding 

(ψ2) molecular orbitals. Electrons in (ψ2) localise on X of X-E-X so terminal atoms are required to 

be more electronegative than the central atom. Consequently hypervalent X-E-X bonds are weaker 

than electron pair bonds between the same elements as only one bonding pair is available for the 

two bonds. The bond orders of apical E-X bonds in hypervalent 3c-4e are normally less than one 

(~0.5) with bond distances for bond orders of 0.5 predicted to be 0.18 Å longer than bond orders of 

1.0.17-19   

 

In 2001 du Mont et al. used structural analysis to review selenium-iodine interactions ranging 

from weak van der Waals contacts to strong covalent bonds (3.8-2.4 Å).15 They proposed that 

distances below 2.60 Å were predominantly covalent in nature, 2.60-3.00 Å are typical of 3c-4e 

bonding with 3.00-3.90 Å represented by weak van der Waals interactions (3.90 Å being the sum 

of I and Se van der Waals radii).15,18 Consequently the region for 3c-4e bonding was proposed to 

be roughly the sum of the van der Waals radii for the interacting species minus ~1.0 Å.18 

 

In solution, the C.-T. ‘spoke’ adduct and the ‘T-shaped’ adduct of RR1E·X2 type compounds are in 

equilibrium as illustrated in Scheme 6.1.15,18,20 Structural determination of the final product can be 

achieved with a generalisation based on the degree of charge-transfer between the non-bonding 

orbitals of the chalcogen donor n(E) to the LUMO of the di- or inter-halogen acceptor σ*(X-X). 

This can be estimated from the electronegativity (χ) of the elements. Most of the observed 

structures for R of standard organic groups follows the loose rule that the ‘T-shaped’ (TBP) adduct 

will be formed if halide X is more electronegative than chalcogen E [REδ+-Xδ-] whilst if the 
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converse is true then the C.-T. ‘spoke’ adducts will predominate.18,20,21 This is exemplified by the 

fact that no C.-T. adducts are known for Te-donors [χ(Te) 2.08]22 with any di- or inter-halogen 

[χ(F) 3.94- χ(I) 2.36].1,2,22  

 

 
Scheme 6.1 The equilibrium between RR1E·X2 (C.-T. ‘spoke’) and RR1E·X2 (‘T-shaped’) in 

solution.15,18,20 

 

It must be recognised however, that the electronegativity of the chalcogen atom and the electronic 

property of RR1E can be affected by the R groups which can influence the outcome of the reaction. 

Compounds with bulky groups around E will favour the 3 coordinate chalcogen of C.-T. ‘spoke’ 

adducts over the  4 coordinate chalcogen of ‘T-shaped’ adducts.18,20 It is therefore possible to 

prepare compounds that do not conform to the general rule based on χ values by modifying the 

electronic and steric properties of the surrounding R groups.18 

 

Charge-transfer (C.-T.) ‘spoke’ adducts and ‘T-shaped’ insertion adducts. 

The ‘spoke’ adducts form a quasi-linear E-X-Y fragment via the transfer of electron density from 

non-bonding orbitals of the chalcogen donor atom into the LUMO of the di- or inter-halogen 

acceptor molecule (hence termed charge-transfer adducts). As mentioned above, the C.-T. ‘spoke’ 

adducts generally form when χ(E) > χ(X), i.e. there is more electron density available on E to 

promote into the empty orbitals on X. This has the effect of lowering the X-Y bond order and 

consequently increasing the X-Y bond length.1,2  

 

The majority of neutral C.-T. ‘spoke’ adducts reported in the literature are formed by reaction of 

organosulfur [χ(S) 2.58]22 donors with di-iodine [χ(I) 2.36],1,2,7,11,22,23 for example benzyl sulfide 

diiodine (Figure 6.3).24 Organoselenium diiodine C.-T. adducts are less common but those reported 

in the literature exhibit a considerable increase in the iodine-iodine bond length from free iodine 

(2.66 Å)26 compared to similar sulfur compounds.25 This increase is found to be on average nearly 

double that for organosulfur adducts showing organoselenides are better donor molecules than 

organosulfides [χ(Se) 2.35, χ(S) 2.58].1,2,22 
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Fig. 6.3 The C.-T. ‘spoke’ structure of benzyl sulfide diiodine showing a linear S-I-I 

arrangement.24 

 

Whilst few adducts resulting from reactions of sulfur- and selenium-donors with the inter-halogens 

(IBr, ICl)1,2,23,27 have been reported, all those structurally characterised in the literature exclusively 

adopt the C.-T. ‘spoke’ design. The greater acceptor capacity of IBr over I2 is illustrated by 

comparing the inter-halogen compound 1,4-dithiane·2IBr with its isostructural diiodine analogue 

(Figure 6.4).28,29 The sulfur-iodine distance in the IBr adduct [2.687(2) Å] is significantly shorter 

compared to the I2 adduct [2.867(6) Å] and shows there is a stronger sulfur–acceptor interaction 

taking place in the inter-halogen adduct.28,29 

 

 

Fig. 6.4 The C.-T. ‘spoke’ structures of isostructural compounds 1,4-dithiane (bis) diiodine and 

1,4-dithiane·2IBr.28,29 

 

Reaction of dibromine with S- and Se-donors produces adducts of different geometries. Following 

the general rule based on electronegativity values, reaction of S- [χ(S) 2.58] and Se- [χ(Se) 2.48] 

donors with dibromine [χ(Br) 2.68] should produce ‘T-shaped’ compounds [χ(X) > χ (E)].18,20,21,22 

Interestingly all known organosulfur dibromine compounds adopt the C.-T. ‘spoke’ structure with 

an Se-Br-Br linear arrangement whilst all structurally reported selenium compounds exclusively 

adopt the ‘T-shaped’ structure with a Br-Se-Br linear arrangement (Figure 6.5).25,30-32 

 

 

Fig. 6.5 The C.-T. ‘spoke’ structure of thiophane·Br2 and the ‘T-shaped’ structure of 

diphenylselenium·Br2.
31,32 
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The difference in the two structures can be attributed to the greater electron donor ability of 

selenium over sulfur. Dibromine is a strong acceptor and reacts with selenium to form a strong 

donor-strong acceptor system sufficient enough to be able to cleave the Br-Br bond and oxidation 

of the selenium atom occurs.1,2 

 

The greater oxidising power (or acceptor ability) of dichlorine over dibromine enables bis(4-

chlorophenyl) sulfide chloride to form the expected ‘T-shaped’ geometry [χ(X) > χ (E)].18,20,21  

Greater charge is donated from sulfur [χ(S) 2.58]22 into the anti-bonding orbital of the dichlorine 

molecule [χ(Cl) 3.00]22 enabling cleavage of the Cl-Cl bond. Subsequently the sulfur atom is 

oxidised and the ‘T-shaped’ adduct is formed (Figure 6.6).21 

 

 

Fig. 6.6 The ‘T-shaped’ structure of bis(4-chlorophenyl) sulfide dichloride.21 

 

Structural parameters of charge-transfer (C.-T.) ‘spoke’ adducts. 

Figure 6.7 illustrates the directional parameters used to calculate the structural geometry of C.-T. 

‘spoke’ adducts; primarily the positioning of the di-/inter-halogen species with respect to the plane 

containing both electron-pairs of the tetrahedral sp3 chalcogen atom.2 θ represents the dihedral 

angle between the E-X vector and this plane and φ measures the rotational angle between the 

bisection of the R2E angle and where the E-X vector is projected onto the plane.2 

 
Fig. 6.7 The directional parameters for the geometry of C.-T. ‘spoke’ adducts formed from di-

/inter-halogens binding to sp3 hybridised chalcogen donor atoms.2 

 

In most C.-T. ‘spoke’ adducts of thioethers, selenoethers, and of most thiocarbonyl and 

selenocarbonyl compounds di-/inter-halogens are found to lie on the plane of the chalcogen lone 

pairs with angles (θ) approaching 0°.10,11 Thiocarbonyl and selenocarbonyl donors are also known 

to form C.-T. ‘perpendicular-spoke’ adducts with angles (θ) around 80° and the di-/inter-halogen 

molecule lying quasi-perpendicular to the electron pair plane. This is due to sterically crowded 

lone-pairs on the chalcogen atom.10,11  



Chapter 6 – Hypervalent adducts of chalcogen substituted naphthalenes 
                           

                                                                                                   173 

 

Charge-transfer (C.-T.) ‘extended spoke’ adducts. 

The bonding in RE–X–Y type systems results in a partial negative charge on the terminal Y atom 

allowing it to act as a donor towards other acceptors (A). This produces adducts which are 

structurally more complex, known as C.-T. ‘extended spoke’ adducts [RE–X–Y···A] (where A is 

normally another XY molecule and XY···A angles are typically close to 90°).1,2 The terminal Y 

atom-acceptor (A) interaction delocalises negative charge onto Y which in turn strengthens the E-

X bond. With an extremely strong Y···A interaction systems of the type [RE-X]+[Y-A]- can be 

envisaged.2 

 

An example of this is the adduct formed by reaction of N-methylbenzothiazole-2(3H)-selone with 

IBr (Figure 6.8).2,33 The Se atom forms a strong bond with the first molecule of IBr simultaneously 

weakening the I-Br bond which extends to 3.129(1) Å. The terminal Br atom then interacts with 

the second molecule of IBr forming an IBr2
- fragment [d(Br–I) = 2.803(1) and 2.645(1) Å]. The 

ionic system created can be depicted by the formula [RE–I]+ ···[Br–IBr]-.2,33 

 

 
Fig. 6.8 C.-T. ‘extended spoke’ adduct of N-methylbenzothiazole-2(3H)-selone and IBr forming an 

ionic species depicted by the formula [RE–I]+ ···[Br–IBr]-.2,33  
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Hypervalent adducts of chalcogen substituted naphthalenes 

 
In Chapter 4, 1,8-bis(phenylsulfanyl)naphthalene 37 and 1,8-bis(phenylselenyl)naphthalene 38 

were introduced along with three novel mixed chalcogen naphthalene systems 41-43. These five 

chalcogen donor compounds, along with the tellurium compounds 55 and 56, have been treated 

with dibromine and diiodine and produce a range of different adducts; C.-T. ‘spoke’, C.-T. 

‘extended spoke’, ‘T-shaped’ (or TBP) adducts and an ionic form of C.-T. ‘extended spoke’ with 

formula [RE-X]+···[X-X2]
-. In all these compounds the steric effect of the phenyl groups and the 

naphthalene backbone as well as their influence on the effective electronegativity of the reacting 

chalcogen species played an important role on the geometry of the final structure.  

 

Charge-transfer ‘spoke’ and ‘extended spoke’ adducts 

Reaction of 1,8-bis(phenylsulfanyl)naphthalene 37 with dibromine.  

The structural geometry of the product of the reaction of 1,8-bis(phenylsulfanyl)naphthalene 37 

and dibromine is hard to predict. The general rule based on electronegativity of the interacting 

species suggests a ‘T-shaped’ moiety will be produced [χ(S) 2.58 < χ(Br) 2.68] but as mentioned 

above products of known reactions between S- donors and dibromine adopt C.-T. ‘spoke’ 

geometries.30 Upon reaction of 1,8-bis(phenylsulfanyl)naphthalene with dibromine, no adduct is 

isolated. Instead electrophilic aromatic substitution dominates to produce 1,8-bis(4-

bromophenylsulfanyl)-2,5-dibromonaphthalene 57 (Scheme 6.2). Varying the loading of 

dibromine (1-6 equiv), produced 57 exclusively each time.  

 

 
Scheme 6.2 The reaction scheme for the preparation of 1,8-bis(4-bromophenylsulfanyl)-2,5-

dibromonaphthalene 57.34 

 

Aromatic groups bearing -OR and -NR2 groups are strongly activated by delocalisation of 

resonance lone-pairs into the aromatic π-system and are therefore highly reactive towards 

electrophilic substitution.35 Sulfur is less electronegative than oxygen and nitrogen thus its electron 
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pair is higher in energy and more available to interact with the aromatic π-system.22,35 With the 

sulfur lone pair delocalised into the aromatic system it is unavailable for donation into the empty 

orbitals in dibromine; no adduct is formed and electrophilic aromatic substitution dominates.35 

 

The regioselectivity of the bromination which occurs during the preparation of 57 (Scheme 6.2) 

can be explained by the relative reactivity of the naphthalene and the S(phenyl) rings and by the 

directing ability of the sulfur activators. Naphthalene is less aromatic and thus more susceptible 

towards electrophilic substitution compared with the two phenyl groups so the initial bromination 

reactions take place around the naphthalene ring.35  

 

In substituted naphthalenes the ring carrying the substituent is the most reactive during 

electrophilic attack. Activating groups such as S(phenyl) donate electrons into the π-system and 

direct incoming electrophiles to the ortho or para positions within the same ring. Figure 6.9 shows 

two resonance structures for the first bromination attack towards the ortho (C2) and para (C4) 

positions. From the two structures it can be seen that attack at the para position would be sterically 

more favourable with the large bromine atom further from the bulky phenyl groups.35  

 

 

Fig. 6.9 Two resonance structures for the electrophilic attack para and ortho to the first S(phenyl) 

moiety for the first bromination in the preparation of 57.35  

 

The second bromination is directed by the second S(phenyl) moiety to the ortho (C7) and para 

(C5) positions. Again two resonance structures can be drawn (Figure 6.10). Bromination occurs 

this time at the ortho position due to the steric crowding two close bromine atoms would produce 

upon para substitution. The final bromination step takes place in the phenyl rings with the sulfur 

atoms directing the substitution to the two para positions, furthest away from the steric bulk of the 

molecule.35  

 



Chapter 6 – Hypervalent adducts of chalcogen substituted naphthalenes 
                           

                                                                                                   176 

 

 

Fig. 6.10 Two resonance structures for the second electrophilic attack para and ortho to the 

second S(phenyl) moiety  in the preparation of 57.35  

     

The molecular structure of 57 (Figure 6.11) shows an intramolecular sulfur-sulfur peri-distance of 

2.935(4) Å, much shorter than the sum of the van der Waals radii for two sulfur atoms [3.60 Å]36 

and marginally shorter than for the non-brominated analogue 37 [3.0036(13) Å].  

 
Fig. 6.11 The molecular structure of 1,8-bis(4-bromophenylsulfanyl)-2,5-dibromonaphthalene 57. 

 

Out-of-plane distortion is observed with the two sulfur atoms lying at equal distances from the 

naphthalene plane, S(1) -0.343(13) Å and S(2) 0.343(13) Å (Table 6.1). The sulfur atoms are 

further accommodated by in-plane distortions in the C-C-C group between the peri-atoms as 

shown by the sum of the bay region angles [369.9(18)°]. Torsion angles about the C5-C10 bond 

also indicate there is a reduction in the planarity of the naphthalene backbone compared to 37. 

Selected bond lengths and angles for 37 and 57 are compared in Table 6.1, more information on 

the structure of 57 can be found in Appendix 35. 
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Molecular structures 37 and 57, adopt similar orientations of the ‘type AB’ with one E-CPh bond 

aligning close to the naphthyl plane and one roughly perpendicular to it.2,4,37 The phenyl rings in 

37 lie across the naphthalene plane (trans) and in 57 lie on the same side of the naphthalene plane 

(cis) (Figure 6.12).37 Although the orientation of the phenyl groups in the two compounds is 

marginally different the linearity of the CPh-S1···S2 fragment in both compounds is very similar 

(Figure 6.12). 

 

 
Fig. 6.12 The structures of 57 and 37 showing the orientation of the E(aryl) groups, the type of 

structure and the linear arrangement CPh-S1···S2 [angle θ].37 
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Table 6.1 Selected bond lengths [Å] and angles [°] for 1,8-bis(4-bromophenylsulfanyl)-2,5-

dibromonaphthalene 57 and 1,8-bis(phenylsulfanyl) naphthalene 37. 

_______________________________________________________________________________ 
 

  
S(1)···S(2) 2.935(4) S(1)···S(2) 3.0036(13) 

S(1)-C(1) 1.787(11) S(1)-C(1) 1.794(3) 

S(2)-C(9) 1.780(11) S(2)-C(9) 1.783(4) 

    

S(1)-C(1)-C(10) 122.3(8) S(1)-C(1)-C(10) 121.8(2) 

C(1)-C(10)-C(9) 126.0(10) C(1)-C(10)-C(9) 126.8(3) 

S(2)-C(9)-C(10) 121.6(8) S(2)-C(9)-C(10) 124.5(2) 

 Σ = 369.9(18)  Σ = 373.1(5) 

       

Distance from naphthalene mean plane  

S(1) -0.343(13) S(1) 0.270(4) 

S(2) 0.343(13) S(2) -0.163(4) 

Br(4) 0.025(13)    

Br(8) 0.103(11)   

    

Torsion angle      

C(6)-C(5)-C(10)-C(1) 176.1(10) C(6)-C(5)-C(10)-C(1) 178.6(3) 

C(4)-C(5)-C(10)-C(9) 176.2(9) C(4)-C(5)-C(10)-C(9) 177.2(3) 
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Reaction of 1,8-bis(phenylselenyl)naphthalene 38 with dibromine. 

Upon reaction with dibromine, 1,8-bis(phenylselenyl)naphthalene 38 forms an ionic C.-T. 

‘extended spoke’ adduct which can be represented by the formula [RSe–Br]+···[Br–Br2]
- (Scheme 

6.3).2,34  

 

 
Scheme 6.3 The reaction scheme for the preparation of the C.-T. ‘extended spoke’ adduct 58.34 

 

The Se atom forms a strong bond with the first molecule of Br2 simultaneously weakening the 

Br(1)-Br(2) bond which extends from 2.28 Å (free bromine) to 3.172(1) Å.26 This places a partial 

negative charge on the terminal Br(2) atom which acts as a donor towards a second (acceptor) 

molecule of Br2. The new interaction between the terminal Br(2) atom and the second Br2 

molecule delocalises negative charge onto the original terminal Br(2) in turn strengthening the 

Se(1)-Br(1) bond [2.4878(8) Å].2  The formation of a hypervalent 3c-4e Br3
- fragment [Br(2)-Br(3) 

2.5170(8) Å, Br(3)-Br(4) 2.5668(8) Å] results (Figure 6.14).15,17-19 An increase in these Br-Br 

distances compared to free bromine [2.28 Å]26 is an indication of the weaker 3c-4e bond (only one 

bonding pair of electrons between three atoms lowers the bond order).15,17-19  
 

The molecular structure of the ‘extended spoke’ adduct 58 is shown in Figure 6.13 and a 

comparison of selected bond lengths and angles with 1,8-bis(phenylselenyl)naphthalene 38 can be 

found in Table 6.2. The crystallographic data shows an intramolecular peri-distance between the 

two selenium atoms for 58 of 2.7619(7) Å much less than for 38 [3.1332(9) Å] and over 1.0 Å 

shorter than the sum of van der Waals radii for two selenium atoms [3.80 Å].36 This indicates that 

the Br(1)-Se(1)···Se(2) quasi-linear arrangement [172.1(1)°] (Figure 6.14) could be described as a 

hypervalent 3c-4e bond.15,17-19  
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Fig. 6.13 The molecular structure of the C.-T. ‘extended spoke’ adduct 58 formed from the 

reaction of 1,8-bis(phenylselenyl)naphthalene 38 with dibromine. 

 

The magnitude of the peri-distance in 58 is an indication of the overall reduction in naphthalene 

deformation compared to 38. In-plane distortion is reduced with the sum for the bay region angles 

lower in 58 [366.1(9)°] by ~8° compared to 38 [373.9(11)°]. The displacement of the selenium 

atoms above and below the plane is also reduced and torsion angles for the C5-C10 bond in both 

compounds suggest the naphthalene backbone in 58 is more planar than in 38 (Table 6.2). The 

reduction in naphthalene distortion could be a result of the different structural geometries the two 

compounds adopt. We have shown that the E-CPh bonds in 38 align along the naphthyl plane and 

perpendicular to it in an ‘AB-cis’ arrangement.37 The linearity of the Br(1)-Se(1)···Se(2) fragment 

in 58 ensures the two E-CPh bonds lie perpendicular to the plane assuming the ‘AA-cis’ 

arrangement (Figure 6.14).37                        

 
Fig. 6.14 The structures of 58 and 38 showing the orientation of the Se(phenyl) groups, the type of 

structure and the linear arrangements in the two compounds.37 
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Subsequently the phenyl rings are forced to lie in close proximity and adopt a face-to-face offset 

arrangement with slipped packing (see Chapter 3).38 The distance between the two interacting 

centroids [Cg(11-16)···Cg(17-22) 3.691(1) Å] is within the range for typical centroid-centroid π-

stacking (3.3-3.8 Å).38 

 

                       
 

Fig. 6.15 The molecular structure of the C.-T. ‘extended spoke’ adduct 58 showing short contact 

packing interactions. 

 

Figures 6.15-6.17 show the close contact interactions within the molecular structure of 58. The 

packing within the crystal structure occurs with a number of close intermolecular and 

intramolecular non-bonded interactions.  

 

 

    Fig. 6.16 An illustration of the quasi-planar rectangular arrangement of atoms formed in 

adduct 58 from non-bonded inter- and intramolecular interactions. 
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A quasi-planar rectangular arrangement of eight atoms is formed between two neighbouring 

molecules from non-bonded interactions between Br(1)···Br(2) 3.172(1) Å and Se(21)···Br(2) 

3.555(1) Å, depicted in Figures 6.16 and 6.17. Two further non-bonded intermolecular interactions 

are seen between a terminal Br(411) atom of a neighbouring Br3
- fragment and the two selenium 

atoms [Se(1)···Br(411) 3.250(1) Å and Se(2)···Br(411) 3.715(1) Å]. Further information on the 

molecular structure of 56 can be found in Appendix 36. 

 

 

 

    Fig. 6.17 The molecular structure of 58 showing the quasi-planar rectangular arrangement of 

atoms formed between two molecules from non-bonded inter- and intramolecular interactions. 
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Table 6.2 Selected bond lengths [Å] and angles [°] for the C.-T. ‘extended spoke’ adduct 58 and 

1,8-bis(phenylselenyl)naphthalene 38. 

_______________________________________________________________________________ 

  

Se(1)···Se(2) 2.7619(7) Se(1)-Se(2) 3.1332(9) 

Se(1)-C(1) 1.957(6) Se(1)-C(1) 1.922(7) 

Se(2)-C(9) 1.918(5) Se(2)-C(9) 1.930(7) 

    

Br(1)-Se(1) 2.4878(8)   

Br(2)-Br(3) 2.5170(8)   

Br(3)-Br(4) 2.5668(8)   

    

Se(1)-C(1)-C(10) 119.8(4) Se(1)-C(1)-C(10) 123.5(5) 

C(1)-C(10)-C(9) 126.2(5) C(1)-C(10)-C(9) 126.6(6) 

Se(2)-C(9)-C(10) 120.1(4) Se(2)-C(9)-C(10) 123.8(5) 

 Σ = 366.1(9)  Σ = 373.9(11) 

Br(2)-Br(3)-Br(4) 177.78(3)   

Br(1)-Se(1)-Se(2) 172.10(3)   

Se(2)-Se(1)-C(11) 92.15(15)   

Se(2)-Se(1)-C(1) 85.58(16)   

C(1)-Se(1)-C(11) 100.6(2)   

Br(1)-Se(1)-C(1) 98.97(16)   

Br(1)-Se(1)-C(11) 93.33(15)   

       

Distance from naphthalene mean plane   

Se(1) 0.2887(66) Se(1) 0.468(9) 

Se(2) -0.0101(66) Se(2) -0.327(9) 

Br(1) 0.8521(81)   

      

Torsion angle     

C(6)-C(5)-C(10)-C(1) -177.4(12) C(6)-C(5)-C(10)-C(1) 173.5(6) 

C(4)-C(5)-C(10)-C(9) -175.0(12) C(4)-C(5)-C(10)-C(9) 174.6(6) 
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Reaction of 1,8-bis(phenylselenyl)naphthalene 38 with diiodine. 

1,8-Bis(phenylselenyl)naphthalene 38 reacts with one molar equivalence of diiodine to form the 

neutral C.-T. ‘‘spoke’’ adduct 59 containing a quasi-linear Se-I-I fragment [177.6°] (Scheme 6.4). 

Iodine [χ(I) 2.36]21, unlike bromine [χ(Br) 2.68]22, has a similar electronegativity to selenium 

[χ(Se) 2.35]22 and accepts electron density from non-bonding orbitals of the selenium donor to 

form the charge-transfer adduct. This has the effect of lowering the bond order and consequently 

weakening the I-I bond which extends from 2.66 Å (free iodine) to 2.7987(6) Å.1,2,26  

 

 
Scheme 6.4 The reaction scheme for the preparation of the neutral C.-T. ‘spoke’ compound 59 

formed from the reaction of 38 with diiodine.34 

 

The subsequent partial negative charge formed on the terminal I(2) atom in the hypervalent 3c-4e 

Se(1)–I(1)–I(2) bond means I(2) can act as a donor towards a second molecule of diiodine. This 

affords the C.-T. ‘extended spoke’ adduct 60 (Scheme 6.5)2 containing two quasi-linear 

arrangements Se(1)-I(1)-I(2) [178.1(1)°] and I(2)···I(3)-I(3)1 [177.5(1)°] (Figure 6.20). The I(1)-

I(2)-A angle (A = the second molecule of I2) between the two linear fragments is 107.9(1)° which 

is slightly larger than average [90°] for known ‘extended spoke’ compounds.1,2 The interaction 

between the terminal I(2) atom of the ‘spoke’ adduct and the second I2 molecule weakens the I(1)-

I(2) bond further, extending the distance to 2.8672(8) Å. This strengthens the Se(1)-I(1) bond 

which shortens from 2.9795(8) Å in 59 to 2.8497(9) Å 60.1,2 

 
Scheme 6.5 The reaction scheme for the preparation of the C.-T. ‘extended spoke’ compound 60.34 
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59 was fully characterised by elemental analysis, infra-red spectroscopy, 1H, 13C and 77Se NMR 

spectroscopy and mass spectrometry. The 77Se NMR spectrum shows a downfield shift compared 

to 38 [δ = 428.6 ppm] with two peaks at δ = 436.9 ppm and δ = 436.7 ppm corresponding to the 

two different selenium environments. 60 was characterised by 1H and 77Se NMR spectroscopy. 

The 1H NMR spectrum displays similar shifts to 59 however, there is a slight upfield shift of 

roughly 0.1 ppm. The 77Se NMR spectrum shows two peaks at δ = 445.1 ppm and δ = 444.3 ppm 

corresponding to the two different selenium environments. 

 

The molecular structures of the C.-T. spoke adducts 59 and 60 are shown in Figures 6.18 and 6.19 

and a comparison of selected bond lengths and angles can be found in Table 6.3. Further 

information for the two crystal structures can be found in Appendices 37 and 38.  

        
Fig. 6.18 The molecular structure of the neutral C.-T. ‘spoke’ adduct 59. 

 

Naphthalene distortion occurring in the two ‘spoke’ adducts 59 and 60 is comparable to the un-

reacted selenium starting material 38. This is best illustrated by the similarity of the intramolecular 

selenium-selenium peri-distances [3.1339(6) Å 59, 3.0756(14) Å 60, 3.1332(9) Å 38]. In-plane 

distortion in the three structures is almost identical with the sum of the bay region angles differing 

by less than 1° [59 373.3(7)°, 60 373.6(14)°, 38 373.9(11)°]. Out-of-plane distortion is greatest in 

‘spoke’ adduct 59 with Se(1) -0.329(7) Å below the plane and Se(2) 0.536(7) Å above the plane. 

Torsion angles for the central C5-C10 naphthalene bond suggest that the ‘extended spoke’ 60 has 

the greatest degree of planarity in the naphthyl backbone (Table 6.3).  
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Fig. 6.19 The molecular structure of the C.-T. ‘extended spoke’ adduct 60 showing the 

intramolecular I(2)···I(3) non-bonded interaction. 

 

The two C.-T. adducts adopt the ‘AB-trans type’ arrangement with one E-CPh bond lying close to 

the naphthyl plane and the other approaching perpendicular to it (Figure 6.20).37 The linear 

arrangements involving iodine atoms have been discussed above. Both adducts also exhibit a 

possible weak 3c-4e CPh-Se(1)···Se(2) quasi-linear arrangement as depicted by angle θ in Figure 

6.20 [171.0(1)° 59 and 177.6(1)° 60].     
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Fig. 6.20 The structures of 59 and 60 showing the orientation of the Se(phenyl) groups, the type of 

structure and the linear arrangements within the compounds.37 
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From Figure 6.20 it can be seen that I(1) sits in the peri-gap in close contact with Se(2) for both 

compounds. Se(2)···I(1) non-bonded distances are 3.6956(7) Å 59 and 3.8730(9) Å 60 just within 

the sum of van der Waals radii for interacting selenium and iodine atoms [3.88 Å].36 Adduct 59 

also exhibits an intermolecular non-bonded interaction between the I(2) and Se(2) atoms of 

neighbouring molecules (A and B) with an I(2A)···Se(2B) distance of 3.663(1) Å (Figure 6.21). 

 

 
Fig. 6.21 The molecular structures of 59 showing the intermolecular non-bonded interactions 

between iodine and selenium atoms in two neighbouring molecules (A and B). 
 

The positioning of the diiodine species I(1)-I(2) with respect to the plane containing both electron-

pairs of the tetrahedral sp3 selenium donor atom in adducts 59 and 60 is illustrated by Figure 6.22.2 

θ represents the dihedral angle between the Se(1)-I(1) vector and this plane.2 Both compounds 

adopt a quasi-perpendicular arrangement with angle θ ≈ 80° caused by steric crowding around the 

lone-pairs on selenium.10,11 
 

 
Fig. 6.22 The positioning of the diiodine species in the C.-T. ‘spoke’ adducts 59 and 60.2 
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Table 6.3   Selected bond lengths [Å] and angles [°] for the C.-T. ‘spoke’ adduct 59 and the C.-T. 

‘extended spoke’ adduct 60. 

_______________________________________________________________________________ 

  

Se(1)···Se(2) 3.1339(6) Se(1)···Se(2) 3.0756(14) 

Se(1)-C(1) 1.953(5) Se(1)-C(1) 1.948(8) 

Se(2)-C(9) 1.933(5) Se(2)-C(9) 1.929(7) 

  I(3)-I(3)1 2.7402(11) 

I(1)···Se(2) 3.6956(7) I(1)···Se(2) 3.8730(9) 

I(1)-Se(1) 2.9795(8) I(1)-Se(1) 2.8497(9) 

I(1)-I(2) 2.7987(6) I(1)-I(2) 2.8672(8) 

  I(2)···I(3) 3.543(1) 

    

Se(1)-C(1)-C(10) 121.9(3) Se(1)-C(1)-C(10) 122.5(7) 

C(1)-C(10)-C(9) 128.4(4) C(1)-C(10)-C(9) 126.9(7) 

Se(2)-C(9)-C(10) 123.0(4) Se(2)-C(9)-C(10) 124.2(6) 

 Σ = 373.3(7)  Σ = 373.6(14) 

I(2)-I(1)-Se(1) 177.637(15) I(2)-I(1)-Se(1) 178.09(3) 

I(1)-Se(1)-C(11) 97.0(2) I(1)-Se(1)-C(11) 99.4(2) 

I(1)Se(1)-C(1) 100.2(2) I(1)Se(1)-C(1) 98.7(2) 

C(1)-Se(1)-C(11) 98.4(2) C(1)-Se(1)-C(11) 100.3(3) 

I(1)-Se(1)-Se(2) 74.33(1) I(1)-Se(1)-Se(2) 81.54(1) 

    

Distance from naphthalene mean plane  

Se(1) -0.3290(74) Se(1) 0.415(11) 

Se(2) 0.5359(73) Se(2) -0.246(11) 

I(1) -2.8382(78) I(1) 3.076(11) 

    

Torsion angle    

C(6)-C(5)-C(10)-C(1) -172.7(7) C(6)-C(5)-C(10)-C(1) 176.7(6) 

C(4)-C(5)-C(10)-C(9) -176.2(7) C(4)-C(5)-C(10)-C(9) 174.8(7) 
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Reaction of 1-(phenylselenyl)-8-(phenylsulfanyl)naphthalene 41 with bromine. 

1-(Phenylselenyl)-8-(phenylsulfanyl)naphthalene 41 reacts with dibromine to form a similar ionic 

C.-T. ‘extended spoke’ adduct as 58 and can be represented by the formula [RSe–Br]+···[Br3]
- 

(Scheme 6.6).2,34  

 
Scheme 6.6 The reaction scheme for the preparation of the ionic adduct 61 from the reaction of 41 

with dibromine. 
 

The selective reactivity of dibromine towards selenium can be attributed to its greater 

electronegativity and hence greater electron donor ability over sulfur.1,2,22 The strong donor-strong 

acceptor system prepared upon the formation of the Se-Br bond is sufficient enough to be able to 

cleave the Br(1)-Br(2) bond  and subsequently oxidise the selenium atom.1,2 This affords the quasi-

linear 3c-4e hypervalent Br3
- fragment Br(2)-Br(3)-Br(4) [178.6(1)°] exhibiting increased Br-Br 

distances compared to free bromine [Br(2)-Br(3) 2.551(2) Å, Br(3)-Br(4) 2.542(2) Å, Br2 2.28 

Å].15,17-19,26 The cleavage of the Br(1)-Br(2) bond also increases the strength of the Se(1)-Br(1) 

bond which shortens to 2.4232(15) Å compared to adduct 58 2.4878(8) Å. 

 
Fig. 6.23 The molecular structure of the ionic compound 61 formed from the reaction of 41 with 

dibromine. 
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The molecular structure of adduct 61 (Figure 6.23) shows an intramolecular non-bonded 

Se(1)···S(1) peri-distance of 2.721(2) Å. The size of the peri-atoms is unusually similar in size to 

the Se(1)···Se(2) distance in 58 [2.7619(7) Å]. The corresponding angles of the bay region in the 

two adducts are comparable showing in-plane distortion occurs to the same degree. Out-of-plane 

distortion occurs in 61, with both peri-atoms being displaced to the same side of the naphthalene 

plane [Se(1) 0.112(11) Å, S(1) 0.139(11) Å]. In adduct 58 Se(1) [0.289(7) Å ] lies above the plane 

and Se(2) lies just below the plane [-0.101(66) Å]. The naphthalene backbone of 61 exhibits a 

greater degree of planarity than that of 58 with torsion angles deviating little from 180° (Table 

6.4). 

 
Fig. 6.24 The structures of 61 and 58 showing the orientation of the E(phenyl) groups, the type of 

structure and the linear arrangements in the two compounds.37 

 

Adduct 61 adopts the same ‘AA-cis type’ arrangement as 58 with both the E-CPh bonds aligning 

perpendicular and to the same side of naphthyl plane (Figure 6.24).37  

 
Fig. 6.25 The molecular structure of the ionic compound 61 showing the alignment of the phenyl 

rings and subsequent π-stacking.  
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The phenyl rings align, adopting a face-to-face offset arrangement with a centroid-centroid 

distance of Cg(11-16)···Cg(17-22) 3.79(1) Å: within the range for typical π-stacking [3.3-3.8 Å] 

(Figure 6.25).38 The Br(1)-Se(1)···S(1) fragment in 61 depicted by angle θ in Figure 6.24 aligns 

with greater linearity than the Br(1)-Se(1)···Se(2) arrangement in 58. 

 

The main difference between the structures of 61 and 58 is the intra- and intermolecular 

interactions and subsequent molecular packing. Adduct 58 has been shown to form a quasi-planar 

rectangular arrangement of eight atoms formed from two molecules by non-bonded interactions, 

including an intramolecular non-bonded interaction between Br(1) and the Br3
- counter ion. No 

such arrangement occurs in 61 and no interaction is seen between Br(1) and the Br3
- counter ion 

(Figure 6.26). The three linear bromine atoms adopt a position above the peri-atoms with a non-

bonded intramolecular interaction between Se(1)···Br(2) [3.562(1) Å] and an Se(1)···Br(2)-Br(3) 

angle of 87.3(1)° (Figure 6.24). More information regarding the molecular structure of 61 can be 

found in Appendix 39. 

 

 

Fig. 6.26 The molecular structure of the ionic compound 61 showing the packing arrangement of 

molecules and the close contact intermolecular interactions. 
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Table 6.4   Selected bond lengths [Å] and angles [°] for the ionic compounds 61 and 58. 

_______________________________________________________________________________ 

  

Se(1)···S(1) 2.721(2) Se(1)···Se(2) 2.7619(7) 

Se(1)-C(1) 1.955(8) Se(1)-C(1) 1.957(6) 

S(1)-C(9) 1.796(9) Se(2)-C(9) 1.918(5) 

    

Br(1)-Se(1) 2.4232(15) Br(1)-Se(1) 2.4878(8) 

Br(2)-Br(3) 2.5514(17) Br(2)-Br(3) 2.5170(8) 

Br(3)-Br(4) 2.5433(17) Br(3)-Br(4) 2.5668(8) 

    

Se(1)-C(1)-C(10) 119.5(6) Se(1)-C(1)-C(10) 119.8(4) 

C(1)-C(10)-C(9) 126.0(8) C(1)-C(10)-C(9) 126.2(5) 

S(1)-C(9)-C(10) 119.8(7) Se(2)-C(9)-C(10) 120.1(4) 

 Σ = 365.3(15)  Σ = 366.1(9) 

Br(2)-Br(3)-Br(4) 178.57(5) Br(2)-Br(3)-Br(4) 177.78(3) 

Br(1)-Se(1)-S(1) 176.34(1) Br(1)-Se(1)-Se(2) 172.10(3) 

S(1)-Se(1)-C(11) 87.80(1) Se(2)-Se(1)-C(11) 92.15(15) 

S(1)-Se(1)-C(1) 83.52(1) Se(2)-Se(1)-C(1) 85.58(16) 

C(1)-Se(1)-C(11) 101.9(3) C(1)-Se(1)-C(11) 100.6(2) 

Br(1)-Se(1)-C(1) 99.2(3) Br(1)-Se(1)-C(1) 98.97(16) 

Br(1)-Se(1)-C(11) 94.0(2) Br(1)-Se(1)-C(11) 93.33(15) 

      

Distance from naphthalene mean plane   

Se(1) 0.112(11) Se(1) 0.2887(66) 

S(1) 0.139(11) Se(2) -0.0101(66) 

Br(1) 0.195(14) Br(1) 0.8521(81) 

      

Torsion angle     

C(6)-C(5)-C(10)-C(1) 179.3(8) C(6)-C(5)-C(10)-C(1) -177.4(12) 

C(4)-C(5)-C(10)-C(9) -179.2(8) C(4)-C(5)-C(10)-C(9) -175.0(12) 
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Reaction of 1-(phenylselenyl)-8-(phenylsulfanyl)naphthalene 41 with diiodine. 

The reaction of 1-(phenylselenyl)-8-(phenylsulfanyl)naphthalene 41 with diiodine is comparable to 

the reaction of 1,8-bis(phenylselenyl)naphthalene 38 with diiodine and affords a similar C.-T. 

‘extended spoke’ adduct to compound 60 (Scheme 6.7).  

 
Scheme 6.7 The reaction scheme for the preparation of the C.-T. ‘extended spoke’ adduct 62. 

 

Reaction with diiodine occurs at selenium which has a greater donor ability compared to 

sulfur.1,2,22 Iodine [χ(I) 2.36]22 having a similar electronegativity to selenium [χ(Se) 2.35]22 accepts 

electron density from non-bonding orbitals of selenium forming a charge-transfer adduct. A 

second molecule of diiodine then interacts with the partial negative charge on the terminal I(2) 

atom to form the ‘extended spoke’ adduct 62 (Scheme 6.7).2   

 

62 was fully characterised by elemental analysis, infra-red spectroscopy, 1H, 13C and 77Se NMR 

spectroscopy and mass spectrometry. The 77Se NMR spectrum shows a downfield shift compared 

to 41 [δ = 455.3 ppm] with a single peak at δ = 476.9 ppm.  

 
Fig. 6.27 The molecular structure of the C.-T. ‘extended spoke’ adduct 62. 
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The molecular structure of adduct 62 (Figure 6.27) is very similar to that of the selenium analogue 

58 and exhibits an intramolecular non-bonded Se(1)···S(1) peri-distance of 2.9798(13) Å, slightly 

shorter than the Se(1)···Se(2) distance in 60 [3.0756(14) Å]. In-plane distortion is observed to be 

reduced in 62 [370.9(9)°] with smaller angles found in the bay region compared to 60 

[373.6(14)°]. The displacement of the peri-atoms above and below the naphthyl plane is 

comparable in the two adducts and torsion angles suggest both compounds display the same 

degree of planarity in their naphthalene backbones. Selected bond lengths and angles for the two 

adducts are compared in Table 6.5 and further information on the crystal structure analysis for 62 

can be found in Appendix 40. 

 

The two quasi-linear arrangements Se(1)-I(1)-I(2) [179.0(1)°] and I(2)···I(3)-I(3)1 [176.3(1)°] 

(angles γ, ω; Figure 6.28) in 62 are separated by an I(1)-I(2)-A angle (A = the second molecule of 

I2) of 108.0(1)°. This angle, as for 60, is slightly larger than average [90°] for known ‘extended 

spoke’ compounds.1,2 The interaction between the terminal I(2) atom and the second molecule of I2 

is observed by the weakening of the I(1)-I(2) bond which lengthens to 2.8706(5) Å, similar in size 

to the I(1)-I(2) bond in 60 [2.8672(8) Å]. This strengthens and shortens the Se(1)-I(1) bond to 

2.8436(6) Å [60 2.8497(9) Å].1,2 The interaction between the terminal I(2) atom and the second 

molecule of I2 also has the effect of increasing the I3-I3
1 bond length from 2.66 Å for free iodine to 

2.7418(7) Å.26  

 
Fig. 6.28 The structures of 62 and 60 showing the orientation of the E(phenyl) groups, the type of 

structure and the linear arrangements within the compounds.37 
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Figure 6.29 illustrates the ‘AB-trans type’ arrangement adducts 62 and 60 adopt; one E-CPh bond 

lying close to the naphthyl plane and one approaching perpendicular to it.37 The result is the linear 

alignment of three atoms, CPh-Se(1)···S(1) in 62 and CPh-Se(1)···Se(2) in 60, which can be thought 

of as weak 3c-4e interactions.15,17-19 The positioning of I(1) in the peri-gap in close proximity to 

the S(1) atom in 62 suggests a similar interaction to I(1)···Se(2) in 60 [3.8730(9) Å] could take 

place. The I(1)···S(1) non-bonded distance of [3.8527(13) Å] however, is longer than the sum of 

the van der Waals radii for interacting S and I atoms [3.78 Å ] so no non-bonded intramolecular 

interaction is envisaged.36  

 
Fig. 6.29 The directional parameters for the geometry of C.-T. ‘spoke’ adducts formed from di-

/inter-halogens binding to sp3 hybridised chalcogen donor atoms.2 

 

Due to steric crowding around the lone-pairs on selenium, 62 and 60 adopt a quasi-perpendicular 

arrangement. Angle θ between the diiodine species I(1)-I(2) and the plane containing both 

electron-pairs of the tetrahedral sp3 selenium donor atom approaches 80° in both cases (Figure 

6.29).2,10,11 The intermolecular interactions occurring in 62 involving molecules of I2 are illustrated 

by Figure 6.30. 

 
Fig. 6.30 The molecular structure of the C.-T. ‘extended spoke’ adduct 62 showing the molecular 

packing viewed along the b-axis. 
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Table 6.5   Selected bond lengths [Å] and angles [°] for the two C.-T. ‘extended spoke’ adducts 62 

and 60. 

_______________________________________________________________________________ 

  

Se(1)···S(1) 2.9798(18) Se(1)···Se(2) 3.0756(14) 

Se(1)-C(1) 1.958(5) Se(1)-C(1) 1.948(8) 

S(1)-C(9) 1.773(5) Se(2)-C(9) 1.929(7) 

I(3)-I(3)1 2.7418(7) I(3)-I(3)1 2.7402(11) 

I(1)···S(1) 3.8527(13) I(1)···Se(2) 3.8730(9) 

I(1)-Se(1) 2.8436(6) I(1)-Se(1) 2.8497(9) 

I(1)-I(2) 2.8706(5) I(1)-I(2) 2.8672(8) 

I(2)···I(3) 3.526(1) I(2)···I(3) 3.543(1) 

    

Se(1)-C(1)-C(10) 121.7(4) Se(1)-C(1)-C(10) 122.5(7) 

C(1)-C(10)-C(9) 126.8(5) C(1)-C(10)-C(9) 126.9(7) 

S(1)-C(9)-C(10) 122.4(4) Se(2)-C(9)-C(10) 124.2(6) 

 Σ = 370.9(9)  Σ = 373.6(14) 

I(2)-I(1)-Se(1) 179.04(2) I(2)-I(1)-Se(1) 178.09(3) 

I(1)-Se(1)-C(11) 99.31(16) I(1)-Se(1)-C(11) 99.4(2) 

I(1)-Se(1)-C(1) 98.08(16) I(1)-Se(1)-C(1) 98.7(2) 

C(1)-Se(1)-C(11) 100.7(2) C(1)-Se(1)-C(11) 100.3(3) 

I(1)-Se(1)-S(1) 82.81(1) I(1)-Se(1)-Se(2) 81.54(1) 

      

Distance from naphthalene mean plane   

Se(1) 0.438(11) Se(1) 0.415(11) 

S(1) -0.233(11) Se(2) -0.246(11) 

I(1) 3.106(11) I(1) 3.076(11) 

   

Torsion angle    

C(6)-C(5)-C(10)-C(1) 176.8(4) C(6)-C(5)-C(10)-C(1) 176.7(6) 

C(4)-C(5)-C(10)-C(9) 174.9(4) C(4)-C(5)-C(10)-C(9) 174.8(7) 
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Hypervalent ‘T-shaped’ adducts of tellurium compounds 

 

Generally, when the halide species (X) is more electronegative than the chalcogen atom (E), ‘T-

shaped’ or trigonal bipyramidal (TBP) adducts are formed.18,20,21 Consequently, all the known 

reactions between tellurium-donors [χ(Te) 2.08]22 and di- or inter-halogens [χ(F) 3.94- χ(I) 2.36] 

form ‘T-shaped’ adducts with no tellurium C.-T. adducts known.1,2,22 Tellurium forms a strong 

donor-strong acceptor system with the di-halogen molecule sufficient enough to cleave the X-X 

bond and oxidise tellurium.1,2 Subsequent nucleophilic attack occurring at the tellurium site of the 

[RTe–X]+ cation affords the ‘T-shaped’ hypervalent adduct containing the quasi linear X-Te-X 

alignment.1,2 

 

Dihalogen reactions of 1-(phenyltellurenyl)-8-(phenylsulfanyl)naphthalene 42 and 1-

(phenyltellurenyl)-8-(phenylselenyl)naphthalene 43. 

The tellurium-donor compounds 1-(phenyltellurenyl)-8-(phenylsulfanyl)naphthalene 42 and 1-

(phenyltellurenyl)-8-(phenylselenyl)naphthalene 43 react with dibromine and diiodine, to produce 

a series of four ‘T-shaped’ insertion adducts (Scheme 6.8). In all four reactions the dihalogen 

reacts at the larger, less electronegative tellurium atom due to its greater electron donor ability 

over sulfur or selenium.  

 

 
Scheme 6.8 The reaction scheme for the preparation of the series of T-shaped adducts 63-66 from 

the reaction of compounds 42 and 43 with di-halogens Br2 and I2. 
 

The 125Te NMR and 77Se NMR spectroscopy data for adducts 64 and 66 and the 125Te NMR 

spectroscopy data for adducts 63 and 65 are summarised in Table 6.6 and compared with starting 

compounds 42 and 43. 

 

 

 

 



Chapter 6 – Hypervalent adducts of chalcogen substituted naphthalenes 
                           

                                                                                                   198 

 

Table 6.6   77Se and 125Te NMR spectroscopy data [δ (ppm)] for the ‘T-shaped’ insertion adducts 

63-66 

  63 64 65 66 42 43 

peri-atoms TeS TeSe TeS TeSe TeS TeSe 

X-Te-X Br-Te-Br Br-Te-Br I-Te-I I-Te-I - - 
77Se NMR - 500.0 - 428.8 - 362.8 
125Te NMR 958.9 941.4 790.9 747.0 715.18 687.6 

 

In the 125Te NMR spectra, the expected downfield shifts due to the presence of the more 

electronegative halogen atoms are seen in 63 and 65 compared to 42 and likewise in the spectra for 

64 and 66 compared to 43. The greater electronegativity of Br over I is also observed with an up-

field shift observed when Br-Te-Br in 63 and 64 is replaced by I-Te-I in 65 and 66 respectively. 

The 77Se NMR spectra of 64 and 66 also show a downfield shift compared to 43 [δ = 362.8 ppm] 

with a peaks at δ = 500.0 ppm and δ = 428.8 respectively.  

 
Fig. 6.31 The molecular structure of the ‘T-shaped’ adduct 63. 

 

The molecular structures of the four ‘T-shaped’ adducts 63-66 (Figures 6.31-6.34) show similar 

structural geometries with minor deviations observed which can be attributed to steric crowding 

and naphthalene distortion. Selected bond lengths and angles for the bromine adducts (63 and 64) 

are compared in Table 6.7 and for the iodine adducts (65 and 66) in Table 6.8. Further information 

for the crystal structures can be found in Appendices 41-44. 
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Fig. 6.32 The molecular structure of the ‘T-shaped’ adduct 64. 

 

Intramolecular non-bonded Te(1)···S(1) peri-distances for 63 [3.075(2) Å] and 65 [3.0767(17) Å] 

are comparable to the distances found in the two independent molecules of 42 [A 3.0684(13) Å, A  

3.0984(11) Å]. The larger selenium atom in adducts 64 and 66 causes an expected increase in the 

Te(1)···Se(1) peri-distances for these adducts [64 3.141(2) Å, 66 3.137(2) Å] which exhibit 

distances comparable to the independent molecules of 43 [A 3.1919(11) Å, B 3.1580(12) Å].    

 

 
Fig. 6.33 The molecular structure of the ‘T-shaped’ adduct 65.  
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In-plane distortion in the C-C-C group between the peri-atoms is shown to be similar in all four 

adducts with the sums of the bay region angles between 372.0° and 373.5°. The degree of 

displacement of the peri-atoms above and below the naphthalene plane is also found to be 

consistent throughout the series. However, tellurium sits further from the naphthyl plane than the 

sulfur atom in 63 and 65 but in adducts 64 and 66 the peri-atoms sit at roughly equal distances 

from the plane. 

 

 
Fig. 6.34 The molecular structure of the ‘T-shaped’ adduct 66.  

 

Torsion angles associated with the C5-C10 bond give evidence for greatest naphthalene planarity 

in 66 with the most buckling occurring in adduct 64 (Figure 6.35). 

 

 

Fig. 6.35 The molecular structures of adducts 63-66 showing the planarity of the naphthalene 

backbone and orientation of the X-Te-X moiety. 
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Figure 6.36 illustrates the ‘AB-trans type’ arrangement all four adducts adopt with Te-CPh bonds 

approaching the naphthyl plane and Se-CPh bonds lying perpendicular to the plane.37 Two quasi-

linear arrangements of the type Se(1)···Te(1)-CPh and X-Te-X are observed in each adduct with 

angles θ and γ in the range 159.8(1)-163.1(1)° and 176.7(1)-179.6(1)° respectively. Additionally, 

X-Te bond lengths in the X-Te-X moiety (Tables 6.7, 6.8) of the four adducts are over 1.0 Å 

shorter than the sum of the respective van der Waals radii [BrTe 3.91, ITe 4.04]36 in the known 

region for 3c-4e bonding.15,17-19      

Fig. 6.36 The structures of 63-66 showing the orientation of the Te(phenyl) groups, the type of 

structure and the linear arrangements within the compounds.37 

 

The ‘T-shaped’ geometry in the four adducts places one X atoms of the X-Te-X alignment in the 

peri-gap in close proximity to the second peri-atom [63/65 S, 64/66 Se] (Figure 6.36). In each case 

the distance between the interacting X and S/Se atoms is shorter than the respective sum of van der 

Waals radii indicating the possibility an intramolecular interaction is taking place [BrS 3.65 Å, 63 

Br(1)···S(1) 3.486(2) Å; BrSe 3.75 Å, 64 Br(1)···Se(1) 3.542(2) Å; IS 3.78 Å, 65 I(1)···S(1) 

3.6136(16) Å; ISe 3.88 Å, 66 I(1)···Se(1) 3.696(2) Å]. All four adducts adopt the same packing 

geometry with intermolecular interactions occurring between X-Te-X moieties of two molecules 

as depicted in Figure 6.37. 

 

 
Fig. 6.37 The molecular structures of the ‘T-shape adducts 63-66 showing intermolecular packing 

interactions. 
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In all cases the Te···X distance is shorter than the sum of van der Waals radii for the two 

interacting atoms. Figure 6.38 shows the molecular structures of 63 and 65 illustrating the 

intermolecular interactions taking place in the four adducts (64 and 66 adopt the same arrangement 

and so pictures of their intermolecular interactions are not illustrated). 

 

 

 
Fig. 6.38 The molecular structures of the ‘T-shape adducts 63 and 65 showing intermolecular 

packing interactions. 
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Table 6.7   Selected bond lengths [Å] and angles [°] for the ‘T-shaped’ insertion adducts 63 and 

64. 

______________________________________________________________________________ 

  

Te(1)···S(1) 3.075(2) Te(1)···Se(1) 3.141(2) 

Te(1)-C(1) 2.124(10) Te(1)-C(1) 2.148(15) 

S(1)-C(9) 1.782(11) Se(1)-C(9) 1.933(14) 

    

S(1)···Br(1) 3.486(2) Se(1)···Br(1) 3.542(2) 

Te(1)-Br(1) 2.7072(11) Te(1)-Br(1) 2.719(2) 

Te(1)-Br(2) 2.6688(12) Te(1)-Br(2) 2.671(2) 

    

Te(1)-C(1)-C(10) 123.1(7) Te(1)-C(1)-C(10) 122.2(10) 

C(1)-C(10)-C(9) 127.6(9) C(1)-C(10)-C(9) 130.4(15) 

S(1)-C(9)-C(10) 121.3(7) Se(1)-C(9)-C(10) 120.9(13) 

 Σ = 372.0(16)  Σ = 373.5(27) 

Br(1)-Te(1)-Br(2) 176.67(4) Br(1)-Te(1)-Br(2) 177.94(6) 

Br(1)-Te(1)-C(1) 89.1(2) Br(1)-Te(1)-C(1) 88.9(4) 

Br(1)-Te(1)-C(11) 87.4(2) Br(1)-Te(1)-C(11) 87.9(4) 

Br(2)-Te(1)-C(1) 90.0(2) Br(2)-Te(1)-C(1) 89.4(4) 

Br(2)-Te(1)-C(11) 89.5(2) Br(2)-Te(1)-C(11) 91.0(4) 

Br(1)-Te(1)-S(1) 73.85(2) Br(1)-Te(1)-Se(1) 73.98(2) 

Br(2)-Te(1)-S(1) 109.0(2) Br(2)-Te(1)-Se(1) 106.9(2) 

    

Distance from naphthalene mean plane   

Te(1) -0.401(12) Te(1) -0.444(1) 

S(1) 0.250(12) Se(1) 0.259(1) 

Br(1) -2.780(11) Br(1) -2.816(1) 

Br(2) 1.881(14) Br(2) 1.871(1) 

    

Torsion angle    

C(6)-C(5)-C(10)-C(1) -179.1(8) C(6)-C(5)-C(10)-C(1) -177.0(12) 

C(4)-C(5)-C(10)-C(9) -174.3(8) C(4)-C(5)-C(10)-C(9) -173.5(13) 
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Table 6.8   Selected bond lengths [Å] and angles [°] for the ‘T-shaped’ insertion adducts 65 and 

66. 

_______________________________________________________________________________ 

  

Te(1)···S(1) 3.0767(17) Te(1)···S(1) 3.137(2) 

Te(1)-C(1) 2.138(6) Te(1)-C(1) 2.14(2) 

S(1)-C(9) 1.784(6) Se(1)-C(9) 1.915(19) 

    

S(1)···I(1) 3.6136(16) Se(1)···I(1) 3.696(2) 

Te(1)-I(1) 2.9457(6) Te(1)-I(1) 2.9538(17) 

Te(1)-I(2) 2.9073(6) Te(1)-I(2) 2.8943(17) 

Te(1)-C(1)-C(10) 122.5(4) Te(1)-C(1)-C(10) 122.6(14) 

C(1)-C(10)-C(9) 127.1(6) C(1)-C(10)-C(9) 129.4(17) 

S(1)-C(9)-C(10) 122.7(5) Se(1)-C(9)-C(10) 120.4(14) 

 Σ = 372.3(11)  Σ = 372.4(31) 

I(1)-Te(1)-I(2) 176.81(2) I(1)-Te(1)-I(2) 179.59(6) 

I(1)-Te(1)-C(1) 89.66(18) I(1)-Te(1)-C(1) 90.0(4) 

I(1)-Te(1)-C(11) 87.38(18) I(1)-Te(1)-C(11) 89.5(4) 

I(2)-Te(1)-C(1) 91.53(18) I(2)-Te(1)-C(1) 90.2(4) 

I(2)-Te(1)-C(11) 89.51(18) I(2)-Te(1)-C(11) 90.2(4) 

I(1)-Te(1)-S(1) 73.71(18) I(1)-Te(1)-Se(1) 74.66(4) 

I(2)-Te(1)-S(1) 109.46(18) I(2)-Te(1)-Se(1) 105.71(4) 

    

Distance from naphthalene mean plane   

Te(1) -0.3690(82) Te(1) -0.372(8) 

S(1) 0.3007(77) Se(1) 0.317(8) 

I(1) -2.9482(75) I(1) -2.977(8) 

I(2) 2.0949(94) I(2) 2.172(9) 

    

Torsion angle    

C(6)-C(5)-C(10)-C(1) -177.3(6) C(6)-C(5)-C(10)-C(1) 179.7(14) 

C(4)-C(5)-C(10)-C(9) -174.1(5) C(4)-C(5)-C(10)-C(9) -174.7(13) 
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Dihalogen reactions of 1-bromo-8-(phenyltellurenyl)naphthalene 55 and 1-iodo-8-

(phenyltellurenyl)naphthalene 56. 

1-Bromo-8-(phenyltellurenyl)naphthalene 55 and 1-iodo-8-(phenyltellurenyl)naphthalene 56 react 

with dihalogens (Br2, I2) at the tellurium-donor atom, to afford the four analogous ‘T-shaped’ 

insertion adducts 67-70 (Scheme 6.9).  

 
Scheme 6.9 The reaction scheme for the preparation of the series of ‘T-shaped’ insertion adducts 

67-70. 

 

The 125Te NMR spectroscopy data for the three ‘T-shaped’ adducts 67-70 is compared in Table 6.9 

with the two starting compounds 55 and 56. As expected all four adducts see a downfield shift 

compared to the starting materials 55 and 56. This can be explained by the presence of the 

electronegative Br and I atoms forming the X-Te-X arrangement. The greater electronegativity of 

Br over I is also observed with an upfield shift seen when Br-Te-Br in 67 and 68 is replaced by I-

Te-I in 69 and 70 respectively.     

 

 
Fig. 6.39 The molecular structure of the‘T-shaped’ insertion adduct 67. 
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Table 6.9   77Se and 125Te NMR spectroscopy data [δ (ppm)] for the ‘T-shaped’ insertion adducts 

67-70. 

  67 68 69 70 55 56 

peri-atoms TeBr TeI TeBr TeI TeBr TeI 

X-Te-X Br-Te-Br Br-Te-Br I-Te-I I-Te-I - - 
125Te NMR 942.8 903.0 887.5 848.0 731.2 698.3 

 

The molecular structures (Figures 6.39-6.42) show the four ‘T-shaped’ adducts 67-70 arrange with 

similar structural geometries with minor deviations through steric crowding and naphthalene 

distortion. Bond lengths and angles of the bromine adducts 67 and 68 are compared in Table 6.10 

while those of the iodine adducts 69 and 70 are compared in Table 6.11. Further information on all 

the crystal structures can be found in Appendices 45-48. 

 
Fig. 6.40 The molecular structure of the‘T-shaped’ insertion adduct 66. 

 

Intramolecular non-bonded Br(1)···Te(1) peri-distances for 67 [3.2397(15) Å] and 69 [3.1563(6) 

Å] are comparable to the donor compound 55 [3.1909(10) Å] and likewise expected larger values 

for the I(1)···Te(1) interaction in 68 [3.3810(7) Å] and 70 [3.3608(11) Å] match the distance in 56 

[3.3146(6) Å].    

 
Fig. 6.41 The molecular structure of the ‘T-shaped’ insertion adduct 69. 
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In-plane distortions in the C-C-C group between the peri-atoms is shown by the sum of the bay 

region angles to be similar in 67 [373.1(18)°] and 69 [372.4(9)°] and comparable to 55 

[373.6(11)°]. The peri-iodine atom in 68 and 70 is accommodated by greater in-plane distortion 

with values for the bay region angles [375.9(14)°, 378.7(15)°] comparable to 56 [376.2(10)°].  

 

Fig. 6.42 The molecular structure of the ‘T-shaped’ insertion adduct 70. 

 

Compounds 67 and 68, containing the Br-Te-Br linear fragment, exhibit a greater degree of out-of-

plane distortion compared with 69 and 70. Torsion angles associated with the C5-C10 bond also 

suggest these compounds display less planarity in their naphthalene backbones (Figure 6.43). 

 

 

Fig. 6.43 The molecular structures of the‘T-shaped’ insertion adducts 67-70 showing the planarity 

of the naphthalene backbones. 

 

Figure 6.44 illustrates the ‘B-type’ arrangement all four adducts adopt for the Te(phenyl) group 

with angles for the Te-CPh bond approaching the naphthyl plane between 144-159°.37 Two quasi-

linear arrangements of the type X···Te-CPh and X-Te-X are observed in each adduct with angles θ 

and γ in the range 162.5(1)-173.2(1)° and 175.8-177.3(1)° respectively. Additionally, X-Te bond 

lengths in the X-Te-X fragment of the four adducts are over 1.0 Å shorter than the sum of the 

respective van der Waals radii in the known region for 3c-4e bonding to take place.15,17-19      

 



Chapter 6 – Hypervalent adducts of chalcogen substituted naphthalenes 
                           

                                                                                                   208 

 

Fig. 6.44 The structures of 67-70 showing the orientation of the Te(phenyl) groups, the type of 

structure and the linear arrangements within the compounds.37 

 

The ‘T-shaped’ geometry in the four adducts results in one of the X atoms of the X-Te-X 

alignment sitting in the peri-gap in close proximity to the peri-halide atom (Figure 6.44). In each 

case the distance between these two halogen atoms is greater than the sum of their van der Waals 

radii so no interaction is envisaged.  
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Table 6.10 Selected bond lengths [Å] and angles [°] for the ‘T-shaped’ insertion adducts 67 and 

68. 

_______________________________________________________________________________ 

10

5
6

7

8

91

2

3

4

Te
1 Br3

11Br
2

16

15

14

13

12

Br1

67   

Te(1)···Br(1) 3.2397(15) Te(1)···I(1) 3.3810(7) 

Br(1)-C(1) 1.900(11) Te(1)-C(9) 2.150(8) 

Te(1)-C(9) 2.153(10) I(1)-C(1) 2.117(9) 

    

Br(1)···Br(2) 3.7079(17) I(1)···Br(1) 3.8497(11) 

Te(1)-Br(2) 2.6664(13) Te(1)-Br(1) 2.6578(10) 

Te(1)-Br(3) 2.6686(13) Te(1)-Br(2) 2.6779(11) 

    

Br(1)-C(1)-C(10) 121.3(8) Te(1)-C(9)-C(10) 124.6(6) 

C(1)-C(10)-C(9) 129.3(10) C(1)-C(10)-C(9) 129.3(8) 

Te(1)-C(9)-C(10) 122.5(8) I(1)-C(1)-C(10) 122.0(6) 

 Σ = 373.1(18)  Σ = 375.9(14) 

Br(2)-Te(1)-Br(3) 175.80(4) Br(1)-Te(1)-Br(2) 176.55(3) 

Br(2)-Te(1)-C(9) 88.8(2) Br(1)-Te(1)-C(9) 89.2(2) 

Br(2)-Te(1)-C(11) 88.4(3) Br(1)-Te(1)-C(11) 88.6(2) 

Br(3)-Te(1)-C(9) 87.4(2) Br(2)-Te(1)-C(9) 87.7(2) 

Br(3)-Te(1)-C(11) 90.2(3) Br(2)-Te(1)-C(11) 90.2(2) 

Br(2)-Te(1)-Br(1) 77.10(2) Br(1)-Te(1)-I(1) 78.20(2) 

Br(3)-Te(1)-Br(1) 103.53(2) Br(2)-Te(1)-I(1) 102.34(2) 

      

Distance from naphthalene mean plane 

Te(1) 0.641(15) Te(1) 0.646(15) 

Br(1) -0.550(14) I(1) -0.644(14) 

Br(2) 2.825(13) Br(1) 2.825(13) 

Br(3) -1.541(17) Br(2) -1.549(17) 

     

Torsion angle    

C(6)-C(5)-C(10)-C(1) 174.0(10) C(6)-C(5)-C(10)-C(1) -168.7(8) 

C(4)-C(5)-C(10)-C(9) 170.2(10) C(4)-C(5)-C(10)-C(9) -175.5(8) 
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Table 6.11   Selected bond lengths [Å] and angles [°] for the ‘T-shaped’ insertion adducts 69 and 

70. 

_______________________________________________________________________________ 
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70  

Te(1)···Br(1) 3.1563(6) Te(1)···I(1) 3.3608(11) 

Br(1)-C(1) 1.911(6) I(1)-C(1) 2.097(11) 

Te(1)-C(9) 2.150(6) Te(1)-C(9) 2.159(9) 

    

Br(1)···I(2) 4.0089(6) I(1)···I(3) 2.9042(7) 

Te(1)-I(1) 2.9343(5) Te(1)-I(2) 2.9480(7) 

Te(1)-I(2) 2.8952(4) Te(1)-I(3) 2.9042(7) 

    

Br(1)-C(1)-C(10) 121.5(4) I(1)-C(1)-C(10) 126.3(7) 

C(1)-C(10)-C(9) 128.1(5) C(1)-C(10)-C(9) 128.2(8) 

Te(1)-C(9)-C(10) 122.8(3) Te(1)-C(9)-C(10) 124.2(7) 

 Σ = 372.4(9)  Σ = 378.7(15) 

I(1)-Te(1)-I(2) 176.405(19) I(2)-Te(1)-I(3) 177.27(3) 

I(1)-Te(1)-C(9) 90.47(14) I(2)-Te(1)-C(9) 89.3(2) 

I(1)-Te(1)-C(11) 91.21(15) I(2)-Te(1)-C(11) 90.5(2) 

I(2)-Te(1)-C(9) 86.18(14) I(3)-Te(1)-C(9) 88.4(2) 

I(2)-Te(1)-C(11) 90.63(15) I(3)-Te(1)-C(11) 91.2(2) 

I(1)-Te(1)-Br(1) 95.06(15) I(2)-Te(1)-I(1) 95.2(2) 

I(2)-Te(1)-Br(1) 82.85(14) I(3)-Te(1)-I(1) 82.9(2) 

      

Distance from naphthalene mean plane 

Br(1) 0.312(14) I(1) -0.410(14) 

Te(1) -0.614(14) Te(1) 0.436(14) 

I(1) 2.063(14) I(2) -2.305(14) 

I(2) -3.187(14) I(3) 3.130(14) 

    

Torsion angle    

C(6)-C(5)-C(10)-C(1) 174.4(5) C(6)-C(5)-C(10)-C(1) -175.2(9) 

C(4)-C(5)-C(10)-C(9) 176.5(5) C(4)-C(5)-C(10)-C(9) -176.8(9) 
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Reaction of 2-mono-tert-butylnaphtho[1,8-c,d][1,2]diselenole 72 with dibromine. 

2-Mono-tert-butylnaphtho[1,8-c,d][1,2]diselenole 72 was prepared in house in the Woollins Group 

by Amy Fuller following methods reported for the preparation of the thiol analogue (Scheme 

6.10).39,40  

 

 

Scheme 6.10 The reaction scheme for the preparation of 72.39,40 

 
Upon reaction of 2-mono-tert-butylnaphtho[1,8-c,d][1,2]diselenole 72 with dibromine no 

interaction between selenium and bromine is observed. Instead electrophilic aromatic substitution 

dominates to produce the doubly substituted compound 4,7-dibromo-2-mono-tert-

butylnaphtho[1,8-c,d][1,2]diselenole  73 (Scheme 6.11). 

 

 
Scheme 6.11 The reaction scheme for the preparation of 4,7-dibromo-2-mono-tert-

butylnaphtho[1,8-c,d][1,2]diselenole  73. 

 

In substituted naphthalenes the ring carrying the substituent is the one most affected during 

electrophilic attack. Selectivity of the two electrophilic aromatic substitution reactions can 

therefore be explained by the directing influence of selenium and the steric bulk of the t-butyl 

group. Both selenium and t-butyl groups donate electrons into the π-system, activating the 

naphthalene ring and directing incoming electrophiles to the ortho or para positions. Attack at the 

position para to selenium would be sterically more favourable, keeping the two large bromine and 

t-butyl groups further apart. The second substitution reaction is directed to the ortho position on 

the second ring to avoid the steric interaction with the first bromine atom.35 

 



Chapter 6 – Hypervalent adducts of chalcogen substituted naphthalenes 
                           

                                                                                                   212 

 

The 77Se NMR spectrum of 73 shows a downfield shift compared to 72 [δ = 413.61 ppm and δ = 

360.07 ppm]40 with two shifts at δ = 453.77 ppm and δ = 374.37 ppm for the two different 

selenium environments. 

 

The molecular structure of 73 is shown in Figure 6.45. Selected bond lengths and angles are listed 

in Table 6.12 and further information on the crystal structure can be found in Appendix 49. The 

molecular structure of 73 shows a selenium-selenium bonding peri-distance of 2.3388(14) Å 

which is shorter than the known peri-distance calculated for naphthalene [2.44 Å].41 Evidence for 

a negative in-plane distortion and conformation of a peri-bond is observed from the sum of the 

splay angles [355.2(15)°], which being lower than 357.2(2)° for naphthalene, show the peri-atoms 

have come closer as a result of a favourable interaction. As there is no steric hindrance between 

the peri-atoms, no distortion of the naphthalene geometry is required. The two bonding peri-

selenium atoms lie on the naphthyl plane with no observed out-of-plane distortion and a strictly 

planar naphthalene backbone (Figure 6.46).  

 

 
Fig. 6.45 The crystal structure of 4,7-dibromo-2-mono-tert-butylnaphtho[1,8-c,d][1,2]diselenole 

73. 
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The two bromine atoms, the quaternary carbon [C11] of the t-butyl group and one of carbons of 

the methyl groups [C13] also lie on the naphthalene plane. The two remaining methyl carbons are 

found at equal distances above and below the plane [C12 1.26(1) Å, C12A -1.26(1) Å] (Figure 

6.46). 

 

Fig. 6.46 The molecular structure of 4,7-dibromo-2-mono-tert-butylnaphtho[1,8-

c,d][1,2]diselenole 73 showing the strictly planar geometry and the alignment of the t-butyl group. 

 

Figure 6.47 illustrates the intermolecular non-bonded interactions observed between two 

molecules of 73, with Br(8)···Br(4’) distances [3.479(1) Å] shorter than the sum of van der Waals 

radii for two interacting bromine atoms [3.70 Å].36 

 

 
Fig. 6.47 The crystal structure of 73 showing intermolecular packing between bromine atoms of 

two interacting molecules. 
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Table 6.12 Selected bond lengths [Å] and angles [°] for 4,7-dibromo-2-mono-tert-

butylnaphtho[1,8-c,d][1,2]diselenole  73. 

_______________________________________________________________________________ 

 

Se(1)-Se(2) 2.3388(14) 

Se(1)-C(1) 1.935(9) 

Se(2)-C(9) 1.888(9) 

Se(2)···Br(8) 3.2567(15) 

Br(8)···Br(4’) 3.479(1) 

  

Se(1)-C(1)-C(10) 114.4(6) 

C(1)-C(10)-C(9) 121.7(8) 

Se(2)-C(9)-C(10) 119.1(7) 

 Σ = 355.2(15) 

  

Distance from naphthalene mean plane 

Se(1) 0.000(1) 

Se(2) 0.000(1) 

  

Torsion angle  

C(6)-C(5)-C(10)-C(1) 180.0(1) 

C(4)-C(5)-C(10)-C(9) 180.0(1) 
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Reaction of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 with dibromine. 

Treatment of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 with excess dibromine in 

dichloromethane led to the formation of the air-stable phosphonium salt 74. Phosphorus forms a 4 

co-ordinate cationic fragment via the addition of a hydroxyl group which is balanced by a linear 

Br3
- counteranion (Scheme 6.12). The 31P NMR spectrum shows a single peak at δ = 52.48 ppm. 

 

 
Scheme 6.12 The reaction scheme for the preparation of hydroxydiphenyl[(8-

phenylsulfanyl)naphthalene-1-yl]phosphonium tribromide 74. 

 

The molecular structure of 74 is shown in Figure 6.48. Selected bond lengths and angles are listed 

in Table 6.13 and compared with those for phosphine 19. Further information on the crystal 

structure can be found in Appendix 50.  

 
Fig. 6.48 The molecular structure of hydroxydiphenyl[(8-phenylsulfanyl)naphthalene-1-

yl]phosphonium tribromide 74. 
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In the crystal structure, two molecules of 74 share a proton between the two oxygen atoms forming 

a P-O-H-O-P bridge. All five atoms lie on the same plane with P-O-H angles of 131.2(1)° and the 

O-H-O angle of 180.0(1)°. P-O bond lengths are the same in both molecules [1.527(6) Å] and are 

in between values for the phosphine oxide 21 [1.492(2) Å] and a standard single P-OH bond [1.56 

Å].42 This value can be explained by the equilibrium taking place between a phosphine oxide and a 

phosphonium cation with an averaged structure as depicted by Figure 6.49.   

 

 
Fig. 6.49 In the crystal structure of 74, two molecules share a proton to form a P-O-H-O-P 

bridge; explained by the equilibrium between a phosphine oxide and a phosphonium cation. 

 

Compared to 19, the phosphonium salt 74 exhibits greater strain relief via naphthalene distortion 

due to increased steric repulsion occurring in the compound. The peri-atoms are accommodated by 

a longer intramolecular non-bonded P···S distance [3.165(2) Å] compared to the same distance in 

19 [3.0330(7) Å]. An increase in the splay of the bay region in 74 is seen by comparison of the 

sums of the peri-region angles [72 375.5(17)°, 19 374.1(3)°] and shows a greater in-plane 

distortion occurs in the phosphonium salt. The displacement of the phosphorus [0.436(11) Å] and 

sulfur [-0.466(11) Å] atoms above and below the naphthalene plane is also much greater in 74. 

Torsion angles (Table 6.13) also indicate that the naphthalene backbone displays a greater 

buckling compared with 19 (Figure 6.50). 

 

               

Fig. 6.50 The crystal structures of 74 and 19 showing the difference in out-of-plane distortion and 

planarity of the naphthalene backbones. 
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Table 6.13 Selected bond lengths [Å] and angles [°] for 74 and 19. 

_______________________________________________________________________________ 
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S(1)···P(1) 3.165(2) S(1)···P(1) 3.0330(7)  

P(1)-C(1) 1.796(11) P(1)-C(1) 1.8548(19)  

S(1)-C(9) 1.789(12) S(1)-C(9) 1.785(2)  

P(1)-O(1) 1.527(6)    

O(1)···S(1) 2.951(4)    

Br(1)-Br(2) 2.5984(12)    

Br(2)-Br(1A) 2.5984(12)    

     

P(1)-C(1)-(10) 126.2(7) P(1)-C(1)-(10) 124.07(13)  

C(1)-C(10)-C(9) 126.4(10) C(1)-C(10)-C(9) 126.90(17)  

S(1)-C(9)-(10) 122.9(7) S(1)-C(9)-(10) 123.11(13)  

 Σ = 375.5(17)  Σ = 374.1(3)  

Br(1)-Br(2)-Br(1A) 180.00(6)    

O(1)-P(1)-C(1) 113.1(4)    

P(1)-O(1)-H(1o) 131.2(1)    

     
 

Distance from naphthalene mean plane [ Å]    

P(1) 0.436(11) P(1) 0.007(1)  

S(1) -0.466(11) S(9) 0.127(1)  

O(1) 1.518(13)       

     

Torsion angles          

C(6)-C(5)-C(10)-C(1) 171.9(7) C(6)-C(5)-C(10)-C(1) 178.49(16)  

C(4)-C(5)-C(10)-C(9) 174.9(7) C(4)-C(5)-C(10)-C(9) -179.51(16)  

     

Hydrogen bond geometry for 72     

D-H···A D-H H···A D···A D-H···A 

O(1)-H(1o)···O(1A) 1.218(1) 1.218(1) 2.435(1) 180.0(1) 

 

Summary 



Chapter 6 – Hypervalent adducts of chalcogen substituted naphthalenes 
                           

                                                                                                   218 

 

 

1,8-Bis(phenylsulfanyl)naphthalene 37, 1,8-bis(phenylselenyl)naphthalene 38, the three novel 

mixed chalcogen naphthalene systems 41-43 along with the tellurium compounds 55 and 56 

reacted with dibromine and diiodine to produce a range of different adducts; C.-T. ‘spoke’, C.-T. 

‘extended spoke’, ‘T-shaped’ (or TBP) adducts and an ionic form of C.-T. ‘extended spoke’ with 

formula [RE-X]+···[X-X2]
-.  

 

For each adduct the structure of the final product can be explained by the amount of charge-

transfer occurring between the chalcogen donor atom and the di-halogen acceptor. This is 

estimated based on the electronegativity (χ) of the elements involved. ‘T-shaped’ (TBP) adducts 

will form if the halogen X is more electronegative than chalcogen E [REδ+-Xδ-] whilst if the 

converse is true then the C.-T. ‘spoke’ adducts will predominate.18,20,21  

 

1,8-Bis(phenylsulfanyl)naphthalene proved to be an exception and upon reaction with bromine no 

adduct was formed. The unavailability of the lone-pair on sulfur for donation into the empty 

orbitals of dibromine meant electrophilic aromatic substitution dominated and compound 57 was 

formed. 

 

The selenium compound 1,8-bis(phenylselenyl)naphthalene 38 and the mixed selenium-sulfur 

compound 1-(phenylselenyl)-8-(phenylsulfanyl)naphthalene 41 both react in a similar way to the 

dihalogens. In the mixed compound, the selective reactivity towards selenium can be attributed to 

its lower electronegativity and hence greater donor ability over sulfur.1,2,22  

 

Upon reaction with dibromine, both selenium compounds 38 and 41 form an ionic C.-T. ‘extended 

spoke’ adduct represented by the formula [RSe–Br]+···[Br–Br2]
-.2,34 Reaction of the compounds 

with diiodine leads to the formation of C.-T. ‘spokes’ and C.-T. ‘extended spokes’.  

 

Generally, when the halogen (X) is more electronegative than the chalcogen atom (E), ‘T-shaped’ 

or trigonal bipyramidal (TBP) adducts are formed.18,20,21 Consequently, all the known reactions 

between tellurium-donors [χ(Te) 2.08]22 and di- or inter-halogens [χ(F) 3.94- χ(I) 2.36] form ‘T-

shaped’ adducts.  

 

Reaction of the four tellurium compounds (42, 43, 55, 56) with the dihalogens is no exception. In 

each case, tellurium forms a strong donor-strong acceptor system with the dihalogen molecule 

sufficient enough to cleave the X-X bond and oxidise tellurium.1,2 Subsequent nucleophilic attack 
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occurring at the tellurium site of the [RTe–X]+ cation affords the ‘T-shaped’ hypervalent adduct 

containing the quasi linear X-Te-X alignment.1,2 In the mixed tellurium-sulfur 42 and tellurium-

selenium 43 compounds, reaction with the dihalogen occurs at the larger, less electronegative 

tellurium atom due to its greater donor ability over sulfur or selenium.  

 

2-Mono-tert-butylnaphtho[1,8-c,d][1,2]diselenole 72 favours aromatic electrophilic substitution 

over the formation of adducts by dibromine reacting at selenium. From molecular structure of the 

disubstituted compound produced 73, the selenium-selenium peri-bond reflects the lack of steric 

strain within the molecule and therefore the lack of structural distortion required for its relief. This 

compound is strictly planar with no out-of-plane distortion and a negative in-plane distortion 

showing the approach of the peri-atoms. 

 

Reaction of phosphine 19 with dibromine produced the tetravalent phosphonium salt 74 which 

packs via a P-O-H-O-P bridge showing intermediate bond lengths and properties between a 

phosphine oxide and phosphonium cation. 
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Chapter 7 - Conclusion 

 

Atomic interactions are a fundamental aspect of chemistry, biology and materials science.1 Great 

advances have been made in the knowledge of strong covalent and ionic bonding yet, a major 

challenge for chemists is to develop a full understanding of weak intra- and intermolecular forces. 

Peri-substituted naphthalenes are able to constrain heavy polarisable elements in close proximity 

using a rigid C3-backbone and are therefore ideal models for studying such interactions. 

 

The peri-carbon atoms of naphthalene  itself are separated by a distance of 2.44 Å,2 sufficient for 

accommodating two hydrogen atoms, but it is reasonable to expect larger substituents at the peri-

positions will experience considerable steric hindrance.3 While this is true, intramolecular 

interactions between peri-substituents can also be attractive due to the presence of weak or strong 

bonding.4 

 

The ease of forming sterically crowded peri-substituted naphthalenes is the result of relieving 

steric strain via naphthalene distortions which effectively changes the geometry away from that of 

‘ideal’ naphthalene. The most common forms of naphthalene distortion are in-plane and out-of-

plane deviations of the exocyclic bonds and buckling of the naphthalene ring system.3  

 

X-ray structural data is central for assessing the repulsive steric effects between heavy peri-

substituents and therefore quantifying naphthalene distortion. Molecular structures also help to 

elucidate attractive effects between peri-atoms and verify the existence of weak intra- and 

intermolecular interactions.  

 

In efforts to understand the factors which influence naphthalene distortion and study possible weak 

interactions between heavy heteroatoms, a mixture of 1,8-disubstituted naphthalenes have been 

prepared containing a variety of peri-substituents.  

 

Initial investigations focussed on mixed 1,8-disubstituted naphthalene systems and the synthesis 

and structural study of a series of mixed phosphorus-chalcogenide species has been described. The 

study of interactions between mixed heavy atoms progressed towards a series of mixed 

chalcogenide compounds of the type Nap[Eph][E’Ph] (E = S, Se, Te) (Figure 7.1).  
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Fig. 7.1 The structural motifs for the series of phosphorus-chalcogenide and mixed chalcogenide 

compounds synthesised. 

 

The compounds synthesised exhibit intramolecular peri-interactions extending from no interaction 

due to repulsive effects, weak attractive 3c-4e type interactions and one example containing a 

strong covalent peri-bond.  

 

Peri-distances [3.38-2.34 Å] give an indication of the size of the interacting peri-atoms [1.55(N) -

2.06(Te) Å] and are influenced by the degree of exocyclic bond distortion. In-plane distortion 

[sum of peri-angles = 380.8-365.3°] occurs in all compounds with a positive splay angle where the 

sum of the bay region angles is greater than that for naphthalene [357.2°]2 (apart from in 73 

containing the covalent peri-bond [355.2°]) (Figure 7.2). 

 

 

Fig. 7.2 Comparing the positive splay angles in the crystal structures of compounds 20 and 61 

with the negative splay angle caused by the covalent bond in 73.  

 

Displacement of the peri-atoms above and below the naphthalene ranges from no distortion, atoms 

lying on the naphthyl plane, to 0.744 Å away from the plane. The least planar naphthalene 

backbone observed in the series of compounds, 17, displays a torsion angle of 168.4°, 11.6° from 

the ‘ideal’ planar geometry as found in compound 73 [180°] (Figure 7.3).2   
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Fig. 7.3 Comparing the planarity of the naphthalene backbones in the crystal structures of (8-

ethylsulfanylnaphth-1-yl)diphenylphosphine sulfide 17 and 4,7-dibromo-2-mono-tert-

butylnaphtho[1,8-c,d][1,2]diselenole  73. 

 

Dependence of the peri-distance on peri-atom size. 

The primary parameter used to quantify the amount of strain in non-ideal naphthalenes is the peri-

distance which encapsulates all molecular deviations in one parameter. As the size of the peri-

atoms increase it could be expected that repulsion and steric strain increases forcing the atoms 

further apart, thus increasing the peri-distance.3 

 

                            

Compound 2 15 31 33 55 56 

X Br I Br I Br I 

sum vdW5 (BrS) 3.65 (IS) 3.78 (BrSe) 3.75 (ISe) 3.88 (BrTe) 3.91 (ITe) 4.04 

PD 3.05/3.06 3.24 3.11 3.25 3.19 4.04 

splay angles 374.5/375.1 376.9 373 374.9 373.6 376.2 

 

Fig. 7.4 The dependence of peri-distance (PD) on in-plane distortion and the peri-atom size for 

compounds 2, 15, 31, 33, 55 and 56.  

 

For the Nap[SEt][X], Nap[SePh][X] and Nap[TePh][X] (X = Br, I) compounds, the increased size 

of iodine compared to bromine causes greater steric interaction. Naphthalene in-plane distortion, 

taking place to relieve the steric strain, increases in each case to accommodate the larger iodine 

atom. This forces the peri-atoms further apart resulting in a longer non-bonded peri-distance, i.e. 

dependence on the size of the peri-atoms (Figure 7.4).  
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Repulsive steric strain caused by inserting increasingly larger atoms at the 1,8-positions in the six 

chalcogen analogues 37-39 and 41-43 is also shown to occur to a greater extent as the overall 

combined size of the peri-atoms increases. Figure 7.5 shows the general relationship between peri-

atom size and its effect on increasing the peri-distance in the chalcogenide series.   
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Fig. 7.5 The dependence of peri-distance on the peri-atom size for Nap[EPh][E’Ph] compounds 

37-39 and 41-43.  

 

Substituent effects on molecular distortions. 

Peri-atom size is therefore crucial in determining the overall geometry of the molecule but not 

necessarily an overriding factor. Inter- and intramolecular interactions can also have an impact and 

give peri-distances which are unforeseen. The peri-distance of 8-bromonaphthalen-1-amine 1 

[3.07 Å] is larger than expected based on the size of its peri-atoms; the value is comparable to 

those of the molecules of 2 Nap[Br][SEt] [A 3.05 Å, B 3.06 Å]. Hydrogen bonding between the 

protons on the amine moiety and the Br(1) atom in 1 forces the N(1) and Br(1) atoms to be further 

apart and less strained than other similar molecules. 

 

The number, size and electronic properties of substituents attached to the peri-atoms can also 

affect the geometry of substituted naphthalenes and influence the extent of steric interactions.  

The variation in the electronic and steric effects of phenyl and ethyl substituents, is the reason why 

analogous compounds 19 and 3 (Figure 7.6) exhibit dissimilar intramolecular interactions, 
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naphthalene distortion and structural arrangements. Greater in-plane distortion occurring in 19 

compared to 3 to accommodate the larger phenyl substituent [19 374.1°, 3A 371.7°, 3B 371.4°], 

forces the peri-atoms in further apart [3.0330(17) Å] compared to the S(ethyl) compound [3A 

2.9737(14) Å, 3B 2.9469(15) Å].  

 

                                    
Compound 15 20 3A 3B 19 

R Et Ph Et Et Ph 

sum vdW5 (IS) 3.78 (IS) 3.78 (PS) 3.6 (PS) 3.6 (PS) 3.6 

PD 3.24 3.34 2.97 2.94 3.03 

splay angles 376.9 380.8 371.7 371.4 374.1 

 

Fig. 7.6 The dependence of peri-distance (PD) on peri-atom substituent number, size and 

electronic properties in compounds 15, 20, 3 and 19.  

 

The structural dissimilarity between 20 and its S(ethyl) counterpart 15 mirrors that of compounds 

3 (SEt) and 19 (SPh) and shows the effect the S(alkyl) group has on the overall structure of the 

molecule. The intramolecular I···S(phenyl) peri-distance is again greater than the I···S(ethyl) 

distance [20 3.338(11) Å, 15 3.2436(17) Å] (Figure 7.6). 

 

The influence of metal coordination on molecular distortion. 

(8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 is a suitable candidate as an asymmetric 

chelating ligand with substantial electronic and steric differences between the two donor atoms.6 

The bidenticity and rigid C3 backbone makes it a suitable candidate for metal coordination and the 

design of ligands for catalysis.7 A series of platinum(II) dihalides 24-26, a series of copper(I) 

dimers 27-29 and a ruthenium(II) p-cymene complex 30 have all been prepared. The metal 

complexes 24-30 display different patterns of molecular deviations with a variation in the 

magnitude of steric strain occurring in the naphthalene moiety. The size of the central metal, its 

coordination and electronic interactions with the ligands around it has an overall influence on the 

geometry of the complex.8  

 

The strong preference for the formation of platinum square planar complexes governs the 

naphthalene structure in the dihalide complexes 24-26 and instigates a greater amount of molecular 
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distortion.8 The peri-atoms are forced further apart to coincide with the ‘ideal’ square planar 

geometry around the platinum, subsequently increasing the splay angles compared to the non-

coordinated ligand 19 (Figure 7.7).  

 

Comparing the influence of metal coordination on naphthalene distortion and peri -distance
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Fig. 7.7 The influence of metal coordination on naphthalene molecular distortion and peri-

distance in compounds 24-29.  

 

The metal centre in the copper dimers 27-29 has less impact on the naphthalene geometry (Figure 

7.8). Copper has a stereochemical preference for tetrahedral coordination with ‘ideal’ angles 

around the copper of 109.5°.8 The copper dimers (27-29) show a greater distorted tetrahedral 

geometry compared with other similar compounds containing the Cu2X2 rhombus core with angles 

around the copper varying between 81.5° and 128.4° (Figure 3.23).9 

 

 

Fig. 7.8 Two copper atoms are joined by two halide bridges to form a strictly planar Cu2X2 

rhombus core, in the form of a parallelogram, containing two unequal Cu-X bond distances. 
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Molecular distortion comparable to the non-coordinated ligand 19 implies the metal center has 

little influence on the geometry of the complex [peri-distances: 19 3.03 Å, 27 3.06 Å, 28 3.09 Å, 

29 3.07 Å] (Figure 7.8). Instead it is the rigid nature of the naphthalene which distorts the copper 

geometry away from its preferred ‘ideal’ tetrahedral environment.8  

 

Weak intramolecular interactions. 

The three mixed phosphorus-chalcogenide species 3, 19 and 32 react to form three analogous 

series of phosphorus(V) chalcogenides (Figure 7.9). 

 

 

Fig. 7.9 The phosphorus(V) chalcogenides which exhibit weak intramolecular E···E’ type 

interactions.10  

 

Consistent throughout the compounds is the positioning of the chalcogen atom bonded to the 

phosphorus atom which resides in the peri-gap pointing away from the naphthalene plane. The 

close proximity to the peri-chalcogen atom allows for a weak E···E’ type non-bonded interaction to 

take place (Figure 7.10).10  

 

 

Fig. 7.10 Examples of the weak E···E’ type non-bonded interactions taking place in the 

phosphorus(V) chalcogenides.10  
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In all three series the non-bonded E···S/E···Se distance increases with the size of the chalcogen 

atom bonded to P(1) due to steric hindrance. Nevertheless the non-bonded distances are all smaller 

than the sum of the van der Waals radii for the two interacting atoms, suggesting the non-bonded 

distance is close enough for possible intramolecular interactions to occur.5,10 

 

Table 7.1 Non-bonded intramolecular E···E’ distances [Å] between interacting chalcogen atoms in 

the phosphorus(V) chalcogenides 16-18, 21-23 and 34-36. 

 

 16 17 18 21 22 23 34 35 36 

E···E' 3.03 3.30 3.43 2.96 3.31 3.40 2.77 3.35 3.42 

Σ 
vdW5 

(OS) 
3.32 

(SS) 
3.60 

(SeS) 
3.70 

(OS) 
3.32 

(SS) 
3.60 

(SeS) 
3.70 

(OSe) 
3.42 

(SSe) 
3.70 

(SeSe) 
3.80 

 

 

The repulsive distortion taking place in the Nap[SEt][PPh2] chalcogenides 16-18, to accommodate 

the increasingly large chalcogen atoms, forces the ethyl group away from the naphthalene plane, 

adjacent and in close proximity to one of the phenyl π-systems on P(1). The short distance 

between the ethyl group and the phenyl π-system allows for another type of intramolecular 

interaction to occur; CH-π type interactions (Figure 7.11).11  

 

 
Fig. 7.11 The crystal structures of the (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 

chalcogenides 16-18 showing the possible non-bonded CH-π interactions between the S(ethyl) and 

P(phenyl) groups.11 

 

The ethyl carbon-centroid distances found for the three chalcogenides are within the range for 

known CH-π interactions and small enough to envisage interaction between the π-system and the 

protons on the ethyl group [16 C(23)···centroid  3.644(1) Å, 17 C(23)···centroid 4.041(1) Å, 

C(24)···centroid 3.790(1) Å, 18 C(23)···centroid 3.578(1) Å] (Figure 7.11).11  
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Linear arrangements and 3c-4e interactions. 

Structures containing linear arrangements of heteroatoms in close proximity to one another are of 

particular interest because they satisfy the conditions required for the occurrence of non-bonded 

interactions.12,13 Much of the pertinent work in this field has been reported by the group of 

Nakanishi et al.13,14 During a study of non-bonded intramolecular interactions in sterically 

crowded naphthalenes [8-G-1-(p-YC6H4Se)C10H6] (Figure 7.12),13,14 Nakanishi et al found that 

these systems formed linear non-bonded G···Se-C arrangements.13,14 From ab initio MO 

calculations they concluded that ‘the linear alignment of the three atoms must be the result of the 

non-bonded G···Se-C 3c-4e type interaction’.13,14  
 

 
Fig. 7.12 The series of sterically crowded naphthalenes (8-G-1-(p-YC6H4Se)C10H6) investigated by 

Nakanishi et al as part of their study of intramolecular interactions.13,14 

 

During the synthesis of the phosphorus-chalcogenide species and mixed chalcogenide systems in 

this thesis, a number of compounds exhibiting a three atom linear arrangement have been 

prepared. Compound 31, previously reported by Nakanishi et al to contain a 3c-4e interaction,13,14 

was synthesised along with analogous compounds 33, 55 and 56 (Figure 7.13).  

 

 
Fig. 7.14 Compounds 31, 33, 55 and 56 all exhibit a X···E-C type linear alignment. 

 

All four compounds adopt the same orientation, with E-C bonds lying close to the naphthalene 

plane (Figure 7.13).13,14 This produces a linear arrangement of the type X···E-C with angles 

approaching 180° throughout [31 Br···Se-C 175.7°, 33 I···Se-C 174.3°, 55 Br···Te-C 173.1°, 56 

I···Te-C 175.1°] (Figure 7.14). 
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Fig. 7.14 The orientation of compounds 31, 33, 55 and 56 showing the ‘type B structure’ and 

linear X···E-C type alignment. 

 

The observed non-bonded peri-distances are shorter than sum of van der Waals radii of the 

interacting atoms by 0.64 Å for 31, 0.63 Å for 33, 0.72 Å for 55, 0.73 Å for 56.5 According to 

Nakanishi et al, the X···E-C linearity and the close proximity of the peri-atoms is conducive to 

non-bonded interactions and can be attributed to a 3c-4e type interaction taking place.13,14 

 

 
Fig. 7.15 The orientation of the E(phenyl) groups and type of structure of the chalcogen 

compounds 37 and 38 and the CPh-E···E’ linear arrangement. 

 

A similar linear arrangement is found in compounds 37, 38, 41-43, when both peri-positions of the 

naphthalene are occupied by elements of Group 16. Described by Nakanishi et al as ‘type AB’,13,14  

one E-C bond aligns with the naphthalene plane and the other aligns perpendicular to it. This 

produces one quasi-linear fragment of the type C-E···E’ with angles 168.4-171.8° and non-bonded 

peri-distances shorter than the sum of van der Waals radii for the interacting atoms (Figure 7.15, 

7.16). 
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Fig. 7.16 The CPh-E···E’ linear arrangement of the chalcogen compounds 41-43.2 

 

Upon oxidation, the structure of bis-sulfide 37 is dramatically changed and adopts either an ‘AA 

type’ arrangement 44 or ‘AC type’ arrangement 45.13,14  The overriding factor in these two 

structures is the linear arrangement of the type O(1)=S(1)···S(2); again angles approach 180° 

[174.3°, 171.9°] and non-bonded S(1)···S(2) distances [3.05 Å, 3.08 Å] are shorter than the sum of 

van der Waals radii for two sulfur atoms [3.60 Å].5 This arrangement forces the two phenyl rings 

in both cases to align on the same side of the naphthalene plane. In compound 44 this overlap is in 

the range for a typical centroid-centroid interaction [3.3-3.8 Å],15 so possible π-π stacking could be 

envisaged (Figure 7.17).15 

 

Fig. 7.17 The crystal structure of 44 illustrating the overlap of the phenyl rings and possible π-π 

stacking interaction. 

 

The phosphorus(V) chalcogenides 34-36 each exhibit one quasi-linear arrangement of atoms. 

Oxide 34 comprises an O···Se-C linear interaction [168.8°] whilst sulfide 35 and selenide 36 both 

form linear arrangements of the type Se···P-C [35 173.5° and 36 172.9°] (Figure 7.18). The 

observed non-bonded O(1)···Se(1) and P(1)···Se(1) distances [34 2.770(3) Å, 35 3.2803(8) Å, 36 

3.278(2) Å] are also shorter than sum of van der Waals radii of the interacting atoms [3.42 Å, 3.70 

Å].8 Based on ab initio MO calculations, Nakanishi et al recently reported the formation of the 

linear O···Se-C arrangement in 34 was due to an energy lowering 3c-4e interaction.13,14 
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Fig. 7.18 The crystal structures of the (8-phenylselanylnaphth-1-yl)diphenylphosphine 

chalcogenides showing the linear arrangement of the type O···Se-C in 34 and Se···P-C in 35 and 

36. 

 

Calculations performed for us by Prof. M. Bühl in St Andrews however, were contrary to these 

earlier reported results. For each of the three chalcogenide compounds 34-36, both linear type 

arrangements [E···Se-C and Se···P-C] were evaluated using B3LYP/6-31+G* level, using H-

relaxed X-ray geometries and the Wiberg bond index (WBI), which measures the covalent bond 

order, was calculated for both linear arrangements.16 WBI values of 0.02-0.04 indicate a very 

minor interaction taking place between non-bonded atoms. For strong interactions these values 

would be approaching 0.20.16 We are therefore unable to conclude 3c-4e non-bonded interactions 

are taking place in these molecules. Additional calculations performed on the radical cations of 34-

36 revealed an increase in Wiberg bond index values for the E···Se-C linear arrangement [0.14-

0.19] and an enhanced interaction compared to the neutral species.16  

 

Reactions of chalcogen compounds with di-halogens. 

Organic molecules containing Group 16 donor atoms sulfur, selenium and tellurium react with di-

halogens (Br2, I2) and inter-halogens (IBr, ICl) to form a variety of addition complexes with a wide 

structural diversity. Experimental conditions have a vital control over the pathway these reactions 

take and subsequently on the structural motifs and geometry around the Group 16 atoms in the 

addition products. Factors such as the type of chalcogen donor atom, the form of the di-halogen or 

inter-halogen, the stoichiometry of the reactants and the nature of the donor atoms R group(s) all 

play a part in determining the structure of these compounds.17,18 

 

1,8-bis(phenylsulfanyl)naphthalene 37, 1,8-bis(phenylselanyl)naphthalene 38, the three novel 

mixed chalcogen naphthalene systems 41-43 along with the tellurium compounds 55 and 56 all 

react differently with the di-halogens affording a collection of different charge transfer and 



Chapter 7 - Conclusion 
                           

                                                                                                                    236 

 

insertion adducts; C.-T. ‘spoke’, C.-T. ‘extended spoke’, ‘T-shaped’ (or TBP) adducts and an ionic 

form of C.-T. ‘extended spoke’ with formula [RE-X]+···[X-X2]
-.  

 

1,8-bis(phenylsulfanyl)naphthalene proved to be an exception and reacted with di-bromine via 

electrophilic aromatic substitution; no adduct was isolated and the substitution compound 57 was  

afforded. Aromatic groups bearing –SR groups are strongly activated by resonance through 

donation of electron pairs into the aromatic π-system and are therefore highly reactive towards 

electrophilic substitution.19,20  

 

The selenium compound 1,8-bis(phenylselanyl)naphthalene 38 and the mixed selenium-sulfur 

compound 1-(phenylselanyl)-8-(phenylsulfanyl)naphthalene 41 both reacted with the di-halogens 

to form structurally similar adducts 58, 61 (Figure 7.19, 7.20). The selective reactivity towards 

selenium in the mixed compound can be attributed to the larger electronegativity and hence greater 

donor ability of selenium over sulfur.17-19 Upon reaction with dibromine, both selenium 

compounds form an ionic C.-T. ‘extended spoke’ adduct represented by the formula [RSe–

Br]+···[Br–Br2]
- (Figure 7.19).18,21  

 

       

Fig. 7.19 The selenium compounds 37 and 41 react with di-bromine to form similar ionic C.-T. 

‘extended spoke’ adducts  58 and 61 represented by the formula [RSe–Br]+···[Br–Br2]
- . 

 

The interacting Se atom reacts with the first molecule of Br2 forming a strong donor-strong 

acceptor system upon the creation of the Se-Br bond. This simultaneously weakens the Br(1)-Br(2) 

bond which extends from 2.28 Å (free bromine)22 and places a partial negative charge on the 

terminal Br(2) atom which can act as a donor towards a second (acceptor) molecule of Br2. 
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Cleavage of  the Br(1)-Br(2) bond, delocalises negative charge onto the original terminal Br(2) 

strengthening the Se(1)-Br(1) bond which noticeably shortens.18 This affords the quasi-linear 3c-4e 

hypervalent Br3
- counteranion Br(2)-Br(3)-Br(4) exhibiting increased Br-Br distances compared to 

free bromine [2.28 Å].22-24 The cleavage of the Br(1)-Br(2) also results in the formation of a linear 

Br-Se···E arrangement which can also be described by the hypervalent 3c-4e interaction model.22-24    

 

Reaction of 37 and 41 with diiodine leads to the formation of C.-T. ‘spokes’ and C.-T. ‘extended 

spokes’ 59, 60 and 62 (Figure 7.20). Iodine [χ(I) 2.21]25, unlike bromine [χ(Br) 2.75]19, is less 

electronegative than selenium [χ(Se) 2.48]19 and accepts electron density from non-bonding 

orbitals of the selenium donor to form charge-transfer adducts [χ(E) > χ(X)].17,18 

 

Fig. 7.20 The selenium compounds 37 and 41 react with di-iodine to form similar C.-T. ‘spoke’ 

and ‘extended spoke’ adducts  59, 60 and 62. 

 

The selenium atom reacts with one molar equivalence of diiodine to form a quasi-linear 

hypervalent Se-I-I fragment (C.-T. ‘spoke’).23,24 This has the effect of lowering the bond order and 

consequently weakening the I-I bond which extends from 2.66 Å (free iodine).17,18,22 The 

subsequent partial negative charge formed on the terminal I(2) atom in the hypervalent 3c-4e 

Se(1)–I(1)–I(2) bond means I(2) can act as a donor towards a second molecule of diiodine. This 

affords the C.-T. ‘extended spoke’ adduct containing two quasi-linear arrangements Se(1)-I(1)-I(2) 

and I(2)···I(3)-I(3).17 Both linear arrangements are classified as 3c-4e interactions.23,24 The 

elongation of bond lengths in these fragments gives evidence for the bond weakening due to the 

reduction in bond order.17,18 
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The reaction of the organo-tellurium compounds (42, 43, 55, 56) with the dihalogens strictly 

affords ‘T-shaped’ (TBP) adducts (Figure 7.21).24-26 Tellurium forms a strong donor-strong 

acceptor system with the di-halogen molecule sufficient enough to cleave the X-X bond and 

oxidise tellurium.17,18 Tellurium [χ(Te) 2.01]19 is less electronegative than the halogens [χ(F) 4.10- 

χ(I) 2.21].19 Subsequent nucleophilic attack occurring at the tellurium site of the [RTe–X]+ cation 

affords the ‘T-shaped’ hypervalent adduct containing the quasi linear X-Te-X alignment.17,18 In the 

mixed tellurium-sulfur 42 and tellurium-selenium 43 compounds, reaction with the di-halogen 

occurs at the larger, less electronegative tellurium atom due to its greater donor ability over sulfur 

or selenium. 

  

 

Fig. 7.21 The organo-tellurium compounds 42, 43, 55 and 56 all react with the di-halogens to 

form ‘T-shaped’ adducts similar to those depicted here for 64 and 67. 
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Experimental 

General experimental 

 

Unless otherwise stated all the procedures were carried out under an oxygen-free nitrogen 

atmosphere using standard Schlenk techniques and glassware. Reagents were obtained from 

commercial sources and used as received. Dry solvents were collected from a MBraun solvent 

system. 
 

Elemental analysis. 

Elemental analyses were performed by the University of St. Andrews School of Chemistry 

Microanalysis Service.  

 

Infra-red spectroscopy. 

Infra-red spectra were recorded as KBr discs in the range 4000-300 cm-1 on a Perkin-Elmer 

System 2000 Fourier transform spectrometer. 

 

NMR spectroscopy. 
1H and 13C NMR spectra were recorded on a Jeol GSX 270 MHz spectrometer with δ(H) and δ(C) 

referenced to external tetramethylsilane. 31P, 77Se and 125Te NMR spectra were recorded on a Jeol 

GSX 270 MHz spectrometer with δ(P), δ(Se) and δ(Te) referenced to external phosphoric acid, 

dimethylselenide and diphenyl ditelluride respectively. COSY, HSQC and PENDANT NMR 

spectra were recorded on a Brucker Advance 300 MHz spectrometer and a Brucker Advance II 

400 MHz spectrometer. All measurements were performed at 25 °C. All values reported for NMR 

spectroscopy in this report unless otherwise stated are in parts per million (ppm). Coupling 

constants (J) are given in Hertz (Hz). 

 

Mass spectrometry. 

Mass spectrometry was performed by the University of St. Andrews Mass Spectrometry Service. 

Electron impact mass spectrometry (EIMS) and Chemical Ionisation Mass Spectrometry (CIMS) 

was carried out on a Micromass GCT orthogonal acceleration time of flight mass spectrometer. 

Electrospray Mass Spectrometry (ESMS) was carried out on a Micromass LCT orthogonal 

accelerator time of flight mass spectrometer. 
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Compound 1 - 8-bromonaphthalen-1-amine 1 (from 4) 

8a

4a
5

6

7

81

2

3

4

NH2 Br

 

A solution of sodium nitrite (6.7 g, 97.1 mmol) in water (150 mL) was added to a solution of 1,8-

diaminonaphthalene (15.0 g, 94.8 mmol) in hydrochloric acid (0.4 M, 1.0 L) at -5 °C. The mixture 

was then stirred at -5 °C for 2 h and at 18 °C for 18 h. The black precipitate was filtered off, 

washed with water, dried at room temperature for 1 h and then dissolved in aqueous hydrobromic 

acid (48 %, 100 mL). Copper bronze (4.0 g, 63 mmol), first activated by heating with a flame for 

10 min under nitrogen, was added to the resulting solution at 60 °C. The mixture was stirred for 18 

h, water (220 mL) was then added, and the mixture was heated to boiling point. The precipitate 

was filtered off with suction and boiled with additional water. The combined filtrate was 

neutralised with ammonium carbonate and extracted with dichloromethane (3 x 40 mL); the 

extract was dried with magnesium sulfate and evaporated. The black crude product was 

recrystallised from petroleum ether to give pink crystals (4.3 g, 21 %); mp 85-87 °C (lit.,4 87-88 

°C); (Found: C, 54.7; H, 3.2; N, 6.25. Calc. for C10H8BrN: C, 54.1; H, 3.6; N, 6.3 %); vmax(KBr 

disc)/cm-1: 3442s, 3303s, 3199s, 3053w, 1907w, 1781w, 1628vs, 1561vs, 1453s, 1433s, 1376s, 

1339s, 1287s, 1171s, 1138w, 1012s, 960w, 909s, 865w, 805vs, 749vs, 626w, 585w, 492w, 446w; 

δH(270 MHz, CDCl3) 7.71-7.58 (2 H, m, nap 4,5-H), 7.27-7.24 (2 H, m, nap 6,7-H), 7.17-7.09 (1 

H, m, nap 3-H), 6.78-6.69 (1 H, m, nap 2-H), 5.09 (2 H, br s, NH2); δC(67.9 MHz, CDCl3) 

143.7(q), 137.5(q), 131.8(s), 129.2(s), 127.2(s), 125.8(s), 121.0(q), 119.3(s), 117.5(q), 112.5(s); 

m/z (ES+) 222.0 ([M]+, 100 %).  

Compound 1 - (from 7) 

Sodium azide (3.1 g, 0.048 mol) was added over a 10 min period to a stirred suspension of 8-

bromo-1-naphthoic acid (2.0 g, 0.008 mol) in concentrated sulfuric acid (7 mL) and chloroform (7 

mL) at 45 °C; each successive portion of sodium azide being added after the effervescence 

resulting from the previous addition had subsided. The mixture was stirred for 90 min at 45 °C and 

added to water (140 mL). The mixture was made alkaline with aqueous ammonia and extracted 

with chloroform (3 x 140 mL). The combined extracts were dried with magnesium sulfate and 

evaporated to give the product (1.3 g, 73 %). The product was identified by 1H NMR spectroscopy 

and melting point analysis comparing the results to those previously characterised from the 

preparation starting with 1,8-diaminonaphthalene. 
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Compound 2 - 1-bromo-8-(ethylsulfanyl)naphthalene (from 1) 

 
8-bromonaphthalen-1-amine (5.0 g, 22.5 mmol) was dissolved in water (50 mL) and concentrated 

hydrochloric acid (6 mL) by heating. To the cooled mixture, was added a solution of sodium nitrite 

(1.6 g, 23 mmol) in water (10 mL) with shaking. The diazotized solution was neutralised by 

adding aqueous sodium acetate whilst cooling and the solution was filtered. The solution was 

added at 40 °C to an aqueous solution of ethanethiolate prepared from sodium hydroxide (1.0 g, 25 

mmol), ethanethiol (1.6 mL, 22 mmol) and water (50 mL). The mixture was heated to 90 °C and 

stirred at that temperature for 2 h. The cooled mixture was extracted with benzene, and the extract 

was washed with water. After drying over magnesium sulfate, the solvent was evaporated and the 

residue was submitted to chromatography on silica gel with hexane as an eluent. The desired 

product was obtained after recrystallisation from hexane (2.5 g, 41 %); mp 47-49 °C (lit.,7 47-48 

°C); (Found: C, 54.1; H, 4.3. Calc. for C12H11BrS: C, 54.0; H, 4.2 %); vmax(KBr disc)/cm-1: 3056w, 

2971w, 2925w, 2851w, 1923w, 1544vs, 1511w, 1493w, 1461w, 1434w, 1416w, 1356s, 1308s, 

1256w, 1191vs, 1148s, 1057w, 967s, 857s, 801vs, 702s, 545w, 439w; δH(270 MHz, CDCl3) 7.75 

(1 H, dd, J 1.2 and 7.4 Hz, nap 4-H), 7.68 (1 H, dd, J  1.1 and 8.1 Hz, nap 2-H), 7.55 (1 H, dd, J 

1.1 and 8.0 Hz, nap 5-H), 7.42 (1 H, dd, J 1.0 and 7.5 Hz, nap 7-H), 7.28 (1 H, t, J 7.8 Hz, nap 6-

H), 7.14 (1 H, t, J 7.8 Hz, nap 3-H), 2.92 (2 H, q, J 7.3 Hz, -CH2-), 1.28 (3 H, t, J 7.4 Hz, -CH3); 

δC(67.9 MHz, CDCl3) 136.9(q), 136.1(q), 134.2(s), 130.8(q), 129.5(s), 127.8(s), 127.1(s), 126.2(s), 

125.9(s), 119.4(q), 30.0(-CH2-), 13.4(-CH3); m/z (CI+) 265.98 ([M+H]+, 100 %).   

Compound 2 - (from 11) 

To a solution of 1,8-dibromonaphthalene (0.6 g, 2.2 mmol) in diethyl ether (10 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (0.9 mL, 2.2 mmol). The mixture 

was stirred at this temperature for 1 h after which a solution of diethyl disulfide (0.3 g, 0.3 mL, 2.2 

mmol,) was added dropwise to the mixture. The resulting mixture was stirred at -78 °C for a 

further h. The reaction mixture was washed with 0.1 M sodium hydroxide (20 mL x 2). The 

organic layer was dried with magnesium sulfate, concentrated under reduced pressure, and the 

residual oil was purified by column chromatography on silica gel (hexane) to give the product (0.3 

g, 43%). The product was identified by 1H NMR spectroscopy and mass spectrometry.  
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Compound 3 – (8-ethylsulfanylnaphth-1-yl)diphenylphosphine  (from 2) 

8a

4a
5

6

7
81

2

3

4

P
S

1

2

3

4

5

6

 
A solution of 2.5 M n-butyllithium in hexane (0.5 mL, 1.1 mmol) was transferred dropwise to a 

freshly prepared solution of 1-bromo-8-(ethylsulfanyl)naphthalene (0.3 g, 1.1 mmol) in diethyl 

ether (10 mL) at -10-0 °C (salted ice bath). The bright mixture was stirred for 2 h at this 

temperature, after which chlorodiphenylphosphine (0.24 g, 0.2 mL, 1.1 mmol) was added slowly. 

The addition coloured the reaction mixture first bright yellow and finally a pale yellow. Stirring 

was continued for a further 2 h at -10-0 °C. The mixture was allowed to warm to room 

temperature. The solvent was removed in vacuo and hexane (40 mL) was added to precipitate out 

unwanted salts. The solution was filtered under nitrogen and the solvent removed in vacuo. The 

crude yellow oil obtained was recrystallised from toluene (0.2 g, 40 %); (Found: C, 74.5; H, 6.1. 

Calc. for C24H21PS: C, 74.2; H, 5.5 %); vmax(KBr disc)/cm-1: 3430br, 3054s, 2919s, 2227s, 1587s, 

1480s, 1434vs, 1308s, 1261s, 1185s, 1096vs, 1021s, 997s, 910s, 820s, 725vs, 690vs, 528vs, 321s, 

294s; δH(270 MHz, CDCl3) 7.82-7.63 (5 H, m, nap 4,5,7-H, 2 x PPh2 4-H), 7.39-7.30 (2 H, m, nap 

3,6-H), 7.28-7.10 (9 H, m, nap 2-H, 2 x PPh2 2,3,5,6-H), 2.64 (2 H, q, J 7.42 Hz, -SCH2-), 0.91 (3 

H, t, J 7.42 Hz, -SCH2CH3); δC(67.9 MHz, CDCl3) 137.0(s), 136.0(s), 134.1(d, J 19.7 Hz), 130.8 

(s), 130.0(s), 128.6(s), 128.4(d, J 7.2 Hz), 125.6(d, J 5.8 Hz), 125.5(s), 35.2 (-CH2-), 13.3 (-CH3); 

δP (109.4 MHz, CDCl3) -5.26; m/z (ES+) 411.18 ([M+K]+, 100 %).  

Compound 3 - (from 15) 

A solution of 2.5 M n-butyllithium in hexane (0.4 mL, 1.0 mmol) was transferred dropwise to a 

freshly prepared solution of 1-iodo-8-ethylsulfanylnaphthalene (0.3 g, 1.0 mmol) in diethyl ether 

(10 mL) at -10-0 °C (salted ice bath). The bright mixture was stirred for 2 h at this temperature, 

after which chlorodiphenylphosphine (0.23 g, 0.2 mL, 1.0 mmol) was added slowly. The addition 

coloured the reaction mixture first bright yellow and finally a pale yellow. Stirring was continued 

for a further 2 h at -10-0 °C. The mixture was allowed to warm to room temperature. The solvent 

was removed in vacuo and hexane (40 mL) was added to precipitate out unwanted salts. The 

solution was filtered under nitrogen and the solvent removed in vacuo (0.2 g, 52 %). The product 

was identified by 1H and 31P NMR spectroscopy.  
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Compound 7 - 8-bromo-1-naphthoic acid 7 (via 6) 

 
This procedure was carried out under atmospheric conditions. 1,8-naphthalic anhydride (49.6 g, 

0.3 mol) was suspended in aqueous sodium hydroxide (35.1 g, 0.88 mol, in 1500 mL of water) and 

refluxed until the solid material had dissolved. The excess base was neutralised with glacial acetic 

acid (25 mL) and a solution of mercuric acetate (81.3 g, 0.26 mol) in water (250 mL) added in one 

portion. After the mixture was refluxed for 30 min, additional glacial acetic acid (45 mL) was 

added to the white slurry, resulting in slow evolution of carbon dioxide. The slurry was refluxed 

for 1 week or until no further gas was expelled, cooled and filtered. The highly insoluble solid was 

washed with water and then dried under vacuum at 105 °C overnight to give a tan storable powder. 

Anhydro-8-(hydroxymercuri)-1-naphthoic acid (19.0 g, 0.05 mol) suspended in glacial acetic acid 

(75 mL) and water (12 mL) was stirred vigorously at 0 °C. Sodium bromide (34.1 g, 0.17 mol) in 

water (60 mL) and bromine (8.5 g, 2.9 mL, 0.05 mol) were added slowly while the reaction 

temperature was maintained at 0-5 °C. The resulting slurry was then slowly heated to 100 °C and 

poured onto ice (150 g). The precipitate was washed with water, dissolved in hot aqueous sodium 

hydroxide (12 g, 0.3 mL in 25 mL of water) and filtered through Celite. The filtrate was acidified 

with concentrated hydrochloric acid (25 mL), cooled and filtered to give the product as a white 

solid (4.3 g, 34 %); mp 173-175 °C (lit.,5 174-175 °C); δH(270 MHz, CDCl3) 9.07 (1 H, br s, -

CO2H), 8.20 (1 H, d, J 8.0 Hz, nap 2-H), 7.94 (2 H, td, J 1.1 and 8.4 Hz, nap 4,5-H), 7.87 (1 H, dd, 

J 1.1 and 7.7 Hz, nap 7-H), 7.56-7.50 (1 H, m, nap 3-H), 7.41-7.35 (1 H, m, nap 6-H).   
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Compound 11 - 1,8-dibromonaphthalene 

 
1,8-diaminonaphthalene (29.8 g, 189 mmol) was suspended in sulfuric acid (500 mL, 6.9 M). The 

suspension was cooled to -20 °C in a dry ice/acetone bath, and a solution of sodium nitrite (40 g, 

0.58 mol) in water (250 mL) was added slowly. The temperature was maintained at -20 °C 

throughout the addition. Immediately after the sodium nitrite solution was added, cuprous bromide 

(107.6 g, 0.75 mol) in concentrated hydrobromic acid (250 mL) was added. The black solution was 

warmed carefully to 50 °C. During the warming, a great deal of gas evolution was observed, 

causing a large quantity of foam to be produced. The addition of small quantities of diethyl ether 

was required to break up the foam. After 1 h, the solution was cooled to 10 °C with the aid of an 

ice bath, and made alkaline to litmus paper by slow, careful addition of solid sodium hydroxide. 

The black residue was filtered and extracted with boiling tetrahydrofuran until the extract was 

colourless. The tetrahydrofuran was removed from the filtrate by rotary evaporation to leave a red-

black residue. This residue was then extracted with boiling diethyl ether until the extract was 

colourless. The diethyl ether was removed from the filtrate by rotary evaporation to leave a dark 

red residue which was purified by column chromatography on silica gel (hexane/toluene 80:20) 

(15.0 g, 26 %); mp 106-108 °C (lit.,11 106 °C); (Found: C, 43.0; H, 1.7. Calc. for C10H6Br2: C, 

42.3; H, 2.1 %); δH(270 MHz, CDCl3) 7.93 (2 H, dd, J 1.2 and 7.4 Hz, nap 4,5-H), 7.80 (2 H, dd, J 

1.2 and 8.4 Hz, nap 2,7-H), 7.25 (2 H, t, J 7.8 Hz, nap 3,6-H); δC(67.9 MHz, CDCl3) 135.5(s), 

129.8(s), 126.6(s), 119.7(q).  
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Compound 14 - 1,8-diiodonaphthalene  

 
1,8-diaminonaphthalene (15.1 g, 0.095 mol) was suspended in sulfuric acid (175 mL, 6.9 M). The 

suspension was cooled to -20 °C in a dry ice/acetone bath, and a solution of sodium nitrite (19 g, 

0.28 mol) in water (70 mL) was added slowly with stirring. The temperature was maintained at -20 

°C throughout the addition. Immediately after the sodium nitrite solution was added, potassium 

iodide (96.4 g, 0.58 mol) in water (80 mL) was added dropwise with stirring. Additional portions 

of concentrated sulfuric acid were added as needed to keep the reaction mixture from freezing. The 

resulting mixture was warmed rapidly to 80 °C with stirring, then cooled to 20 °C and made 

alkaline to litmus paper by slow, careful addition of solid sodium hydroxide. The mixture was 

filtered and the black solid residue was collected, pulverised and extracted with boiling diethyl 

ether until the extract was colourless. The ethereal solution was washed successively with aqueous 

10 % hydrochloric acid, saturated aqueous sodium thiosulfate and dilute aqueous sodium 

hydroxide then dried and concentrated. The residual brown solid was recrystallised from hexane to 

separate the pure diiodide as tan prisms (3.7 g, 10 %); δH(270 MHz, CDCl3) 8.41 (2 H, dd, J 1.4 

and 7.5 Hz, nap 4,5-H), 7.84 (2 H, dd, J 1.4 and 8.0 Hz, nap 2,7-H), 7.06 (2 H, t, J 7.7 Hz, nap 3,6-

H).  

 

 

 

 

 

 

 

 

 

 

 

 



Experimental 
                           

                                                                                              250 

 

Compound 15 - 1-iodo-8-(ethylsulfanyl)naphthalene 

 
To a solution of 1,8-diiodonaphthalene (0.88 g, 2.3 mmol) in diethyl ether (10 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (0.9 mL, 2.3 mmol). The mixture 

was stirred at this temperature for 1 h after which a solution of diethyl disulfide (0.28 g, 0.3 mL, 

2.3 mmol) was added dropwise. The resulting solution was stirred at -78 °C for a further h and 

then was washed with 0.1 M sodium hydroxide (20 mL x 2). The organic layer was dried with 

magnesium sulfate, concentrated under reduced pressure, and the residual oil was purified by 

column chromatography on silica gel (hexane) to give the product (0.3 g, 42 %); (Found: C, 46.7; 

H, 3.1. Calc. for C10H6I2: C, 45.9; H, 3.5 %); vmax(KBr disc)/cm-1: 3412br, 3051w, 2965w, 2924s, 

1539s, 1500w, 1440w, 1372w, 1354w, 1308w, 1259s, 1190s, 1142w, 1096w, 1049w, 1020w, 

963w, 942w, 898w, 849w, 790vs, 762vs, 689w, 642w, 561w, 538w, 401w; δH(270 MHz, CDCl3) 

8.26 (1 H, dd, J 1.3 and 7.4 Hz, nap 4-H), 7.74 (1 H, dd, J 1.2 and 8.1 Hz, nap 2-H), 7.67-7.58 (2 

H, m, nap 5,7-H), 7.31 (1 H, t, J 7.7 Hz, nap 6-H), 7.02-6.95 (1 H, m, nap 3-H), 2.89 (2 H, q, J 7.4 

Hz, -SCH2-), 1.22 (3 H, t, J 7.4 Hz, -SCH2CH3); δC(67.9 MHz, CDCl3) 143.3(s), 131.3(s), 

130.4(s), 128.7(s), 126.8(s), 125.6(s) 31.9(-CH2-), 13.6(-CH3); m/z (EI+) 313.97 (M+, 22 %), 

253.96 ([M-SEt]+, 72%).  
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Compound 16 - (8-ethylsulfanylnaphth-1-yl)diphenylphosphine oxide 
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(8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 readily oxidised in contact with the atmosphere 

to produce (8-ethylsulfanylnaphth-1-yl)diphenylphosphine oxide 16 with 100 % conversion as 

seen by 31P NMR spectroscopy (Found: C, 74.5; H, 6.1. Calc. for C24H21POS: C, 74.2; H, 5.5 %); 

vmax(KBr disc)/cm-1: 3406w, 3050w, 2924w, 2360vs, 2341vs, 1815w, 1765w, 1726w, 1710w, 

1961w, 1658s, 1641s, 1592vs, 1548s, 1536s, 1482s, 1438vs, 1316s, 1187vs, 1112s, 1096s, 994s, 

885s, 818vs, 761vs, 730s, 715w, 690s, 562vs, 539vs, 524s, 507vs, 434s, 403w, 389w, 363w; 

δH(270 MHz, CDCl3) 7.92 (1 H, d, J 8.2 Hz, nap 4-H), 7.82-7.76 (2 H, m, nap 5,7-H), 7.59-7.51 (4 

H, m, 2 x PPh2 2,6-H), 7.51-7.44 (1 H, m, nap 2-H), 7.44-7.30 (7 H, m, nap 6-H, 2 x PPh2 3-5-H), 

7.28-7.22 (1 H, m, nap 3-H), 2.32 (2 H, q, J 7.4 Hz, -SCH2-), 0.65 (3 H, t, J 7.4 Hz, -SCH2CH3); 

δC(67.9 MHz, CDCl3) 138.7(d, J 12.5 Hz), 137.7(s), 134.4(d, J 3.1 Hz), 131.3(d, J 9.3 Hz), 

130.7(d, J 2.1 Hz), 128.4(d, J 12.4 Hz), 126.5(s), 124.1(d, J 14.6 Hz), 33.9(-CH2-), 13.5(-CH3); 

δP(109.4 MHz, CDCl3) 36.34; m/z (ES+) 411.00 ([M+Na]+, 100 %). 
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Compound 17 - (8-ethylsulfanylnaphth-1-yl)diphenylphosphine sulfide 

8a

4a
5

6

7
81

2

3

4

P S1

23

4

5 6

S

 
To a solution of (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 (0.10 g, 0.27 mmol) in toluene 

(10 mL) powdered sulfur (9 mg, 0.27 mmol) was added in small batches at 0 °C. The mixture was 

stirred for ½ h at 0 °C and another 2 h at ambient temperature. The resulting cloudy solution was 

filtered, the solvent was removed in vacuo and the remaining oil vigorously stirred with hexane 

(10 mL) over night, which resulted in a thick suspension. The solid product was collected by 

filtration and recrystallised from dichloromethane/hexane (0.02 g, 72 %); (Found: C, 70.1; H, 5.7. 

Calc. for C24H21PS2: C, 71.3; H, 5.2 %); vmax(KBr disc)/cm-1: 3048w, 2957s, 2923vs, 2851s, 

1987w, 1962w, 1896w, 1820w, 1737w, 1666w, 1585w, 1476w, 1433s, 1370w, 1320w, 1260s, 

1183w, 1092s, 1019w, 991w, 968w, 920w, 880w, 849w, 820vs, 801vs, 765s, 746s, 718s, 690s, 

645s, 609w, 576w, 546w, 512w, 490w, 442w, 407s ; δH(270 MHz, CDCl3) 7.98-7.89 (2 H, m, nap 

4,5-H), 7.89-7.65 (5 H, m, nap 7-H, 2 x PPh2 2,6-H), 7.54-7.33 (8 H, m, nap 3,6-H, 2 x PPh2 3-5-

H), 7.32-7.21 (1 H, m, nap 2-H), 2.18-2.04 (2 H, m, -SCH2-), 0.54 (3 H, t, J 7.4 Hz, - SCH2CH3); 

δC(67.9 MHz, CDCl3) 138.1(s), 137.8(d, J 10.4 Hz), 134.0(d, J 3.1 Hz), 131.5(d, J 2.1 Hz), 

131.2(d, J 10.4 Hz), 130.5(d, J 2.1 Hz), 130.3(s), 128.7(d, J 12.4 Hz), 128.4(d, J 12.4 Hz), 

126.7(s), 124.0(d, J 14.5 Hz), 35.2(CH2), 13.2(CH3); δP(109.4 MHz, CDCl3) 51.84; m/z (EI+) 

374.98 ([M-Et]+, 28 %), 342.99 ([M-SEt]+, 100 %), 188.96 ([M-SPPh2]
+

, 63 %). 
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Compound 18 - (8-ethylsulfanylnaphth-1-yl)diphenylphosphine selenide 
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(8-ethylsulfanylnaphth-1-yl)diphenylphosphine 3 (0.62 g, 1.5 mmol) and Se (0.12 g, 1.5 mmol) 

were heated under reflux in toluene (10 mL) for 2 h. The resulting cloudy solution was filtered, the 

solvent was removed in vacuo and the remaining oil vigorously stirred with hexane (10 mL) over 

night, which resulted in a thick suspension. The solid product was collected by filtration and 

recrystallised from dichloromethane/hexane (0.18 g, 65 %); (Found: C, 63.4; H, 4.7. Calc. for 

C24H21PSSe: C, 63.9; H, 4.7 %); vmax(KBr disc)/cm-1: 3047w, 2952w, 2922s, 2851w, 2360vs, 

2336vs, 1475w, 1435s, 1318w, 1247w, 1180w, 1096s, 1088s, 1023w, 994w, 973w, 917w, 880w, 

820s, 764s, 746s, 690vs, 615w, 587s, 565s, 533s, 508s, 489w, 442w, 409w; δH(270 MHz, CDCl3) 

7.84-7.82 (2 H, m, nap 4,5-H), 7.81-7.60 (5 H, m, nap 7-H, 2 x PPh2 2,6-H), 7.42-7.40 (1 H, m, 

nap 6-H), 7.40-7.19 (8 H, m, nap 2,3-H, 2 x PPh2 3-5-H), 2.09-1.92(2 H, m, -SCH2-), 0.48 (3 H, t, 

J 7.4 Hz, -SCH2CH3); δC(67.9 MHz, CDCl3) 138.3(s), 137.5(dd, J 10.4 Hz), 134.1(d, J 3.1 Hz), 

133.4-131.4(br m), 130.6(d, J 2.0 Hz), 130.4(s), 128.4(d, J 12.4 Hz), 126.8(s), 124.0(d, J 13.5 Hz), 

35.9(CH2), 13.8(CH3); δP(109.4 MHz, CDCl3) 41.92; δSe(51.5 MHz, CDCl3) -172.3; m/z (EI+) 

343.07 ([M-Se]+, 100 %), 188.99 ([M-SePPh2]
+, 15%). 
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Compound 9 - 1-bromo-8-(phenylsulfanyl)naphthalene 
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To a solution of 1,8-dibromonaphthalene (0.67 g, 2.3 mmol) in diethyl ether (15 mL) at -78 °C 

was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.9 mL, 2.3 mmol). The 

mixture was stirred at this temperature for 1 h after which a solution of diphenyl disulfide (0.51 g, 

2.3 mmol) in diethyl ether (15 mL) was added dropwise to the mixture. The resulting mixture was 

stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium hydroxide (2 

x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under reduced 

pressure, and the residual oil was purified by column chromatography on silica gel (hexane/ethyl 

acetate 20:1) to give a yellow oil (0.7 g, 51 %); δH(270 MHz, CDCl3) 7.80 (1 H, dd, J 1.3 and 7.4 

Hz, nap 4-H), 7.73 (1 H, dd, J 1.1 and 8.2 Hz, nap 2-H), 7.65 (1 H, dd, J 1.2 and 8.1 Hz, nap 5-H), 

7.55 (1 H, dd, J 1.3 and 7.5 Hz, nap 7-H), 7.28-7.14 (7 H, m, nap 3,6-H, SPh 2-6-H); δC(67.9 

MHz, CDCl3) 137.6(s), 133.2(s), 131.9(s), 129.53(s), 129.49(s), 128.9(s), 127.4(s), 126.4(s), 

126.1(s).   
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Compound 19 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine (from 9) 

 

A solution of 2.5 M n-butyllithium in hexane (1.3 mL, 3.2 mmol) was transferred dropwise to a 

freshly prepared solution of 1-bromo-8-(phenylsulfanyl)naphthalene (1.02 g, 3.2 mmol) in diethyl 

ether (30 mL) at -10-0 °C (salted ice bath). The bright mixture was stirred for 2 h at this 

temperature, after which chlorodiphenylphosphine (0.71 g, 0.6 mL, 3.2 mmol) was added slowly. 

Stirring was continued for a further 2 h at -10-0 °C. The mixture was allowed to warm to room 

temperature. The solvent was removed in vacuo and hexane (40 mL) was added to precipitate out 

unwanted salts. The solution was filtered under nitrogen and the solvent removed in vacuo. The 

crude yellow oil obtained was recrystallised from hexane (0.9 g, 64 %); (Found: C, 79.7; H, 5.0. 

Calc. for C28H21PS: C, 79.9; H, 5.0 %); vmax(KBr disc)/cm-1: 3050s, 2963s, 1949w, 1884w, 1828w, 

1579s, 1544s, 1472s, 1432vs, 1352w, 1308w, 1261vs, 1197s, 1092vs, 1021vs, 864w, 817vs, 

801vs, 767vs, 740vs, 691vs, 592w, 539w, 499s, 474s, 424w, 387s; δH(270 MHz, CDCl3) 7.93-7.81 

(2 H, m, nap 4,5-H), 7.71 (1 H, d, J 1.5 Hz, nap 2-H), 7.45-7.36 (1 H, m, nap 3-H), 7.36-7.28 (1 H, 

m, nap 6-H), 7.26-7.13 (11 H, m, nap 2-H, 2 x PPh2 2-6-H), 7.09-6.97 (3 H, m, SPh 3-5-H), 6.77-

6.70 (2 H, m, SPh 2,6-H); δC(67.9 MHz, CDCl3) 140.0(q), 139.8(q), 137.6(s), 137.0(s), 135.6(q), 

134.1(d, J 19.8 Hz), 132.2(q), 131.3(d, J 9.4 Hz), 130.9(s), 130.6(s), 128.6(s), 128.4(d, J 7.3 Hz), 

128.1(d, J 3.1 Hz), 126.4(q), 125.9(s), 125.8(s), 125.4(s); δP(109.4 MHz, CDCl3) -5.30; m/z (ES-) 

459.20 ([M+K]+, 100 %). 

Compound 19 - (from 20) 

 A solution of 1.6 M n-butyllithium in hexane (1.9 mL, 3.0 mmol) was transferred dropwise to a 

freshly prepared solution of 1-iodo-8-(phenylsulfanyl)naphthalene (1.10 g, 3.0 mmol) in diethyl 

ether (30 mL) at -10-0 °C (salted ice bath). The bright mixture was stirred for 2 h at this 

temperature, after which chlorodiphenylphosphine (0.67 g, 0.5 mL, 3.0 mmol) was added slowly. 

Stirring was continued for a further 2 h at -10-0 °C. The mixture was allowed to warm to room 

temperature. The solvent was removed in vacuo and hexane (40 mL) was added to precipitate out 

unwanted salts. The solution was filtered under nitrogen and the solvent removed in vacuo. The 

crude yellow oil obtained was recrystallised from hexane (0.9 g, 74 %). The product was identified 

by 1H and 31P NMR spectroscopy.  
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Compound 20 - 1-iodo-8-(phenylsulfanyl)naphthalene 
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To a solution of 1,8-diiodonaphthalene (0.47 g, 1.2 mmol) in diethyl ether (15 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (0.5 mL, 1.2 mmol). The mixture 

was stirred at this temperature for 1 h after which a solution of diphenyl disulfide (0.27 g, 1.2 

mmol) in diethyl ether (15 mL) was added dropwise to the mixture. The resulting mixture was 

stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium hydroxide (2 

x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under reduced 

pressure and the residual oil was purified by column chromatography on silica gel (hexane) and 

recrystallised from dichloromethane/pentane (0.1 g, 26 %); (Found: C, 53.0; H, 3.4. Calc. for 

C16H11IS: C, 53.0; H, 3.1 %); vmax(KBr disc)/cm-1: 3442br, 3056w, 2955s, 2924s, 2848w, 1937w, 

1790w, 1719w, 1654w, 1578s, 1535s, 1474s, 1432s, 1346w, 1314w, 1261s, 1187s, 1080vs, 

1022vs, 959w, 891w, 850w, 815vs, 755vs, 733vs, 688s, 613w, 566w, 516w, 462w, 400w; δH(270 

MHz, CDCl3) 8.27 (1 H, dd, J 1.3 and 7.4 Hz, nap 4-H), 7.79 (1 H, dd, J 1.2 and 8.1 Hz, nap 2-H), 

7.75 (1 H, dd, J 1.3 and 8.2 Hz, nap 5-H), 7.64 (1 H, dd, J 1.4 and 7.3 Hz, nap 7-H), 7.33-7.26 (1 

H, m, nap 6-H), 7.21-6.97 (6 H, m, nap 3-H, SPh 2-6-H); δC(67.9 MHz, CDCl3) 143.9(s), 136.4(s), 

130.7(s), 130.5(s), 129.7(s), 129.3(s), 127.1(s), 126.3(s), 126.0(s); m/z (ES+) 384.80 ([M+Na]+, 

100 %).  
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Compound 21 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine oxide 

 
(8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 oxidised in contact with the atmosphere to 

produce (8-phenylsulfanylnaphth-1-yl)diphenylphosphine oxide 21 with 100 % conversion as seen 

by 31P NMR spectroscopy (Found: C, 77.7; H, 5.0. Calc. for C28H21PSO: C, 77.0; H, 4.9 %); 

vmax(KBr disc)/cm-1: 3393w, 3051w, 2360vs, 2339vs, 1954w, 1868w, 1843w, 1769w, 1716w, 

1699w, 1651w, 1581w, 1557w, 1539w, 1519w, 1507w, 1475s, 1435vs, 1357w, 1321w, 1259w, 

1211w, 1181vs, 1153s, 1111s, 1097s, 1067s, 1024w, 993s, 930w, 886s, 827vs, 770s, 734vs, 715s, 

689vs, 632w, 614w, 587w, 563vs, 540vs, 507s, 455s, 419w; δH(270 MHz, CDCl3) 7.97 (1 H, d, J 

8.2 Hz, nap 4-H), 7.90 (1 H, d, J 8.1 Hz, nap 5-H), 7.83 (1 H, dd, J 1.3 and 7.2 Hz, nap 7-H), 7.52-

7.40 (6 H, m, nap 2,6-H, 2 x PPh2 2,6-H), 7.32-7.23 (3 H, m, nap 3-H, 2 x PPh2 4-H), 7.23-7.15 (4 

H, m, 2 x PPh2 3,5-H), 6.84-6.72 (3 H, m, SPh 3-5-H), 6.18-6.12 (2 H, m, SPh 2,6-H); δC(67.9 

MHz, CDCl3) 139.8(s) 138.4(d, J 12.4 Hz), 134.2(d, J 4.1 Hz), 131.2(d, J 9.3 Hz), 130.6(d, J 2.1 

Hz), 128.2(s), 128.1(d, J 3.8 Hz), 127.1(s), 126.3(s), 124.6(s), 124.3(d, J 14.5 Hz); δP(109 MHZ, 

CDCl3) 37.01; m/z (CI+) 437.12 ([M+H]+, 100 %), 327.09 ([M-SPh]+, 32 %). 
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Compound 22 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine sulfide 

 
To a solution of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 (0.239 g, 0.569 mmol) in 

toluene (10 mL) powdered sulfur (18.2 mg, 0.569 mmol) was added in small batches at 0 °C. The 

mixture was stirred for ½ h at 0 °C and another 2 h at ambient temperature. The resulting cloudy 

solution was filtered, the solvent was removed in vacuo and the remaining oil vigorously stirred 

with hexane (10 mL) over night, which resulted in a thick suspension. The solid product was 

collected by filtration and recrystallised from dichloromethane/hexane (0.1 g, 44 %); (Found: C, 

73.3; H, 4.7. Calc. for C28H21PS2: C, 74.3; H, 4.7 %); vmax(KBr disc)/cm-1: 3446br, 3062w, 1966w, 

1847w, 1579s, 1543w, 1473s, 1430s, 1381w, 1357w, 1321s, 1302s, 1272w, 1199w, 1177s, 1150s, 

1089s, 1022w, 989s, 916w, 882w, 824s, 766vs, 736vs, 687s, 642vs, 611s, 547s, 578w, 547s, 523s, 

511vs, 492s, 468s, 447w, 407s; δH(270 MHz, CDCl3) 7.99-7.88 (3 H, m, nap 4,5,7-H), 7.54-7.48 

(1 H, m, nap 6-H), 7.32-7.10 (12 H, m, nap 2,3-H, 2 x PPh2 2-6-H), 6.81-6.69 (3 H, m, SPh 3-5-

H), 5.93-5.87 (2 H, m, SPh 2,6-H); δC(67.9 MHz, CDCl3) 140.7(s), 137.7(d, J 11.4 Hz), 134.2(d, J 

3.1 Hz), 131.8(s), 130.5(s), 128.3(d, J 12.5 Hz), 128.1(s), 127.4(s),125.3(s), 124.4(s), 124.2(s); 

δP(109.4 MHz, CDCl3) 52.52; m/z (ES+) 474.97 ([M+Na]+, 100 %). 
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Compound 23 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine selenide 

 
(8-phenylsulfanylnaphth-1-yl)diphenylphosphine 19 (0.23 g, 0.55 mmol) and Se (0.047 g, 0.55 

mmol) were heated under reflux in toluene (10 mL) for 2 h. The resulting cloudy solution was 

filtered, the solvent was removed in vacuo and the remaining oil vigorously stirred with hexane 

(10 mL) over night, which resulted in a thick suspension. The solid product was collected by 

filtration and recrystallised from dichloromethane/hexane (0.2 g, 85 %); (Found: C, 65.9; H, 4.4. 

Calc. for C28H21PSSe: C, 67.3; H, 4.2 %); vmax(KBr disc)/cm-1: 2856vs, 2395w, 1718w, 1646s, 

1542w, 1461vs, 1378vs, 1308w, 1181w, 1120w, 973w, 886w, 809s, 722s, 691w, 616w, 562w, 

539w, 506w; δH(270 MHz, CDCl3) 8.00-7.91 (3 H, m, nap 4,5,7-H), 7.56-7.49 (1 H, m, nap 6-H), 

7.30-7.10 (12 H, m, nap 2,3-H, 2 x PPh2 2-6-H), 6.77-6.67 (3 H, m, SPh 3-5-H), 5.86-5.81 (2 H, 

m, SPh 2,6-H); δC(67.9 MHz, CDCl3) 140.7(s), 137.3(d, J 10.4 Hz), 134.2(d, J 3.2 Hz), 131.9(s), 

130.6(d, J 3.1 Hz), 128.3(d, J 12.4 Hz), 128.1(s), 127.6(s), 125.0(s), 124.3(s), 124.2(s); δP(109.4 

MHz, CDCl3) 42.46 (JP(1)-Se(1) 722.4 Hz); δSe(51.5 MHz, CDCl3) -341.0 (JSe(1)-P(1) 722.4 Hz); m/z 

(Cl+) 501.04 ([M+H]+, 4 %), 421.12 ([M-Se]+, 75 %), 391.02 ([M-SPh]+, 12 %), 343.08 ([M-

SePh]+, 100%). 
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Compound 24 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum 

dichloride 

 

To a schlenk tube containing ligand (8-phenylsulfanylnaphth-1-yl)diphenylphosphine (0.05 g, 0.12 

mmol) and Pt(COD)Cl2 (0.044 g, 0.12 mmol) was added dichloromethane (5 mL). The reaction 

was stirred for 1 h. Removal of solvent to near dryness and recrystallising from 

dichloromethane/pentane gave green crystalline needles in near quantitative yield (0.08 g, 98 %); 

(Found: C, 48.6; H, 3.4. Calc. for C28H21PSPtCl2: C, 49.1; H, 3.1 %); vmax(KBr disc)/cm-1: 3430br, 

3054s, 2919s, 1964w, 1577s, 1478s, 1434s, 1321s, 1258w, 1154s, 1096vs, 1204s, 994s, 941s, 

885s, 830vs, 765vs, 736vs, 687vs, 584vs, 526vs, 505vs, 418vs, 330vs, 294s; δH(270 MHz, CDCl3) 

8.31-8.26 (1 H, m, nap 5-H), 8.26-8.21 (2 H, m, nap 4,7-H), 7.70-7.64 (1 H, m, nap 6-H), 7.53-

7.42 (3 H, m, nap 3-H, 2 x PPh2 4-H), 7.42-6.94 (12 H, m, nap 2-H, 2 x PPh2 2,3,5,6-H), 6.85-6.76 

(1 H, m, SPh 4-H), 6.73-6.63 (4 H, m, SPh 2,3,5,6-H); δC(67.9 MHz, CDCl3) 139.3(d, J 4.2 Hz), 

137.6(s), 135.2(s), 134.8(s), 133.7(s), 131.2(s), 128.8(d, J 6.2 Hz), 128.3(s), 128.1(d, J 5.1 Hz), 

127.7(s), 126.6(s), 126.3(d, J 10.4 Hz); δP(109 MHZ, CDCl3) 1.37 (J 
P-Pt  3521.2 Hz); m/z (ES+) 

651.10, ([M-Cl]+, 60 %), 614.13 ([M-Cl2]
+

, 100 %).  

 

 

 

 

 

 

 

 

 

 

 

 



Experimental 
                           

                                                                                              261 

 

Compound 25 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum 

dibromide 

 
To a schlenk tube containing ligand (8-phenylsulfanylnaphth-1-yl)diphenylphosphine (0.13 g, 0.30 

mmol) and Pt(COD)Br2 (0.14 g, 0.30 mmol) was added dichloromethane (5 mL). The reaction was 

stirred for 1 h. Removal of solvent to near dryness and recrystallising from 

dichloromethane/pentane gave clear crystalline needles in near quantitative yield (0.2 g, 98 %); 

(Found: C, 43.0; H, 2.6. Calc. for C28H21PSPtBr2: C, 43.5; H, 2.7 %); vmax(KBr disc)/cm-1: 3047s, 

1578w, 1477s, 1434vs, 1339s, 1269s, 1181s, 1154s, 1095vs, 996s, 887s, 827s, 766vs, 735vs, 585s, 

569s, 525vs, 503vs; δH(270 MHz, CDCl3) 8.30-8.26 (2 H, m, nap 5,7-H), 8.26-8.22 (1 H, m, nap 

4-H), 7.69-7.64 (1 H, m, nap 6-H), 7.53-7.46 (2 H, m, nap 2,3-H), 7.46-6.96 (10 H, m, 2 x PPh2 2-

6-H), 6.84-6.78 (1 H, m, SPh 4-H), 6.74-6.62 (4 H, m, SPh 2,3,5,6-H); δC(67.9 MHz, CDCl3) 

139.6(d, J 4.2 Hz), 137.5(s), 135.2(s), 134.7(s), 133.8(br s), 131.1(s), 128.8(s), 128.6(s), 128.2(br 

s), 127.7(s), 126.6(s), 126.2(d, J 9.3 Hz); δP(109 MHZ, CDCl3) 0.98 (JP-Pt 3408.6 Hz); m/z (ES+) 

695.05 ([M-Br]+, 100 %),  614.13 ([M-Br2]
+

, 22 %).  
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Compound 26 – (8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum 

diiodide 

   
To a schlenk tube containing ligand (8-phenylsulfanylnaphth-1-yl)diphenylphosphine (0.062 g, 

0.15 mmol) and Pt(COD)I2 (0.082 g, 0.15 mmol) was added dichloromethane (5 mL). The reaction 

was stirred for 1 h. Removal of solvent to near dryness and recrystallising from 

dichloromethane/pentane gave clear crystalline needles in near quantitative yield (0.1 g, 99 %); 

(Found: C, 36.1; H, 2.2. Calc. for C28H21PSPtI2: C, 36.5; H, 2.4 %); vmax(KBr disc)/cm-1: 3050w, 

2962w, 2221w, 1573w, 1476s, 1434s, 1335w, 1260s, 1151w, 1095vs, 1021vs, 907s, 882s, 800vs, 

764s, 727vs, 690vs, 581s, 564s, 522s, 502s, 476w, 450w; δH(270 MHz, CDCl3) 8.33-8.27 (2 H, m, 

nap 5,7-H), 8.27-8.20 (1 H, m, nap 4-H), 7.70-7.62 (1 H, m, nap 6-H), 7.57-7.43 (2 H, m, nap 2,3-

H), 7.43-6.95 (10 H, m, 2 x PPh2 2-6-H), 6.83-6.75 (1 H, m, SPh 4-H), 6.75-6.68 (2 H, m, SPh 

2,6-H), 6.68-6.59 (2 H, m, SPh 3,5-H); δC(67.9 MHz, CDCl3) 139.7(d, J 3.4 Hz), 137.3(s), 

134.9(s), 134.4(d, J 2.9 Hz), 130.9(s), 128.7(s), 128.3(s), 127.7(s), 126.5(s), 126.1(d, J 10.5 Hz); 

δP(109 MHZ, CDCl3) 0.34 (J 
P-Pt 3263.1 Hz); m/z (ES+) 742.06 ([M-I]+ , 100 %).  
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Compound 27 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine copper 

chloride dimer 
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To a schlenk tube containing ligand (8-phenylsulfanylnaphth-1-yl)diphenylphosphine (0.68 g, 1.6 

mmol) and copper (I) chloride (0.16 g, 1.6 mmol) was added dichloromethane (5 mL) and 

methanol (5 mL). The reaction was stirred for 2 h. Removal of the solvent and addition of hexane 

caused precipitation of excess copper (I) chloride. The excess salt was removed by filtration and 

the solvent was concentrated under reduced pressure. The oil was recrystallised from 

dichloromethane/pentane to give green crystalline needles (1.3 g, 76 %); (Found: C, 50.7; H, 3.2. 

Calc. for (C56H42P2S2Cu2Cl2)(CH2Cl2)5: C, 50.1; H, 3.6 %); vmax(KBr disc)/cm-1: 2957w, 2914w, 

2859w, 2360vs, 2340vs, 2117w, 1771w, 1733w, 1715w, 1699w, 1651w, 1581w, 1476w, 1455w, 

1435s, 1392w, 1360w, 1317w, 1261w, 1227w, 1185s, 1113s, 1066w, 1023w, 994w, 924w, 883w, 

822s, 800w, 769w, 731s, 716s, 689s, 668s, 587w, 563s, 539s, 506w, 472w, 454w, 420w; δH(270 

MHz, CDCl3) 7.97 (1 H, d, J 8.2 Hz, nap 4-H), 7.90 (1 H, d, J 8.1 Hz, nap 5-H), 7.83 (1 H, dd, J 

1.3 and 7.2 Hz, nap 7-H), 7.52-7.40 (6 H, m, nap 2,6-H, 2 x PPh2 2,6-H), 7.32-7.23 (3 H, m, nap 3-

H, 2 x PPh2 4-H), 7.23-7.15 (4 H, m, 2 x PPh2 3,5-H), 6.84-6.72 (3 H, m, SPh 3,4,5-H), 6.18-6.12 

(2 H, m, SPh 2,6-H); δC(67.9 MHz, CDCl3) 139.8(s) 138.4(d, J 12.4 Hz), 134.2(d, J 4.1 Hz), 

131.2(d, J 9.3 Hz), 130.6(d, J 2.1 Hz), 128.2(s), 128.1(d, J 3.8 Hz), 127.1(s), 126.3(s), 124.6(s), 

124.3(d, J 14.5 Hz); δP(109 MHZ, CDCl3) 27.78; m/z (ES+) 903.10 ([M-CuCl2]
+, 100 %). 
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Compound 28 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine copper 

bromide dimer 
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To a schlenk tube containing ligand (8-phenylsulfanylnaphth-1-yl)diphenylphosphine (0.57 g, 1.4 

mmol) and copper (I) bromide (0.39 g, 1.4 mmol) was added dichloromethane (5 mL) and 

methanol (5 mL). The reaction was stirred for 2 h. Removal of the solvent and addition of hexane 

caused precipitation of excess copper (I) bromide. The excess salt was removed by filtration and 

the solvent was concentrated under reduced pressure. The oil was recrystallised from 

dichloromethane/pentane to give green crystalline needles (0.9 g, 61 %); (Found: C, 57.5; H, 4.4. 

Calc. for (C56H42P2S2Cu2Br2)2CH2Cl2: C, 58.0; H, 3.7 %); vmax(KBr disc)/cm-1: 2963w, 2853w, 

2361vs, 2340vs, 2215w, 1944w, 1699w, 1651w, 1580w, 1558w, 1541w, 1475w, 1435s, 1318w, 

1261s, 1184w, 1098s, 1023w, 993w, 925w, 883w, 821s, 802s, 768w, 731s, 689s, 587w, 563s, 

540s, 506w, 419w; δH(270 MHz, CDCl3) 7.98 (1 H, d, J 8.1 Hz, nap 4-H), 7.91 (1 H, d, J 8.1 Hz, 

nap 5-H), 7.84 (1 H, dd, J 1.2 and 7.2 Hz, nap 7-H), 7.56-7.39 (6 H, m, nap 2,6-H, 2 x PPh2 2,6-

H), 7.34-7.26 (3 H, m, nap 3-H, 2 x PPh2 4-H), 7.26-7.15 (4 H, m, 2 x PPh2 3,5-H), 6.86-6.74 (3 

H, m, SPh 3,4,5-H), 6.20-6.12 (2 H, m, SPh 2,6-H); δC(67.9 MHz, CDCl3) 139.8(s), 138.4(d, J 

12.1 Hz), 134.2 (d, J 4.0 Hz), 131.2(s), 131.2(d, J 8.7 Hz), 130.6(d, J 2.9 Hz), 128.2(d, J 8.1 Hz), 

128.1(s), 127.1(s), 126.3(s), 124.6(s), 124.3(d, J 14.4 Hz); δP(109 MHZ, CDCl3) 27.73; m/z (ES+) 

903.23 ([M-CuBr2]
+, 3%), 299.18 ([C10H6SPhCu]+, 100 %). 
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Compound 29 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine copper 

iodide dimer 
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To a schlenk tube containing ligand (8-phenylsulfanylnaphth-1-yl)diphenylphosphine (0.52 g, 1.3 

mmol) and copper (I) iodide (0.24 g, 1.3 mmol) was added dichloromethane (5 mL) and methanol 

(5 mL). The reaction was stirred for 2 h. Removal of the solvent and addition of hexane caused 

precipitation of excess copper (I) iodide. The excess salt was removed by filtration and the solvent 

was concentrated under reduced pressure. The oil was recrystallised from 

dichloromethane/pentane to give green crystalline needles (0.5 g, 31 %); (Found: C, 53.9; H, 3.5. 

Calc. for (C56H42P2S2Cu2I2)2CH2Cl2: C, 53.7; H, 3.4 %); vmax(KBr disc)/cm-1: 3417w, 3050w, 

2346w, 1956w, 1881w, 1806w, 1656w, 1548s, 1477s, 1433vs, 1358s, 1308s, 1196w, 1142w, 

1095s, 1060w, 1023s, 998w, 980w, 912w, 816vs, 764s, 748vs, 689vs, 613w, 561w, 529s, 512vs, 

490s, 440w; δH(270 MHz, CDCl3) 7.98 (1 H, d, J 8.1 Hz, nap 4-H), 7.91 (1 H, d, J 8.1 Hz, nap 5-

H), 7.84 (1 H, dd, J 1.3 and 7.2 Hz, 7-H), 7.55-7.42 (6 H, m, nap 2,6-H, 2 x PPh2 2,6-H), 7.35-7.25 

(3 H, m, nap 3-H, 2 x PPh2 4-H), 7.25-7.16 (4 H, m, 2 x PPh2 3,5-H), 6.86-6.74 (3 H, m, SPh 

3,4,5-H), 6.20-6.13 (2 H, m, SPh 2,6-H); δC(67.9 MHz, CDCl3) 139.9(s), 138.3(d, J 19.8 Hz), 

134.6 (d, J 3.1 Hz), 131.4(s), 131.2(s), 130.6(d, J 3.1 Hz), 128.3(s), 128.12(d, J 4.1 Hz), 127.1(s), 

126.4(s), 124.7(s), 124.4(d, J 17.7 Hz); δP(109 MHZ, CDCl3) 28.68;  m/z (ES-) 903.20 ([M-CuI2]
-, 

1%), 299.19 ([C10H6SphCu]+, 100 %). 
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Compound 30 - (8-phenylsulfanylnaphth-1-

yl)diphenylphosphinechlororuthenium(II)chloride  
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To a schlenk tube containing ligand (8-phenylsulfanylnaphth-1-yl)diphenylphosphine (0.12 g, 0.29 

mmol) and [Ru(pCy)Cl2]2 (0.18 g, 0.29 mmol) was added dichloromethane (5 mL). The reaction 

was stirred for 2 h and the filtered. Removal of the solvent and recrystallisation of the red oil from 

dichloromethane/pentane gave orange crystals (0.1 g, 92 %); vmax(KBr disc)/cm-1: 3397br, 3053vs, 

2961vs, 2272w, 1656vs, 1467s, 1436vs, 1387vs, 1319s, 1278w, 1198w, 1157w, 1113s, 1093s, 

1055s, 1030s, 997w, 875s, 821w, 758s, 693vs, 560s, 519s, 498s, 448vs, 294s; δH(270 MHz, 

CDCl3) 8.03 (1 H, d, J 7.2 Hz, SPh 4-H), 7.99-7.87 (3 H, m, nap 4-H, SPh 2,6-H), 7.83 (1 H, d, J 

8.0 Hz, nap 5-H), 7.65-7.35 (12 H, m, SPh 3,5-H, 2 x PPh2 2-6-H), 7.35-7.16 (3 H, m, nap 2,3,6-

H), 7.03 (1 H, d, J 6.9 Hz, nap 7-H), 5.47 (1 H, d, J 6.4 Hz, Ar-H), 5.40 (1 H, d, J 5.9 Hz, Ar-H), 

5.27 (1 H, d, J 5.9 Hz, Ar-H), 4.98 (1 H, d, J 6.4 Hz, Ar-H), 2.30-2.10 (1 H, m, Ar-CH(CH3)2), 

1.89 (3 H, s, Ar-CH3), 0.93 (3 H, d, J 6.9 Hz, Ar-CH(CH3)2), 0.69 (3 H, d, J 6.9 Hz, Ar-

CH(CH3)2); δC(67.9 MHz, CDCl3) 134.6(d, J 2.1 Hz), 134.0(d, J 4.1 Hz), 133.9(d, J 3.1 Hz), 

133.3(s), 132.5(s), 132.4(s), 131.8(d, J 2.0 Hz), 131.7(s), 131.5(s), 130.8(s), 129.8(d, J 10.4 Hz), 

129.4(d, J 10.4 Hz), 125.7(s), 125.5(d, J 9.4 Hz), 96.0(s), 95.9(s), 81.3(s), 80.6(s), 30.7(s), 22.8(s), 

20.6(s), 18.4(s); δP(109 MHZ, CDCl3) 37.99; m/z (ES+) 691.12 ([M-Cl]+, 100 %).  
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Compound 31 - 1-bromo-8-(phenylselenyl)naphthalene 

 

To a solution of 1,8-dibromonaphthalene (5.0 g, 0.018 mol) in diethyl ether (35 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (7 mL, 0.018 mol). The mixture was 

stirred at this temperature for 1 h after which a solution of diphenyl diselenide (5.45 g, 0.018 mol) 

in diethyl ether (10 mL) was added dropwise to the mixture. The resulting mixture was stirred at -

78 °C for a further h. The reaction mixture was washed with 0.1 M sodium hydroxide (2 x 45 mL). 

The organic layer was dried with magnesium sulfate, concentrated under reduced pressure and the 

residual oil was purified by column chromatography on silica gel (hexane/dichloromethane 20:1). 

The brown oil obtained was recrystallised from dichloromethane/pentane (4.0 g, 63 %); (Found: C, 

52.6; H, 3.6. Calc. for C16H11BrSe: C, 53.0; H, 3.1 %); vmax(KBr disc)/cm-1: 3058w, 2955w, 

2925w, 1787w, 1573w, 1541s, 1473w, 1462w, 1434s, 1353w, 1299w, 1269w, 1187s, 1139s, 

1089w, 1061w, 1020w, 997w, 953w, 903w, 841w, 806vs, 746vs, 691vs, 557w, 533w, 476w, 

436w, 315w; δH(270 MHz, CDCl3) 7.88 (1 H, dd, J 1.2 and 7.4 Hz, nap 4-H), 7.81 (1 H, d, J 8.1 

Hz, nap 2-H), 7.74-7.59 (3 H, m, nap 5-H, SPh 2,6-H), 7.49-7.36 (3 H, m, SPh 3-5-H), 7.34-7.22 

(2 H, m, nap 3,7-H), 7.19-7.09 (1 H, m, nap 6-H); δC(67.9 MHz, CDCl3) 137.1(q), 136.8(s), 

133.5(q), 133.4(s), 132.1(q), 131.7(q), 130.9(s), 130.0(s), 129.4(s), 128.9(s), 127.6(s), 126.4(s), 

126.2(s), 120.6(q); δSe(51.5 MHz, CDCl3) 447.8; m/z (EI+) 361.92 ([M]+, 100 %).  
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Compound 32 - (8-phenylselenylnaphth-1-yl)diphenylphosphine 32 (from 31) 

 

A solution of 2.5 M n-butyllithium in hexane (1.1 mL, 2.8 mmol) was transferred dropwise to a 

freshly prepared solution of 1-bromo-8-(phenylselenyl)naphthalene (1.02 g, 2.8 mmol) in diethyl 

ether (30 mL) at -10-0 °C (salted ice bath). The bright mixture was stirred for 2 h at this 

temperature, after which chlorodiphenylphosphine (0.62 g, 0.5 mL, 2.8 mmol) was added slowly. 

Stirring was continued for a further 2 h at -10-0 °C. The mixture was allowed to warm to room 

temperature. The solvent was removed in vacuo and hexane (40 mL) was added to precipitate out 

unwanted salts. The solution was filtered under nitrogen and the solvent removed in vacuo (0.5 g, 

40 %); (Found: C, 68.4; H, 4.6. Calc. for (C28H21PSe)4CDCl3: C, 68.2; H, 4.4 %); vmax(KBr 

disc)/cm-1: 3853w, 3735w, 3673w, 3649w, 3628w, 3049w, 2911w, 2851w, 2360vs, 2340vs, 

1734w, 1699w, 1651w, 1558w, 1541w, 1474w, 1433s, 1310w, 1259w, 1193w, 1153w, 1088w, 

1021w, 996w, 971w, 911w, 815s, 765s, 739s, 690s, 669s, 538w, 504w, 420w, 397w, 352w; 

δH(270 MHz, CDCl3) 7.76 (1 H, dd, J 1.5 and 7.9 Hz, nap 4-H), 7.66 (1 H, d, J 8.1 Hz, nap 5-H), 

7.52 (1 H, dd, J 1.2 and 7.4 Hz, nap 7-H), 7.35-7.30 (1 H, m, nap 2-H), 7.30-7.05 (17 H, m, nap 

2,3-H, SPh 2-6-H, 2 x PPh2 2-6-H); δC(67.9 MHz, CDCl3) 137.7(s), 135.0(s), 133.9(d, J 5.2 Hz), 

133.7(s), 131.2(s), 129.2(s), 128.9(s), 128.5(d, J 6.2 Hz), 128.3(s), 127.4(s), 126.1(s), 125.6(s); 

δP(109.4 MHz, CDCl3) -12.94 (JP(1)-Se(1) 386.2.0 Hz); δSe(51.5 MHz, CDCl3) 439.6 (JSe(1)-P(1) 

386.2.0 Hz); m/z (CI+) 469.06 ([M+H]+, 65 %), 391.02 ([M+H-Ph]+, 98 %).  

Compound 32 – (from 33) 

 A solution of 2.5 M n-butyllithium in hexane (0.5 mL, 1.2 mmol) was transferred dropwise to a 

freshly prepared solution of 1-iodo-8-(phenylselenyl)naphthalene (0.50 g, 1.2 mmol) in diethyl 

ether (30 mL) at -10-0 °C (salted ice bath). The bright mixture was stirred for 2 h at this 

temperature, after which chlorodiphenylphosphine (0.27 g, 0.2 mL, 1.2 mmol) was added slowly. 

Stirring was continued for a further 2 h at -10-0 °C. The mixture was allowed to warm to room 

temperature. The solvent was removed in vacuo and hexane (40 mL) was added to precipitate out 

unwanted salts. The solution was filtered under nitrogen and the solvent removed in vacuo (0.5 g, 

89 %); The product was identified by 1H and 31P NMR spectroscopy.  
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Compound 33 - 1-iodo-8-(phenylselenyl)naphthalene 
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To a solution of 1,8-diiodonaphthalene (0.49 g, 1.3 mmol) in diethyl ether (15 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (0.5 mL, 1.3 mmol). The mixture 

was stirred at this temperature for 1 h after which a solution of diphenyl diselenide (0.40 g, 1.3 

mmol) in diethyl ether (15 mL) was added dropwise to the mixture. The resulting mixture was 

stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium hydroxide (2 

x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under reduced 

pressure and the residual oil was purified by column chromatography on silica gel (hexane) and 

recrystallised from dichloromethane/pentane (0.3 g, 60 %); (Found: C, 47.0; H, 2.5. Calc. for 

C16H11ISe: C, 47.0; H, 2.7 %); vmax(KBr disc)/cm-1: 3442br, 3051s, 1961w, 1911w, 1887w, 1778w, 

1633w, 1571s, 1537vs, 1488w, 1473s, 1434s, 1349s, 1311s, 1299s, 1272w, 1185s, 1133s, 1089w, 

1062s, 1018s, 997w, 947w, 897w, 829w, 804vs, 742vs, 691vs, 607w, 551w, 524w, 474s, 427w, 

306w; δH(270 MHz, CDCl3) 8.22 (1 H, dd, J  1.3 and 7.4 Hz, nap 4-H), 7.74 (1 H, dd, J 1.0 and 

8.1 Hz, nap 2-H), 7.57 (1 H, dd, J 1.1 and 8.0 Hz, nap 5-H), 7.49-7.43 (2 H, m, SPh 2,6-H), 7.35 

(1 H, dd, J 1.2 and 7.5 Hz, nap 7-H), 7.32-7.24 (3 H, m, SPh 3-5-H), 7.12-6.99 (2 H, m, nap 3,6-

H); δC(67.9 MHz, CDCl3) 142.2(s), 135.6(s), 133.1(s), 130.2(s), 129.8(s), 128.6(s), 128.4(s), 

126.8(s), 126.3(s); δSe(51.5 MHz, CDCl3) 430.8; m/z (EI+) 409.9 ([M]+, 51 %). 
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Compound 34 - (8-phenylselenylnaphth-1-yl)diphenylphosphine oxide 

 
(8-phenylselenylnaphth-1-yl)diphenylphosphine 32 readily oxidised in contact with the 

atmosphere to produce (8-phenylselenylnaphth-1-yl)diphenylphosphine oxide 35 with 100 % 

conversion as seen by 31P NMR spectroscopy (Found C, 68.5; H, 4.6. Calc. for C28H21PSeO: C, 

69.4; H, 4.4 %); vmax(KBr disc)/cm-1: 3423br, 3053s, 2924w, 1960w, 1893w, 1809w, 1589w, 

1472s, 1436vs, 1314s, 1176vs, 1115vs, 1068w, 1022w, 997w, 981w, 923w, 866w, 821s, 763vs, 

744vs, 721vs, 693vs, 541vs, 505s, 469w, 447w, 426w; δH(270 MHz, CDCl3) 7.92 (1 H, d, J 8.2 

Hz, nap 4-H), 7.88 (1 H, d, J 6.4 Hz, nap 5-H), 7.79 (1 H, d, J 8.1 Hz, nap 7-H), 7.57-7.48 (4 H, m, 

2 x PPh2 2,6-H), 7.40-7.32 (3 H, m, nap 2-H, 2 x PPh2 4-H ), 7.30-7.21 (6 H, m, nap 3,6-H, 2 x 

PPh2 3,5-H), 6.97-6.90 (1 H, m, SPh 4-H), 6.90-6.81 (2 H, m, SPh 3,5-H), 6.59 (2 H, d, J 7.2 Hz, 

SPh 2,6-H); δC(67.9 MHz, CDCl3) 140.3(s), 137.6(q), 137.3(q), 135.6(q), 134.3(s), 131.8(d, J 9.4 

Hz), 131.1(s), 130.3(s), 128.6(s), 128.4(s), 128.2(s), 127.1(s), 126.1(s), 123.8(d, J 15.5 Hz); δP(109 

MHZ, CDCl3) 37.99; δSe(51.5 MHz, CDCl3) 450.4; m/z (ES+) 507.02 ([M+Na]+, 100 %).  
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Compound 35 - (8-phenylselenylnaphth-1-yl)diphenylphosphine sulfide 

 
To a solution of (8-phenylselenylnaphth-1-yl)diphenylphosphine 32 (0.086 g, 0.21 mmol) in 

toluene (10 mL) powdered sulfur (0.065 g, 0.21 mmol) was added in small batches at 0 °C. The 

mixture was stirred for ½ h at 0 °C and another 2 h at ambient temperature. The resulting cloudy 

solution was filtered, the solvent was removed in vacuo and the remaining oil vigorously stirred 

with hexane (10 mL) over night, which resulted in a thick suspension. The solid product was 

collected by filtration and recrystallised from dichloromethane/hexane (0.05 g, 54 %); (Found C, 

66.7; H, 3.9. Calc. for C28H21PSSe: C, 67.2;  H, 4.2 %); vmax(KBr disc)/cm-1: 2925vs, 1871vs, 

1574w, 1474s, 1434vs, 1375w, 1317w, 1260s, 1192w, 1177w, 1095s, 1064w, 1021s, 994w, 936s, 

863w, 797vs, 769s, 732vs, 718vs, 690vs, 639s, 539s, 509s, 454w, 414w; δH(270 MHz, CDCl3) 

8.12 (1 H, dd, J 1.4 and 7.1 Hz, nap 5-H), 8.00-7.88 (2 H, m, nap 4,7-H), 7.76-7.62 (4 H, m, 2 x 

PPh2 2,6-H), 7.48-7.22 (9 H, m, nap 2,3,6-H, 2 x PPh2 3-5-H), 6.97-6.81 (3 H, m, SPh 3-5-H), 

6.43-6.35 (2 H, m, SPh 2,6-H); δC(67.9 MHz, CDCl3)141.2(s), 137.9(s), 134.3(d, J 3.1 Hz), 

132.0(d, J 10.4 Hz), 131.1(s), 130.8(d, J 2.0 Hz), 129.4(s), 128.5(d, J 4.2 Hz), 128.3(s), 127.3(s), 

125.6(s), 123.9(s); δP(109 MHZ, CDCl3) 51.01; δSe(51.5 MHz, CDCl3) 448.5(d, JSe-P 19.1 Hz); m/z 

(CI+) 501.04 ([M+H]+ , 3 %), 419.10 ([M-Ph]+, 11 %), 345.08 ([M-Ph2]
+, 100 %). 

 

 

 

 

 

 

 

 

 

 

 

 



Experimental 
                           

                                                                                              272 

 

Compound 36 - (8-phenylselenylnaphth-1-yl)diphenylphosphine selenide 36 

 

(8-phenylselenylnaphth-1-yl)diphenylphosphine 32 (1.09 g, 2.3 mmol) and Se (0.18 g, 2.3 mmol) 

were heated under reflux in toluene (20 mL) for 2 h. The resulting cloudy solution was filtered, the 

solvent was removed in vacuo and the remaining oil vigorously stirred with hexane (10 mL) over 

night, which resulted in a thick suspension. The solid product was collected by filtration and 

recrystallised from dichloromethane/hexane (0.8 g, 60 %); (Found C, 61.4; H, 3.3. Calc. for 

C28H21PSe2: C, 61.6; H, 3.9 %); vmax(KBr disc)/cm-1: 2018vs, 1954vs, 1918vs, 1732w, 1651s, 

1574w, 1473s, 1433s, 1316w, 1261s, 1197w, 1178w, 1156w, 1096s, 1019w, 995w, 978w, 905w, 

862w, 824s, 800s, 774w, 765s, 748s, 735s, 686s, 662w, 615w, 583s, 557s, 524s, 505s, 486s, 458s, 

443s, 413s; δH(270 MHz, CDCl3) 8.11 (1 H, dd, J 1.3 and 7.2 Hz, nap 5-H), 7.94-7.83 (2 H, m, nap 

4,7-H), 7.43-7.14 (13 H, m, nap 2,3,6-H, 2 x PPh2 2-6-H), 6.88-6.74 (3 H, m, SPh 3-5-H), 6.27-

6.19 (2 H, m, SPh 2,6-H); δC(67.9 MHz, CDCl3) 141.4(s), 137.4(d, J 9.4 Hz), 134.4(d, J 3.1 Hz), 

131.2(s), 130.8(d, J 3.1 Hz), 128.8(s), 128.6(s), 128.5(s), 128.4(s), 128.3(s), 127.4(s), 125.5(s), 

123.9(d, J 13.5 Hz); δP(109 MHZ, CDCl3) 40.50 (JP-Se(2) 715.3 Hz)(JP---Se(1) 23.9 Hz); δSe(51.5 

MHz, CDCl3) 451.4(d, JSe(1)---P 23.9 Hz), -162.8(d, JSe(2)-P 715.3 Hz); m/z (EI+) 390.01 ([M-SePh]+, 

5 %), 311.10 ([M-Se2Ph]+, 18 %), 236.94 ([M-Ph3Se]+, 12 %), 233.04 ([M-Se2Ph2]
+, 100 %). 
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Compound 37 - 1,8-bis(phenylsulfanyl)naphthalene (from 11) 

 
To a solution of 1,8-dibromonaphthalene (0.096 g, 0.34 mmol) in diethyl ether (10 mL) at -78 °C 

was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.27 mL, 0.68 mmol). The 

mixture was stirred at this temperature for 1 h after which a solution of diphenyl disulfide (0.30 g, 

0.68 mmol) in diethyl ether (10 mL) was added dropwise to the mixture. The resulting mixture 

was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium 

hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under 

reduced pressure, and the residual oil was purified by column chromatography on silica gel 

(hexane) to give a brown solid (0.03 g, 22 %); (Found: C, 76.4; H, 4.6. Calc. for C22H16S2: C, 76.7; 

H, 4.7 %); vmax(KBr disc)/cm-1: 3442br, 3054s, 1937w, 1719w, 1578s, 1544s, 1473vs, 1435s, 

1352s, 1322s, 1260w, 1197s, 1145w, 1079s, 1021s, 977w, 844w, 812vs, 740vs, 688vs, 557w, 

486w, 409w; δH(270 MHz, CDCl3) 7.75 (2 H, dd, J 1.4 and 8.2 Hz, nap 4,5-H), 7.45 (2 H, dd, J 

1.4 and 7.2 Hz, nap 2,7-H), 7.35-7.28 (2 H, m, nap 3,6-H), 7.28-7.02 (10 H, m, 2 x SPh 2-6-H); 

δC(67.9 MHz, CDCl3) 134.0(s), 131.1(s), 129.3(s), 129.2(s), 126.8(s), 125.9(s); m/z (ES+) 344.09 

([M]+, 100 %). 

 

Compound 37 - (from 14) 

To a solution of 1,8-diiodonaphthalene (0.15 g, 0.40 mmol) in diethyl ether (10 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (0.3 mL, 0.80 mmol). The mixture 

was stirred at this temperature for 1 h after which a solution of diphenyl disulfide (0.17 g, 0.80 

mmol) in diethyl ether (10 mL) was added dropwise to the mixture. The resulting mixture was 

stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium hydroxide (2 

x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under reduced 

pressure, and the residual oil was purified by column chromatography on silica gel (hexane) to 

give a brown solid (0.03 g, 20 %). 
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Compound 37 - (from 52) 

To a solution of 1-bromonaphthalene (5 mL, 7.43 g, 35.9 mmol) in diethyl ether (30 mL) at -30 °C 

was added dropwise a 2.5 M solution of n-butyllithium in hexane (14.4 mL, 35.9 mmol). The 

mixture was warmed to room temperature and stirred for 15 min after which the solvent was 

evaporated in vacuum. The white solid was dissolved in hexane (35 mL) and the mixture cooled to 

-30 °C. A 2.5 M solution of n-butyllithium in hexane (14.4 mL, 35.9 mmol) was added followed 

by TMEDA (7.5 mL, 50.2 mmol). The mixture was refluxed for 3 h and then the solvent was 

removed in vacuum. The solid was dissolved in diethyl ether (50 mL) cooled to -78 °C and a 

solution of diphenyl disulfide (7.9 g, 36.0 mmol) in diethyl ether (50 mL) was added dropwise. 

The resulting mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 

0.1 M sodium hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, 

concentrated under reduced pressure, and the residual oil was purified by column chromatography 

on silica gel (hexane) to give a brown solid (1.6 g, 13 %).  
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Compound 38 - 1,8-bis(phenylselenyl)naphthalene (from 14) 

 
To a solution of 1,8-dibromonaphthalene (0.11 g, 0.40 mmol) in diethyl ether (10 mL) at -78 °C 

was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.3 mL, 0.80 mmol). The 

mixture was stirred at this temperature for 1 h after which a solution of diphenyl diselenide (0.25 

g, 0.80 mmol) in diethyl ether (10 mL) was added dropwise to the mixture. The resulting mixture 

was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium 

hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under 

reduced pressure, and the residual oil was purified by column chromatography on silica gel 

(hexane) to give a yellow solid (0.1 g, 75 %); (Found: C, 60.2; H, 3.3. Calc. for C22H16Se2: C, 

60.0; H, 3.7 %); vmax(KBr disc)/cm-1: 3047w, 1944w, 1804w, 1641w, 1572s, 1538s, 1473s, 1432s, 

1381w, 1351w, 1325w, 1244w, 1188s, 1141w, 1088w, 1062s, 1018s, 995w, 956w, 914w, 841w, 

810vs, 735vs, 690vs, 662w, 615w, 562w, 472s, 455s; δH(270 MHz, CDCl3) 7.74 (2 H, dd, J 1.4 

and 8.2 Hz, nap 4,5-H), 7.65 (2 H, dd, J 1.4 and 7.2 Hz, nap 2,7-H), 7.47-7.37 (4 H, m, 2 x SePh 

2,6-H), 7.29-7.20 (8 H, m, nap 3,6-H, 2 x SePh 3-5-H); δC(67.9 MHz, CDCl3) 135.6(s), 133.5(s), 

129.4(s), 129.3(s), 127.5(s), 126.1(s); δSe(51.5 MHz, CDCl3) 428.6; δSe(51.5 MHz, D2SO4) 828.0; 

m/z (ES+) 439.98 ([M]+, 100 %). 

 

Compound 38 - (from 14) 

To a solution of 1,8-diiodonaphthalene (0.20 g, 0.52 mmol) in diethyl ether (5 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (0.42 mL, 1.1 mmol). The mixture 

was stirred at this temperature for 1 h after which a solution of diphenyl diselenide (0.33 g, 1.1 

mmol) in diethyl ether (10 mL) was added dropwise to the mixture. The resulting mixture was 

stirred at -78 °C for a further. The reaction mixture was washed with 0.1 M sodium hydroxide (2 x 

45 mL). The organic layer was dried with magnesium sulfate, concentrated under reduced 

pressure, and the residual oil was purified by column chromatography on silica gel (hexane) to 

give a yellow solid (0.2 g, 82 %). 
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Compound 38 – (from 52) 

To a solution of 1-bromonaphthalene (5 mL, 7.43 g, 35.9 mmol) in diethyl ether (30 mL) at -30 °C 

was added dropwise a 2.5 M solution of n-butyllithium in hexane (14.4 mL, 35.9 mmol). The 

mixture was warmed to room temperature and stirred for 15 min after which the solvent was 

evaporated in vacuum. The white solid was dissolved in hexane (35 mL) and the mixture cooled to 

-30 °C. A 2.5 M solution of n-butyllithium in hexane (14.4 mL, 35.9 mmol) was added followed 

by TMEDA (7.5 mL, 50.2 mmol). The mixture was refluxed for 3 h and then the solvent was 

removed in vacuum. The solid was dissolved in diethyl ether (50 mL) cooled to -78 °C and a 

solution of diphenyl diselenide (11.2 g, 36.0 mmol) in diethyl ether (50 mL) was added dropwise. 

The resulting mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 

0.1 M sodium hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, 

concentrated under reduced pressure, and the residual oil was purified by column chromatography 

on silica gel (hexane) to give a yellow solid (2.3 g, 14 %).  
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Compound 39 - 1,8-bis(phenyltellurenyl)naphthalene 39 (from 11) 

 
To a solution of 1,8-dibromonaphthalene (0.09 g, 0.32 mmol) in diethyl ether (10 mL) at -78 °C 

was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.3 mL, 0.64 mmol). The 

mixture was stirred at this temperature for 1 h after which a solution of diphenyl ditelluride (0.26 

g, 0.64 mmol) in diethyl ether (10 mL) was added dropwise to the mixture. The resulting mixture 

was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium 

hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under 

reduced pressure, and the residual oil was purified by column chromatography on silica gel 

(hexane) to give a yellow solid (0.04 g, 33 %); (Found: C, 49.6; H, 2.7. Calc. for C22H16Te2: C, 

48.9; H, 3.0 %); vmax(KBr disc)/cm-1: 3424br, 3047w, 2918w, 2369w, 1932w, 1871w, 1806w, 

1653w, 1567w, 1529w, 1468s, 1430s, 1345w, 1325w, 1295w, 1258w, 1190w, 1132w, 1058w, 

1013w, 994s, 903w, 839w, 808vs, 757vs, 729vs, 689vs, 457w; δH(270 MHz, CDCl3) 8.01 (2 H, 

dd, J 1.2 and 7.2 Hz, nap 4,5-H), 7.67 (2 H, dd, J 1.0 and 8.1 Hz, nap 2,7-H), 7.57-7.48 (4 H, m, 2 

x TePh 2,6-H), 7.23-7.15 (2 H, m, 2 x TePh 4-H), 7.15-7.07 (6 H, m, nap 3,6-H, 2 x TePh 3-5-H); 

δC(67.9 MHz, CDCl3) 141.7(s), 137.4(s), 130.4(s), 129.6(s), 127.9(s), 126.6(s); δTe(85 MHz, 

CDCl3) 619.7 (J(Te---Te) 52.7 Hz); m/z (ES+) 458.97 ([M-Ph]+, 100 %). 

 

Compound 39 – (from 14) 

To a solution of 1,8-diiodonaphthalene (0.11 g, 0.28 mmol) in diethyl ether (10 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (0.2 mL, 0.56 mmol). The mixture 

was stirred at this temperature for 1 h after which a solution of diphenyl ditelluride (0.23 g, 0.56 

mmol) in diethyl ether (10 mL) was added dropwise to the mixture. The resulting mixture was 

stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium hydroxide (2 

x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under reduced 

pressure, and the residual oil was purified by column chromatography on silica gel (hexane) to 

give a yellow solid (0.04 g, 23 %). 
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Compound 40 - 1,8-bis(ethylsulfanyl)naphthalene  (from 11) 
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To a solution of 1,8-dibromonaphthalene (0.34 g, 1.2 mmol) in diethyl ether (15 mL) at -78 °C 

was added dropwise a 2.5 M solution of n-butyllithium in hexane (1.0 mL, 2.4 mmol). The 

mixture was stirred at this temperature for 1 h after which a solution of diethyl disulfide (0.29 g, 

2.4 mmol, 0.3 mL) in diethyl ether (15 mL) was added dropwise to the mixture. The resulting 

mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium 

hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under 

reduced pressure, and the residual oil was purified by column chromatography on silica gel 

(hexane) to give a brown solid (0.08 g, 27 %); (Found: C, 66.8; H, 6.5. Calc. for C14H16S2: C, 67.7; 

H, 6.5 %); vmax(KBr disc)/cm-1: 3047w, 2965s, 2924s, 2851s, 1932w, 1868w, 1784w, 1720w, 

1597w, 1546s, 1490w, 1446s, 1420s, 1370w, 1313s, 1259vs, 1193s, 1093s, 1046s, 1022s, 985w, 

900w, 874s, 811vs, 759vs, 713w, 579w; δH(270 MHz, CDCl3) 7.65 (2 H, dd, J 1.2 and 8.1 Hz, 4,5-

H), 7.55 (2 H, dd, J 1.3 and 7.5 Hz, 2,7-H), 7.39-7.30 (2 H, m, 3,6-H), 2.96 (2 H, q, J 7.4 Hz, -

CH2-), 1.30 (3 H, t, J 7.4 Hz, -CH3); δC(67.9 MHz, CDCl3) 130.1(s), 127.9(s), 125.4(s), 31.6(-CH2-

), 13.4(-CH3); m/z (EI+) 248.07 ([M]+, 2 %), 219.03 ([M-Et]+, 4 %), 189.99 (]M-Et2]
+, 100 %).  

 
Compound 40 – (from 14) 

To a solution of 1,8-diiodonaphthalene (0.54 g, 1.4 mmol) in diethyl ether (10 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (1.2 mL, 2.9 mmol). The mixture 

was stirred at this temperature for 1 h after which a solution of diethyl disulfide (0.4 mL, 0.35 g, 

2.9 mmol) was added dropwise to the mixture. The resulting mixture was stirred at -78 °C for a 

further h. The reaction mixture was washed with 0.1 M sodium hydroxide (2 x 45). The organic 

layer was dried with magnesium sulfate, concentrated under reduced pressure, and the residual oil 

was purified by column chromatography on silica gel (hexane) to give a brown solid (0.3 g, 80 %). 
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Compound 41 - 1-(phenylselenyl)-8-(phenylsulfanyl)naphthalene (from 31) 

 
To a solution of 1-bromo-8-(phenylselenyl)naphthalene (0.40 g, 1.1 mmol) in diethyl ether (20 

mL) at -78 °C was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.5 mL, 1.1 

mmol). The mixture was stirred at this temperature for 1 h after which a solution of diphenyl 

disulfide (0.24 g, 1.1 mmol) in diethyl ether (20 mL) was added dropwise to the mixture. The 

resulting mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 

M sodium hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, 

concentrated under reduced pressure, and the residual oil was purified by column chromatography 

on silica gel (hexane) to give a brown solid (0.2 g, 34 %); (Found: C, 66.7; H, 4.2. Calc. for 

C22H16SSe: C, 67.3; H, 4.1 %); vmax(KBr disc)/cm-1: 3249s, 3053vs, 2957w, 2862w, 2638w, 

2583w, 2386w, 2336w, 2168w, 1944s, 1876w, 1818w, 1773w, 1720w, 1644w, 1574vs, 1544vs, 

1474vs, 1434vs, 1381w, 1353s, 1323s, 1261s, 1194s, 1152w, 1076s, 1618vs, 998w, 911w, 861w, 

811vs, 755vs, 735vs, 688vs, 620w, 573w, 542w, 472s; δH(270 MHz, CDCl3) 7.90-7.82 (2 H, m, 

nap 5,7-H), 7.65 (1 H, dd, J 1.4 and 7.7 Hz, nap 4-H), 7.62-7.54 (2 H, m, SePh 2,6-H), 7.42 (1 H, 

t, J 7.6 Hz, nap 6-H), 7.38-7.28 (3 H, m, SePh 3-5-H), 7.24-7.05 (7 H, m, nap 2,3-H, SPh 2-6-H); 

δC(67.9 MHz, CDCl3) 138.2(s), 136.6(s), 131.2(s), 130.8(s), 129.7(s), 129.0(s), 128.5(s), 127.9(s), 

127.4(s), 126.3(s), 125.9(s), 125.8(s); δSe(51.5 MHz, CDCl3) 455.3; δSe(51.5 MHz, D2SO4) 927.3; 

m/z (CI+) 392.01 ([M]+, 33 %), 314.97 ([M-Ph]+, 35 %), 236.07 ([M-Ph2]
+, 100 %).  

 

Compound 41 – (from 9) 

To a solution of 1-bromo-8-(phenylsulfanyl)naphthalene (0.23 g, 0.72 mmol) in diethyl ether (20 

mL) at -78 °C was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.3 mL, 0.72 

mmol). The mixture was stirred at this temperature for 1 h after which a solution of diphenyl 

diselenide (0.23 g, 0.72 mmol) in diethyl ether (20 mL) was added dropwise to the mixture. The 

resulting mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 

M sodium hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, 

concentrated under reduced pressure, and the residual oil was purified by column chromatography 

on silica gel (hexane) to give a brown solid (0.2 g, 75 %).  
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Compound 41 – (from 33) 

To a solution of 1-iodo-8-(phenylselenyl)naphthalene (0.12 g, 0.3 mmol) in diethyl ether (15 mL) 

at -78 °C was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.1 mL, 0.3 mmol). 

The mixture was stirred at this temperature for 1 h after which a solution of diphenyl disulfide 

(0.07 g, 0.3 mmol) in diethyl ether (15 mL) was added dropwise to the mixture. The resulting 

mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium 

hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under 

reduced pressure, and the residual oil was purified by column chromatography on silica gel 

(hexane) to give a brown solid (0.02 g, 15 %). 

 

Compound 41 – (from 20) 

To a solution of 1-iodo-8-(phenylsulfanyl)naphthalene (0.17 g, 0.47 mmol) in diethyl ether (20 

mL) at -78 °C was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.2 mL, 0.47 

mmol). The mixture was stirred at this temperature for 1 h after which a solution of diphenyl 

diselenide (0.15 g, 0.47 mmol) in diethyl ether (20 mL) was added dropwise to the mixture. The 

resulting mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 

M sodium hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, 

concentrated under reduced pressure, and the residual oil was purified by column chromatography 

on silica gel (hexane) to give a brown solid (0.1 g, 63 %).  
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Compound 42 - 1-(phenyltellurenyl)-8-(phenylsulfanyl)naphthalene (from 9) 

 
To a solution of 1-bromo-8-(phenylsulfanyl)naphthalene (0.32 g, 1.0 mmol) in diethyl ether (20 

mL) at -78 °C was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.4 mL, 1.0 

mmol). The mixture was stirred at this temperature for 1 h after which a solution of diphenyl 

ditelluride (0.41 g, 1.0 mmol) in diethyl ether (20 mL) was added dropwise to the mixture. The 

resulting mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 

M sodium hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, 

concentrated under reduced pressure, and the residual oil was purified by column chromatography 

on silica gel (hexane) to give a brown solid (0.2 g, 51 %); (Found: C, 60.1; H, 3.2. Calc. for 

C22H16STe: C, 60.1; H, 3.7 %); vmax(KBr disc)/cm-1: 3436br, 3051s, 2924w, 1931w, 1878w, 

1812w, 1725w, 1578s, 1475s, 1433s, 1348w, 1325w, 1262w, 1193s, 1101w, 1074w, 1022s, 995w, 

969w, 898w, 864w, 811vs, 758s, 735vs, 689vs, 621w, 539s, 455s, 405w; δH(270 MHz, CDCl3) 

7.96-7.85 (4 H, m, nap 5,7-H, TePh 2,6-H), 7.67 (1 H, dd, J 1.1 and 8.0 Hz, nap 4-H), 7.50-7.37 (3 

H, m, nap 2,6-H, TePh 4-H), 7.36-7.27 (2 H, m, TePh 3,5-H), 7.26-7.16 (2 H, m, SPh 3,5-H), 

7.16-7.02 (4 H, m, nap 3-H, SPh 2,4,6-H); δC(67.9 MHz, CDCl3) 141.0(s), 139.6(q), 138.3(s), 

137.0(s), 136.3(s), 134.9(s), 132.1(s), 130.4(q), 129.8(s), 129.1(s), 128.7(s), 127.9(s), 127.4(s), 

127.0(s), 126.1(s), 125.8(s), 123.4(q), 118.3(s); δTe(81.2 MHz, CDCl3) 715.2; δTe(85.2 MHz, 

D2SO4) 1018.3; m/z (ES+) 472.84 [M + OMe]+.   

Compound 42 – (from 20) 

To a solution of 1-iodo-8-(phenylsulfanyl)naphthalene (0.16 g, 0.45 mmol) in diethyl ether (20 

mL) at -78 °C was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.2 mL, 0.45 

mmol). The mixture was stirred at this temperature for 1 h after which a solution of diphenyl 

ditelluride (0.18 g, 0.45 mmol) in diethyl ether (20 mL) was added dropwise to the mixture. The 

resulting mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 

M sodium hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, 

concentrated under reduced pressure, and the residual oil was purified by column chromatography 

on silica gel (hexane) to give a brown solid (0.2 g, 88 %). 
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Compound 43 - 1-(phenyltellurenyl)-8-(phenylselenyl)naphthalene (from 31) 

 
To a solution of 1-bromo-8-(phenylselenyl)naphthalene (0.11 g, 0.31 mmol) in diethyl ether (20 

mL) at -78 °C was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.1 mL, 0.31 

mmol). The mixture was stirred at this temperature for 1 h after which a solution of diphenyl 

ditelluride (0.13 g, 0.31 mmol) in diethyl ether (20 mL) was added dropwise to the mixture. The 

resulting mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 

M sodium hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, 

concentrated under reduced pressure, and the residual oil was purified by column chromatography 

on silica gel (hexane) to give a brown solid (0.1 g, 81 %); (Found: C, 54.6; H, 3.5. Calc. for 

C22H16SeTe: C, 53.9; H, 3.3 %); vmax(KBr disc)/cm-1: 3428br, 3042w, 2957w, 1969w, 1879w, 

1809w, 1720w, 1655w, 1573s, 1535w, 1474s, 1431s, 1328w, 1261w, 1189w, 1138w, 1062s, 

1019s, 995s, 953w, 897w, 839w, 809vs, 758vs, 733vs, 690s, 665w, 612w, 456s; δH(270 MHz, 

CDCl3) 7.99 (1 H, dd, J 1.3 and 7.1 Hz, nap 4-H), 7.84-7.77 (3 H, m, nap 2-H, SePh 2,6-H), 7.60 

(1 H, d, J 7.6 Hz, nap 5-H), 7.45 (1 H, dd, J 1.0 and 7.4 Hz, nap 7-H), 7.36-7.28 (2 H, m, nap 3-H, 

SePh 4-H), 7.26-7.20 (2 H, m, SePh 3,5-H), 7.20-7.14 (2 H, m, TePh 2,6-H), 7.14-7.06 (3 H, m, 

TePh 3-5-H), 7.01 (1 H, t, J 7.7 Hz, nap 6-H); δC(67.9 MHz, CDCl3) 140.4(s), 139.7(s), 136.0(s), 

131.8(s), 130.2(s), 129.7(s), 129.3(s), 128.5(s), 128.2(s), 126.8(s), 126.7(s), 125.9(s); δSe(51.5 

MHz, CDCl3) 362.8; δTe(81.2 MHz, CDCl3) 687.6 (J(Te-Se) 834.0 Hz); m/z (ES+) 410.99 ([M-Ph]+, 

100 %).  

Compound 43 – (from 33) 

To a solution of 1-iodo-8-(phenylselenyl)naphthalene (0.16 g, 0.40 mmol) in diethyl ether (20 mL) 

at -78 °C was added dropwise a 2.5 M solution of n-butyllithium in hexane (0.2 mL, 0.40 mmol). 

The mixture was stirred at this temperature for 1 h after which a solution of diphenyl ditelluride 

(0.16 g, 0.40 mmol) in diethyl ether (20 mL) was added dropwise to the mixture. The resulting 

mixture was stirred at -78 °C for a further h. The reaction mixture was washed with 0.1 M sodium 

hydroxide (2 x 45 mL). The organic layer was dried with magnesium sulfate, concentrated under 

reduced pressure, and the residual oil was purified by column chromatography on silica gel 

(hexane) to give a brown solid (0.03 g, 18 %). 
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Compound 44 - 1-(phenylsulfinyl)-8-(phenylsulfanyl)naphthalene 

 
To a solution of 1,8-(diphenylsulfanyl)naphthalene (0.12 g, 0.34 mmol) in ether (5 mL) was added 

mCPBA (0.06 g, 0.34 mmol). The reaction mixture was stirred for 2 h, concentrated under vacuum 

and recrystallised from dichloromethane/pentane (0.05 g, 41 %); (Found: C, 72.2; H, 5.2. Calc. for 

C22H16S2O: C, 73.3; H, 4.5 %); vmax(KBr disc)/cm-1: 3432br s, 3057w, 1576s, 1546w, 1492w, 

1475s, 1439s, 1353w, 1336w, 1202w, 1173w, 1156w, 1079s, 1036vs, 971w, 928w, 902w, 848w, 

820vs, 763vs, 736vs, 682vs, 595w, 558w, 518s, 501w, 471s, 433s; δH(270 MHz, CDCl3) 8.75 (1 

H, d, J 7.0 Hz, nap 4-H), 8.08 (1 H, d, J 8.0 Hz, nap 2-H), 8.03 (1 H, dd, J 1.2 and 8.2 Hz, nap 5-

H), 7.82 (1 H, dd, J 1.3 and 7.2 Hz nap 7-H), 7.80-7.72 (1 H, m, nap 3-H), 7.56-7.48 (1 H, m, nap 

6-H), 7.48-7.40 (2 H, m, SOPh 2,6-H), 7.30-7.20 (3 H, m, SOPh 3-5-H), 7.16-7.06 (3 H, m, SPh 

3-5-H), 6.84-6.74 (2 H, m, SPh 2,6-H); δC(67.9 MHz, CDCl3) 139.0(s), 132.9(s), 131.4(s), 

130.3(s), 129.2(s), 129.1(s), 127.2(s), 127.1(s), 126.7(s), 126.3(s), 126.1(s); m/z (ES+) 382.89 

([M+Na]+,100 %).  
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Compound 45 - 1,8-bis(phenylsulfinyl)naphthalene 

 
To a solution of 1,8-(diphenylsulfanyl)naphthalene (0.12 g, 0.35 mmol) in ether (5 mL) was added 

mCPBA (0.18 g, 1.1 mmol). The reaction mixture was stirred for 2 h, after which a white 

precipitate was formed. The mixture was filtered and the filtrate reduced under vacuum to give a 

cream solid. The crude product was recrystallised from dichloromethane/pentane (0.06 g, 44 %); 

(Found: C, 69.3; H, 4.4. Calc. for C22H16S2O2: C, 70.2; H, 4.3 %); vmax(KBr disc)/cm-1: 3445br s, 

3052w, 1578w, 1490w, 1471s, 1438s, 1338w, 1210w, 1177w, 1147w, 1075vs, 1045vs, 996w, 

965w, 911w, 845w,823vs, 753vs, 690vs, 621s, 578s, 503s, 461w, 438s, 408w; δH(270 MHz, 

CDCl3) 8.58 (2 H, dd, J 1.4 and 7.4 Hz, nap 4,5-H), 8.13 (2 H, dd, J 1.4 and 8.3 Hz, nap 2,7-H), 

7.83-7.74 (2 H, m, nap 3,6-H), 7.64-7.53 (4 H, m, 2 x SOPh 2,6-H), 7.42-7.34 (6 H, m, 2 x SOPh 

3-5-H); δC(67.9 MHz, CDCl3) 133.5(s), 131.2(s), 129.6(s), 127.4(s), 126.7(s), 126.2(s); m/z (ES+) 

398.84 ([M+Na]+, 100 %).  
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Compound 55 - 1-bromo-8-(phenyltellurenyl)naphthalene  (from 11) 
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To a solution of 1,8-dibromonaphthalene (0.55 g, 1.9 mol) in diethyl ether (35 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (0.5 mL, 1.9 mol). The mixture was 

stirred at this temperature for 1 h after which a solution of diphenyl ditelurride (0.79 g, 1.9 mol) in 

diethyl ether (20 mL) was added dropwise to the mixture. The resulting mixture was stirred at -78 

°C for a further h. The reaction mixture was washed with 0.1 M sodium hydroxide (2 x 45 mL). 

The organic layer was dried with magnesium sulfate, concentrated under reduced pressure and the 

residual oil was purified by column chromatography on silica gel (ethyl acetate/hexane 1:20). The 

brown oil obtained was recrystallised from dichloromethane/pentane (0.3 g, 32 %); (Found: C, 

46.8; H, 2.7. Calc. for C16H11BrTe: C, 46.8; H, 2.7 %); vmax(KBr disc)/cm-1: 3409w, 3056w, 

2921w, 2584w, 2365w, 2343w, 1723w, 1659w, 1640w, 1568w, 1535s, 1469s, 1431s, 1385w, 

1350s, 1329w, 1299w, 1262w, 1185s, 1133s, 1059s, 1015s, 996s, 946w, 908w, 834s, 804vs, 

739vs, 692s, 602w, 553w, 527w, 459s; δH(270 MHz, CDCl3) 8.02-7.92 (2 H, m, TePh 2,6-H), 7.80 

(1 H, dd, J 1.3 and 7.5 Hz, nap 5-H), 7.76 (1 H, dd, J 1.1 and 8.3 Hz, nap 7-H), 7.63-7.55 (1 H, m, 

nap 4-H), 7.52-7.41 (2 H, m, nap 2-H, TePh 4-H), 7.41-7.31 (2 H, m, TePh 3,5-H), 7.28-7.20 (1 H, 

m, nap 6-H), 7.02 (1 H, t, J 7.7 Hz, nap 3-H); δC(67.9 MHz, CDCl3) 141.3(s), 137.3(q), 135.4(s), 

134.0(q), 132.5(s), 130.2(s), 129.8(s), 129.2(s), 128.2(s), 126.9(s), 126.1(s), 122.5(q), 121.2(q), 

117.6(q); δTe(81.2 MHz, CDCl3) 731.2; m/z (CI+) 411.91 ([M]+, 85 %), 334.87 ([M-Ph]+, 45 %).  
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Compound 56 - 1-iodo-8-(phenyltellurenyl)naphthalene (from 14) 
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To a solution of 1,8-diiodonaphthalene (0.43 g, 1.1 mol) in diethyl ether (35 mL) at -78 °C was 

added dropwise a 2.5 M solution of n-butyllithium in hexane (0.5 mL, 1.1 mol). The mixture was 

stirred at this temperature for 1 h after which a solution of diphenyl ditelluride (0.46 g, 1.1 mol) in 

diethyl ether (20 mL) was added dropwise to the mixture. The resulting mixture was stirred at -78 

°C for a further h. The reaction mixture was washed with 0.1 M sodium hydroxide (2 x 45 mL). 

The organic layer was dried with magnesium sulfate, concentrated under reduced pressure and the 

residual oil was purified by column chromatography on silica gel (ethyl acetate/hexane 1:20). The 

brown oil obtained was recrystallised from dichloromethane/pentane (0.09 g, 18 %); (Found: C, 

42.6; H, 2.6. Calc. for C16H11ITe: C, 42.0; H, 2.4 %); vmax(KBr disc)/cm-1: 3422br, 3051w, 2923s, 

2851w, 1566w, 1529s, 1467w, 1430s, 1381w, 1344w, 1296w, 1256w, 1182w, 1130s, 1056w, 

1013w, 996w, 942w, 905w, 823w, 802vs, 739vs, 691s, 663w, 546w, 520w, 457s; δH(270 MHz, 

CDCl3) 8.11 (1 H, dd, J 1.2 and 7.4 Hz, nap 4-H), 7.79-7.73 (2 H, m, TePh 2,6-H), 7.68 (1 H, dd, J 

1.0 and 8.1 Hz, nap 2-H), 7.53-7.46 (2 H, m, nap 5,7-H), 7.34-7.27 (1 H, m, TePh 4-H), 7.25-7.18 

(2 H, m, TePh 3-5-H), 7.02-6.95 (1 H, m, nap 3-H), 6.93 (1 H, m, nap 6-H); δC(67.9 MHz, CDCl3) 

141.0(s), 140.5(s), 137.0(s), 130.5(s), 130.0(s), 128.8(s), 128.8(s), 126.7(s), 126.6(s); δTe(81.2 

MHz, CDCl3) 698.3; m/z (ES+) 490.78 ([M+OMe]+, 100 %).  
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Compound 57 - 1,8-bis(4-bromophenylsulfanyl)-2,5-dibromonaphthalene 

 
A solution of 1,8-diphenylsulfanylnaphthalene (0.22 g, 0.63 mmol) in dichloromethane (20 mL) 

was cooled to 0 °C and slowly treated with bromine (0.2 g, 0.06 mL, 1.3 mmol). An analytically 

pure sample was obtained by crystallisation from diffusion of dichloromethane into a pentane 

solution of the product (0.3 g, 75 %); (Found: C, 41.2; H, 1.8. Calc. for C22H12S2Br4: C, 40.3; H, 

1.8 %); vmax(KBr disc)/cm-1: 3401w, 3075w, 2920w, 2848w, 2362w, 1881w, 1570s, 1558s, 

1470vs, 1400w, 1382s, 1320w, 1282s, 1268s, 1185s, 1083s, 1065s, 1018w, 1006vs, 805vs, 765w, 

745s, 688w, 641w, 608w, 561w, 517w, 497w, 471s, 417w, 396w, 373w, 352w; δH(270 MHz, 

CDCl3) 8.19 (1 H, d, J 9.1 Hz, nap 4-H), 7.80 (1 H, d, J 9.1 Hz, nap 3-H), 7.46 (1 H, d, J 8.2 Hz, 

nap 6-H), 7.33 (2 H, d, J 8.4 Hz, SPhBr 3,5-H), 7.21 (2 H, d, J 8.6 Hz, SPhBr 9,11-H), 7.05 (2 H, 

d, J 8.4 Hz, SPhBr 2,6-H), 6.95 (1 H, d, J 8.2 Hz, nap 2-H), 6.74 (2 H, d, J 8.6 Hz, SPhBr 8,12-H); 

δC(67.9 MHz, CDCl3) 135.4(s), 132.9(s), 132.5(s), 132.1(s), 131.8(s), 130.7(s), 128.3(s); m/z (EI+) 

659.69 ([M]+, 100 %, 347.80 ([M-2(ArBr)]+, 98 %).  
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Compound 58 

 
A solution of 1,8-bis(phenylselenyl)naphthalene (0.21 g, 0.47 mmol) in dichloromethane (20 mL) 

was cooled to 0 °C and slowly treated with bromine (0.15 g, 0.05 mL, 0.93 mmol). An analytically 

pure sample was obtained by crystallisation from diffusion of dichloromethane into a pentane 

solution of the product (0.2 g, 57 %); (Found: C, 39.6; H, 1.3. Calc. for C22H16Se2Br4: C, 40.3; H, 

2.5 %); vmax(KBr disc)/cm-1: 3396w, 3050w, 2920w, 2848w, 2356w, 2325w, 1589w, 1566w, 

1486s, 1470s, 1438s, 1346s, 1261w, 1212w, 1194w, 1176w, 1083w, 1047s, 1016w, 992s, 825s, 

812vs, 757w, 744vs, 730vs, 679vs, 659w, 533w, 484w, 463s, 457s, 442w, 378w; m/z (ES+) 539.11 

([M-Br3+Na]+, 100 %).  
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Compound 59 

 
A solution of 1,8-bis(phenylselenyl)naphthalene (0.23 g, 0.53 mmol) in dichloromethane (20 mL) 

was cooled to 0 °C and slowly treated with iodine (0.13 g, 0.53 mmol). An analytically pure 

sample was obtained by crystallisation from diffusion of dichloromethane into a pentane solution 

of the product (0.2 g, 66 %); (Found: C, 39.5; H, 2.2. Calc. for C22H16Se2I2: C, 38.2; H, 2.3 %); 

vmax(KBr disc)/cm-1: 3406w, 3050w, 2920w, 2848w, 2382w, 1690w, 1659w, 1573s, 1550w, 

1473s, 1435s, 1331w, 1191w, 1137w, 1088w, 1060s, 1018s, 995w, 956w, 912w, 838w, 811vs, 

750s, 737vs, 687vs, 662s, 613w, 471w, 453w; δH(270 MHz, CDCl3) 7.82 (2 H, dd, J 1.0 and 8.2 

Hz, nap 4,5-H), 7.72 (2 H, dd, J 1.2 and 7.4 Hz, nap 2,7-H), 7.47-7.37 (4 H, m, SePh 2,6-H), 7.36-

7.20 (8 H, m, nap 3,6-H, SePh 3-5-H); δC(67.9 MHz, CDCl3) 136.2(s), 133.1(s), 130.1(s), 

129.7(s), 128.0(s), 126.4(s); δSe(51.5 MHz, CDCl3) 436.9, 436.7; m/z (EI+) 565.99 ([M-I]+, 5 %), 

440.12 ([M-I2]
+, 100 %).  
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Compound 60 

 
A solution of compound 57 (0.24 g, 0.35 mmol) in dichloromethane (20 mL) was cooled to 0 °C 

and slowly treated with iodine (0.09 g, 0.35 mmol). An analytically pure sample was obtained by 

crystallisation from diffusion of dichloromethane into a pentane solution of the product; δH(270 

MHz, CDCl3) 7.74 (2 H, dd, J 1.0 and 8.2 Hz, nap 4,5-H), 7.63 (2 H, dd, J 1.2 and 7.4 Hz, nap 2,7-

H), 7.44-7.37 (4 H, m, SePh 2,6-H), 7.28-7.20 (8 H, m, nap 3,6-H, SePh 3-5-H); δSe(51.5 MHz, 

CDCl3) 445.1, 444.3.  
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Compound 61 

 
A solution of 1-(phenylselenyl)-8-(phenylsulfanyl)naphthalene (0.02 g, 0.051 mmol) in 

dichloromethane (5 mL) was cooled to 0 °C and slowly treated with bromine (0.02 g, 0.005 mL, 

0.10 mmol). An analytically pure sample was obtained by crystallisation from diffusion of 

dichloromethane into a pentane solution of the product (0.01 g, 33 %); vmax(KBr disc)/cm-1: 

3447vs, 3418vs, 2924vs, 2848s, 2372w, 1985w, 1918w, 1773w, 1735s, 1718s, 1703s, 1686s, 

1654s, 1636s, 1578s, 1543s, 1523w, 1459s, 1436s, 1383w, 1343w, 1261w, 1203w, 1177w, 1148w, 

1087s, 1020w, 913w, 814vs, 751vs, 735vs, 692w, 602w, 541w, 456s, 398w; m/z (ES+) 422.83 

([M-Br4+OMe]+, 97 %), 391.83 ([M-Br4]
+, 100 %). 
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Compound 62 

 
A solution of 1-(phenylselenyl)-8-(phenylsulfanyl)-naphthalene (0.066 g, 0.17 mmol) in 

dichloromethane (5 mL) was treated with iodine (0.043 g, 0.17 mmol). An analytically pure 

sample was obtained by crystallisation from diffusion of dichloromethane into a pentane solution 

of the product (0.07 g, 46 %); (Found: C, 34.6; H, 2.1. Calc. for (C22H11SSeI2)I2: C, 34.2; H, 2.1 

%); vmax(KBr disc)/cm-1: 3434brs, 3040w, 1940w, 1880w, 1803w, 1720w, 1655w, 1575s, 1541w, 

1473s, 1435s, 1350w, 1324s, 1301w, 1196s, 1139w, 1059w, 1019s, 996s, 968w, 900w, 815vs, 

783s, 754s, 737vs, 687vs, 615w, 540w, 520w, 483w, 455s; δH(270 MHz, CDCl3) 7.98-7.89 (2 H, 

m, nap 2,4-H), 7.76 (1 H, dd, J 1.9 and 7.2 Hz, nap 5-H), 7.68-7.60 (2 H, m, SePh 2,6-H), 7.50 (1 

H, t, J 7.7 Hz, nap 3-H), 7.43-7.33 (3 H, m, SePh 3-5-H), 7.28-7.15 (4 H, m, nap 6-H, SPh 3-5-H), 

7.15-7.06 (1 H, m, nap 7-H), 7.06-6.97 (2 H, m, SPh 2,6-H); δC(67.9 MHz, CDCl3) 139.2(s), 

135.9(s), 132.3(s), 131.7(s), 131.6(s), 130.1(s), 129.6(s), 129.2(s), 127.4(s), 126.5(s), 126.4(s), 

126.0(s); δSe(51.5 MHz, CDCl3) 476.9; m/z (ES+) 391.89 ([M-I2]
+, 100 %). 
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Compound 63 

 
A solution of 1-(phenyltellurenyl)-8-(phenylsulfanyl)naphthalene (0.032 g, 0.073 mmol) in 

dichloromethane (5 mL) was treated with bromine (0.023 g, 0.007 mL, 0.15 mmol). An 

analytically pure sample was obtained by crystallisation from diffusion of dichloromethane into a 

pentane solution of the product (0.04 g, 80 %); (Found: C, 42.6; H, 2.7. Calc. for C22H16TeSBr2: C, 

44.0; H, 2.7 %); vmax(KBr disc)/cm-1: 3441br s, 3052w, 2953w, 1944w, 1869w, 1578s, 1475s, 

1437s, 1325w, 1261w, 1200w, 1180w, 1072w, 1049w, 1046w, 1023w, 991s, 907w, 814vs, 757vs, 

738s, 726vs, 680vs, 619w, 564w, 538w, 480w, 448s; δH(270 MHz, CDCl3) 8.26-7.96 (6 H, m, nap 

2,4,5,7-H, TePh 2,6-H), 7.70-7.40 (5 H, m, nap 3,6-H, TePh 3-5-H), 7.32-7.00 (5 H, m, SPh 2-6-

H); δC(67.9 MHz, CDCl3) 139.7(s), 138.1(s), 134.3(s), 133.5(s), 132.5(s), 131.5(s), 130.3(s), 

130.1(s), 129.6(s), 128.8(s), 127.4(s), 127.3(s); δTe(81.2 MHz, CDCl3) 958.9; m/z (ES+) 472.79 

([M-Br2+OMe]+, 100 %). 
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Compound 64 

 
A solution of 1-(phenyltellurenyl)-8-(phenylselenyl)naphthalene (0.12 g, 0.24 mmol) in 

dichloromethane (5 mL) was treated with bromine (0.038 g, 0.01 mL, 0.24 mmol). An analytically 

pure sample was obtained by crystallisation from diffusion of dichloromethane into a pentane 

solution of the product (0.1 g, 75 %); (Found: C, 40.7; H, 2.0 Calc. for C22H16TeSeBr2: C, 40.9; H, 

2.5 %); vmax(KBr disc)/cm-1: 3441brs, 3052s, 1944w, 1869w, 1738w, 1721w, 1651w, 1604w, 

1572s, 1535w, 1475s, 1436s, 1378w, 1331s, 1209w, 1195w, 1177w, 1136w, 1081w, 1064w, 

1049s, 1020w, 994s, 907w, 813vs, 755vs, 727vs, 680s, 613w, 555w, 526w, 446s, 314w δH(270 

MHz, CDCl3) 8.32 (2 H, d, J 7.0 Hz, TePh 2,6-H), 8.28 (1 H, d, J 7.2 Hz, nap 4-H), 8.21 (1 H, d, J 

7.3 Hz, nap 5-H), 8.09 (1 H, d, J 7.6 Hz, nap 7-H), 8.05 (1 H, d, J 7.7 Hz, nap 2-H), 7.64-7.44 (5 

H, m, nap 3,6-H, TePh 3-5-H), 7.36-7.29 (2 H, m, SePh 2,6-H), 7.24-7.17 (3 H, m, SePh 3-5-H); 

δC(67.9 MHz, CDCl3) 141.1(s), 138.8(s), 136.7(s), 133.6(s), 132.3(s), 131.3(s), 130.7(s), 129.9(s), 

129.6(s), 127.7(s), 127.2(s), 126.9(s); δSe(51.5 MHz, CDCl3) 500.0; δTe(81.2 MHz, CDCl3) 941.4; 

m/z (ES+) 518.69 ([M-Br2+OMe]+, 100 %). 
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Compound 65 

 
A solution of 1-(phenyltellurenyl)-8-(phenylsulfanyl)naphthalene (0.032 g, 0.073 mmol) in 

dichloromethane (5 mL) was treated with iodine (0.018 g, 0.073 mmol). An analytically pure 

sample was obtained by crystallisation from diffusion of dichloromethane into a pentane solution 

of the product (0.04 g, 80 %); vmax (KBr disc)/cm-1: 3448br s, 3045w, 2920w, 2371w, 2342w, 

1720w, 1686w, 1652w, 1635w, 1578w, 1541w, 1524w, 1509w, 1475s, 1432s, 1381w, 1324s, 

1261w, 1196w, 1156w, 1136w, 1073w, 1045w, 1022w, 991w, 928w, 905w, 813vs, 755vs, 734s, 

723vs, 681vs, 617w, 563w, 535w, 478w, 446s, 350w; δH (270 MHz, CDCl3) 8.37 (1 H, dd, J 0.6 

and 7.5 Hz, nap 4-H), 8.22 (2 H, d, J 7.5 Hz, TePh 2,6-H), 8.17 (1 H, d, J 7.2 Hz, nap 2-H), 8.13-

8.04 (2 H, m, nap 5,7-H), 7.66 (1 H, t, J 7.8 Hz, nap 6-H), 7.59-7.48 (2 H, m, nap 3-H, TePh 4-H), 

7.43-7.34 (2 H, m, TePh 3,5-H), 7.23-7.15 (3 H, m, SPh 3-5-H), 7.05-6.97 (2 H, m, SPh 2,6-H); δC 

(67.9 MHz, CDCl3) 140.1(s), 139.3(s), 138.2(s), 133.5(s), 132.6(s), 131.4(s), 130.1(s), 129.7(s), 

128.1(s), 127.8(s), 127.6(s), 127.5(s); δTe (81.2 MHz, CDCl3) 790.9; m/z (ES+) 470.86 ([M-

I2+OMe]+, 100 %). 
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Compound 66 

 
A solution of 1-(phenyltellurenyl)-8-(phenylselenyl)naphthalene (0.13 g, 0.26 mmol) in 

dichloromethane (5 mL) was treated with iodine (0.065 g, 0.26 mmol). An analytically pure 

sample was obtained by crystallisation from diffusion of dichloromethane into a pentane solution 

of the product (0.2 g, 85 %); (Found: C, 36.0; H, 1.7. Calc. for C22H16TeSeI2: C, 35.7; H, 2.2 %); 

vmax(KBr disc)/cm-1: 3441br s, 3046w, 2273w, 1572w, 1474s, 1434s, 1328s, 1189w, 1064w, 

1046w, 1017w, 991w, 834w, 810vs, 752vs, 722vs, 680vs, 610w, 523w, 438s, 314w; δH(270 MHz, 

CDCl3) 8.12 (1 H, d, J 7.0 Hz, nap 4-H), 8.04 (1 H, d, J 8.1 Hz, nap 2-H), 8.00 (2 H, d, J 7.5 Hz, 

TePh 2,6-H), 7.68 (1 H, d, J 7.3 Hz, nap 5-H), 7.58 (2 H, d, J 7.4 Hz, nap 3,7-H), 7.49-43 (1 H, m, 

TePh 4-H), 7.42-7.32 (4 H, m, TePh 3,5-H, SePh 2,6-H), 7.22-7.16 (4 H, m, nap 6-H, SePh 3-5-

H); δC(67.9 MHz, CDCl3) 139.2(s), 135.7(s), 135.6(s), 133.4(s), 132.5(s), 131.6(s), 130.5(s), 

129.5(s), 129.3(s), 127.7(s), 127.5(s), 126.1(s); δSe(51.5 MHz, CDCl3) 428.8; δTe(81.2 MHz, 

CDCl3) 747.0; m/z (ES+) 518.66 ([M-I2+OMe]+, 100 %). 
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Compound 67 

8a

4a
5

6

7

81

2

3

4

Br Te
1

6

5

4

3

2

Br

Br

 
A solution of 1-bromo-8-(phenyltellurenyl)naphthalene (0.10 g, 0.25 mmol) in dichloromethane (5 

mL) was treated with a 0.1 M solution of bromine in dichloromethane (0.25 mmol, 2.5 mL). An 

analytically pure sample was obtained by crystallisation from diffusion of dichloromethane into a 

pentane solution of the product (0.1 g, 91 %); (Found: C, 33.9; H, 2.2. Calc. for C16H11TeBr3: C, 

33.7; H, 2.0 %); vmax(KBr disc)/cm-1: 3424brs, 3051w, 2920w, 1655w, 1589w, 1569w, 1535w, 

1470s, 1432s, 1330s, 1260s, 1186s, 1133w, 1048s, 993w, 945w, 917w, 897w, 806vs, 735vs, 681s, 

453s; δH(270 MHz, CDCl3) 8.45 (2 H, d, J 6.6 Hz, TePh 2,6-H), 8.08 (1 H, d, J 6.7 Hz, nap 5-H), 

8.01 (2 H, d, J 7.5 Hz, nap 4,7-H), 7.91 (1 H, d, J 7.9 Hz, nap 2-H), 7.70-7.51 (3 H, m, TePh 3-5-

H), 7.51-7.36 (2 H, m, nap 3,6-H); δC(67.9 MHz, CDCl3) 137.2(s), 134.3(s), 133.5(s), 132.0(s), 

130.2(s), 127.4(s), 126.9(s); δTe(81.2 MHz, CDCl3) 942.8; m/z (ES+) 442.76 ([M-Br2+OMe]+, 100 

%). 
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Compound 68 
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A solution of 1-iodo-8-(phenyltellurenyl)naphthalene (0.09 g, 0.20 mmol) in dichloromethane (5 

mL) was cooled to 0 °C and slowly treated with a 0.1 M solution of bromine in dichloromethane 

(2.0 mL, 0.20 mmol). An analytically pure sample was obtained by crystallisation from diffusion 

of dichloromethane into a pentane solution of the product (0.1 g, 86 %); vmax(KBr disc)/cm-1: 

3449br s, 3045w, 2954s, 2924s, 2851w, 1561w, 1532w, 1467w, 1432s, 1324w, 1260s, 1182w, 

1094w, 1019w, 991w, 937w, 902w, 871w, 805vs, 766w, 746w, 731vs, 697w, 680s, 643w, 560w, 

520w, 501w, 452s, 387w; δH(270 MHz, CDCl3) 8.41-8.29 (3 H, m, nap 4-H, TePh 2,6-H), 8.12 (1 

H, d, J 7.2 Hz, nap 5-H), 7.96 (1 H, d, J 8.0 Hz, nap 7-H), 7.92 (1 H, d, J 7.4 Hz, nap 2-H), 7.63-

7.46 (3 H, m, TePh 3-5-H), 7.38 (1 H, t, J 7.7 Hz, nap 6-H), 7.28 (1 H, t, J 7.7 Hz, nap 3-H); 

δC(67.9 MHz, CDCl3) 142.2(s), 138.6(s), 137.2(s), 133.9(s), 131.8(s), 130.9(s), 130.1(s), 127.9(s), 

126.6(s); δTe(81.2 MHz, CDCl3) 903.0; m/z (ES+) 488.71 ([M-Br2+OMe]+, 100 %). 
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Compound 69 
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A solution of 1-bromo-8-(phenyltellurenyl)naphthalene (0.039 g, 0.095 mmol) in dichloromethane 

(5 mL) was treated with iodine (0.0024 g, 0.095 mmol). An analytically pure sample was obtained 

by crystallisation from diffusion of dichloromethane into a pentane solution of the product (0.03 g, 

54 %); vmax(KBr disc)/cm-1: 3433br s, 3040w, 2925w, 2371w, 1652w, 1638w, 1561w, 1532w, 

1467s, 1432s, 1381w, 1327w, 1259w, 1207w, 1184w, 1130w, 1045s, 991w, 942w, 911w, 825w, 

805vs, 746s, 729s, 680s, 603w, 526w, 446s, 432w; δH(270 MHz, CDCl3) 8.48 (2 H, dd, J 1.1 and 

8.5 Hz, TePh 2,6-H), 8.15 (1 H, dd, J 1.1 and 7.7 Hz, nap 4-H), 8.07 (2 H, m, nap 2,5-H), 7.92 (1 

H, dd, J 0.8 and 8.3 Hz, nap 7-H), 7.67-7.59 (1 H, m, TePh 4-H), 7.53-7.42 (3 H, m, nap 6-H, 

TePh 3,5-H), 7.40 (1 H, t, J 7.8 Hz, nap 3-H); δC(67.9 MHz, CDCl3) 139.7(s), 138.5(s), 134.2(s), 

133.3(s), 131.8(s), 130.3(s), 130.1(s), 127.5(s), 127.1(s); δTe(81.2 MHz, CDCl3) 887.5; m/z (ES+) 

442.76 ([M-I2+OMe]+, 100 %).  
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Compound 70 

 
A solution of 1-iodo-8-(phenyltellurenyl)naphthalene (0.11 g, 0.25 mmol) in dichloromethane (5 

mL) was treated with iodine (0.063 g, 0.25 mmol). An analytically pure sample was obtained by 

crystallisation from diffusion of dichloromethane into a pentane solution of the product (0.1 g, 81 

%); (Found: C, 27.5; H, 1.3. Calc. for C16H11TeI3: C, 26.9; H, 1.6 %); vmax(KBr disc)/cm-1: 3430br 

s, 2959s, 2924vs, 2853s, 1735w, 1654w, 1529w, 1465w, 1430w, 1375w, 1363w, 1317w, 1261vs, 

1177w, 1090vs, 1020vs, 866w, 802vs, 747w, 727w, 680w, 663w, 587w, 561w, 535w, 520w, 

448w, 389w; δH(270 MHz, CDCl3) 8.38-8.29 (2 H, m, TePh 2,6-H), 8.27 (1 H, dd, J 1.1 and 7.4 

Hz, nap 4-H), 8.15 (1 H, dd, J 1.0 and 7.6 Hz, nap 5-H), 7.93 (1 H, d, J 8.1 Hz, nap 7-H), 7.86 (1 

H, dd, J 1.0 and 8.2 Hz, nap 2-H), 7.57-7.49 (1 H, m, TePh 4-H), 7.44-7.34 (2 H, m, TePh 3,5-H), 

7.30 (1 H, t, J 7.8 Hz, nap 6-H), 7.23 (1 H, t, J 7.8 Hz, nap 3-H); δC(67.9 MHz, CDCl3) 142.1(s), 

140.0(s), 139.4(s), 133.7(s), 131.6(s), 130.7(s), 130.2(s), 128.1(s), 126.9(s); δTe(81.2 MHz, CDCl3) 

848.0; m/z (ES+) 490.68 ([M-I2+OMe]+, 100 %). 
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Compound 73 - 4,7-dibromo-2-mono-tert-butylnaphtho[1,8-c,d][1,2]diselenole  

 
A solution of 2-mono-tert-butylnaphtho[1,8-c,d][1,2]diselenole (0.11 g, 0.33 mmol) in 

dichloromethane (10 mL) was cooled to 0 °C and slowly treated with bromine (0.11 g, 0.034 mL, 

0.66 mmol). An analytically pure sample was obtained by crystallisation from diffusion of 

dichloromethane into a pentane solution of the product (0.1 g, 74 %); vmax(KBr disc)/cm-1: 3424br 

s, 3069w, 2955s, 2854w, 1584w, 1568w, 1514w, 1482s, 1466vs, 1392s, 1361s, 1282s, 1218s, 

1186w, 1147s, 1116vs, 996vs, 913s, 881s, 860w, 820s, 799s, 741s, 663w, 558w, 509w, 485w, 

468w, 381w; δH(270 MHz, CDCl3) 7.77-7.64 (2 H, m, 3,5-H), 7.53-7.40 (1 H, m, 6-H), 1.52 (9 H, 

s, -C(CH3)3; δC(67.9 MHz, CDCl3) 130.6(s), 130.1(s), 124.9(s), 28.7(s); δSe(51.5 MHz, CDCl3) 

453.8, 374.4; m/z (EI+) 497.98 (M+, 100 %).  
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Compound 74 – Hydroxydiphenyl[(8-phenylsulfanyl)naphthalene-1-

yl]phosphonium tribromide 
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A solution of (8-phenylsulfanylnaphth-1-yl)diphenylphosphine (0.30 g, 0.71 mmol) in 

dichloromethane (15 mL) was treated with bromine (0.45 g, 0.15 mL, 2.8 mmol). An analytically 

pure sample was obtained by crystallisation from diffusion of dichloromethane into a pentane 

solution of the product (0.2 g, 32 %); vmax(KBr disc)/cm-1: 3430brs, 3069w, 3052w, 2691w, 

2197w, 1968w, 1898w, 1814w, 1738w, 1636w, 1578s, 1543w, 1477vs, 1435vs, 1320s, 1264w, 

1197s, 1151s, 1115vs, 1064w, 1023w, 988w, 921w, 887s, 825s, 765vs, 738vs, 718vs, 687vs, 

625w, 613w, 581w, 561vs, 535vs, 503s, 468s, 413s, 346vs; δH(270 MHz, CDCl3) 8.41 (1 H, d, J 

8.0 Hz, nap 4-H), 8.25 (1 H, d, J 8.0 Hz, nap 5-H), 7.87 (2 H, d, J 6.8 Hz, nap 2,7-H), 7.69 (1 H, t, 

J 7.7 Hz, nap 6-H), 7.66-7.59 (1 H, m, nap 3-H), 7.57-7.42 (6 H, m, 2 x PPh2 3-5-H), 7.41-7.30 (4 

H, m, 2 x PPh2 2,6-H), 6.96 (1 H, t, J 7.3 Hz, SPh 4-H), 6.92-6.83 (2 H, m, SPh 3,5-H), 6.15 (2 H, 

d, J 7.5 Hz, SPh 2,6-H), 2.99 (1 H, br s, -OH); δC(67.9 MHz, CDCl3) 140.6(s), 137.3(s), 132.8(s), 

132.6(s), 131.5(d, J 10.4 Hz), 129.2(d, J 13.5 Hz), 128.7(s), 128.2(s), 128.1(s), 126.2(s), 125.7(s), 

125.5(s); δP(109 MHZ, CDCl3) 52.48; m/z (ES+) 458.85 ([M-Br3+Na]+, 100 %). 
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Appendix 1 – FKDW15e – FRKI9 

Compound 1 - 8-bromonaphthalen-1-amine  

 
Table 1   Crystal data and structure refinement  
Empirical Formula C10H8NBr 
Formula Weight 222.08 
Temperature (°C)  -148(1) 
Crystal Colour, Habit red, prism 
Crystal Dimensions (mm3) 0.35 X 0.13 X 0.09 
Crystal System monoclinic 
Lattice Parameters a = 13.6692(14) Å 
 b = 4.1579(4) Å 
 c = 15.8256(16) Å 
 β = 109.941(3)° 
Volume (Å3)  V = 845.52(15) 
Space Group P21/n 
Z value 4 
Dcalc (g/cm3) 1.744 
F000 440 
µ(MoKα) (cm-1) 48.111 
No. of Reflections Measured 6823 
Rint 0.061 
Min and Max Transmissions 0.381 - 0.649 
Independent Reflections 1527 

Observed Reflection (No. Variables ) 1281(110) 
Reflection/Parameter Ratio 13.88 
Residuals: R1 (I>2.00σ(I)) 0.0512 
Residuals: R (All reflections) 0.0644 
Residuals: wR2 (All reflections) 0.1164 
Goodness of Fit Indicator 1.104 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.76 e-/Å3 
Minimum peak in Final Diff. Map -0.39 e-/Å3 
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Appendix 2 – FKDW2 – FRKI5 

Compound 2 - 1-bromo-8-(ethylsulfanyl)naphthalene 

 
Table 2   Crystal data and structure refinement  
Empirical Formula C12H11BrS 
Formula Weight 267.18 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, block 
Crystal Dimensions (mm3) 0.25 X 0.20 X 0.20 
Crystal System monoclinic 
Lattice Parameters a = 11.632(4) Å 
 b = 12.260(4) Å 
 c = 14.748(4) Å 
 β = 91.692(9)° 
Volume (Å3)  V = 2102.2(11) 
Space Group P21/c 
Z value 8 
Dcalc (g/cm3) 1.688 
F000 1072 
µ(MoKα) (mm-1) 4.063 
No. of Reflections Measured 6713 
Rint 0.0793 
Min and Max Transmissions 0.9305 - 1.000 
Independent Reflections 3543 
Observed Reflection (No. Variables ) 2316(254) 
Reflection/Parameter Ratio 13.95 
Residuals: R1 (I>2.00σ(I)) 0.0532 
Residuals: R (All reflections) 0.1023 
Residuals: wR2 (All reflections) 0.1057 
Goodness of Fit Indicator 0.992 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.462 e-/Å3 
Minimum peak in Final Diff. Map -0.472 e-/Å3 
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Appendix 3 – FKDW3 – FRKI15 

Compound 3 - (8-ethylsulfanylnaphth-1-yl)diphenylphosphine 

 
Table 3   Crystal data and structure refinement  
Empirical Formula C24H21PS 
Formula Weight 372.44 
Temperature (°C)  -180(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.06 X 0.06 X 0.03 
Crystal System triclinic 
Lattice Parameters a =  8.6734(17) Å 
 b =   13.165(3) Å 

α = 102.307(6)° c =  17.525(4) Å 
γ = 93.395(4)° β = 96.444(6)° 

Volume (Å3)  V = 1935.7(7) 
Space Group P-1 
Z value 4 
Dcalc (g/cm3) 1.278 
F000 784 
µ(MoKα) (mm-1) 0.254 
No. of Reflections Measured 12531 
Rint 0.0595 
Min and Max Transmissions 0.5879 – 1.000 
Independent Reflections 6626 
Observed Reflection (No. Variables ) 3809(470) 
Reflection/Parameter Ratio 14.10 
Residuals: R1 (I>2.00σ(I)) 0.0614 
Residuals: R (All reflections) 0.1131 
Residuals: wR2 (All reflections) 0.1245 
Goodness of Fit Indicator 0.952 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.382 e-/Å3 
Minimum peak in Final Diff. Map -0.332 e-/Å3 
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Appendix 4 – FKDW123-1 – FRKII123 

Compound 15 - 1-iodo-8-(ethylsulfanyl)naphthalene 

 
Table 4   Crystal data and structure refinement  
Empirical Formula C12H11IS 
Formula Weight 314.18 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.21 X 0.09 X 0.06 
Crystal System orthorhombic 
Lattice Parameters a = 7.768(2) Å 
 b = 20.971(6) Å 
 c = 13.735(4) Å 
 − 

Volume (Å3)  V = 2237.5(12) 
Space Group Pbca 
Z value 8 
Dcalc (g/cm3) 1.865 
F000 1216 
µ(MoKα) (cm-1) 30.068 
No. of Reflections Measured 6575 
Rint 0.033 
Min and Max Transmissions 0.504 - 0.835 
Independent Reflections 1953 
Observed Reflection (No. Variables ) 1824(128) 
Reflection/Parameter Ratio 15.26 
Residuals: R1 (I>2.00σ(I)) 0.0435 
Residuals: R (All reflections) 0.0560 
Residuals: wR2 (All reflections) 0.2054 
Goodness of Fit Indicator 1.285 
Flack Parameter - 
Maximum peak in Final Diff. Map 2.18 e-/Å3 
Minimum peak in Final Diff. Map -2.50 e-/Å3 
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Appendix 5 – FKDW15(ox)-8 – FRKI15ox 

Compound 16 - (8-ethylsulfanylnaphth-1-yl)diphenylphosphine oxide 

 
Table 5   Crystal data and structure refinement  
Empirical Formula C24H21OPS 
Formula Weight 388.46 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.21 X 0.21 X 0.03 
Crystal System monoclinic 
Lattice Parameters a = 12.851(3) Å 
 b = 10.384(3) Å 
 c = 29.473(8) Å 
 β = 91.689(8)° 
Volume (Å3)  3931.5(18) 
Space Group C2/c 
Z value 8 
Dcalc (g/cm3) 1.312 
F000 1632 
µ(MoKα) (cm-1) 2.57 
No. of Reflections Measured 10443 
Rint 0.044 
Min and Max Transmissions 0.946 - 0.992 
Independent Reflections 3418 
Observed Reflection (No. Variables ) 3044 (246) 
Reflection/Parameter Ratio 13.89 
Residuals: R1 (I>2.00σ(I)) 0.0677 
Residuals: R (All reflections) 0.0844 
Residuals: wR2 (All reflections) 0.2324 
Goodness of Fit Indicator 1.183 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.75 e /Å3 
Minimum peak in Final Diff. Map -0.84 e /Å3 
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Appendix 6 – FKDW147A-1 – FRKII147A 

Compound 17 - (8-ethylsulfanylnaphth-1-yl)diphenylphosphine sulfide 

 
Table 6   Crystal data and structure refinement  
Empirical Formula C24H21PS2 
Formula Weight 404.52 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.21 X 0.18 X 0.15 
Crystal System monoclinic 
Lattice Parameters a = 11.652(2) Å 
 b = 9.6047(18) Å 
 c = 18.293(3) Å 
 β = 92.268(5)° 
Volume (Å3)  V = 2045.6(6) 
Space Group P21/c 
Z value 4 
Dcalc (g/cm3) 1.313 
F000 848 
µ(MoKα) (cm-1) 3.446 
No. of Reflections Measured 12018 
Rint 0.06 
Min and Max Transmissions 0.928 - 0.950 
Independent Reflections 3571 
Observed Reflection (No. Variables ) 3334 (246) 
Reflection/Parameter Ratio 14.52 
Residuals: R1 (I>2.00σ(I)) 0.0658 
Residuals: R (All reflections) 0.0735 
Residuals: wR2 (All reflections) 0.1767 
Goodness of Fit Indicator 1.274 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.46 e /Å3 
Minimum peak in Final Diff. Map -0.42 e /Å3 
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Appendix 7 – FKDW150B-6 – FRKII150B 

Compound 18 - (8-ethylsulfanylnaphth-1-yl)diphenylphosphine selenide 

 
Table 7   Crystal data and structure refinement 
Empirical Formula C24H21PSSe 
Formula Weight 451.42 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.12 X 0.09 X 0.06 
Crystal System monoclinic 
Lattice Parameters a = 13.622(3) Å 
 b = 9.3562(18) Å 
 c = 17.224(4) Å 
 β = 112.028(4)° 
Volume (Å3)  V = 2034.9(8) 
Space Group P21/n 
Z value 4 
Dcalc (g/cm3) 1.473 
F000 920 
µ(MoKα) (cm-1) 20.33 
No. of Reflections Measured 11654 
Rint 0.075 
Min and Max Transmissions 0.779 - 0.885 
Independent Reflections 3570 
Observed Reflection (No. Variables ) 3162 (246) 
Reflection/Parameter Ratio 14.51 
Residuals: R1 (I>2.00σ(I)) 0.069 
Residuals: R (All reflections) 0.0808 
Residuals: wR2 (All reflections) 0.1172 
Goodness of Fit Indicator 1.209 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.49 e /Å3 
Minimum peak in Final Diff. Map -0.51 e /Å3 
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Appendix 8 – FKDW4MER – FRKI20 

Compound 19 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine 

 
Table 8  Crystal data and structure refinement 
Empirical Formula C28H21PS 
Formula Weight 420.48 
Temperature (°C)  -180(1) 
Crystal Colour, Habit colourless, platelet 
Crystal Dimensions (mm3) 0.10 X 0.10 X 0.10 
Crystal System monoclinic 
Lattice Parameters a = 11.1461(12) Å 
 b = 8.8914(10) Å 
 c = 21.587(2) Å 
 β = 90.837(4)° 

Volume (Å3)  V = 2139.1(4) 
Space Group P21/c 
Z value 4 
Dcalc (g/cm3) 1.306 
F000 880 
µ(MoKα) (mm-1) 0.239 
No. of Reflections Measured 13424 
Rint 0.0325 
Min and Max Transmissions 0.8678 – 1.000 
Independent Reflections 3774 
Observed Reflection (No. Variables ) 3348(272) 
Reflection/Parameter Ratio 13.88 
Residuals: R1 (I>2.00σ(I)) 0.0408 
Residuals: R (All reflections) 0.0462 
Residuals: wR2 (All reflections) 0.1049 
Goodness of Fit Indicator 1.042 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.906 e-/Å3 
Minimum peak in Final Diff. Map -0.314 e-/Å3 
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Appendix 9 – FERG56 – FRKI45 

Compound 20 - 1-iodo-8-(phenylsulfanyl)naphthalene 

 
Table 9   Crystal data and structure refinement  
Empirical Formula C16H11IS 
Formula Weight 362.21 
Temperature (°C)  20(1) 
Crystal Colour, Habit colourless, platelet 
Crystal Dimensions (mm3) 0.10 X 0.10 X 0.10 
Crystal System orthorhombic 
Lattice Parameters a = 10.204(4) Å 
 b = 7.992(3) Å 
 c = 32.888(10) Å 
 − 

Volume (Å3)  V = 2682.0(17) 
Space Group Pbca 
Z value 8 
Dcalc (g/cm3) 1.794 
F000 1408 
µ(MoKα) (mm-1) 2.521 
No. of Reflections Measured 14054 
Rint 0.2862 
Min and Max Transmissions 0.7461 – 1.000 
Independent Reflections 2440 
Observed Reflection (No. Variables ) 1526(165) 
Reflection/Parameter Ratio 14.79 
Residuals: R1 (I>2.00σ(I)) 0.0999 
Residuals: R (All reflections) 0.1347 
Residuals: wR2 (All reflections) 0.2692 
Goodness of Fit Indicator 0.975 
Flack Parameter - 
Maximum peak in Final Diff. Map 2.198 e-/Å3 
Minimum peak in Final Diff. Map -1.651 e-/Å3 
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Appendix 10 – FKDW20(ox)-1 – FRKI20ox 

Compound 21 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine oxide 

 
Table 10   Crystal data and structure refinement  
Empirical Formula C29H23OPSCl2 
Formula Weight 521.44 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.09 X 0.09 X 0.09 
Crystal System triclinic 
Lattice Parameters a = 9.2265(17) Å 
 b = 11.6406(16) Å 

α = 102.74(2)° c = 13.239(3) Å 
γ = 112.23(2)° β = 98.54(2)° 

Volume (Å3)  V = 1240.7(5) 
Space Group P-1 
Z value 2 
Dcalc (g/cm3) 1.396 
F000 540 
µ(MoKα) (cm-1) 4.313 
No. of Reflections Measured 12814 
Rint 0.041 
Min and Max Transmissions 0.961 - 0.962 
Independent Reflections 4275 
Observed Reflection (No. Variables ) 3896 (308) 
Reflection/Parameter Ratio 13.88 
Residuals: R1 (I>2.00σ(I)) 0.0508 
Residuals: R (All reflections) 0.061 
Residuals: wR2 (All reflections) 0.1469 
Goodness of Fit Indicator 1.203 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.51 e-/Å3 
Minimum peak in Final Diff. Map -0.51 e-/Å3 
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Appendix 11 – FKDWI22-1-9 – FRKII111C 

Compound 22 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine sulfide 

 
Table 11   Crystal data and structure  
Empirical Formula C28H21S2P 
Formula Weight 452.57 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, platelet 
Crystal Dimensions (mm3) 0.18 X 0.12 X 0.06 
Crystal System monoclinic 
Lattice Parameters a = 9.3241(13) Å 
 b = 17.769(2) Å 
 c = 13.7930(19) Å 
 β = 97.328(3)° 
Volume (Å3)  V = 2266.6(5) 
Space Group P21/n 
Z value 4 
Dcalc (g/cm3) 1.326 
F000 944 
µ(MoKα) (cm-1) 3.191 
No. of Reflections Measured 12358 
Rint 0.054 
Min and Max Transmissions 0.943 - 0.981 
Independent Reflections 3948 
Observed Reflection (No. Variables ) 3521(281) 
Reflection/Parameter Ratio 14.05 
Residuals: R1 (I>2.00σ(I)) 0.0582 
Residuals: R (All reflections) 0.0694 
Residuals: wR2 (All reflections) 0.123 
Goodness of Fit Indicator 1.201 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.29 e /Å3 
Minimum peak in Final Diff. Map -0.36 e /Å3 
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Appendix 12 – FKDW111D-2 – FRKII111D 

Compound 23 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine selenide 

 
Table 12   Crystal data and structure refinement  
Empirical Formula C28H21PSSe 
Formula Weight 499.47 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, block 
Crystal Dimensions (mm3) 0.15 X 0.12 X 0.12 
Crystal System monoclinic 
Lattice Parameters a = 9.432(4) Å 
 b = 17.849(6) Å 
 c = 13.701(4) Å 
 β = 96.511(7)° 
Volume (Å3)  V = 2291.8(13) 
Space Group P21/n 
Z value 4 
Dcalc (g/cm3) 1.447 
F000 1016 
µ(MoKα) (cm-1) 18.131 
No. of Reflections Measured 12375 
Rint 0.04 
Min and Max Transmissions 0.757 - 0.804 
Independent Reflections 4012 
Observed Reflection (No. Variables ) 3694(281) 
Reflection/Parameter Ratio 14.28 
Residuals: R1 (I>2.00σ(I)) 0.0427 
Residuals: R (All reflections) 0.0504 
Residuals: wR2 (All reflections) 0.1537 
Goodness of Fit Indicator 1.231 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.56 e /Å3 
Minimum peak in Final Diff. Map -0.53 e /Å3 
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Appendix 13 – FKDW54-1 – FRKI54 

Compound 24 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum dichloride 

 
Table 13   Crystal data and structure refinement  
Empirical Formula C29H22Cl5PPtS 
Formula Weight 805.88 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.10 X 0.05 X 0.03 
Crystal System monoclinic 
Lattice Parameters a = 13.524(6) Å 
 b = 15.311(7) Å 
 c = 14.029(6) Å 
 β = 102.103(9)° 
Volume (Å3)  V = 2840(2) 
Space Group P21/n 
Z value 4 
Dcalc (g/cm3) 1.884 
F000 1560 
µ(MoKα) (cm-1) 55.392 
No. of Reflections Measured 22810 
Rint 0.087 
Min and Max Transmissions 0.570 - 0.847 
Independent Reflections 4928 
Observed Reflection (No. Variables ) 4650(335) 
Reflection/Parameter Ratio 14.71 
Residuals: R1 (I>2.00σ(I)) 0.0987 
Residuals: R (All reflections) 0.1044 
Residuals: wR2 (All reflections) 0.2505 
Goodness of Fit Indicator 1.169 
Flack Parameter - 
Maximum peak in Final Diff. Map 5.58 e /Å3 
Minimum peak in Final Diff. Map -2.23 e /Å3 
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Appendix 14 – FKDW20-10-8a – FRKI20-10 

Compound 25 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum dibromide 

 
Table 14  Crystal data and structure refinement  
Empirical Formula C29H23Br2PPtSCl2 
Formula Weight 860.34 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, platelet 
Crystal Dimensions (mm3) 0.12 X 0.12 X 0.03 
Crystal System monoclinic 
Lattice Parameters a = 12.8977(13) Å 
 b = 15.5520(14) Å 
 c = 14.5122(15) Å 
 β = 103.571(3)° 
Volume (Å3)  V = 2829.7(5) 
Space Group P21/n 
Z value 4 
Dcalc (g/cm3) 2.019 
F000 1640 
µ(MoKα) (cm-1) 81.09 
No. of Reflections Measured 15702 
Rint 0.069 
Min and Max Transmissions 0.493 - 0.784 
Independent Reflections 5127 
Observed Reflection (No. Variables ) 4639(326) 
Reflection/Parameter Ratio 15.73 
Residuals: R1 (I>2.00σ(I)) 0.0677 
Residuals: R (All reflections) 0.0774 
Residuals: wR2 (All reflections) 0.1637 
Goodness of Fit Indicator 1.255 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.10 e /Å3 
Minimum peak in Final Diff. Map -1.61 e /Å3 
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Appendix 15 – FKDW20-7-2 – FRKI20-7 

Compound 26 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine platinum diiodide 

 
Table 15   Crystal data and structure refinement  
Empirical Formula C29H23I2PPtSCl2 
Formula Weight 954.34 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, prism 
Crystal Dimensions (mm3) 0.21 X 0.21 X 0.03 
Crystal System monoclinic 
Lattice Parameters a = 15.053(4) Å 
 b = 11.559(3) Å 
 c = 17.567(4) Å 
 β = 108.385(5)° 
Volume (Å3)  V = 2900.7(12) 
Space Group P21/c 
Z value 4 
Dcalc (g/cm3) 2.185 
F000 1784 
µ(MoKα) (cm-1) 72.769 
No. of Reflections Measured 18781 
Rint 0.042 
Min and Max Transmissions 0.475 - 0.804 
Independent Reflections 5877 
Observed Reflection (No. Variables ) 5732(326) 
Reflection/Parameter Ratio 18.03 
Residuals: R1 (I>2.00σ(I)) 0.0394 
Residuals: R (All reflections) 0.041 
Residuals: wR2 (All reflections) 0.1146 
Goodness of Fit Indicator 1.223 
Flack Parameter - 
Maximum peak in Final Diff. Map 2.32 e /Å3 
Minimum peak in Final Diff. Map -2.25 e /Å3 
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Appendix 16 – FKDW26off – FRKII99Cu 

Compound 27 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine copper chloride dimer 

 
Table 16   Crystal data and structure refinement  
Empirical Formula C56H42Cl2Cu2P2S2 
Formula Weight 1039.01 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, block 
Crystal Dimensions (mm3) 0.24 X 0.14 X 0.11 
Crystal System triclinic 
Lattice Parameters a = 10.184(8) Å 
 b = 10.366(8) Å 

α = 77.52(2)° c = 11.668(9) Å 
γ = 75.24(2)° β = 81.46(3) 

Volume (Å3)  V = 1157.2(15) 
Space Group P-1 
Z value 1 
Dcalc (g/cm3) 1.491 
F000 532 
µ(MoKα) (cm-1) 12.33 
No. of Reflections Measured 10019 
Rint 0.078 
Min and Max Transmissions 0.709 - 0.873 
Independent Reflections 4062 
Observed Reflection (No. Variables ) 2819(290) 
Reflection/Parameter Ratio 14.01 
Residuals: R1 (I>2.00σ(I)) 0.0857 
Residuals: R (All reflections) 0.1176 
Residuals: wR2 (All reflections) 0.259 
Goodness of Fit Indicator 1.067 
Flack Parameter - 
Maximum peak in Final Diff. Map 2.17 e /Å3 
Minimum peak in Final Diff. Map -0.73 e /Å3 
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Appendix 17 – FKDW107A-1 – FRKII107A 

Compound 28 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine copper bromide dimer 

 
Table 17   Crystal data and structure refinement  
Empirical Formula C56H42Br2Cu2P2S2 
Formula Weight 1127.92 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, platelet 
Crystal Dimensions (mm3) 0.09 X 0.09 X 0.03 
Crystal System triclinic 
Lattice Parameters a = 10.218(2) Å 
 b = 10.400(3) Å 

α = 80.20(2)° c = 11.690(3) Å 
γ = 74.909(18)° β = 80.20(2)° 

Volume (Å3)  V = 1156.9(5) 
Space Group P-1 
Z value 1 
Dcalc (g/cm3) 1.619 
F000 568 
µ(MoKα) (cm-1) 28.502 
No. of Reflections Measured 12396 
Rint 0.068 
Min and Max Transmissions 0.768 - 0.918 
Independent Reflections 3998 
Observed Reflection (No. Variables ) 3527(290) 
Reflection/Parameter Ratio 13.79 
Residuals: R1 (I>2.00σ(I)) 0.0858 
Residuals: R (All reflections) 0.0985 
Residuals: wR2 (All reflections) 0.149 
Goodness of Fit Indicator 1.212 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.44 e /Å3 
Minimum peak in Final Diff. Map -0.81 e /Å3 
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Appendix 18 – FKDW107B-1 – FRKII107B 

Compound 29 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine copper iodide dimer 

 
Table 18   Crystal data and structure refinement  
Empirical Formula C56H42Cu2I2P2S2 
Formula Weight 1221.92 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, block 
Crystal Dimensions (mm3) 0.12 X 0.12 X 0.09 
Crystal System triclinic 
Lattice Parameters a = 10.3416(17) Å 
 b = 10.6256(13) Å 

α = 73.87(2)° c = 11.988(2) Å 
γ = 73.326(18)° β = 77.76(2)° 

Volume (Å3)  V = 1199.6(3) 
Space Group P-1 
Z value 1 
Dcalc (g/cm3) 1.691 
F000 604 
µ(MoKα) (cm-1) 23.658 
No. of Reflections Measured 13313 
Rint 0.052 
Min and Max Transmissions 0.578 - 0.808 
Independent Reflections 4756 
Observed Reflection (No. Variables ) 4431(290) 
Reflection/Parameter Ratio 16.4 
Residuals: R1 (I>2.00σ(I)) 0.0684 
Residuals: R (All reflections) 0.0741 
Residuals: wR2 (All reflections) 0.1592 
Goodness of Fit Indicator 1.257 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.12 e /Å3 
Minimum peak in Final Diff. Map -1.38 e /Å3 

 



Appendix 
                           

                                                                                           324 

Appendix 19 – FKDW20-1-8TAKE2 – FRKI20-1 

Compound 30 - (8-phenylsulfanylnaphth-1-yl)diphenylphosphine ruthenium(II) complex 

 
Table 19   Crystal data and structure refinement  
Empirical Formula C41H41Cl2OPRuS 
Formula Weight 784.78 
Temperature (°C)  -148(1) 
Crystal Colour, Habit orange, block 
Crystal Dimensions (mm3) 0.21 X 0.09 X 0.03 
Crystal System monoclinic 
Lattice Parameters a = 9.829(3) Å 
 b = 22.199(6) Å 
 c = 17.506(5) Å 
 β = 106.021(6)° 
Volume (Å3)  V = 3671.4(18) 
Space Group P21/n 
Z value 4 
Dcalc (g/cm3) 1.42 
F000 1616 
µ(MoKα) (cm-1) 7.045 
No. of Reflections Measured 16039 
Rint 0.083 
Min and Max Transmissions 0.861 - 0.979 
Independent Reflections 6381 
Observed Reflection (No. Variables ) 5505(430) 
Reflection/Parameter Ratio 14.84 
Residuals: R1 (I>2.00σ(I)) 0.1126 
Residuals: R (All reflections) 0.1311 
Residuals: wR2 (All reflections) 0.1848 
Goodness of Fit Indicator 1.3 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.93 e /Å3 
Minimum peak in Final Diff. Map -0.57 e /Å3 
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Appendix 20 – FKDW8 – FRKI49 

Compound 31 - 1-bromo-8-(phenylselenyl)naphthalene 

 
Table 20   Crystal data and structure refinement  
Empirical Formula C16H11BrSe 
Formula Weight 362.13 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, platelet 
Crystal Dimensions (mm3) 0.40 X 0.16 X 0.13 
Crystal System monoclinic 
Lattice Parameters a = 12.2378(6) Å 
 b = 7.8921(4) Å 
 c = 14.7367(8) Å 
 β = 110.9800(13)o 

Volume (Å3)  V = 1328.94(12) 
Space Group P21/c 
Z value 4 
Dcalc (g/cm3) 1.810 
F000 704 
µ(MoKα) (cm-1) 58.19 
No. of Reflections Measured 13396 
Rint 0.059 
Min and Max Transmissions 0.220 - 0.469 
Independent Reflections 3044 
Observed Reflection (No. Variables ) 2482(164) 
Reflection/Parameter Ratio 18.56 
Residuals: R1 (I>2.00σ(I)) 0.0393 
Residuals: R (All reflections) 0.0556 
Residuals: wR2 (All reflections) 0.0937 
Goodness of Fit Indicator 0.879 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.52 e-/Å3 
Minimum peak in Final Diff. Map -0.43 e-/Å3 
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Appendix 21 – FKDW7 – FRKI46 

Compound 33 - 1-iodo-8-(phenylselenyl)naphthalene  

 
Table 21   Crystal data and structure refinement  
Empirical Formula C16H11ISe 
Formula Weight 409.13 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.30 X 0.24 X 0.12 
Crystal System triclinic 
Lattice Parameters a = 7.8388(7) Å 
 b = 8.1008(7) Å 

α = 98.5504(19)° c = 11.9491(10) Å 
γ = 98.007(2)° β = 108.8828(18)° 

Volume (Å3)  V = 695.57(10) 
Space Group P-1 
Z value 2 
Dcalc (g/cm3) 1.953 
F000 388 
µ(MoKα) (cm-1) 48.984 
No. of Reflections Measured 6026 
Rint 0.072 
Min and Max Transmissions 0.257 - 0.556 
Independent Reflections 2455 
Observed Reflection (No. Variables ) 2138(164) 
Reflection/Parameter Ratio 14.97 
Residuals: R1 (I>2.00σ(I)) 0.0445 
Residuals: R (All reflections) 0.0522 
Residuals: wR2 (All reflections) 0.1063 
Goodness of Fit Indicator 1.094 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.77 e-/Å3 
Minimum peak in Final Diff. Map -0.86 e-/Å3 
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Appendix 22 – FKDW53-2 – FRKI53 

Compound 34 - (8-phenylselenylnaphth-1-yl)diphenylphosphine oxide 

 
Table 22   Crystal data and structure refinement  
Empirical Formula C28H21PSeO 
Formula Weight 483.41 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, chunk 
Crystal Dimensions (mm3) 0.30 X 0.15 X 0.12 
Crystal System monoclinic 
Lattice Parameters a = 10.1430(16) Å 
 b = 10.6578(17) Å 
 c = 10.6907(19) Å 
 β = 100.935(4)° 
Volume (Å3)  V = 1134.7(3) 
Space Group P21 
Z value 2 
Dcalc (g/cm3) 1.415 
F000 492 
µ(MoKα) (cm-1) 17.43 
No. of Reflections Measured 6648 
Rint 0.029 
Min and Max Transmissions 0.588 - 0.811 
Independent Reflections 3674 
Observed Reflection (No. Variables ) 3611(281) 
Reflection/Parameter Ratio 13.07 
Residuals: R1 (I>2.00σ(I)) 0.0374 
Residuals: R (All reflections) 0.0406 
Residuals: wR2 (All reflections) 0.1131 
Goodness of Fit Indicator 1.203 
Flack Parameter 0.022(13) 
Maximum peak in Final Diff. Map 0.69 e /Å3 
Minimum peak in Final Diff. Map -0.67 e /Å3 
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Appendix 23 – FKDW119-1-3 – FRKII119 

Compound 35 - (8-phenylselenylnaphth-1-yl)diphenylphosphine sulfide 

 
Table 23   Crystal data and structure refinement  
Empirical Formula C28H21PSeS 
Formula Weight 499.47 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, block 
Crystal Dimensions (mm3) 0.15 X 0.15 X 0.15 
Crystal System monoclinic 
Lattice Parameters a = 9.3748(15) Å 
 b = 17.820(3) Å 
 c = 13.847(2) Å 
 β = 97.820(5)° 
Volume (Å3)  V = 2291.7(6) 
Space Group P21/n 
Z value 4 
Dcalc (g/cm3) 1.448 
F000 1016 
µ(MoKα) (cm-1) 18.132 
No. of Reflections Measured 13337 
Rint 0.034 
Min and Max Transmissions 0.756 - 0.762 
Independent Reflections 4607 
Observed Reflection (No. Variables ) 4279(281) 
Reflection/Parameter Ratio 16.4 
Residuals: R1 (I>2.00σ(I)) 0.0431 
Residuals: R (All reflections) 0.0486 
Residuals: wR2 (All reflections) 0.087 
Goodness of Fit Indicator 1.14 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.41 e /Å3 
Minimum peak in Final Diff. Map -0.45 e /Å3 
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Appendix 24 – FKDW146A-2 – FRKII146A 

Compound 36 - (8-phenylselenylnaphth-1-yl)diphenylphosphine selenide 

 
Table 24   Crystal data and structure refinement  
Empirical Formula C28H21PSe2 
Formula Weight 546.37 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, prism 
Crystal Dimensions (mm3) 0.18 X 0.15 X 0.09 
Crystal System monoclinic 
Lattice Parameters a = 9.4797(12) Å 
 b = 17.844(2) Å 
 c = 13.7175(16) Å 
 β = 96.789(3)° 
Volume (Å3)  V = 2304.1(5) 
Space Group P21/n 
Z value 4 
Dcalc (g/cm3) 1.575 
F000 1088 
µ(MoKα) (cm-1) 32.93 
No. of Reflections Measured 12528 
Rint 0.051 
Min and Max Transmissions 0.543 - 0.744 
Independent Reflections 4046 
Observed Reflection (No. Variables ) 3691(281) 
Reflection/Parameter Ratio 14.4 
Residuals: R1 (I>2.00σ(I)) 0.0553 
Residuals: R (All reflections) 0.065 
Residuals: wR2 (All reflections) 0.1585 
Goodness of Fit Indicator 1.291 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.71 e /Å3 
Minimum peak in Final Diff. Map -0.67 e /Å3 
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Appendix 25 – FKDW95-2 – FRKII95 

Compound 37 - 1,8-bis(phenylsulfanyl)naphthalene 

 
Table 25   Crystal data and structure refinement  
Empirical Formula C22H16S2 
Formula Weight 344.49 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, chunk 
Crystal Dimensions (mm3) 0.15 X 0.15 X 0.09 
Crystal System monoclinic 
Lattice Parameters a = 8.330(3) Å 
 b = 19.401(7) Å 
 c = 10.544(4) Å 
 β = 90.910(8)° 
Volume (Å3)  V = 1703.9(10) 
Space Group P21/c 
Z value 4 
Dcalc (g/cm3) 1.343 
F000 720 
µ(MoKα) (cm-1) 3.114 
No. of Reflections Measured 9305 
Rint 0.058 
Min and Max Transmissions 0.953 - 0.972 
Independent Reflections 2979 
Observed Reflection (No. Variables ) 2662(218) 
Reflection/Parameter Ratio 13.67 
Residuals: R1 (I>2.00σ(I)) 0.0658 
Residuals: R (All reflections) 0.0794 
Residuals: wR2 (All reflections) 0.1856 
Goodness of Fit Indicator 1.25 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.40 e /Å3 
Minimum peak in Final Diff. Map -0.41 e /Å3 
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Appendix 26 – FKDW92-0-2 – FRKII92 

Compound 38 - 1,8-bis(phenylselenyl)naphthalene 

 
Table 26   Crystal data and structure refinement  
Empirical Formula C22H16Se2 
Formula Weight 438.29 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.15 X 0.09 X 0.09 
Crystal System orthorhombic 
Lattice Parameters a = 21.353(5) Å 
 b = 5.6814(12) Å 
 c = 14.424(4) Å 
 - 
Volume (Å3)  V = 1749.9(7) 
Space Group Pca21 
Z value 4 
Dcalc (g/cm3) 1.663 
F000 864 
µ(MoKα) (cm-1) 42.257 
No. of Reflections Measured 5919 
Rint 0.048 
Min and Max Transmissions 0.525 – 0.684 
Independent Reflections 2890 
Observed Reflection (No. Variables ) 2735(218) 
Reflection/Parameter Ratio 13.26 
Residuals: R1 (I>2.00σ(I)) 0.0473 
Residuals: R (All reflections) 0.0514 
Residuals: wR2 (All reflections) 0.0947 
Goodness of Fit Indicator 1.116 
Flack Parameter 0.04(2) 
Maximum peak in Final Diff. Map 0.53 e /Å3 
Minimum peak in Final Diff. Map -0.76 e /Å3 
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Appendix 27 – FKDW126-3 – FRKII126 

Compound 40 - 1,8-bis(ethylsulfanyl)naphthalene  

 
Table 27   Crystal data and structure refinement  
Empirical Formula C14H16S2 

Formula Weight 248.40 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.15 X 0.09 X 0.09 
Crystal System orthorhombic 
Lattice Parameters a = 9.0074(15) Å 
 b = 16.221(3) Å 
 c = 17.386(3) Å 
 - 
Volume (Å3)  V = 2540.2(8) 
Space Group Pbca 
Z value 8 
Dcalc (g/cm3) 1.299 
F000 1056 
µ(MoKα) (cm-1) 3.888 
No. of Reflections Measured 7639 
Rint 0.076 
Min and Max Transmissions 0.942 - 0.966 
Independent Reflections 2216 
Observed Reflection (No. Variables ) 1963(148) 
Reflection/Parameter Ratio 14.97 
Residuals: R1 (I>2.00σ(I)) 0.0764 
Residuals: R (All reflections) 0.0894 
Residuals: wR2 (All reflections) 0.1333 
Goodness of Fit Indicator 1.245 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.24 e-/Å3 
Minimum peak in Final Diff. Map -0.27 e-/Å3 
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Appendix 28 – FKDW182-1 – FRKII182 

Compound 55 - 1-bromo-8-(phenyltellurenyl)naphthalene  

 
Table 28   Crystal data and structure refinement  
Empirical Formula C16H11BrTe 
Formula Weight 410.77 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.09 X 0.06 X 0.06 
Crystal System monoclinic 
Lattice Parameters a = 12.556(3) Å 
 b = 8.0136(16) Å 
 c = 14.803(4) Å 
 β = 111.945(4)° 
Volume (Å3)  V = 1381.5(6) 
Space Group P21/c 
Z value 4 
Dcalc (g/cm3) 1.975 
F000 776 
µ(MoKα) (cm-1) 50.327 
No. of Reflections Measured 8205 
Rint 0.039 
Min and Max Transmissions 0.611 - 0.739 
Independent Reflections 2759 
Observed Reflection (No. Variables ) 2579(164) 
Reflection/Parameter Ratio 16.82 
Residuals: R1 (I>2.00σ(I)) 0.0483 
Residuals: R (All reflections) 0.0572 
Residuals: wR2 (All reflections) 0.1490 
Goodness of Fit Indicator 1.212 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.50 e-/Å3 
Minimum peak in Final Diff. Map -1.69 e-/Å3 
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Appendix 29 – FKDW205-2 – FRKIII205 

Compound 56 - 1-iodo-8-(phenyltellurenyl)naphthalene 

 
Table 29   Crystal data and structure refinement  
Empirical Formula C16H11ITe 
Formula Weight 457.77 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.15 X 0.09 X 0.09 
Crystal System monoclinic 
Lattice Parameters a = 12.437(8) Å 
 b = 8.174(4) Å 
 c = 14.694(10) Å 
 β = 110.305(14)° 
Volume (Å3)  V = 1400.9(15) 
Space Group P21/c 
Z value 4 
Dcalc (g/cm3) 2.170 
F000 848 
µ(MoKα) (cm-1) 43.072 
No. of Reflections Measured 9065 
Rint 0.032 
Min and Max Transmissions 0.470 - 0.679 
Independent Reflections 2814 
Observed Reflection (No. Variables ) 2695(164) 
Reflection/Parameter Ratio 17.16 
Residuals: R1 (I>2.00σ(I)) 0.0356 
Residuals: R (All reflections) 0.0408 
Residuals: wR2 (All reflections) 0.1465 
Goodness of Fit Indicator 1.263 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.41 e-/Å3 
Minimum peak in Final Diff. Map -1.72 e-/Å3 
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Appendix 30 – FKDW112-1 – FRKII112 

Compound 41 - 1-(phenylselenyl)-8-(phenylsulfanyl)naphthalene  

 
Table 30   Crystal data and structure refinement  
Empirical Formula C22H16SSe 
Formula Weight 391.39 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, block 
Crystal Dimensions (mm3) 0.27 X 0.09 X 0.09 
Crystal System orthorhombic 
Lattice Parameters a = 21.150(5) Å 
 b =  5.7154(12) Å 
 c = 14.421(3) Å 
 - 
Volume (Å3)  V = 1743.3(7) 
Space Group Pca21 
Z value 4 
Dcalc (g/cm3) 1.491 
F000 792 
µ(MoKα) (cm-1) 22.731 
No. of Reflections Measured 6528 
Rint 0.063 
Min and Max Transmissions 0.397 - 0.815 
Independent Reflections 2368 
Observed Reflection (No. Variables ) 2217(218) 
Reflection/Parameter Ratio 10.86 
Residuals: R1 (I>2.00σ(I)) 0.0593 
Residuals: R (All reflections) 0.0655 
Residuals: wR2 (All reflections) 0.1574 
Goodness of Fit Indicator 1.140 
Flack Parameter 0.07(2) 
Maximum peak in Final Diff. Map 0.67 e /Å3 
Minimum peak in Final Diff. Map -0.68 e /Å3 
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Appendix 31 – FKDW98-0-8 – FRKII98 

Compound 42 - 1-(phenyltellurenyl)-8-(phenylsulfanyl)naphthalene  

 
Table 31   Crystal data and structure refinement  
Empirical Formula C22H16STe 
Formula Weight 440.03 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, prism 
Crystal Dimensions (mm3) 0.18 X 0.15 X 0.12 
Crystal System triclinic 
Lattice Parameters a = 9.997(2) Å 
 b = 11.2364(18) Å 

α = 74.309(18)° c = 17.928(3) Å 
γ = 66.344(13)° β = 87.24(2)° 

Volume (Å3)  V = 1771.7(6) 
Space Group P-1 
Z value 4 
Dcalc (g/cm3) 1.65 
F000 864 
µ(MoKα) (cm-1) 17.962 
No. of Reflections Measured 19899 
Rint 0.032 
Min and Max Transmissions 0.718 - 0.806 
Independent Reflections 7014 
Observed Reflection (No. Variables ) 6663(434) 
Reflection/Parameter Ratio 16.16 
Residuals: R1 (I>2.00σ(I)) 0.0566 
Residuals: R (All reflections) 0.0599 
Residuals: wR2 (All reflections) 0.1714 
Goodness of Fit Indicator 1.099 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.64 e /Å3 
Minimum peak in Final Diff. Map -1.86 e /Å3 
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Appendix 32 – FKDW73-2 – FRKI73 

Compound 43 - 1-(phenyltellurenyl)-8-(phenylselenyl)naphthalene  

 
Table 32   Crystal data and structure refinement  
Empirical Formula C22H16SeTe 
Formula Weight 486.93 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, prism 
Crystal Dimensions (mm3) 0.21 X 0.09 X 0.09 
Crystal System triclinic 
Lattice Parameters a = 10.094(4) Å 
 b = 11.2590(19) Å 

α = 73.66(4)° c = 18.122(8) Å 
γ = 67.06(3)° β = 87.13(4)° 

Volume (Å3)  V = 1815.9(13) 
Space Group P-1 
Z value 4 
Dcalc (g/cm3) 1.781 
F000 936 
µ(MoKα) (cm-1) 36.424 
No. of Reflections Measured 18410 
Rint 0.050 
Min and Max Transmissions 0.461 - 0.720 
Independent Reflections 6253 
Observed Reflection (No. Variables ) 5691(434) 
Reflection/Parameter Ratio 14.41 
Residuals: R1 (I>2.00σ(I)) 0.0646 
Residuals: R (All reflections) 0.0848 
Residuals: wR2 (All reflections) 0.2886 
Goodness of Fit Indicator 1.211 
Flack Parameter - 
Maximum peak in Final Diff. Map 2.10 e-/Å3 
Minimum peak in Final Diff. Map -2.27 e-/Å3 
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Appendix 33 – FKDW211A-2 – FRKIII211A 

Compound 44 - 1-(phenylsulfinyl)-8-(phenylsulfanyl)naphthalene  

 
Table 33   Crystal data and structure refinement  
Empirical Formula C22H16OS2 

Formula Weight 360.49 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.18 X 0.09 X 0.09 
Crystal System monoclinic 
Lattice Parameters a = 10.139(5) Å 
 b = 15.379(6) Å 
 c = 11.575(6) Å 
 β = 111.083(15)° 

Volume (Å3)  V = 1684.0(14) 
Space Group P21/c 
Z value 4 
Dcalc (g/cm3) 1.422 
F000 752 
µ(MoKα) (cm-1) 3.227 
No. of Reflections Measured 9709 
Rint 0.054 
Min and Max Transmissions 0.943 - 0.971 
Independent Reflections 3400 
Observed Reflection (No. Variables ) 3089(227) 
Reflection/Parameter Ratio 14.98 
Residuals: R1 (I>2.00σ(I)) 0.0693 
Residuals: R (All reflections) 0.0789 
Residuals: wR2 (All reflections) 0.1670 
Goodness of Fit Indicator 1.169 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.34 e-/Å3 
Minimum peak in Final Diff. Map -0.60 e-/Å3 
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Appendix 34 – FKDW211C-1 – FRKIII211C 

Compound 45 - 1,8-bis(phenylsulfinyl)naphthalene  

 
Table 34   Crystal data and structure refinement  
Empirical Formula C22H16O2S2 

Formula Weight 376.49 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.18 X 0.09 X 0.09 
Crystal System monoclinic 
Lattice Parameters a = 17.275(9) Å 
 b = 15.216(7) Å 
 c = 13.591(7) Å 
 β = 105.593(11)° 

Volume (Å3)  V = 3441(3) 
Space Group C2/c 
Z value 8 
Dcalc (g/cm3) 1.453 
F000 1568 
µ(MoKα) (cm-1) 3.234 
No. of Reflections Measured 10825 
Rint 0.059 
Min and Max Transmissions 0.961 - 0.981 
Independent Reflections 3459 
Observed Reflection (No. Variables ) 3114(236) 
Reflection/Parameter Ratio 14.66 
Residuals: R1 (I>2.00σ(I)) 0.0675 
Residuals: R (All reflections) 0.0808 
Residuals: wR2 (All reflections) 0.1995 
Goodness of Fit Indicator 1.312 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.57 e-/Å3 
Minimum peak in Final Diff. Map -0.55 e-/Å3 
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Appendix 35 – FKDW164-3 – FRKII164 

Compound 57 - 1,8-bis(4-bromophenylsulfanyl)-2,5-dibromonaphthalene 

 
Table 35   Crystal data and structure refinement  
Empirical Formula C22H12Br4S2 
Formula Weight 660.07 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, prism 
Crystal Dimensions (mm3) 0.12 X 0.06 X 0.06 
Crystal System monoclinic 
Lattice Parameters a = 32.535(13) Å 
 b = 5.4833(18) Å 
 c = 27.215(9) Å 
 β = 92.729(11)° 
Volume (Å3)  V = 4850(3) 
Space Group C2/c 
Z value 8 
Dcalc (g/cm3) 1.808 
F000 2528 
µ(MoKα) (cm-1) 68.368 
No. of Reflections Measured 13347 
Rint 0.068 
Min and Max Transmissions 0.406 - 0.664 
Independent Reflections 4268 
Observed Reflection (No. Variables ) 3398(254) 
Reflection/Parameter Ratio 16.8 
Residuals: R1 (I>2.00σ(I)) 0.0866 
Residuals: R (All reflections) 0.1144 
Residuals: wR2 (All reflections) 0.2732 
Goodness of Fit Indicator 1.206 
Flack Parameter - 
Maximum peak in Final Diff. Map 2.78 e /Å3 
Minimum peak in Final Diff. Map -1.00 e /Å3 
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Appendix 36 – FKDW157A-2 – FRKII157A 

Compound 58 

 
Table 36   Crystal data and structure refinement  
Empirical Formula C16H11Br4Se2 

Formula Weight 757.90 
Temperature (°C)  -148(1) 
Crystal Colour, Habit orange, block 
Crystal Dimensions (mm3) 0.12 X 0.12 X 0.12 
Crystal System monoclinic 
Lattice Parameters a = 9.293(3) Å 
 b = 14.082(5) Å 
 c = 17.212(6) Å 
 β = 97.177(9)° 

Volume (Å3)  V = 2234.8(13) 
Space Group P21/n 
Z value 4 
Dcalc (g/cm3) 2.252 
F000 1424 
µ(MoKα) (cm-1) 104.897 
No. of Reflections Measured 13998 
Rint 0.042 
Min and Max Transmissions 0.268 - 0.284 
Independent Reflections 4524 
Observed Reflection (No. Variables ) 3974(254) 
Reflection/Parameter Ratio 17.81 
Residuals: R1 (I>2.00σ(I)) 0.0435 
Residuals: R (All reflections) 0.0540 
Residuals: wR2 (All reflections) 0.1236 
Goodness of Fit Indicator 1.175 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.32 e-/Å3 
Minimum peak in Final Diff. Map -1.17 e-/Å3 
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Appendix 37 – FKDW157B-3 – FRKII157B 

Compound 59 

 
Table 37  Crystal data and structure refinement  
Empirical Formula C22H16I2Se2 
Formula Weight 692.1 
Temperature (°C)  -148(1) 
Crystal Colour, Habit orange, prism 
Crystal Dimensions (mm3) 0.12 X 0.12 X 0.06 
Crystal System triclinic 
Lattice Parameters a = 10.003(3) Å 
 b = 10.453(2) Å 

α = 102.307(6)° c = 11.749(3) Å 
γ = 93.395(4)° β = 84.68(3)° 

Volume (Å3)  V = 1089.3(5) 
Space Group P-1 
Z value 2 
Dcalc (g/cm3) 2.11 
F000 644 
µ(MoKα) (cm-1) 62.337 
No. of Reflections Measured 11727 
Rint 0.036 
Min and Max Transmissions 0.486 - 0.688 
Independent Reflections 3715 
Observed Reflection (No. Variables ) 3557(236) 
Reflection/Parameter Ratio 15.74 
Residuals: R1 (I>2.00σ(I)) 0.0302 
Residuals: R (All reflections) 0.0359 
Residuals: wR2 (All reflections) 0.1262 
Goodness of Fit Indicator 1.28 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.44 e /Å3 
Minimum peak in Final Diff. Map -1.77 e /Å3 
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Appendix 38 – FKDW157BI-3 – FRKII157BI2 

Compound 60 

 
Table 38  Crystal data and structure refinement  
Empirical Formula C44H32I6Se4 

Formula Weight 1638.00 
Temperature (°C)  -148(1) 
Crystal Colour, Habit red, prism 
Crystal Dimensions (mm3) 0.15 X 0.09 X 0.09 
Crystal System triclinic 
Lattice Parameters a = 9.6503(18) Å 
 b = 11.3357(16) Å 

α = 65.996(10)° c = 11.8269(16) Å 
γ = 83.206(14)° β = 82.763(14)° 

Volume (Å3)  V = 1169.3(3) 
Space Group P-1 
Z value 1 
Dcalc (g/cm3) 2.326 
F000 750 
µ(MoKα) (cm-1) 71.303 
No. of Reflections Measured 13845 
Rint 0.043 
Min and Max Transmissions 0.336 - 0.526 
Independent Reflections 4628 
Observed Reflection (No. Variables ) 4222(245) 
Reflection/Parameter Ratio 18.89 
Residuals: R1 (I>2.00σ(I)) 0.0483 
Residuals: R (All reflections) 0.0569 
Residuals: wR2 (All reflections) 0.1746 
Goodness of Fit Indicator 1.185 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.32 e-/Å3 
Minimum peak in Final Diff. Map -1.56 e-/Å3 

 



Appendix 
                           

                                                                                           344 

Appendix 39 – FKDW173-1 – FRKII173 

Compound 61 

 
Table 39  Crystal data and structure refinement  
Empirical Formula C22H16Br4SSe 
Formula Weight 711 
Temperature (°C)  -148(1) 
Crystal Colour, Habit orange, platelet 
Crystal Dimensions (mm3) 0.18 X 0.12 X 0.06 
Crystal System monoclinic 
Lattice Parameters a = 13.555(2) Å 
 b = 9.2381(13) Å 
 c = 18.663(3) Å 
 β = 103.009(3)° 
Volume (Å3)  V = 2277.0(6) 
Space Group P21/c 
Z value 4 
Dcalc (g/cm3) 2.074 
F000 1352 
µ(MoKα) (cm-1) 87.882 
No. of Reflections Measured 12771 
Rint 0.064 
Min and Max Transmissions 0.294 - 0.590 
Independent Reflections 3971 
Observed Reflection (No. Variables ) 3489(254) 
Reflection/Parameter Ratio 15.63 
Residuals: R1 (I>2.00σ(I)) 0.0699 
Residuals: R (All reflections) 0.0813 
Residuals: wR2 (All reflections) 0.1938 
Goodness of Fit Indicator 1.15 
Flack Parameter - 
Maximum peak in Final Diff. Map 2.33 e /Å3 
Minimum peak in Final Diff. Map -1.18 e /Å3 
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Appendix 40 – FKDW217A-1 – FRKIII217A 

Compound 62 

 
Table 40   Crystal data and structure refinement  
Empirical Formula C44H32I6S2Se2 

Formula Weight 1544.20 
Temperature (°C)  -148(1) 
Crystal Colour, Habit red, prism 
Crystal Dimensions (mm3) 0.21 X 0.15 X 0.09 
Crystal System triclinic 
Lattice Parameters a = 9.6066(17) Å 
 b = 11.2528(14) Å 

α = 65.855(9)° c = 11.8080(14) Å 
γ = 83.443(14)° β = 82.839(14)° 

Volume (Å3)  V = 1152.9(3) 
Space Group P-1 
Z value 1 
Dcalc (g/cm3) 2.224 
F000 714 
µ(MoKα) (cm-1) 57.432 
No. of Reflections Measured 13510 
Rint 0.038 
Min and Max Transmissions 0.403 - 0.596 
Independent Reflections 4542 
Observed Reflection (No. Variables ) 4336(245) 
Reflection/Parameter Ratio 18.54 
Residuals: R1 (I>2.00σ(I)) 0.0429 
Residuals: R (All reflections) 0.0479 
Residuals: wR2 (All reflections) 0.1587 
Goodness of Fit Indicator 1.148 
Flack Parameter - 
Maximum peak in Final Diff. Map 2.46 e-/Å3 
Minimum peak in Final Diff. Map -1.98 e-/Å3 
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Appendix 41 – FKDW195A-1 – FRKII195A 

Compound 63 

 
Table 41   Crystal data and structure refinement  
Empirical Formula C22H16Br2STe 
Formula Weight 599.84 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, prism 
Crystal Dimensions (mm3) 0.21 X 0.03 X 0.03 
Crystal System monoclinic 
Lattice Parameters a = 18.873(10) Å 
 b = 15.452(7) Å 
 c = 13.922(6) Å 
 β = 100.423(11)° 
Volume (Å3)  V = 3993(3) 
Space Group C2/c 
Z value 8 
Dcalc (g/cm3) 1.995 
F000 2288 
µ(MoKα) (cm-1) 56.13 
No. of Reflections Measured 10797 
Rint 0.082 
Min and Max Transmissions 0.542 - 0.845 
Independent Reflections 3510 
Observed Reflection (No. Variables ) 2992(236) 
Reflection/Parameter Ratio 14.87 
Residuals: R1 (I>2.00σ(I)) 0.0696 
Residuals: R (All reflections) 0.0876 
Residuals: wR2 (All reflections) 0.1808 
Goodness of Fit Indicator 1.261 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.50 e /Å3 
Minimum peak in Final Diff. Map -1.67 e /Å3 
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Appendix 42 – FERG58 – FRKIII244 

Compound 64 

 
Table 42   Crystal data and structure refinement  
Empirical Formula C22H16Br2SeTe 
Formula Weight 646.73 
Temperature (°C)  -180(1) 
Crystal Colour, Habit colourless, platelet 
Crystal Dimensions (mm3) 0.06 X 0.06 X 0.03 
Crystal System monoclinic 
Lattice Parameters a = 19.172(8) Å 
 b = 15.285(6) Å 
 c = 14.070(7) Å 
 β = 100.442(13)° 

Volume (Å3)  V = 4055(3) 
Space Group C2/c 
Z value 8 
Dcalc (g/cm3) 2.119 
F000 2432 
µ(MoKα) (mm-1) 7.207 
No. of Reflections Measured 12736 
Rint 0.1295 
Min and Max Transmissions 0.652 - 1.000 
Independent Reflections 3669 
Observed Reflection (No. Variables ) 2284(236) 
Reflection/Parameter Ratio 15.55 
Residuals: R1 (I>2.00σ(I)) 0.0947 
Residuals: R (All reflections) 0.1436 
Residuals: wR2 (All reflections) 0.2625 
Goodness of Fit Indicator 1.077 
Flack Parameter - 
Maximum peak in Final Diff. Map 2.515 e-/Å3 
Minimum peak in Final Diff. Map -1.557 e-/Å3 
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Appendix 43 – FKDW195B-1 – FRKII195B 

Compound 65 

 
Table 43   Crystal data and structure refinement  
Empirical Formula C22H16I2STe 
Formula Weight 693.84 
Temperature (°C)  -148(1) 
Crystal Colour, Habit orange, prism 
Crystal Dimensions (mm3) 0.15 X 0.09 X 0.09 
Crystal System monoclinic 
Lattice Parameters a = 18.909(4) Å 
 b = 15.954(3) Å 
 c = 14.282(3) Å 
 β = 99.994(5)° 

Volume (Å3)  V = 4243.1(15) 
Space Group P2/c 
Z value 8 
Dcalc (g/cm3) 2.172 
F000 2576 
µ(MoKα) (cm-1) 44.16 
No. of Reflections Measured 12261 
Rint 0.033 
Min and Max Transmissions 0.487 - 0.672 
Independent Reflections 4204 
Observed Reflection (No. Variables ) 3961(236) 
Reflection/Parameter Ratio 17.81 
Residuals: R1 (I>2.00σ(I)) 0.0361 
Residuals: R (All reflections) 0.0429 
Residuals: wR2 (All reflections) 0.1341 
Goodness of Fit Indicator 1.244 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.65 e-/Å3 
Minimum peak in Final Diff. Map -1.63 e-/Å3 
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Appendix 44 – FERG57 – FRKIII245 

Compound 66 

 
Table 44   Crystal data and structure refinement  
Empirical Formula C22H16I2SeTe 
Formula Weight 740.71 
Temperature (°C)  -180(1) 
Crystal Colour, Habit colourless, platelet 
Crystal Dimensions (mm3) 0.05 X 0.05 X 0.05 
Crystal System monoclinic 
Lattice Parameters a = 19.723(9) Å 
 b = 15.191(6) Å 
 c = 14.463(6) Å 
 β = 100.692(12)° 

Volume (Å3)  V = 4258(3) 
Space Group C2/c 
Z value 8 
Dcalc (g/cm3) 2.311 
F000 2720 
µ(MoKα) (mm-1) 6.011 
No. of Reflections Measured 13494 
Rint 0.1378 
Min and Max Transmissions 0.797 - 1.000 
Independent Reflections 3836 
Observed Reflection (No. Variables ) 2117(236) 
Reflection/Parameter Ratio 16.25 
Residuals: R1 (I>2.00σ(I)) 0.0823 
Residuals: R (All reflections) 0.1495 
Residuals: wR2 (All reflections) 0.2132 
Goodness of Fit Indicator 0.992 
Flack Parameter - 
Maximum peak in Final Diff. Map 3.359 e-/Å3 
Minimum peak in Final Diff. Map -1.375 e-/Å3 

 



Appendix 
                           

                                                                                           350 

Appendix 45 – FKDW161-2 – FRKIII219A 

Compound 67 

 
Table 45   Crystal data and structure refinement  
Empirical Formula C16H11Br3Te 
Formula Weight 570.57 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, platelet 
Crystal Dimensions (mm3) 0.12 X 0.12 X 0.01 
Crystal System orthorhombic 
Lattice Parameters a = 8.4839(18) Å 
 b = 12.041(2) Å 
 c = 15.592(3) Å 
 −  
Volume (Å3)  V = 1592.8(6) 
Space Group Pca21 
Z value 4 
Dcalc (g/cm3) 2.379 
F000 1056 
µ(MoKα) (cm-1) 94.028 
No. of Reflections Measured 4898 
Rint 0.057 
Min and Max Transmissions 0.409 - 0.910 
Independent Reflections 2459 
Observed Reflection (No. Variables ) 2353(182) 
Reflection/Parameter Ratio 13.51 
Residuals: R1 (I>2.00σ(I)) 0.0461 
Residuals: R (All reflections) 0.0503 
Residuals: wR2 (All reflections) 0.0996 
Goodness of Fit Indicator 1.089 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.77 e-/Å3 
Minimum peak in Final Diff. Map -1.09 e-/Å3 
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Appendix 46 – FKDW223A-1 – FRKIII223A 

Compound 68 

 
Table 46   Crystal data and structure refinement  
Empirical Formula C16H11Br2ITe 
Formula Weight 617.58 
Temperature (°C)  -148(1) 
Crystal Colour, Habit yellow, prism 
Crystal Dimensions (mm3) 0.15 X 0.09 X 0.09 
Crystal System orthorhombic 
Lattice Parameters a = 8.5238(18) Å 
 b = 12.165(3) Å 
 c = 15.780(3) Å 
 −  
Volume (Å3)  V = 1636.3(6) 
Space Group Pca21 
Z value 4 
Dcalc (g/cm3) 2.507 
F000 1128 
µ(MoKα) (cm-1) 85.916 
No. of Reflections Measured 4932 
Rint 0.040 
Min and Max Transmissions 0.290 - 0.462 
Independent Reflections 2609 
Observed Reflection (No. Variables ) 2579(182) 
Reflection/Parameter Ratio 14.34 
Residuals: R1 (I>2.00σ(I)) 0.0313 
Residuals: R (All reflections) 0.0332 
Residuals: wR2 (All reflections) 0.0967 
Goodness of Fit Indicator 1.206 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.41 e-/Å3 
Minimum peak in Final Diff. Map -1.50 e-/Å3 
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Appendix 47 – FKDW219B-1 – FRKIII219B 

Compound 69 

 
Table 47   Crystal data and structure refinement  
Empirical Formula C16H11BrI2Te 
Formula Weight 664.58 
Temperature (°C)  -148(1) 
Crystal Colour, Habit red, platelet 
Crystal Dimensions (mm3) 0.15 X 0.15 X 0.03 
Crystal System triclinic 
Lattice Parameters a = 8.221(2) Å 
 b = 9.639(3) Å 

α = 105.274(8)° c = 11.613(3) Å 
γ = 102.945(9)° β = 90.454(4)° 

Volume (Å3)  V = 863.0(4) 
Space Group P-1 
Z value 2 
Dcalc (g/cm3) 2.557 
F000 600 
µ(MoKα) (cm-1) 76.13 
No. of Reflections Measured 9862 
Rint 0.044 
Min and Max Transmissions 0.335 - 0.796 
Independent Reflections 3384 
Observed Reflection (No. Variables ) 3262(182) 
Reflection/Parameter Ratio 18.59 
Residuals: R1 (I>2.00σ(I)) 0.0373 
Residuals: R (All reflections) 0.0391 
Residuals: wR2 (All reflections) 0.1186 
Goodness of Fit Indicator 1.144 
Flack Parameter - 
Maximum peak in Final Diff. Map 1.43 e-/Å3 
Minimum peak in Final Diff. Map -1.29 e-/Å3 
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Appendix 48 – FKDW236-1 – FRKIII223B 

Compound 70 

 
Table 48   Crystal data and structure refinement  
Empirical Formula C16H11I3Te 
Formula Weight 711.58 
Temperature (°C)  -148(1) 
Crystal Colour, Habit orange, prism 
Crystal Dimensions (mm3) 0.12 X 0.03 X 0.03 
Crystal System triclinic 
Lattice Parameters a = 7.290(4) Å 
 b = 9.642(6) Å 

α = 104.034(9)° c = 13.294(7) Å 
γ = 103.475(12)° β = 92.232(12)° 

Volume (Å3)  V = 877.0(9) 
Space Group P-1 
Z value 2 
Dcalc (g/cm3) 2.695 
F000 636 
µ(MoKα) (cm-1) 69.675 
No. of Reflections Measured 9605 
Rint 0.071 
Min and Max Transmissions 0.632 - 0.811 
Independent Reflections 3429 
Observed Reflection (No. Variables ) 3196(182) 
Reflection/Parameter Ratio 18.84 
Residuals: R1 (I>2.00σ(I)) 0.0589 
Residuals: R (All reflections) 0.0675 
Residuals: wR2 (All reflections) 0.1966 
Goodness of Fit Indicator 1.134 
Flack Parameter - 
Maximum peak in Final Diff. Map 2.28 e-/Å3 
Minimum peak in Final Diff. Map -2.40 e-/Å3 
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Appendix 49 – FKDW168A-2 – FRKII168A 

Compound 73 - 4,7-dibromo-2-mono-tert-butylnaphtho[1,8-c,d][1,2]diselenole  

 
Table 49   Crystal data and structure refinement  
Empirical Formula C14H14Br2Se2 
Formula Weight 499.99 
Temperature (°C)  -148(1) 
Crystal Colour, Habit red, prism 
Crystal Dimensions (mm3) 0.09 X 0.06 X 0.06 
Crystal System monoclinic 
Lattice Parameters a =  9.638(7) Å 
 b = 7.112(5) Å 
 c = 10.499(8) Å 
 β = 94.263(15)° 
Volume (Å3)  V = 717.6(8) 
Space Group P21/m 
Z value 2 
Dcalc (g/cm3) 2.314 
F000 472 
µ(MoKα) (cm-1) 107.166 
No. of Reflections Measured 4132 
Rint 0.039 
Min and Max Transmissions 0.373 - 0.526 
Independent Reflections 1362 
Observed Reflection (No. Variables ) 1267 (115) 
Reflection/Parameter Ratio 11.84 
Residuals: R1 (I>2.00σ(I)) 0.0452 
Residuals: R (All reflections) 0.0499 
Residuals: wR2 (All reflections) 0.1072 
Goodness of Fit Indicator 1.181 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.66 e /Å3 
Minimum peak in Final Diff. Map -0.99 e /Å3 
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Appendix 50 – FKDW237A-1 – FRKIII237A 

Compound 74 - Hydroxydiphenyl[(8-phenylsulfanyl)naphthalene-1-yl]phosphonium 

tribromide 

 
Table 50   Crystal data and structure refinement  
Empirical Formula C56H43O2P2S2Br3 

Formula Weight 1113.73 
Temperature (°C)  -148(1) 
Crystal Colour, Habit colourless, prism 
Crystal Dimensions (mm3) 0.12 X 0.09 X 0.09 
Crystal System triclinic 
Lattice Parameters a = 9.1606(13) Å 
 b = 11.537(3) Å 

α = 83.21(5)° c = 12.606(4) Å 
γ = 66.89(4)° β = 71.33(4)° 

Volume (Å3)  V = 1160.8(7) 
Space Group P-1 
Z value 1 
Dcalc (g/cm3) 1.593 
F000 562 
µ(MoKα) (cm-1) 28.176 
No. of Reflections Measured 11962 
Rint 0.105 
Min and Max Transmissions 0.511 - 0.776 
Independent Reflections 4041 
Observed Reflection (No. Variables ) 3185(296) 
Reflection/Parameter Ratio 13.65 
Residuals: R1 (I>2.00σ(I)) 0.1109 
Residuals: R (All reflections) 0.1398 
Residuals: wR2 (All reflections) 0.1854 
Goodness of Fit Indicator 1.241 
Flack Parameter - 
Maximum peak in Final Diff. Map 0.93 e-/Å3 
Minimum peak in Final Diff. Map -0.79 e-/Å3 
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II - Crystal structure experimental 
 

X-ray crystal structures were determined by Prof. A. M. Z. Slawin and Amy Fuller. Data for 

compounds 1, 2, 27, 31 and 33 (Appendix 1, 2, 16, 20 & 21) were collected at -148(1) °C on a 

Rigaku SCXmini CCD area detector with graphite monochromated Mo Kα radiation (λ = 0.71073 

Å). The data was corrected for Lorentz, polarisation and absorption. Data for compounds 3, 19, 20, 

62 and 64, (Appendix 3, 8, 9, 42 & 44) were collected at -180(1) °C by using a Rigaku MM007 

High brilliance RA generator (Mo Kα radiation, confocal optic) and Mercury CCD system. At 

least a full hemisphere of data was collected using ω scans. Intensities were corrected for Lorentz, 

polarisation and absorption. Data for all other compounds was collected at -148(1) °C on a Rigaku 

ACTOR-SM, Saturn 724 CCD area detector with confocal optic Mo-Kα radiation (λ = 0.71073 Å). 

The data was corrected for Lorentz, polarisation and absorption. 

 

The data for the complexes analysed was collected and processed using CrystalClear (Rigaku).1 

The structure was solved by direct methods2 and expanded using Fourier techniques.3 The non-

hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding 

model. All calculations were performed using the CrystalStructure4 crystallographic software 

package except for refinement, which was performed using SHELXL-97.5  
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IV - Crystal structure and experimental codes for all compounds 

Compound Crystal Structure Code Experiment Code 
1 FKDW15e FRKI9 
2 FKDW2 FRKI5 
3 FKDW3 FRKI15 

15 FKDW123-1 FRKII123 
16 FKDW15(ox)-8 FRKI15ox 
17 FKDW147A-1 FRKII147A 
18 FKDW150B-6 FRKII150B 
19 FKDW4MER FRKI20 
20 FERG56 FRKI45 
21 FKDW20(ox)-1 FRKI20ox 
22 FKDW122-1-9 FRKII111C 
23 FKDW111D-2 FRKII111D 
24 FKDW54-1 FRKI54 
25 FKDW20-10-8a FRKI20-10 
26 FKDW20-7-2 FRKI20-7 
27 FKDW26off FRKII99Cu 
28 FKDW107A-1 FRKII107A 
29 FKDW107B-1 FRKII107B 
30 FKDW20-1-8TAKE2 FRKI20-1 
31 FKDW8 FRKI49 
33 FKDW7 FRKI46 
34 FKDW53-2 FRKI53 
35 FKDW119-1-3 FRKII119 
36 FKDW146A-2 FRKII146A 
37 FKDW95-2 FRKII95 
38 FKDW92-0-2 FRKII92 
40 FKDW126-3 FRKII126 
41 FKDW112-1 FRKII112 
42 FKDW98-0-8 FRKII98 
43 FKDW73-2 FRKI73 
44 FKDW211A-2 FRKIII211A 
45 FKDW211C-1 FRKIII211C 
55 FKDW182-1 FRKII182 
56 FKDW205-2 FRKIII205 
57 FKDW164-3 FRKII164 
58 FKDW157A-2 FRKII157A 
59 FKDW157B-3 FRKII157B 
60 FKDW157BI-3 FRKII157BI2 
61 FKDW173-1 FRKII173 
62 FKDW217A-1 FRKIII217A 
63 FKDW195A-1 FRKII195A 
64 FERG58 FRKIII244 
65 FKDW195B-1 FRKII195B 
66 FERG57 FRKIII245 
67 FKDW161-2 FRKIII219A 
68 FKDW223A-1 FRKIII223A 
69 FKDW219B-1 FRKIII219B 
70 FKDW223B-5 FRKIII223B 
73 FKDW168A-2 FRKII168A 
74 FKDW237A-1 FRKIII237A 

   

 


