
Mind the Gap: Addressing Behavioural
Inconsistencies with Formal Methods

J. K. F. Bowles and M. B. Caminati
School of Computer Science, University of St Andrews

Jack Cole Building, North Haugh, St Andrews KY16 9SX, UK
Email: {jkfb|mbc8}@st-andrews.ac.uk

Abstract—In complex system design, it is important to con-
struct several design models focusing on different aspects of a
system to gain a better understanding of individual component
structure and behaviour. Scenarios of execution are commonly
used to specify partial behaviour and interactions between
a group of system objects or components. However, partial
specifications may hide inconsistencies or an otherwise uninten-
tionally incomplete or underspecified behavioural model. This
paper proposes a new powerful technique combining constraint
solvers and theorem provers to complete partial specifications
and determine overall model inconsistencies. We use a true-
concurrent model, namely labelled event structures, which can
be used as the underlying semantics of widely used workflow
or scenario-based languages. We show how an interplay between
the theorem prover Isabelle and constraint solver Z3 can be used
for detecting and solving partial specifications and inconsistencies
over event structures.

I. INTRODUCTION

As modern systems become more complex, design ap-
proaches model different aspects of a system separately to
gain a better understanding of individual component structure
and behaviour. It is widely recognised that modelling the
complete behaviour of a component is difficult [1], and instead
we model several possible scenarios of execution separately.
Scenarios give a partial behaviour of a component and in-
clude interactions with other system components. In industry,
individual scenarios are often captured using UML’s sequence
diagrams [2]. Given a set of scenarios, we then need to check
whether these are correct and consistent, and to do so we
first need to obtain the combined overall behaviour. The same
ideas apply if instead we are interested in modelling (partial)
business processes within an organisation, commonly captured
using BPMN [3]. In both cases, we need a means to compose
models (scenarios or processes). In addition, there may also
be a need to correct detected inconsistencies in the resulting
model, or make minimal changes leading to an observationally
equivalent but reversible model. These issues have been under
explored in the literature.

Composing systems manually can only be done for small
systems. As a result, in recent years, various methods for
automated model composition have been introduced [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. Most of
these methods involve introducing algorithms to produce a
composite model from simpler models originating from partial
specifications and assume a formal underlying semantics [7].
In our recent work [13], [14], [15], we have used constraint

solvers for automatically constructing the composed model.
This involves generating all constraints associated to the
models, and using an automated solver to find a solution for
the conjunction of all constraints and denoting the composed
model. We used Alloy [16] in [13], [14] and Z3 [17] in
[15]. We have conducted several experiments in [15] to show
that Z3 performs much better than Alloy for large systems.
Using Alloy for model composition, mostly in the context of
structural models, is an active area of research [9], [12], but
the use of Z3 is a novelty of [15]. In further recent work,
we have also used Z3 for detecting and resolving conflicts
between models in a healthcare setting [18].

Our approach in [15] uses event structures [19] as an
underlying semantics for sequence diagrams in accordance to
[20], [21]. Process languages like BPMN have been given a
semantics based on Petri nets [22], where the unfoldings of
Petri nets have a direct correspondence to event structures [23].
This paper uses event structures as the underlying semantic
model for scenario-based languages or BPMN, and further
explores how the theorem prover Isabelle [24] and constraint
solver Z3 [17] can be used in a powerful combination for
detecting and solving partial specifications and inconsistencies
over event structures. More concretely, the contributions of
this paper include an approach to: (1) fill gaps in a composed
model for enabling reversibility of a valid event structure back
to a model given in the original scenario-based language,
and (2) detect and address label inconsistencies in composed
models arising from incompatible constraints over shared
variables. The role of Z3 as an SMT solver is essential here
since it allows, among others, the manipulation of arithmetic
constraints [25]. Even though we will stay mostly at the level
of event structures throughout, we stress that our overall aim
is to provide a mechanism, applicable to scenario and busi-
ness process languages, which can be used for automatically
generating a correct model composition (if existing), and its
enhanced reversible counterpart required to obtain a solution
in the original domain language.

This paper is structured as follows. We describe the con-
tributions for the present paper in Section II, and our formal
model in Section III. We show how the model is captured in
Isabelle and linked to Z3 in Section IV. In Section V, we show
the steps involved in generating a valid composition through
initial parallel composition (A), extension of the model for
reversibility (B) and inconsistent label detection and recovery

(C). We finish the paper with a description of related work in
Section VI, and some concluding remarks in Section VII.

II. CONTEXT AND CONTRIBUTION

Isabelle [24] is a theorem prover or proof assistant which
provides a framework to accommodate logical systems (de-
ductive rules, axioms), and compute the validity of logical
deductions according to a given system. In this paper, we use
Isabelle’s library based on higher-order logic (HOL). In HOL,
the basic notions are type specification, function application,
lambda abstraction, and equality. In addition to be able to
check logical inference over logical systems, theorem provers
such as Isabelle also contain automated deduction tools, and
interfaces to external tools such as SMT solvers and automated
theorem provers.

A satisfiability modulo theories (SMT) solver is a com-
puter program designed to check the satisfiability of a set
of formulas (known as assertions) expressed in first-order
logic, where for instance arithmetic operations and comparison
are understood, and additional relations and functions can
be given a semantic meaning in order to make the problem
satisfiable. Within proof assistants, SMT solvers are used to
find proofs by adding already proved theorems to the list of
assertions, and by negating the statement to be proved to reach
a contradiction. If a SMT solver returns unsat, then a proof
can be reconstructed from the given assertions. The integration
between Isabelle and SMT solvers such as Z3 [17] provides
users an additional powerful combination to be able to produce
more proofs automatically.

In this paper, we exploit the interface between Isabelle
and Z3 in a novel way to obtain a versatile tool for the
specification, analysis and computation of the behaviour of
complex distributed concurrent systems. By specifying our
partial behavioural models in Isabelle we can check automat-
ically their correctness, obtain their composition (if it exists)
and fill any gaps (such as required for reversing the model),
while being able to prove at any point that the models are
valid. If our model contains inconsistent behaviour we are
able to locate the conflicting events. In addition, we address
inconsistencies in models arising from incompatible (shared)
variable constraints and have developed a solution that changes
the composed result accordingly. This is best illustrated with
a simple example shown as UML sequence diagrams [2].

x>9
m1

1sd
a:A b:B

x<5
m2

2sd
a:A b:B

Fig. 1. Two scenarios involving the same object instances.

Fig. 1 shows two extracts of scenarios involving the same
instances a and b1. In the first case, a sends a message m1 to
b, and in the second a sends message m2 to b. The sending

1Note that the locations marked along the lifelines are only shown for
convenience, as it makes it easier to see the corresponding semantic model
later on.

of a message is preceded by a so-called state invariant, i.e.,
a constraint over the value of the variable x. When doing

m1

3sd

m2

par

a:A b:B

x<5

x>9
alt

a:A b:B
4sd

m2

m1

Fig. 2. Usual parallel composition (left) and solution that respects labels
(right).

model composition, for scenarios as above, approaches in the
literature (including our own recent work) do not treat shared
variables, and composition is effectively parallel composition
with synchronisation points identified by what is in common
(in this case the instances). Such mechanisms construct a
composition such as shown in Fig. 2 on the left (which ignores
inconsistent labels omitted from the figure), when in fact it
should take into account the state invariants and correspond
to the model shown in Fig. 2 on the right. Note that par
and alt are operators in sequence diagrams to capture parallel
and alternative behaviour respectively. The model in Fig. 2
(left) implies that both messages m1 and m2 are sent, and the
order in which they are sent is arbitrary. Alternative fragments
may contain guards for the operands, shown here with state
invariants. The model in Fig. 2 (right) implies that either m1
or m2 are sent but not both, and in either case only if the
state invariant is satisfied. If 5 ≤ x ≤ 9, then no message
is sent. In this paper, we show formally how we produce a
solution first as shown in Fig. 2 on the left, and in case of
label inconsistencies resolve it through the use of alternatives
as shown on the right.

III. THE FORMAL MODEL

The model we use underlying common scenario-based or
process languages are labelled (prime) event structures [19],
or event structures for short. What appeals about this model is
its simplicity and ability to naturally describe fundamental no-
tions present in such high-level languages including sequential,
parallel and iterative behaviour (or the unfoldings thereof) as
well as nondeterminism (cf. [20], [21]). In an event structure,
distributed computations are captured as event occurrences
together with binary relations for expressing causal depen-
dency (called causality) and nondeterminism (called conflict).
The causality relation implies a (partial) order among event
occurrences, while the conflict relation expresses how the
occurrence of certain events excludes the occurrence of others.
From the two relations defined on the set of events, a further
relation is derived, namely the concurrency relation co. Two
events are concurrent if and only if they are completely
unrelated, i.e., neither related by causality nor by conflict. The
formal definition as defined for instance in [19] is as follows.

Definition 1: An event structure is a triple E = (Ev,→∗,#)
where Ev is a set of events and→∗,# ⊆ Ev×Ev are binary
relations called causality and conflict, respectively. Causality

→∗ is a partial order. Conflict # is symmetric and irreflexive,
and propagates over causality, i.e., e#e

′ →∗ e′′ ⇒ e#e
′′

for
all e, e

′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev are concurrent,

e co e
′

iff ¬(e→∗ e′ ∨ e′ →∗ e ∨ e#e′).
We assume discrete event structures. Discreteness imposes

a finiteness constraint on the model, i.e., there is always only
a finite number of causally related predecessors to an event,
known as the local configuration of the event (written ↓ e). A
further motivation for this constraint is given by the fact that
every execution has a starting point or configuration.

Event structures are enriched with a labelling function
µ : Ev → 2L that maps each event onto a subset of
elements of L. This labelling function is necessary to establish
a connection between the semantic model (event structure) and
the syntactic model it is describing. A labelled event structure
is a pair L = (Ev, µ). The set L can be an arbitrary set
depending on the domain of use. Here, labels either denote
formulas (constraints over integer variables, e.g., x ≤ 10 or
y = 5) or the send/receipt of a message (e.g., (m, s) or (m, r)
where m is being sent or received, respectively).

Labelled event structures are often described visually show-
ing only immediate causality and immediate conflict. Consider
the following example of an event structure (omitting labels)
in Fig. 3. Events e2 and e3 are concurrent, events e6 and e7
are in conflict (and by propagation also e6 and e10, and so
on). A possible execution fragment in this model corresponds
to the set of events C = {e0, e1, e2, e3, e4, e5, e6, e8}.

Fig. 3. A simple event structure

Formally, an execution fragment in L is a subset of events
σ ⊆ Ev which is (1) downwards-closed: if e ∈ σ and e

′ →∗ e
then e

′ ∈ σ, and (2) conflict-free: for all e, e
′ ∈ σ, ¬(e#e′). A

trace over L is a maximal execution fragment. The set C given
above is not maximal, but C∪{e9} is. The event structure has
two possible traces.

The parallel composition of two or more models is given
by the union of the events keeping the relations as before (cf.
citeKue-TCS-06). For the event structures associated to the
diagrams from Fig. 1, parallel composition is illustrated in
Fig. 4.

The idea here is that the event structure L1 = (E1, µ1)
associated to sd 1 from Fig. 1 shown in Fig. 4 (top left) has
six events (three per instance). Events e0, e2, e4 correspond
to instance a starting the scenario, sending message m1, and
ending the scenario, respectively. Similarly for L2 associated

Fig. 4. Parallel composition of event structures

to sd 2 shown in Fig. 4 (top right). Only immediate causality
and partial labels are shown. The only two events with a more
interesting label are µ1(e2) = {x > 9, (m1, s)} and µ2(e

′
2) =

{x < 5, (m2, s)}. Since these events are concurrent they can
coexist in a possible trace of execution. This means that we
can have an inconsistent state for the system, since both x > 9
and x < 5 are required and cannot be guaranteed.

When inconsistent event labels are present, we need to add a
new pair of events to the conflict relation to prevent the events
from ever being part of the same trace. However, this may
have a ripple effect on other events and relations. Concretely,
adding e′2#e2 alone would lead to an invalid event structure
since by propagation we obtain e4#e4 which is impossible
since # is irreflexive. A usual solution is to duplicate any
shared event e′ that causally succeeds the added conflicting
event pair (in this case only e4 and e5) as shown in Fig. 5. It

Fig. 5. Adding conflict to inconsistent labels

should be noted that the event structures in Fig. 4 and Fig. 5
do not correspond to the ones we obtain with the automated
transformation defined in [15] when applied to the sequence
diagrams of Fig. 2. We need to add events as shown in Fig. 6
to have a direct correspondence to Fig. 2 on the left (similarly
for the other case).

In general, given two (or more) scenarios that have been
transformed into event structures, we do the following steps
automatically: construct the parallel composition as before,
find conflicting labels if present and reconstruct a valid model
in that case, extend the model (to denote fragment boundaries)
to enable reversing the model to the original domain. Model

Fig. 6. Parallel composition of event structures with added events for
reversibility

inconsistencies may be found during the first two steps. We
show how these steps can be followed and how correctness can
be ensured throughout with our tool combination in the next
sections. Actually reversing the model to the original domain
is not in the scope of the present paper.

IV. USING ISABELLE AND Z3
Specifying event structures in Isabelle is straightforward.

We need to define relations for causality Ca and conflict
Co, and their properties. For instance, Ca is a partial order
(reflexive, antisymmetric and transitive) and Co is irreflexive,
symmetric and propagates over causality. The transitivity over
Ca, referred to by Trans, is given below as an example.
a b b r e v i a t i o n ” Trans Ca == ∀ x y z .

(Ca x y & Ca y z → Ca x z) ” .

Further, the following allows us to talk about an event
structure satisfying all required properties.
a b b r e v i a t i o n ” I s L e s Ca Co == (R e f l e x Ca &

Antisym Ca & Trans Ca &
I r r e f l Co & Sym Co & P r o p a g a t i o n Co Ca) ” .

In other words, IsLes is a higher-order function returning
whether Ca and Co form a valid event structure. Given this
definition (which conforms to Definition 1), we can take
advantage of Isabelle’s built-in Z3 code generator to exploit
Z3’s powers for checking whether a given model is a valid
event structure2. As mentioned earlier, establishing whether a
given structure is indeed an event structure is important in the
context of model composition.

Consider a particularly simple example: event e1 causes
event e2, which in turn causes e3, and e1 is in conflict with a
further event e4 as shown below.

The idea is to challenge Z3 to find a proof that such a
structure is not a valid event structure. The following theorem
in Isabelle shows what we want to prove:

2Since Z3 adheres to the SMT-LIB standard, everything we will say about
Z3 will also apply verbatim to other SMT solvers, like cvc4.

theorem assumes ” I s L e s Ca Co” and ”Ca e1 e2 ”
and ”Ca e2 e3 ” and ”Co e1 e4 ” shows F a l s e

s ledgehammer run [p r o v e r s =z3 , min imize = f a l s e ,
o v e r l o r d = t r u e , t i m e o u t =1] (assms)

The theorem above makes some assumptions (hypothe-
ses) written after the keyword assumes3. The assumptions
include that the two relations described constitute a valid
event structure. The keyword shows introduces the thesis
(here False) and sledgehammer is Isabelle’s command for
referencing outside tools (ATPs, SMT solvers), used here to
run Z3. We note that the argument assms is used to instruct
sledgehammer to ignore any other theorems in the Isabelle
library and consider only the stated assumptions.

In the lines above, Isabelle will pass to Z3 a file which
contains one declaration for each of the relations Ca and
Co, and assertions for each of the stated hypotheses. The
underlying idea is that Isabelle is trying to prove the theorem
by contradiction and passes to Z3 all the hypotheses and the
negation of the thesis (which here would be True). When
running Z3 on the input produced by Isabelle, Z3 returns sat
showing that all the assumptions are satisfiable (it is a valid
event structure). Whenever we get a sat answer from Z3,
we can ask it to provide a model by appending the command
(get-model) to the generated file.

It should be noted that, to check whether a given model is an
event structure or whether it can be completed (by adding pairs
to the causality and conflict relations) are essentially the same
problem for Z3. Z3 returns (if existing) a model satisfying the
given assertions, and any additional derived relation pairs are
automatically inferred.

Conversely, we use the same mechanism for finding a
problem in a model. Suppose that the model we are given is
not a valid event structure, we would like Z3 to detect where
the problem lies. To make it easier to locate the problem,
it is better to use more fine-grained assumptions. Consider a
similar example model and theorem, where we state individual
assumptions of a valid event structure explicitly4.

lemma assumes ” R e f l e x Ca” ” Antisym Ca”
” Trans Ca” ” I r r e f l Co” ”Sym Co”
” P r o p a g a t i o n Co Ca” ”Ca e1 e2 ” ”Ca e2 e3 ”
”Co e1 e4 ” ”Ca e1 e4 ” shows F a l s e

s ledgehammer run [p r o v e r s =z3 , min imize = f a l s e ,
o v e r l o r d = t r u e , t i m e o u t =1] (assms)

Notice that the only difference between this model and the
previous one, is an added causality relation between events
e1 and e4 given by the last hypothesis Ca e1 e4. Since
we broke the hypotheses further, we will get distinct labelled
assertions in the Isabelle-generated Z3 file (see extract listing
below). The labels, automatically added by Isabelle, help us
to identify which events and/or properties are violated.

(a s s e r t (! (n o t f a l s e) : named a0))
(a s s e r t (! (ca$ e1$ e4$) : named a1))
(a s s e r t (! (co$ e1$ e4$) : named a2))

3The ands are optional, added here for clarity, but omitted in subsequent
snippets.

4The keywords theorem, lemma, and corollary are all the same for
Isabelle.

(a s s e r t (! (ca$ e2$ e3$) : named a3))
(a s s e r t (! (ca$ e1$ e2$) : named a4))
(a s s e r t (! (f o r a l l ((? v0 A$) (? v1 A$) (? v2 A$))

(=> (and (co$? v0 ? v1) (ca$? v1 ? v2))
(co$? v0 ? v2))) : named a5))

(a s s e r t (! (f o r a l l ((? v0 A$) (? v1 A$))
(=> (co$? v0 ? v1) (co$? v1 ? v0)))

: named a6))
(a s s e r t (! (f o r a l l ((? v0 A$))

(n o t (co$? v0 ? v0))) : named a7))
(a s s e r t (! (f o r a l l ((? v0 A$) (? v1 A$) (? v2 A$))

(=> (and (ca$? v0 ? v1) (ca$? v1 ? v2))
(ca$? v0 ? v2))) : named a8))

(a s s e r t (! (f o r a l l ((? v0 A$) (? v1 A$))
(=> (and (ca$? v0 ? v1) (ca$? v1 ? v0))

(= ? v0 ? v1))) : named a9))
(a s s e r t (! (f o r a l l ((? v0 A$))

(=> (e x i s t s ((? v1 A$))
(o r (ca$? v0 ? v1) (ca$? v1 ? v0)))

(ca$? v0 ? v0))) : named a10))
(check−s a t)
(ge t−u n s a t−c o r e)

Running z3 unsat_core=true on the obtained file we
get:

u n s a t (a1 a2 a5 a6 a7)

Besides the unsatisfiable outcome, we know that the prob-
lem is caused by simultaneously imposing causality between
e1 and e4 (a1), conflict between e1 and e4 (a2), propagation
condition (a5), conflict symmetry (a6), and conflict irreflexiv-
ity (a7). In other words, from e1 → e4, e1#e4 and propagation
of conflict over causality, we get e4#e4 which is impossible
since conflict is irreflexive.

V. ENHANCED COMPOSITION MECHANISMS

A. Basic parallel composition

We show here how parallel composition can be obtained
from Isabelle automatically as expected. We use our example
from earlier (cf. Fig. 4), with individual event structures given
by:

a b b r e v i a t i o n ”Ca1 == { (e0 , e2) , (e1 , e3) ,
(e2 , e3) , (e2 , e4) , (e3 , e5)}”

a b b r e v i a t i o n ”Ca2 == { (e0 , e2 ’) , (e1 , e3 ’) ,
(e2 ’ , e3 ’) , (e2 ’ , e4) , (e3 ’ , e5)}”

We only need to specify immediate causality (the remaining
causality pairs are generated automatically), and neither struc-
ture has events in conflict. We are looking for a composition
Ca which includes both event structures and satisfies the
property isLes. We formulate a lemma that attempts to prove
that this is impossible:

lemma shows
”¬ (∃ Ca . (e v e n t s Ca= e v e n t s Ca1 ∪ e v e n t s Ca2 &
Ca ⊇ Ca1 ∪ Ca2 & i s L e s Ca {})) ”

n i t p i c k [c a r d even tType2 =1−50, m a x p o t e n t i a l = 0] .

The command nitpick challenges Isabelle to find a
counterexample to this lemma, which, if found, gives us the
expected composition. In our case, the output is:

N i t p i c k i n g f o r m u l a . . .
N i t p i c k found a c o u n t e r e x a m p l e :
Skolem c o n s t a n t :
Ca = { (e0 , e0) , (e0 , e2) , (e0 , e3) , (e0 , e4) , (e0 , e5) ,
(e0 , e2 ’) , (e0 , e3 ’) , (e1 , e1) , (e1 , e3) , (e1 , e5) ,
(e1 , e3 ’) , (e2 , e2) , (e2 , e3) , (e2 , e4) , (e2 , e5) ,
(e3 , e3) , (e3 , e5) , (e4 , e4) , (e5 , e5) , (e2 ’ , e4) ,
(e2 ’ , e5) , (e2 ’ , e2 ’) , (e2 ’ , e3 ’) , (e3 ’ , e5) , (e3 ’ , e3 ’) }

which corresponds exactly to our composed event structure
shown in Fig. 4 (note that it generates the complete set of
pairs of events related by causality).

B. Extending a model for reversibility

In order to be able to reverse the obtained event structure,
we need, however, to add a few events to the model which
correspond to the beginning/ending of the parallel fragments
in a sequence diagram. Note that this step may be carried
out after parallel composition was obtained (done in 5.1),
or after checking for inconsistent labels (done in 5.3). We
introduce it at this point in the paper, because it is reasonably
straightforward, and may in addition be useful to understand
our approach for detecting and resolving inconsistent labels.

To extend a model for reversibility, we first need to extract
from the causality relation the pairs of events in immediate
causality. Mathematically, this means to go from a partial order
to the corresponding covering relation, which is possible since
our structures are discrete.

a b b r e v i a t i o n ” o r d e r 2 s t r i c t C o v e r P ==
Union {{x}× (n e x t 1 P {x }) | x . x∈ (Domain P)}”

We also introduce explicitly the concurrency relation as
follows.

a b b r e v i a t i o n ” c o n c u r r e n c y Ca Co ==
((e v e n t s Ca)× (e v e n t s Ca))−Ca−(Ca−1)−Co”

This states that two events are concurrent, if they are not
related by causality (where Ca−1 is used to denote the reverse
of Ca) or in conflict. We need to add events only to the
concurrent branches created by the composition, hence:

a b b r e v i a t i o n ” newConc ==
(c o n c u r r e n c y composedCa {} −

c o n c u r r e n c y Ca1 {} − c o n c u r r e n c y Ca2 {}) ”

For each new pair of concurrent events, we now want
to check whether they have a common immediate successor
(respectively, predecessor).

a b b r e v i a t i o n ” d i v e r g i n g T r i a n g l e s == ((λ (x , y) .
({ x , y } , p r e d e c e s s o r s

(o r d e r 2 s t r i c t C o v e r composedCa){ x} ∩
p r e d e c e s s o r s

(o r d e r 2 s t r i c t C o v e r composedCa){ y })) ‘ newConc) ”

a b b r e v i a t i o n ” c o n v e r g i n g T r i a n g l e s == ((λ (x , y) .
({ x , y } , s u c c e s s o r s

(o r d e r 2 s t r i c t C o v e r composedCa) {x} ∩
s u c c e s s o r s

(o r d e r 2 s t r i c t C o v e r composedCa) {y })) ‘ newConc) ”

Above, successors R X gives us the set of successors
of any of the elements of X according to the order relation R
(similarly for predecessors). The definitions above select

all the triples consisting of two concurrent events with a
common immediate successor or predecessor, but we still need
to remove empty sets. We omit the rules for that here since
they are not essential for what follows.

Finally, we insert a new event between each new pair of
concurrent events in the composed model and their common
immediate successor or predecessor, obtaining a new causality
relation:

d e f i n i t i o n ” extendedComposedCa = composedCa ∪
Union ((λ (X, Z) . Z × f r e s h E v e n t G e n e r a t o r ‘ ‘ Z ∪
(f r e s h E v e n t G e n e r a t o r ‘ ‘ Z) × X) ‘

d i v e r g i n g T r i a n g l e s N o n D e g e n e r a t e) ∪
(Union ((λ (X, Z) . X × f r e s h E v e n t G e n e r a t o r ‘ ‘ Z ∪
(f r e s h E v e n t G e n e r a t o r ‘ ‘ Z) × Z) ‘

c o n v e r g i n g T r i a n g l e s N o n D e g e n e r a t e)) ”

Here, freshEventGenerator is a function to associate
to events in the original composedCa new and distinct
events.

Let composedCa be the result obtained by Nitpick at the
end of last section for our running example and corresponding
to Fig. 4. The extended model is ready for being reversed
corresponding to Fig. 6. The following

v a l u e ” o r d e r 2 s t r i c t C o v e r extendedComposedCa ”

produces the intended solution below.

”{ (e4 ’ , e4) , (e5 ’ , e5) , (e3 ’ , e5 ’) , (e2 ’ , e4 ’) ,
(e2 ’ , e3 ’) , (e3 , e5 ’) , (e2 , e4 ’) , (e2 , e3) ,
(e1 ’ , e3 ’) , (e1 ’ , e3) , (e1 , e1 ’) , (e0 ’ , e2 ’) ,
(e0 ’ , e2) , (e0 , e0 ’) } ”

Above we used order2strictCover defined earlier to
prune the output and make it more readable.

C. Dealing with conflicting labels using Z3

We now consider event labels and check whether events
are consistent with respect to their labels. For example, we
might have one event e1 with a label stating a condition over
a boolean variable that must be true, and another event e2
for which the same variable must be false. More generally,
e1 could have a label corresponding to x<10, and e2 a
label corresponding to x>15, where x is the same numerical
variable. In both cases events e1 and e2 are inconsistent. For
simplicity, we will look at the consistency of pairs of events
at a time, but the approach is extensible for any finite number
of events.

The problem we want to address is formally expressed as
follows. We are given two labelled event structures (L1 and
L2), where event labels may include arithmetic formulas over
a shared set of variables V ar = {x0, . . . , xn−1} for n ∈ N
over the domain of integers. A formula may contain any
arithmetic operation, comparisons, boolean operators, and, for
each possible variable evaluation, returns a boolean value. We
want to check for all pairs of events (e1, e2) with e1 ∈ Ev1
and e2 ∈ Ev2, whether µ1(e1) and µ2(e2) are simultaneously
satisfiable for some evaluation of the variables occurring in
the labels. Since this is essentially a satisfiability problem,
we exploit Isabelle’s built-in Z3 code generator to obtain an
answer.

In HOL, we can represent this problem by introducing
functions f1 and f2 associating to each event in Ev1 and Ev2,
respectively, a λ-abstracted function over V ar. To illustrate the
idea, consider the following sets of events Ev1 = {e0, e1, e2}
and Ev2 = {e′0, e′1, e′2}, and corresponding labels given by:

e0 : x0 < 5 & x0 < x1 e′0 : x0 < 3 & x0 < x1

e1 : x0 > x1 e′1 : x0 + 1 > x1

e2 : x0 + x1 > 5 e′2 : x0 + x1 < 11

The following statements encode λ-abstractions to reflect
all possible evaluations of the variables that satisfy the labels
given.

Listing 1. labels expressed in HOL
” f1 (map1 e0) = (λ x0 x1 . x0 < 5 & (x0 < x1)) ”
” f1 (map1 e1) = (λ x0 x1 . x0 > x1) ”
” f1 (map1 e2) = (λ x0 x1 . x0 + x1 > 5) ”
” f2 (map2 e0 ’) = (λ x0 x1 . x0 < 3 & (x0 < x1)) ”
” f2 (map2 e1 ’) = (λ x0 x1 . x0 + 1 > x1) ”
” f2 (map2 e2 ’) = (λ x0 x1 . x0 + x1 < 11)”

Above, map1 and map2 are bijections mapping events to
integers, which is needed in order to interface our events
of arbitrary type with Z3. This is because Z3 performs best
when dealing with integers, a native type. We can, nonetheless,
ignore this internal mapping done for convenience, and keep
our models with symbolic event types.

We now want Z3 to identify which pairs of events are
satisfiable and which are not. To this end, we introduce a
function g taking two events and yielding the answer. Then, we
need to phrase our query in the form of a satisfiability problem:
the idea is to introduce a formula which is always satisfiable,
and in which g e e′ is true iff e and e′ are simultaneously
satisfiable. We can obtain this behaviour by the following
disjunction:

((∃ x0 x1 . ((f1 e1) x0 x1 & (f2 e2) x0 x1)) &
(g e1 e2 = True)) ∨

((¬ (∃ x0 x1 . ((f1 e1) x0 x1 & (f2 e2) x0 x1)))&
(g e1 e2 = F a l s e))

This means that, if both the formulas associated to a pair
of events are satisfiable for some variable assignment, g is
true for those events, otherwise g is false. Such a g always
exists, and can be found by Z3 giving us exactly what we
want to find out. Since we want to see Z3’s output in term of
symbolic event types, rather than integers, we finally introduce
a further map h to translate from integers to the symbolic
event identifiers (e0, e′0, etc. . .). This corresponds to a further
requirement between g and h:

”∀ e e ’ . h e e ’ = g (map1 e) (map2 e ’) ”

All the statements above constitute the assumptions for a new
lemma on which we can invoke sledgehammer. In this
lemma, we also need the trivial assumptions to make map1
and map2 bijections, which we omit here.

The automatically generated Z3 file presents one labelled
assert statement for each of the lemma’s hypotheses. We

do not include an extract of it below as it is not essential
to understand what is happening, and the output is similar
to examples shown earlier. Running Z3 on the result with an
explicit request for get-model, we get the answer, of which
we give below the relevant extract.

(d e f i n e−fun h$ ((x !1 EventType3$)
(x !2 EventType4$)) Bool

(i t e (and (= x !1 e1$a) (= x !2 e1$)) t r u e
(i t e (and (= x !1 e2$a) (= x !2 e0$)) t r u e
(i t e (and (= x !1 e0$a) (= x !2 e2$)) t r u e
(i t e (and (= x !1 e1$a) (= x !2 e0$)) f a l s e
(i t e (and (= x !1 e0$a) (= x !2 e1$)) f a l s e
(i t e (and (= x !1 e2$a) (= x !2 e2$)) t r u e
(i t e (and (= x !1 e1$a) (= x !2 e2$)) t r u e
(i t e (and (= x !1 e2$a) (= x !2 e1$)) t r u e

(g$ (map1$ x ! 1) (map2$ x ! 2)))))))))))

Essentially, we obtain that h is false over events e1 and e′0,
and events e0 and e′1, as expected.

This general mechanism can be applied to our example of
Figure 4, where two events have labels consisting of sets of
incompatible inequalities: µ1(e2) = {x > 9, (m1, s)} and
µ2(e

′
2) = {x < 5, (m2, s)}. We start by translating them as

done in listing 1, that is, the corresponding statement for the
event e2 will be
” f1 (map1 e2) = (λ x . x > 9) ”

and similarly for the others.
By generating the Z3 input file and running Z3 on it, we are

given the answer that e2 and e′2 are not compatible. To resolve
this, we want to add a new conflict relation between these
events. Further, we want to obtain any other required changes
in the relations automatically. We use Nitpick, similarly to
what we have done before.
lemma assumes ”Ca1 ∪ Ca2 − C ⊆ Ca3” ” c a r d C<=2”
” (e2 , e2 ’) ∈ Co3” ” (e2 , e3) ∈ Ca3”
” (e2 ’ , e3 ’) ∈ Ca3 ” shows ”¬ (i s L e s Ca3 Co3) ”
n i t p i c k [c a r d even tType2 =8−14,

t i m e o u t =40 , m a x p o t e n t i a l =0]

The lemma above challenges Nitpick to find a counterex-
ample event structure L3 (with relations Ca3 and Co3) made
by removing at most two pairs from Ca1 ∪ Ca2, in such a
way that e2 and e3 are in conflict in the new event structure.
Nitpick answers by finding a counterexample, (i.e., L3 exists),
building it, and formally proving it is a valid event structure.
N i t p i c k i n g f o r m u l a . . .
N i t p i c k found a c o u n t e r e x a m p l e :

F ree v a r i a b l e s :
C = { (e2 , e4) , (e3 , e5)}
Ca3 = { (e0 , e0) , (e0 , e2) , (e0 , e3) ,

(e0 , e4) , (e0 , e5) , (e0 , e2 ’) , (e0 , e3 ’) ,
(e1 , e1) , (e1 , e3) , (e1 , e5) , (e1 , e3 ’) ,
(e2 , e2) , (e2 , e3) , (e3 , e3) , (e4 , e4) ,
(e5 , e5) , (e2 ’ , e4) , (e2 ’ , e5) , (e2 ’ , e2 ’) ,
(e2 ’ , e3 ’) , (e3 ’ , e5) , (e3 ’ , e3 ’) }

Co3 = { (e2 , e4) , (e2 , e5) , (e2 , e2 ’) ,
(e2 , e3 ’) , (e3 , e4) , (e3 , e5) , (e3 , e2 ’) ,
(e3 , e3 ’) , (e4 , e2) , (e4 , e3) , (e4 , e5) ,
(e4 , e3 ’) , (e5 , e2) , (e5 , e3) , (e5 , e4) ,
(e2 ’ , e2) , (e2 ’ , e3) , (e3 ’ , e2) , (e3 ’ , e3) ,
(e3 ’ , e4)}

Since Nitpick removed for us the causality pairs from
Figure 4 relating e2 → e4 and e3 → e5, we just need to
re-introduce causality pairs from e2 and e3 to the new events
e′4 and e′5 respectively:

a b b r e v i a t i o n ” F i n a l C a == a d d E v e n t T o C a u s a l i t y
(a d d E v e n t T o C a u s a l i t y Ca3 e2 e4 ’) e3 e5 ’ ”

a b b r e v i a t i o n ” F ina lCo == a d d E v e n t T o C o n f l i c t
(a d d E v e n t T o C o n f l i c t Co3 e2 e4 ’) e3 e5 ’ ”

Above, addEventToCausality and
addEventToConflict are generic functions defined
in the way to preserve the property of being an event
structure, and this is formally granted by an Isabelle theorem
that we proved:

theorem lm30 : assumes ” e ’ ∈ e v e n t s Ca”
” i s L e s Ca Co” ” e /∈ e v e n t s Ca” ” e /∈ e v e n t s Co”
shows ” i s L e s (a d d E v e n t T o C a u s a l i t y Ca e ’ e)

(a d d E v e n t T o C o n f l i c t Co e ’ e) ” .

By applying this theorem twice, we obtain that
(FinalCa, F inalCo) is an event structure. At the same
time, all the definitions used up to now are formulated in a
way to preserve the computability so that, for example, we
can query Isabelle as follows:

v a l u e ” o r d e r 2 s t r i c t C o v e r F i n a l C a ” ,

obtaining the answer

”{ (e3 ’ , e5) , (e2 ’ , e3 ’) , (e2 ’ , e4) , (e0 , e2 ’) ,
(e0 , e2) , (e1 , e3 ’) , (e1 , e3) , (e2 , e3) ,
(e2 , e4 ’) , (e3 , e5 ’) } ”
: : ” (even tType2 × even tType2) s e t ” ,

which corresponds to Figure 5, as intended.

VI. RELATED WORK

The use of SAT solvers such as Alloy, as an aid to generating
composition of models is not new. Zhang et al. [12] and Rubin
et al. [9] have used Alloy for the composition of UML class
diagrams, but their approaches are not fully automated and
they only address composition of static models. Widl et al. [11]
use of SAT-solvers to compose concurrently evolved sequence
diagrams with respect to an overall behavioural specification
given as a state machine. Liang et al. [8] present a method
of integrating sequence diagrams based on the formalisation
of sequence diagrams as typed graphs. Both [11], [8] focus
on less complex structures. For example, they do not deal
with structured interactions which can introduce considerable
complexity. In recent work, we have looked at modelling
and composing more complex scenarios in a fully automated
approach (e.g. [14]). Later, we replaced Alloy by the SMT
solver Z3 in [15] for performance and scalability reasons only.
However, the fact that SMT solvers extend SAT solvers and are
able to deal with more complex problems including arithmetic
constraints, means that we can express and deal with much
more complex models and constraints too. A good example of
where an SMT solver has proven to be particularly useful due
to the integer arithmetics capabilities is given in [18], where
Z3 is used to detect and resolve (medication) conflicts between

(pharmaceutical) graphs in a medical context. Nonetheless,
for modelling and building composed models automatically,
no known approach has attempted to address and explore
inconsistencies derived from variable conditions as we do here.
We also have a more general framework based on the theorem
prover Isabelle, which gives us further assurance as to the
correctness of all our steps. To the best of our knowledge, this
is both novel and powerful. The typical combination of SMT
solvers and proof assistants is done to help finding proofs, and
we bring this combination into a completely different setting
for specifying and reasoning about complex behaviour.

VII. CONCLUSION

The integrated approach proposed in this paper allows us
to gather tasks, which are typically either done manually or
through several steps involving distinct tools, into a fully
automated approach involving one formal tool, namely Is-
abelle. Isabelle is a theorem prover that can be used toensure
rigorous definitions and theorems throughout, and can be used
to compute event structures (in our case), either directly or by
calling internally additional tools such as the SMT solver Z3
and nitpick. Through the use of Z3 and its ability to handle
arithmetic constraints, we were able to extend earlier work to
address the detection of conflicts between models involving
shared variables and inconsistent states. Our work in [15] is
the first approach known to us that uses Z3 for the composition
of behavioural models. This paper is the first to address
arithmetic conflicts in models through a powerful combination
of the theorem prover Isabelle and Z3, and the first to exploit
Isabelle’s infrastructure to interface the final user with SMT
solvers: indeed, Isabelle’s smtlib2 translator is used internally
to use SMT solvers as theorem provers, and not conceived to
be exposed to the user. We show how this Isabelle feature can
be more useful than that, by allowing the user to avoid error-
prone first-order logic syntax, and to use the highly expressive
HOL to both ease the definitions and prove their correctness.
Furthermore, this allows combining SMT techniques with
other means for computations, like HOL functional definitions
and Nitpick, thus addressing distinct parts of the problem at
hand through the most suitable approach.

Finally, we are working on further improvements to our
automated transformations that map scenario or process-based
language models to our formal model, and further enables the
full reversibility of the transformation back to the original
domain model. Only fully automated reversible approaches
can make a more definite contribution as they have the
potential of being accepted in industry.

ACKNOWLEDGMENT

This research is supported by EPSRC grant EP/M014290/1.

REFERENCES

[1] S. Uchitel, G. Brunet, and M. Chechik, “Synthesis of partial behavior
models from properties and scenarios,” IEEE Transactions on Software
Engineering, vol. 35, no. 3, pp. 384–406, 2009.

[2] OMG, UML: Superstructure. Version 2.4.1, OMG, http://www.omg.org.,
2011, document id: formal/2011-08-06.

[3] ——, Business Process Model and Notation. Version 2.0, OMG,
http://www.omg.org., 2011, document id: formal/2011-01-03.

[4] J. Araújo, J. Whittle, and D. Kim, “Modeling and composing scenario-
based requirements with aspects,” in RE 2004. IEEE Computer Society
Press, 2004, pp. 58–67.

[5] J. Bowles and B. Bordbar, “A formal model for integrating multiple
views,” in ACSD 2007. IEEE Computer Society Press, 2007, pp. 71–
79.

[6] R.Reddy, A. Solberg, R.France, and S. Ghosh, “Composing sequence
models using tags,” in Proc. of MoDELS Workshop on Aspect Oriented
Modeling, 2006.

[7] J. Klein, L. Hélouët, and J. Jézéquel, “Semantic-based weaving of
scenarios,” in AOSD’06. ACM, 2006, pp. 27–38.

[8] H. Liang, Z. Diskin, J. Dingel, and E. Posse, “A general approach for
scenario integration,” in MoDELS 2008, ser. LNCS 5301. Springer,
2008, pp. 204–218.

[9] J. Rubin, M. Chechik, and S. Easterbrook, “Declarative approach for
model composition,” in MiSE 2008. ACM, 2008, pp. 7–14.

[10] J. Whittle, J. Araújo, and A. Moreira, “Composing aspect models
with graph transformations,” in Proceedings of the 2006 international
workshop on Early aspects at ICSE. ACM, 2006, pp. 59–65.

[11] M. Widl, A. Biere, P. Brosch, U. Egly, M. Heule, G. Kappel, M. Seidl,
and H. Tompits, “Guided merging of sequence diagrams,” in SLE 2012,
ser. LNCS 7745. Springer, 2013, pp. 164–183.

[12] D. Zhang, S. Li, and X. Liu, “An approach for model composition and
verification,” in NCM 2009. IEEE Computer Society Press., 2009, pp.
1102–1107.

[13] J. Bowles, M. Alwanain, B. Bordbar, and Y. Chen, “Matching and merg-
ing scenarios automatically with Alloy,” in Model-Driven Engineering
and Software Development, ser. CCIS 506, S. H. et al., Ed. Springer,
2015, pp. 100–116.

[14] J. Bowles, B. Bordbar, and M. Alwanain, “A logical approach for
behavioural composition of scenario-based models,” in Formal Methods
and Software Engineering: 17th International Conference on Formal
Engineering Methods, ser. LNCS 9407, S. C. M. Butler and F. Zaı̈di,
Eds. Springer, 2015, pp. 252–269.

[15] ——, “Weaving true-concurrent aspects using constraint solvers,” in
Application of Concurrency to System Design (ACSD 2016). IEEE
Computer Society Press, June 2016.

[16] D. Jackson, Software Abstractions: logic, language and analysis. MIT
Press, 2006.

[17] L. D. Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS
2008, ser. LNCS 4963. Springer, 2008, pp. 337–340.

[18] A. Kovalov and J. K. F. Bowles, “Avoiding medication conflicts for
patients with multimorbidities,” in iFM 2016, ser. LNCS 9681. Springer,
2016, pp. 376–392.

[19] G. Winskel and M. Nielsen, “Models for Concurrency,” in Handbook of
Logic in Computer Science, Vol. 4, Semantic Modelling, S. Abramsky,
D. Gabbay, and T. Maibaum, Eds. Oxford Science Publications, 1995,
pp. 1–148.

[20] J. Küster-Filipe, “Modelling concurrent interactions,” Theoretical Com-
puter Science, vol. 351, pp. 203–220, 2006.

[21] J. K. F. Bowles, “Decomposing Interactions,” in AMAST 2006, ser.
LNCS 4019. Springer, 2006, pp. 189–203.

[22] R. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis of
business process models in bpmn,” Information and Software Technol-
ogy, vol. 50, pp. 1281–1294, 2008.

[23] M. Nielsen, G. Plotkin, and G. Winskel, “Petri nets, event structures and
domains, part i,” TCS, vol. 13, pp. 85–108, 1981.

[24] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, ser. LNCS 2283. Springer, 2002.

[25] L. D. Moura and N. Bjørner, “Satisfiability modulo theories: Introduction
and applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77, 2011.

