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Abstract

This thesis presents several problems based on papers written jointly by the

author and Dr. Christian-Oliver Ewald.

Firstly, the author extends the model presented by Fershtman and Nitzan (1991),

which studies a deterministic differential public good game. Two types of volatility

are considered. In the first case the volatility of the diffusion term is dependent on

the current level of public good, while in the second case the volatility is dependent

on the current rate of public good provision by the agents. The result in the latter

case is qualitatively different from the first one. These results are discussed in detail,

along with numerical examples.

Secondly, two existing lines of research in game theoretic studies of fisheries are

combined and extended. The first line of research is the inclusion of the aspect

of predation and the consideration of multi-species fisheries within classical game

theoretic fishery models. The second line of research includes continuous time and

uncertainty. This thesis considers a two species fishery game and compares the

results of this with several cases.

Thirdly, a model of a fishery is developed in which the dynamic of the unharvested

fish population is given by the stochastic logistic growth equation and it is assumed

that the fishery harvests the fish population following a constant effort strategy.

Explicit formulas for optimal fishing effort are derived in problems considered and

the effects of uncertainty, risk aversion and mean reversion speed on fishing efforts

are investigated.

Fourthly, a Dixit and Pindyck type irreversible investment problem in continuous

time is solved, using the assumption that the project value follows a Cox-Ingersoll-

Ross process. This solution differs from the two classical cases of geometric Brown-

ian motion and geometric mean reversion and these differences are examined. The



vi

aim is to find the optimal stopping time, which can be applied to the problem of

extracting resources.
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Chapter 1

Introduction

Hanley, Sorgren and White (2007) have pointed out ”A market failure occurs when

the market does not allocate scarce resources to generate the greatest social welfare.

A wedge exists between what a private person does given market prices and what

society might want him or her to do to protect the environment. Such a wedge

implies wastefulness or economic inefficiency; resources can be reallocated to make

at least one person better off without making anyone else worse off.”, see [?], page 42.

Market failure may be caused by producing public goods. The main reason is that

private sector producers will not supply public goods to people because they cannot

be sure of making an economic profit. The notion of a public good was defined by

Samuelson in his seminal 1954 paper ”Collective consumption goods” [?]. According

to this a public good is a good which is non-rival and non-excludable. That is, any

consumer’s consumption does not lead to a reduction in the amount of the good

and each individual is allowed to take advantage of it. Some examples are academic

research and national reputation. The principal question for an economic agent is,

how much should he contribute to the public good? Potentially consumers can take

advantage of the public good without sufficient contribution. This issue is called

1
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the free rider problem. In environmental economics, climate change is a crucial

global public good and this represents one classical example of a market failure,

which leads all countries to benefit or suffer from it. Scientists have identified

that the Earth has warmed 0.5◦C over the past 100 years and green-house gas

(GHG) concentrations have also increased significantly over the past 200 years. The

United Nations Intergovernmental Panel on Climate Change (IPCC) has pointed

out ”the balance of evidence suggests that there is a discernible human influence

on global climate.”, see [?] Technical Summary E. Many scientists are concerned

about reducing global GHG emissions in order to reduce the risk to human beings

and the environment. Climate change could be caused by GHG emissions and it is

indeed a threat to economic and ecological sustainability. How does climate change

affect the economy?

One example is renewable resources. Fish stocks, a globally important renewable

resource, have been affected by it. The ocean represents the main environmental

heat sink and scientists have noticed that since 1961, around 80 per cent of the

heat added to the climate system has been absorbed by the sea. This leads to an

increase in sea temperature. The UN News Centre reports that the distribution of

marine and freshwater fish has been affected by climate change and that biological

processes are also influenced, see [?]. These impacts affect the biomass of species

and therefore affect the harvest rates of fishery agents. GHG emissions accumulate

and remain in the atmosphere for several hundred years. A reduction in GHG

emissions may not cause the GHG concentrations to dissipate because they will

take time to decay. The risks to human beings and the environment are caused by

the aggregate stock of GHG and different rates of emissions may lead to the same

concentrations. Therefore, policymakers should focus on how to achieve a given level

of concentration. The Kyoto Protocol is a protocol to the United Nations Framework
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Convention on Climate Change (UNFCCC), with the objective of stabilizing GHG

emissions in the atmosphere at a level that would prevent dangerous anthropogenic

interference with the climate system. However, developing countries such as China

and India will soon be the largest emitters in the world due to their great demand

for fossil fuels. Even though their intent to comply has been reported, ”EU presses

China and India to reduce greenhouse gas emissions”, see [?], the protocol is self-

enforcing and this leads to inefficiency. Climate protection is a public good and

some countries may free ride off the efforts of others and this leads to a public good

game.

As mentioned earlier, there are some environmental resources such as fisheries

that are suffering from climate change. Cod has been an important economic

commodity since the Viking period and some researchers indicate that the US

Atlantic cod population may drop by as much as 50 percent by 2050 due to climate

change, see [?]. In addition to this, such a severe impact will also affect other

species because of the interactions between species. There are various reasons why

multi species models should be studied. The general idea that individuals and

countries should adopt an ecosystem approach to the sustainable use of natural

resources in fact underpins many of the resolutions passed by the 2002 World

Summit on Sustainable Development (WSSD) in Johannesburg. In particular, the

WSSD plan of implementation requires signatory nations to develop and implement

an ecosystem approach to fisheries (EAF) by 2012. From the point of view of

conservation ecology, it is important to understand that the fishing of one species

may have significant effects on another species and that this must be taken into

account when thinking about the conservation of this species. There is no doubt

that ecosystems are affected by uncertainty and interaction among species. It is

impossible to operate a fishery without affecting the ecological equilibrium. In
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order to ensure the conservation of the target species, fishery management measures

should consider other species which belong to the same ecosystem or are associated

with the target. Sharks are a slow-growing and long-lived species and they produce

few offspring. They are a common seafood around the world in countries such as

Japan and Australia and they are often killed for shark fin soup. Since they are

apex predators and the population is comparatively small, a decrease in the stock

of sharks leads the stocks of other species to increase or decrease significantly. On

the other hand, to avoid the extinction of species, it is necessary to consider the

behaviour amoung fishery agents. Each agent’s harvest rate will affect other agents’

decisions and this may cause species to become extinct. In order to understand

the impact of fishery agents’ behaviour on species, it is necessary to study a fishery

game.

Even though people could benefit from a public good, they may suffer when

the ’benefit’ becomes too great. Tourism is one of the major contributions to the

GDP of countries such as Greece and Spain. Both local residents and governments

enjoy the economy improvements caused by tourists and may promote these holiday

destinations to attract more holidaymakers. In other words, the residents and

government benefit from the reputation of these destinations and the reputation

represents a public good. However, a larger value of such good, i.e., a higher

reputation, will be associated with a higher demand for facilities such as tourist

accommodation and environmental problems such as pollution, loss of biodiversity

and resource depletions are caused by a larger number of tourists and consequent

over-development. The Mediterranean coastal zone, one of the invaluable assets

around the world due to its biodiversity and cultural heritage, has suffered from

over-development. Evidence of this has been identified in [?], ”These demographic

and tourist trends result in highly increasing infrastructures and facilities on the
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coastal zone. As regards transport, intensively used roads now run along a large

part of the Mediterranean coast at no more than a kilometre from the shoreline.

Often constructed too close to the shores, the roads disrupt the physical exchanges

between land and sea and generate a linear urbanisation along the coast. Certain

airports, built on wetlands, contribute to the disappearance of ecosystems of great

ecological and economic value”.

Another key topic in environmental economics is non renewable resources because

the consumption of these resources permanently reduces the available stock. The

extraction of such resources may be influenced by several factors, e.g., the price in

the market. Such decisions can be regarded as irreversible investments, since they

are related to big capitals and therefore the real option theory can be applied to

investigate the problem of extracting non renewable resources. The main philosophy

of the real options approach is that a financial manager faces the decision of and

when to invest in a financial project. As opposed to the well known theory of options

on stocks, it is generally assumed that the assets underlying real options are not

traded on relatively liquid markets and, furthermore, that investment decisions are

generally irreversible. Problems that fall into this category range from investment

in real estate to problems of environmental economics and the reduction of GHG

emissions, see Dixit (2000) [?]. Resources represent another typical example of

real options. For example, oil could be considered as an option to invest in the

development of a reserve, see [?], chapter 12. Agents decide when they should

extract the oil due to the price of oil in the market. Real option theory can also

be applied to the problem of renewable resources. Li (1998) studied a model in a

fishery where he proposes that the stock of fish follows a geometric Brownian motion

and this affects the agents’ decision about when and how much fish they are going

to catch, see [?].
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The motivation for this thesis is that environmental economics is becoming more

and more popular and, because the stock of resources are limited, it will be necessary

to introduce management policies. In the real world, time is continuous and it would

be interesting to consider a continuous model. Two main techniques have been

adopted in this thesis are: the real option approach and differential game theory,

and these will be introduced in the following subsections. The following chapters

are based on papers written jointly with the author’s supervisor, Dr. Christian-

Oliver Ewald, and they are available at SSRN. Two applications of differential

game theory are discussed in Chapters 2 and 3, these are public goods and fishery

games. In Chapter 2, it is considered that the public good satisfies the premise

that an individual’s consumption may be reduced if the value of the good exceeds

a given level. One example of such a public good is conservation, because slow

development of an economy may result from over-conservation of environmental

resources. Chapter 3 examines a two species ecological system in which there are

interactions between the two species. The analysis investigates how the ecological

interactions affect fishery agents’ decisions and how these decisions influence the

ecological system. In order to combine climate change and ecological interactions

among species, a stochastic model is considered where climate change represents

one of reasons for the uncertainty. Following on from the numerical example in

Chapter 3, an extension of the Gordon-Schaefer model is presented in Chapter 4

to provide a policy for fishery management. In Chapter 5, the proposition that a

financial project follows a Cox-Ingersoll-Ross process is discussed.

1.1. Real option theory

Real option theory originated with the work of Myers (1977) [?] and is becoming

more and more popular. There is no doubt that time always plays a crucial role
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when a firm makes its investment decision. The decisions a firm makes in the present

are affected by uncertainty and also by decisions made by other firms later on. To

make the decision, the firm has to look ahead to all future possibilities and decide,

whether the firm’s investment should be postponed or not. To introduce real option

theory, this section will first give a brief introduction to two techniques, dynamic

programming and contingent claims analysis, and look at how they can be applied

to identify the optimal stopping time.

Dynamic programming has been widely used in dynamic optimization, particu-

larly when dealing with uncertainty. Starting with the simplest case, a two-period

example, suppose that I ≥ 0 is the sunk cost at each period and ρ ∈ (0, 1) is

a discount rate given exogenously. An agent faces the situation where he can

determine whether he should invest at t = 0 or wait until t = 1. Suppose that

the value of the project at t = 0 is given by P0 and at t = 1, it is

P1 =







(1 + u) P0, with probability p

(1 − d) P0, with probability 1 − p
,

Suppose that the agent has decided to invest in the project at t = 0 and let V0 be

the present value of the revenues he receives. The value V0 discounted back to t = 0

can be derived by

V0 = P0 + [p (1 + u) + (1 − p) (1 − d)] P0

∞
∑

i=1

1

(1 + ρ)i

=
[1 + ρ + p (u + d) − d]

ρ
P0

and the payoff for the agent is defined by max {V0 − I, 0}. It can be seen that the

agent invests only if V0 is greater than the sunk cost I. On the other hand, if the

agent does not invest at t = 0 but t = 1, the present value of the revenues discounted
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back to t = 1 is given by

V1 = P1

∞
∑

i=0

1

(1 + ρ)i
=

(1 + ρ)

ρ
P1.

Similarly, the agent will not invest if V1 is less than I and therefore, his payoff is

given by F1 = max {V1 − I, 0}. However, from the perspective of t = 0, the value

of the project at t = 1 is stochastic, which leads V1 to be stochastic as well. To

determine whether it is worth investing at t = 0, the expectation of F1 is taken

subject to all information available at t = 0, which is given by

E {F1} = p max

{

(1 + ρ) (1 + u) P0

ρ
− I, 0

}

+(1 − p) max

{

(1 + ρ) (1 − d) P0

ρ
− I, 0

}

.

E {F} is called the expected continuation value, or continuation value. Since the

agent tries to maximize his payoff, the optimal decision can be made by comparing

max {V0 − I, 0} with E{F1}
1+ρ

and his payoff is defined by

F0 = max

{

V0 − I,
E {F1}
1 + ρ

}

.

In the two-period case, the agent could determine whether he should invest in

the project at t = 0. If he decides not to invest at t = 0, then he has to wait until

t = 1. In other words, his control, ut at each t, can be represented by ut = 0 for

waiting and ut = 1 for investing. This analysis can be extended for the case where

the number of time periods is more than two. A more general situation can also

be considered where the control that the agent has could be a continuous variable,

for example, the amount of investment. It is assumed that there exists some states

which are given by Markov processes; the definition of a Markov process is given

below:
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Definition 1. (Markov process.) A random process xt is called a Markov process

if it satisfies the Markov property, i.e., the conditional probability distribution of

future states xt of the process, given the history of the process up to and including

time s, is dependent only on the state process xs and independent of states before

time s.

Definition 1 indicates that, to predict what will happen at t + 1, the information

needed is given at t, not before t. Since the goal is to consider the uncertainty

determined by a Wiener process and Wiener processes satisfy the Markov property,

it is appropriate to give the assumption that states are Markov processes. It should

first be considered that T is the terminal time, which is finite, and the termination

payoff for the agent is defined by ΩT (xT ), where xt is the vector of states. Suppose

that the current date is t and the agent has already chosen his control ut, which

leads him to immediately obtain profit flow π(xt, ut). On the other hand, the state

at t + 1 is influenced by ut and xt. Therefore, the continuation value is given by

Et {Ft+1(xt+1)}. Hence, to maximize the payoff at t, it is necessary to solve

Ft(xt) = max
ut

{

π(xt, ut) +
Et {Ft+1(xt+1)}

1 − ρ

}

. (1.1)

Equation (1.1) is called the Bellman equation, which is named after its discoverer,

Richard Bellman. In contrast with the two-period example, immediate investment

implies that π(x0, 1) = V0−I, while the agent gets only discount continuation value

if he decides to wait, i.e., π (x0, 0) = 0. This can be regarded as a special case of

equation (1). In order to derive the optimal control at each period, it is possible to

take advantage of the termination payoff ΩT (xT ) and apply the backward method.
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Since ΩT (xT ) is known, it can be seen that the payoff at t − 1,

FT−1(xT−1) = max
uT−1

{

π(xT−1, uT−1) +
ET−1 {FT (xT )}

1 − ρ

}

= max
uT−1

{

π(xT−1, uT−1) +
ET−1 {ΩT (xT )}

1 − ρ

}

can be computed and therefore, the payoff at each t can be derived. However, in the

case where T is infinite, the backward method collapses because there is no terminal

time. This case can be solved by using a method similar to a two-period model.

The stages at t and t + 1 are considered and the idea discussed above is applied.

On the other hand, if the state x follows a difference equation which is independent

of t explicitly and the profit flow π (x, u) is also independent on t explicitly, the

model is said to be autonomous; in other words, it is time homogeneous. Therefore,

equation (1.1) can be written as

F (x) = max
u

{

π(x, u) +
E {F (x′) |x, u}

1 − ρ

}

, (1.2)

where x is the current state and x′ is the future state. The expectation E {F (x′) |x, u}
is a conditional expectation where the information is given by the current state x

and control u. Such an assumption always appears in the case of infinite time

horizon models and it is reasonable that, in this case, one makes decisions based

on the state, not the time. Numerically, to find the optimal control, first take any

guess F 1(x) and find the corresponding u1, which is a function of x. Substituting

this into equation (1.2), give another function, say F 2(x). Repeating this procedure

generates a sequence of functions, {F 1(x), F 2(x), ..., F i(x), ...}. It can be shown

that this sequence is convergent and the proof of this can be found in [?], Chapters

4 and 9.
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So far, this analysis is only valid for a discrete model. The goal of this analysis

is to consider the situation where the model is continuous and uncertainty is given

by some Wiener processes. Therefore, it is necessary to extend the discussion to

continuous time. Supposing that the length of each period is ∆t instead of 1. The

rate for profit flow π(t, x, u) over each interval of time is defined by π(t, x, u)∆t and

the discount continuation value is given by E{F (t+∆t,x′)|x,u}
1+ρ∆t

. Therefore, equation

(1.2) becomes

F (t, x) = max
u

{

π(t, x, u)∆t +
E {F (t + ∆t, x′) |x, u}

1 + ρ∆t

}

,

which then implies

F (t, x) (1 + ρ∆t) = max
u

{π(t, x, u)∆t (1 + ρ∆t) + E {F (t + ∆t, x′) |x, u}} ,

or

ρ∆tF (t, x) = max
u

{π(t, x, u)∆t (1 + ρ∆t) + E {F (t + ∆t, x′) − F (t, x) |x, u}}

= max
u

{π(t, x, u)∆t (1 + ρ∆t) + E {∆F}} .

Divide both sides in the above equation by ∆t and let ∆t tend to 0, then

ρF (t, x) = max
u

{

π(t, x, u) +
E {dF}

dt

}

. (1.3)

Now, assuming that the value of the financial project is given by a stochastic

differential equation:

dx(t) = a(t, x, u)dt + b(t, x, u)dW (t),
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where W (t) is a Wiener process. Application of Itô formula gives:

dF (t, x(t)) =

(

∂

∂t
F (t, x(t)) + a(t, x(t), u(t))

∂

∂x
F (t, x(t)) +

b2(t, x(t), u(t))

2

∂2

∂x2
F (t, x(t))

)

dt

+b(t, x(t), u(t))
∂

∂x
F (t, x(t))dW (t).

Since E
{

b(t, x(t), u(t)) ∂
∂x

F (t, x(t))dW (t)
}

= 0, E{dF}
dt

, can be represented by

E {dF}
dt

=
∂

∂t
F (t, x(t))+a(t, x(t), u(t))

∂

∂x
F (t, x(t))+

b2(t, x(t), u(t))

2

∂2

∂x2
F (t, x(t)),

and the Bellman equation is defined by

ρF (t, x) = max
u

{

π(t, x, u) +
∂

∂t
F (t, x) + a(t, x, u)

∂

∂x
F (t, x) +

b2(t, x, u)

2

∂2

∂x2
F (t, x)

}

.

(1.4)

Therefore, the Bellman equation is already derived for the case where the project

value given by an Itô process.

Suppose that the agent can determine whether he should invest at t. If the

investment is irreversible, then this raises a question, i.e., what is the optimal timing

for investing? This is called optimal stopping time. In a two-period model, the

optimal stopping is determined by F0 = max
{

V0 − I, E{F1}
1+ρ

}

. If F0 = V0 − I, then

this means that the agent invests at t = 0. On the other hand, if F0 = E{F1}
1+ρ

, then

he waits until t = 1 and then invests. It can be extended to a model with many

periods. If the termination payoff is defined by Ω(t, x), then the Bellman equation

becomes

F (t, x) = max

{

Ω(t, x), π(t, x) +
E {F (t + ∆t, x′) |t, x}

1 + ρ

}

. (1.5)

Similarly, the agent would not invest if F (t, x) = π(t, x) + E{F (t+∆t,x′)|t,x}
1+r

. Now,
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moving to the case where the financial project is defined by an Itô process. Equation

(1.4) implies that

ρF (t, x) = π(t, x) +
∂

∂t
F (t, x) + a(t, x)

∂

∂x
F (t, x) +

b2(t, x)

2

∂2

∂x2
F (t, x). (1.6)

To determine the optimal stopping, note that, in a discrete case, the termination

payoff and expected continuation value are compared. In a continuous model, it is

reasonable that the optimal stopping satisfies the condition F (t, x∗(t)) = Ω(t, x∗(t)),

which is called the value-matching condition. Moreover, this is a free-boundary

problem because x∗ is unknown. Mathematically, this is always more complicated

than an initial value problem. On the other hand, there is an additional condition

which comes from economic consideration and this is defined by ∂
∂x

F (t, x∗) =

∂
∂x

Ω(t, x∗). This condition is named the smooth-pasting condition. The value-

matching and smooth-pasting conditions do indeed give the optimal stopping. The

value-matching condition requires that at the time the agent invests, the payoff and

the continuation value subtracting the sunk cost are equal. On the other hand,

the smooth-pasting condition guarantees the continuity of the first derivative at x∗.

To see how both conditions work, an example can be found in [?], see page 130,

Appendix C. On the other hand, if the time horizon is infinity, and π(x), a(x), b(x)

and Ω(x) are not explicitly dependent on time, then the equation for the model is

autonomous and equation (1.6) can be rewritten as

ρF (x) = π(x) + a(x)F ′(x) +
b2(x)

2
F ′′(x). (1.7)

with two conditions, F (x∗) = Ω(x∗) and F ′(x∗) = Ω′(x∗). Comparing equation (1.6)

with (1.7), it can be seen that, in the case with a finite time horizon, the optimal

stopping is not only dependent on time, but also the state, which is the value of
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the project. In the case where the time horizon is infinite, the agent chooses the

optimal stopping according to the state x. This is realistic because he can wait until

the continuation value reaches the termination payoff without facing any terminal

date.

This section now moves on to another technique, named contingent claims anal-

ysis. In dynamic programming, F (t, x) is interpreted as the value of an asset in the

market, while in contingent claim analysis, F (t, x) could be regarded as the output

of a firm, e.g., oil and copper production. This can be traded as an asset in financial

markets. The discount rate ρ in dynamic programming is given exogenously, and

this may not be easy to specify. On the other hand, in contingent claims analysis, it

is assumed that the traded asset has a risk adjusted expected rate of return µ and

therefore the firm pays a risk premium of µ−r, where r is the riskless rate of return

given exogenously. Suppose that the financial project x(t) follows the stochastic

differential equation

dx(t) = α(t, x(t))dt + σ(t, x(t))dW (t),

where W (t) is a standard Wiener process. The expected rate of return of the

investment is given by α(t,x(t))
x(t)

and for arbitrage reasons it would need to pay a

dividend rate of

δ(t, x(t)) = µ − α(t, x(t))

x(t)
.

In the context of real options this rate is called the implied proportional dividend

rate. Suppose that an agent invests one dollar and buys n units of x. The agent

holds this for an interval of time dt and obtains rdt from the riskless asset. On

the other hand, the other asset pays a dividend nδ(t, x(t))x(t)dt and has a random

capital gain, ndx(t) = nα(t, x(t))dt + nσ(t, x(t))dW (t). Therefore, the total return
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on each dollar invested is

r + n (α(t, x(t)) + δ(t, x(t))x(t))

1 + nx(t)
dt +

nσ(t, x(t))

1 + nx(t)
dW (t).

On the other side, if the output of the firm is given by F (t, x(t)) and the profit flow

is defined by π(t, x(t)), according to the Itô’s formula:

dF (t, x(t)) =

(

∂

∂t
F (t, x(t)) + α(t, x(t))

∂

∂x
F (t, x(t)) +

σ2(t, x(t))

2

∂2

∂x2
F (t, x(t))

)

dt

+σ(t, x(t))
∂

∂x
F (t, x(t))dW (t).

If the portfolio can replicate the risk of owning the firm, this gives the following

equations:

π(t, x) + ∂
∂t

F (t, x) + α(t, x) ∂
∂x

F (t, x) + σ2(t,x)
2

∂2

∂x2 F (t, x)

F (t, x)
=

r + n (α(t, x) + δ(t, x)x)

1 + nx
,

σ(t, x) ∂
∂x

F (t, x)

F (t, x)
=

nσ(t, x)

1 + nx

Therefore,

σ2(t, x)

2

∂2

∂x2
F (t, x) + (r − δ(t, x)) x

∂

∂x
F (t, x) +

∂

∂t
F (t, x) − rF (t, x) + π(t, x) = 0,

(1.8)

with the conditions F (t, x∗) = Ω(t, x∗) and ∂
∂x

F (t, x∗) = ∂
∂x

Ω(t, x∗). Note that if

the model is autonomous, equation (1.8) becomes:

σ2(x)

2
F ′′(x) + (r − δ(x)) xF ′(x) − rF (x) + π(x) = 0. (1.9)

with the conditions F (x∗) = Ω(x∗) and F ′(x∗) = Ω′(x∗).

It can be seen that equations (1.6) and (1.8) are of a similar structure, r replaces
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ρ and (r − δ(t, x)) x replaces a(t, x). The interpretation of the contingent claims

analysis differs from that in dynamic programming: In dynamic programming, the

agent determines whether the asset is worth holding, while in contingent claims

analysis, the agent chooses the option exercise date in order to maximize the value

of the asset. When working with dynamic programming, a discount rate is required,

thus ρ is given exogenously, while in contingent claim analysis, the riskless rate of

return r is needed and this is easy to specify compared to ρ. However, in contingent

claim analysis, a rich set of markets in risky assets is necessary because the intension

is to replicate the uncertainty W (t) by some risky assets in markets.

1.2. Stochastic differential games

Differential game theory was introduced by Rufus Isaacs in 1965, see [?]. In

classical game theory, players are allowed to make decisions at a particular time.

However, in the real world, time is continuous and this assumption may not be

realistic. Differential game theory differs from classical game theory in some aspects:

All players face a continuous time horizon and they are allowed to make their

decisions at any time. Each player tries to maximize his objective functional, which

can be interpreted as the payoff. Moreover, payoffs are accumulated over time. All

players face a family of states defined by differential equations. The interpretation

of these states is dependent on the problem that is being dealt with. For example,

in a public good game, the state is interpreted as the value of the public good,

whereas in a fishery game, states are understood to be the biomass of species.

These cases will be introduced in Chapters 2 and 3, respectively. The techniques

that are applied to deal with differential games are the Hamilton-Jacobi-Bellman

equation and Pontryagin’s maximum principle. A deterministic differential game
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model is always given, for each player i,

max
ui

∫ T

t0

e−ri(t−t0)Fi(t, x(t), ui(t), u−i(t))dt + e−r(T−t0)Si(x(T )), (1.10)

subject to

dx(t) = f(t, x(t), ui(t), u−i(t))dt, x(t0) = x0, (1.11)

where

u−i(t) = (u1t, ..., ui−1(t), ui+1(t), ..., uN(t))

is the strategies chosen by other players. ui is the vector of controls for player

i and ri is a discount rate. Si(x) is called the transversality condition, which is

interpreted as the terminal payoffs of player i. To solve the system (1.10) and

(1.11), the Hamilton-Jacobi-Bellman equation and Pontryagin’s maximum principle

are introduced. There are defined below:

Theorem 1. (Hamilton-Jacobi-Bellman equation.) Let V : X × [0, T ] → < be a

continuously differential function, where X is the state space. If V (t, x) satisfies the

Hamilton-Jacobi-Bellman equation

rV (t, x) − ∂

∂t
V (t, x) = max

u

{

F (t, x, u) +
∂

∂x
V (t, x)f(t, x, u)

}

,

with the terminal condition V (T, x) = S(x), then u∗ maximizing the right hand side

of the Hamilton-Jacobi-Bellman equation is an optimal control and V (t, x) is the

optimal value.

where ∂
∂x

V (t, x) is denoted by the gradient of V (t, x) with respect to x, and
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Theorem 2. (Pontryagin’s maximum principle.) Let

H(t, x(t), λ(t), u(t)) = F (t, x(t), u(t)) + λ(t)f(t, x(t), u(t))

be the Hamiltonian function and suppose that

H∗(t, x(t), λ(t)) = max
u

{H(t, x(t), λ(t), u(t))}

exists. Assume that X, the state space, is convex and the transversality condition

S(x) ∈ C
1, where C

1 is the class of all continuously differentiable functions, is con-

vex. If there exists an absolutely continuous function λ(t) satisfying H∗(t, x(t), λ(t)) =

maxu {H(t, x(t), λ(t), u(t))}, the costate equation λ′(t) = rλ(t)− ∂
∂x

H∗(t, x(t), λ(t))

and λ(T ) = S ′(x(T )) as well as H∗(t, x, λ(t)) ∈ C
1 is concave with respect to x,

then u∗ which maximizes the Hamiltonian function is an optimal control.

Theorem 1 and 2 are versions of a finite time horizon, and to solve a deterministic

differential game model, Theorem 1 or 2 are applied to derive the value function

Vi(t, x) for each player i and then solve a system of partial differential equations.

Each partial differential equation has an associated boundary condition Vi(T, x) =

Si(x). However, in the real world, some situations may be faced where the terminal

time is unknown or the time duration is infinity, i.e., T = ∞. In this case, the

transversality condition is usually given by Si(x) = 0 because there is no terminal

date and terminal payoff. Theorem 1 and 2 can be extended to versions capable

of resolving infinite time horizon. The idea is to give a finite terminal time T

and then derive u∗ and V (t, x; T ). If limT→∞ V (t, x; T ) exists and this solves the

Hamilton-Jacobi-Bellman equation for the infinite time horizon model, then V (t, x)

is the optimal value function. This idea is called the finite horizon approximation

approach, which is mentioned in [?], see page 70. The finite horizon approximation
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approach is used because, with an infinite time horizon, the terminal condition for

the Hamilton-Jacobi-Bellman equation is given by limT→∞ V (T, x; T ) = 0, which is

not helpful when solving the partial differential equation of V (t, x). On the other

hand, it is possible to guess the form of solutions and then derive the unknown

coefficients. However, it may not be easy to pick the correct values. One example

of this is given in the paper by Ewald and Wang (2009), see [?]. This is based

on a stochastic model, where it can easily be supposed that the volatility is 0.

Moreover, the solution, derived by finite horizon approximation approach, satisfies

the catching-up optimality, i.e.,

lim inf
T→∞

V (t, u∗(t); T ) − V (t, u(t); T ) ≥ 0,

where u∗ is an optimal control for the finite horizon model with terminal time T

and u is any feasible control. Let [0, T 〉 be denoted by the time duration that

players face. There are three types of Nash-equilibrium strategies: open-loop Nash-

equilibrium strategies, feedback Nash-equilibrium strategies and stationary feed-

back Nash-equilibrium strategies. Feedback Nash-equilibrium strategies are some-

times called closed-loop Nash-equilibrium strategies or Markovian Nash-equilibrium

strategies. Each type has its own interpretation. These are the definitions for each

type:

Definition 2. (Open-loop Nash equilibrium.) The N-tuple (u∗
1, ..., u

∗
N ) of functions

, u∗
i : [0, T 〉 → <mi , is called an open-loop Nash equilibrium if u∗

i solves the system

(1.10) and (1.11) and it is a function of time.

Definition 3. (Feedback Nash equilibrium.) The N-tuple (u∗
1, ..., u

∗
N ) of functions

, u∗
i : X × [0, T 〉 → <mi where X is the state space, is called a feedback Nash

equilibrium if u∗
i solves the system (1.8) and (1.9) and is a function of both time
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and states.

Definition 4. (Stationary feedback Nash equilibrium.) The N-tuple (u∗
1, ..., u

∗
N ) of

functions , u∗
i : X → <mi , is called a stationary feedback Nash equilibrium if u∗

i

solves the system (1.8) and (1.9) and it is a function of states.

Definition 2 says that an open-loop Nash-equilibrium strategy is dependent on time.

It always appears in a finite time horizon model because each player knows the

terminal time and time definitely affects their strategies. For example, in a public

good game, due to the free rider effect, it is intuitive that each player has less

incentives to invest until the terminal date is approaching. On the other hand, when

a player decides to employ a feedback Nash-equilibrium strategy, he is concerned not

only with current time, but also current states. This could be used in a situation

where some players know that the states they are currently facing may not be

correct. Because all players derive their optimal strategies from the states, those

players who realise this can take advantage of the correct current states and then

make their decisions. Definition 4 always occurs when players are facing an infinite

time horizon. Mathematically, if the model is autonomous, one could derive a

stationary feedback Nash-equilibrium strategy if such a strategy exists. In the case

with an infinite time horizon, open-loop Nash equilibria and stationary feedback

Nash equilibria represent different phenomena. Taking the deterministic public

good game in [?], section 9.5, as an example: If players decide to employ open-loop

Nash equilibrium strategies, because there is no terminal date, it can be seen that

the open-loop Nash equilibrium is convergent to a constant. This implies that the

players have an expectation of what value the good will converge to. However, this

ignores an important phenomenon, the free ride effect. On the other hand, when

considering a stationary feedback Nash-equilibrium strategy, it can be seen that the

free rider effect will appear. A larger value of the public good leads players to have
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less incentive to invest because they will try to free ride on others. The case of the

stochastic version will be introduced in Chapter 2.

It can be seen that, uncertainty always plays an important role in the real

world. The introduction above only examines a deterministic model. One idea

that could extend a deterministic differential game to a stochastic differential game

is to consider that the uncertainty is determined by a Wiener process. In this case,

the stochastic differential game is defined, for each player i,

max
ui

E

{∫ T

t0

e−ri(t−t0)Fi(t, x(t), ui(t), u−i)dt + e−r(T−t0)Si(x(T ))

}

, (1.12)

subject to

dx(t) = f(t, x(t), ui(t), u−i(t))dt + σ(t, x(t), ui(t), u−i(t))dW (t), x(t0) = x0, (1.13)

where σ(t, x(t), ui(t), u−i(t)) is a matrix of functions and W (t) is a vector of some

independent Wiener processes. It can be seen that in equation (1.12), players

maximize their expected utility since they face uncertainty. In contrast with a

deterministic differential game, in a stochastic differential game, there are still three

types of Nash-equilibrium strategies. However, the concept of open-loop Nash-

equilibrium strategies may not be appropriate when facing a stochastic model. The

reason for this is that uncertainty now appears in the model and it is harder to

react by only considering time. Therefore, a feedback Nash-equilibrium strategy

is always employed in a stochastic differential game. Another difference can be

seen in the techniques used to solve a model. In a deterministic differential game,

there are two methods, the Hamilton-Jacobi-Bellman equation and Pontryagin’s

maximum principle, used to solve a model. Nevertheless, it is very difficult to

apply Pontryagin’s maximum principle to deal with a stochastic differential game,
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and the Hamilton-Jacobi-Bellman equation is widely used when facing a stochastic

differential game. The stochastic version of the Hamilton-Jacobi-Bellman equation

is given by

Theorem 3. (Hamilton-Jacobi-Bellman equation.) Let V : X × [0, T ] → < be a

function and ∂
∂t

V (t, x), ∂
∂x

V (t, x) and ∂2

∂x2 V (t, x) are continuous. If V (t, x) satisfies

the Hamilton-Jacobi-Bellman equation

rV (t, x) − ∂

∂t
V (t, x)

= max
u

{

F (t, x, u) +
∂

∂x
V (t, x)f(t, x, u) +

1

2
tr

(

∂2

∂x2
V (t, x)σ(t, x, u)σ(t, x, u)′

)}

,

where σ(t, x, u) is the matrix of volatility and σ(t, x, u)′ is the transpose of σ(t, x, u),

then u∗ maximizing the right hand side of the Hamilton-Jacobi-Bellman equation is

an optimal control and V (t, x) is the expected optimal value.

Similarly to Theorem 1, Theorem 3 can be extended to the case with T = ∞.

The concept is analogous to the deterministic version. In the deterministic version,

the Hamilton-Jacobi-Bellman equation is given by a first order partial differential

equation, while in the stochastic version, it is defined by a second order differential

equation. The reason is due to Itô’s formula and it can be seen that the volatility

appears only in the coefficient for the term ∂2

∂x2 V (t, x). The proofs for Theorem 1,

2 and 3 can be referred to [?] and they have been omitted here.



Chapter 2

Dynamic voluntary provision of

public goods with uncertainty

Various papers have discussed the free rider problem within a static game theoretic

model. Bergstrom, Blume and Varian (1986) [?] considered this case and proved

that there exists a unique Nash equilibrium under very weak assumptions. Various

other studies have considered the static case, see [?], [?], [?], [?] and [?]. In many

contexts however a dynamic model where agents can adjust their provisions toward

a public good depending on the current state of the system appears to be more

reasonable and is therefore worthy of investigation. McMillan (1979) studied an

infinitely repeated game and showed that the free rider problem may not be apparent

if the value of public goods are not discounted too heavily, see [?]. McMillan’s setup

differs slightly from the line taken in many other studies in the way that he uses

trigger strategies instead of continuous adjustment of the provision rate. However

within this setup he does establish that the non-cooperative Nash-equilibrium is

Pareto optimal, which is a remarkable result. This chapter will follow the approach

taken by Fershtman and Nitzan (1991) who presented a continuous time model

23
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with infinite time horizon with no uncertainty [?]. These authors suppose that the

benefits and costs are accumulated over time and derived feedback Nash equilibria.

In many applications of public good theory, uncertainty plays a fundamental

role, for example, with insurance. For this reason the setup of Fershtman and

Nitzan has been extend to include an uncertainty term. Two different cases will be

studied: in the first one the volatility of the uncertainty term depends exclusively

on the current level of the public good. In this case the form of the feedback

Nash-equilibrium is identical to the deterministic case. The level of the public good

however fluctuates randomly. In the second case, the volatility of the uncertainty

is dependent on the current rate of public good provision by the agents. This

case results in a qualitatively different result. From an economic viewpoint, both

scenarios are realistic. A large project value is associated with a higher risk. On

the other hand, if an investor invests a great amount of money in a short amount

of time, the level of the public good is generally also exposed to higher uncertainty.

In reality there will be a mixture of both effects, but in this chapter they will be

strictly separated for reasons of tractability and in order to highlight the differences.

This chapter will concentrate on the symmetric framework and the objective is

to compute a symmetric feedback Nash-equilibrium in the sense of a stationary

Markovian Nash equilibrium, which has been defined in section 1.2, Definition 4.

The following section, 2.1, will give a brief introduction to the deterministic model

that was studied by Fershtman and Nitzan (1991) [?]. This model will be extended

by the introduction of a general uncertainty term in section 2.2. Section 2.3 will

focus on the case where the volatility of the uncertainty exclusively depends on

the current level of the public good, while section 2.4 examines, the case where it

exclusively depends on the rate of contribution to the public good. Cooperative

and non cooperative cases will be compared in both section 2.3 and 2.4. Various
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numerical results are discussed in section 2.3 and 2.4, as well as presented in the

form of figures in the end of this chapter. Some conclusions are made in section 2.5.

2.1. The deterministic model

This section will start with, a brief introduction of the deterministic model studied

by Fershtman and Nitzan (1991) [?]. Here, the project value is given by the following

controlled differential equation

x′(t) =
n
∑

i=1

ui(t) − δx(t), x(0) = x0. (2.1)

the parameter δ is called a depreciation rate. It is assumed to be non-negative. The

control ui(t) represents the amount of money invested into the project by investor

i, while n is the number of investors. It would be expected that a higher value

of depreciation rate would lead to a lower value of both the project and utility.

Furthermore, investors may have less incentive to invest under a large depreciation

rate. Each agent faces an individual cost given by C(ui(t)) but they all benefit from

the project in the same way. More precisely the benefit for each agent is given by

αf(x(t)), where α is greater than 0 and less than 1. Fershtman and Nitzan called

the project a pure public good if α = 1, otherwise it represents a combination of

public and private good. Mathematically however, α does not play an important

role here, since it can be assumed that f̃(x(t)) = αf(x(t)) and replacement of f̃

with f leads to α = 1. Therefore, it is only necessary to concentrate on the case of

α = 1. For each agent i, the objective functional is defined by

max
ui

∫ ∞

0

e−rt[f(x(t)) − C(ui(t))]dt (2.2)
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subject to equation (2.1), where r is a discount rate. In order to obtain a mathe-

matically tractable model Fershtman and Nitzan proposed that the cost for investor

i is given by C(ui) =
u2

i

2
, and that the project value at t is given by f(x) = ax−bx2,

where x < a
2b

, which therefore leads the model to be a linear quadratic game, see

[?], Chapter 7. Note that under (2.1), the condition, x < a
2b

, will always hold,

providing that each investor chooses to invest according to the unique open loop

Nash equilibrium. If the assumption x < a
2b

is relaxed, this can instead be thought

of as a public good that satisfies the property that one suffers from it if its value

is too large. One example indicated earlier in Chapter 1 is the over development

of an environmental resource. To solve this model, Fershtman and Nitzan apply

the Pontryagin maximum principle. As the model developed in this thesis includes

uncertainty in the form of diffusion terms, the Hamilton-Jacobi-Bellman approach

will be used. The following analysis will concentrate on the case of two investors,

because simplifies the notation. The general case can be treated in analogy. As

the focus will be on a symmetric Nash-equilibrium, the value function for both

agents will be the same and Vi(x) will be written as V (x). Note that this model is

autonomous and hence, according to the Hamilton-Jacobi-Bellman equation, if u∗
j is

a stationary Nash feedback optimal control for agent j, this will give the differential

equation

rV (x) = max
ui

{

−u2
i

2
+
(

ax − bx2
)

+ V ′(x)
(

ui + u∗
j − δx

)

}

(2.3)

A necessary condition to maximize equation (2.3) is u∗
i = V ′(x), the marginal benefit

of the value function. Substituting this into equation (2.3), shows that the value

function is the solution of the ordinary differential equation:

3

2
[V ′(x)]

2 − δxV ′(x) − rV (x) − bx2 + ax = 0 (2.4)
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When considering the infinite horizon case, there is no terminal condition for the

differential equation. Without further specification, there are an infinite number of

solutions to equation (2.4). Instead of employing transversality conditions, which

are more suitable for the Pontryagin maximum principle approach, this analysis

will employ the technique of finite horizon approximation approach. If a sufficiently

large expiry time T is given, the terminal condition is given by V (T, x; T ) = 0 and

this implies

lim
T→∞

V (T, x; T ) = 0. (2.5)

Assuming a functional form V (t, x; T ) = A(t; T )x2 + B(t; T )x + C(t; T ), equa-

tion (2.4) can be solved with respect to the terminal condition V (T, x; T ) = 0.

Substitution into the Hamilton-Jacobi-Bellman equation produces three differential

equations for A(t; T ), B(t; T ) and C(t; T ). These are given by

A′(t; T ) = −6A2(t; T ) + (r + 2δ) A(t; T ) + b, A(T ; T ) = 0

B′(t; T ) = (r + δ − 6A(t; T )) B(t; T ) − 1, B(T ; T ) = 0

C ′(t; T ) = rC(t; T ) − 3

2
B2(t; T ), C(T ; T ) = 0

Their fixed points can be computed as A = A±, Bc = a
r−6A+δ

and Cc = 3B2

2r
,

where A± =
(r+δ)±

√
(r+δ)2+24b

12
. Since equation (2.5) holds, by analyzing the (A,A′)-

diagram, it can be seen that A(t) must lie in [A−, 0] and its limit is Ac = A−

for T tending to infinity. Therefore, the corresponding value function is given by

V (x) = Acx
2 + Bcx + Cc and the stationary feedback Nash equilibrium can be

computed as u∗
i = 2Acx + Bc. The corresponding state equation is then given by

x′(t) = (4Ac − δ) x(t) + 2Bc, x(0) = x0 (2.6)
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The solution can be computed and the limit is given by x = 2Bc

δ−4Ac
as T tends to

infinity. Note that a larger value of δ indeed implies a lower project value and lower

optimal utility. On the other hand, the open-loop Nash-equilibrium strategy

4AcBc

δ − 4Ac

− 2Ac

δ − 4Ac

(2Bc + 4Ac − δ) e(4Ac−δ)t + Bc,

tends to 4AcBc

δ−4Ac
+ Bc > 0 for t tending to infinity. As indicated in Chapter 1, it is

harder to observe the free ride effect if agents adopt the open-loop Nash-equilibrium

strategies and this is one disadvantage when studying a public good game model.

2.2. A stochastic version of the Fershtman and Nitzan model

The analysis in this section will extend the model discussed previously section by

introducing uncertainty in the form of diffusion terms. This is one step toward a

more realistic model, because in the real world agents face uncertainty. To construct

the model, without loss of generality, it is supposed that there are only two agents

and equation (2.1) can be extended to:

dx(t) = [u1(t) + u2(t) − δx(t)] dt + σ(u1(t), u2(t), x(t))dW (t), x(0) = x0, (2.7)

where W (t) is a Wiener process. The volatility σ(u1(t), u2(t), x(t)) determines the

level of uncertainty. The objective of agent i is given by

max
ui

E

{∫ ∞

0

e−rt [f(x(t)) − C(ui(t))] dt |x(0) = x0

}

(2.8)

subject to equation (2.7). It is still assumed that individual costs are given by

C(ui) =
u2

i

2
and benefit functions are determined by f(x) = ax − bx2, exactly as in

Fershtman and Nitzan (1991) [?]. Note that this model is time homogeneous. To
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solve it, the Hamilton-Jacobi-Bellman equation for the model is derived as

rV (x) (2.9)

= max
ui

{

−u2
i

2
+ ax − bx2 +

∂

∂x
V (x)

(

ui + u∗
j − δx

)

+
σ2((u1, u2, x))

2

∂2

∂x2
V (x)

}

,

where u∗
j is the optimal control for investor j. As before, interest is in a symmetric

Nash-equilibrium and it can therefore be assumed that u∗
1 = u∗

2. Equation (2.9)

then enables the optimal control for agent i to be computed via

u∗
i (x) =

∂

∂x
V (x) + σ((t, u1, u2, x))

∂

∂ui

σ((u1, u2, x))
∂2

∂x2
V (x). (2.10)

From equation (2.10) it can be seen that, if the volatility function σ((u1(t), u2(t), x(t))

does not explicitly depend on the controls, the optimal control in (2.10) is given by

u∗
i (x) = V ′(x). This is formally the same as in the deterministic case, i.e. investment

occurs according to marginal benefits from the public good. Note, however, that

the value function changes due to the second order term in (2.9). As in the previous

chapter, the technique of finite horizon approximation approach is applied to solve

(2.9). In the general case where no analytical solution can be found, it is necessary

to rely on numerical techniques so it is important to choose a sufficiently large T

and then solve equation (3.9) with a suitable algorithm for a two dimensional partial

differential equation, for example, the implicit method and Crank-Nicholson. Once

a solution is obtained, all V (t, x; T ) terms can be examined by using the inequality:

∣

∣

∣

∣

∣

rV (t, x; T ) +
(u∗

i )
2

2
− ax + bx2 − V ′(t, x; T )

(

u∗
i + u∗

j − δx
)

−
σ2(u∗

i , u
∗
j , x)

2
V ′′(t, x; T )

∣

∣

∣

∣

∣

< ε,

(2.11)
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for all sufficiently large t and a given sufficiently small ε. Inequality (2.11) is

equivalent to
∣

∣

∣

∣

∂

∂t
V (t, x; T )

∣

∣

∣

∣

< ε′

for sufficiently small ε′. However, equation (2.9) is simulated only under a small

interval of state x instead of a large one. The idea is that it is only necessary to have

an initial condition and then algorithms for ordinary differential equations can be

applied, for example, the Runge-Kutta method, to solve equation (2.9) numerically.

Since equation (2.9) is only a second order ordinary differential equation, this will

be more efficient than solving a partial differential equation. On the other hand,

equation (2.9) can be solved numerically by the Markov chain approach, which was

introduced in [?]. The concept used is to discretise (2.9) by the finite difference

method and then determine the so called transition probabilities, which represent

how the current state x changes. Such problems can be solved by functional

iteration. However, one disadvantage is that it may not be possible to find out

the functional form in each iteration.

2.3. The case where volatility depends on the level of the public good

This section will present specific results for the case where σ(ui, uj, x) is inde-

pendent of the contribution rates and linearly dependent on the level of public

good. The motivation for this specification is that a larger project value generally

fluctuates more significantly than a smaller one. More precisely, it can be assumed

that:

σ(ui, uj, x) = σx.
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Equation (2.10) provides the Nash-optimal control u∗
i (x) = V ′(x). The Hamilton-

Jacobi-Bellman equation is given by

σ2x2

2
V ′′(x) +

3

2
[V ′(x)]

2 − δxV ′(x) − rV (x) − bx2 + ax = 0 (2.12)

The finite horizon approximation approach leads to the solution, Ax2 + Bx + C,

where A, B and C are fixed points of the following differential equations

A′(t; T ) = −6A2(t) +
(

r + 2δ − σ2
)

A(t) + b

B′(t; T ) = (r + δ − 6A(t)) B(t) − a

C ′(t; T ) = rC(t) − 3

2
B2(t)

It can be shown that A± =
(r+2δ−σ2)±

√
(r+2δ−σ2)2+24b

12
, B = a

r−6A±+δ
and C =

3a2

2r(r−6A±+δ)2
are solutions of the fixed point equation for the system above. An

analysis of the (A,A′)-diagram and the transversality condition for a finite time

horizon model with a terminal time T shows that A(t; T ) should lie in the interval

[A−, 0]. Therefore, as T tends to infinity, A(t; T ) converges to Ap = A−. With the

notation

Ap =
(r + 2δ − σ2) −

√

(r + 2δ − σ2)2 + 24b

12
< 0

Bp =
a

r − 6Ap + δ
> 0

Cp =
3a2

2r (r − 6Ap + δ)2 > 0

the value function for this problem is given by:

V (x) = Apx
2 + Bpx + Cp
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and the Nash-equilibrium strategy is:

u∗
i (x) = 2Apx + Bp.

Note that the Nash-equilibrium strategy is negative when x is sufficiently large.

In this case, agents could stop investing until x has reduced. Under the Nash-

equilibrium controls, state x follows the linear stochastic differential equation:

dx(t) = (4Apx(t) + 2Bp − δx(t)) dt + σx(t)dW (t), x(0) = x0 (2.13)

Note that the process defined by (2.13) always remains positive, since

dx(t) = 2Bpdt, if x(t) = 0

The stochastic differential equation is linear and can be solved analytically. In fact

it follows from Kuo (2000) section 11.1 in [?] that equation (2.13) has the solution

x(t) = x0e

(

4Ap−δ−σ2

2

)

t+σW (t)
+

∫ t

0

2Bpe

(

4Ap−δ−σ2

2

)

(t−s)+σ(W (t)−W (s))
ds. (2.14)

Taking expectations gives

E {x(t)} = E

{

x0e

(

4Ap−δ−σ2

2

)

t+σW (t)

}

+E

{∫ t

0

2Bpe

(

4Ap−δ−σ2

2

)

(t−s)+σ(W (t)−W (s))
ds

}

Using the fact that the expectation of a geometric Brownian motion is known and

interchanging expectation and integration within the second integral, the following

is obtained

E

{

x0e

(

4Ap−δ−σ2

2

)

t+σW (t)

}

= x0e
(4Ap−δ)t
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and

E

{∫ t

0

2Bpe

(

4Ap−δ−σ2

2

)

(t−s)+σ(W (t)−W (s))
ds

}

=
2Bp

δ − 4Ap

(

1 − e(4Ap−δ)t
)

.

Therefore,

lim
t→∞

E {x(t)} =
2Bp

δ − 4Ap

(2.15)

Note that, in this case, the expected level of the public good converges to its

deterministic analogue. Also note however that Ap and Bp are both dependent

on σ and therefore uncertainty has an effect. The slope coefficient in the Nash-

equilibrium control u∗
i (X) = 2ApX + Bp is negative. In the case of a deterministic

game model, Fershtman and Nitzan have given an economic interpretation in [?].

The interpretation in the case presented here is basically the same. Once a large

value of the project is observed, individuals may try to free ride on other agents,

and this leads to a decreasing contribution rate. Now, considering the equilibrium

distribution of x(t), i.e.,

lim
t→∞

x(t).

If the density function of the equilibrium distribution of x(t) exists, it will satisfy

the Kolmogorov forward equation and is given by the solution for the differential

equation

σ2x2

2
P ′′(x) +

(

2σ2 + δ − 4Ap

)

xP ′(x) − 2BpP
′(x) +

(

σ2 + δ − 4Ap

)

P (x) = 0,
∫ ∞

0

P (x)dx = 1,

where P (x) is the probability density function. Nevertheless, the Kolmogorov

forward equation may not be easily solved due to the condition
∫∞
0

P (x)dx = 1. To



34

solve it, it is supposed that

F (y) =

∫ y

0

P (x)dx

Since

∫ y

0

xP ′(x)dx = yF ′(y) − F (y)

∫ y

0

x2P ′′(x)dx = y2F ′′(y) − 2yF ′(y) + 2F (y)

the Kolmogorov forward equation is equivalent to

σ2y2

2
F ′′(y) +

(

σ2 + δ − 4Ap

)

yF ′(y) − 2BpF
′(y) = 0

F (0) = 0

lim
y→∞

F (y) = 1

The Kolmogorov forward equation may not be solved analytically; on the other

hand, the transformation leads the Kolmogorov forward equation to be solved

numerically via the shooting method, see [?], section 6.1. The concept of shooting

method is to estimate the first derivate at 0 and therefore a boundary value problem

can be converted to an initial value problem. To solve an initial value problem, the

finite difference method or Runge-Kutta algorithm can be applied. Some results of

sensitivity analysis will be presented. It can be shown that Ap is increasing in δ.

Indeed,

∂Ap

∂δ
=

− (r + 2δ − σ2) +
√

(r + 2δ − σ2)2 + 24b

6
√

(r + 2δ − σ2)2 + 24b
> 0.

r +2δ−σ2 is assumed to be non negative. This condition is satisfied for all realistic

values of σ and r. Since r−6Ap+δ is increasing, Bp and Cp are decreasing. Therefore,



35

since the coefficient Ap is dominant for large x while the coefficients Bp and Cp are

dominant for small x, it can be seen that an increase in the depreciation rate leads

to a lower value of optimal utility for small x and a larger value of optimal utility

for large x. The interpretation of this phenomenon is that within this specification

in the stochastic case, the example represents a case where it is undesirable to have

too large a value of public good. Moreover, since Ap is increasing in δ, the free rider

effect is less apparent if the depreciation rate is higher. On the other hand, Ap is

decreasing in σ. This follows from

∂Ap

∂σ
=

σ

[

(r + 2δ − σ2) −
√

(r + 2δ − σ2)2 + 24b

]

6
√

(r + 2δ − σ2)2 + 24b
.

Similarly it can be seen that Bp and Cp are decreasing with respect to σ. Thus,

the stationary Nash-equilibrium and optimal utility are decreasing in σ too. It

can be seen from equation (2.15) that the long term expectation is decreasing with

respect to σ, which means that a higher risk reduces the expected value of the

project, which in effect causes agents to have even less incentives to invest money.

Furthermore, a larger σ leads the free rider effect to be more apparent because the

slope of the stationary feedback Nash equilibrium is decreasing in σ. On the other

hand, if both agents are allowed to cooperate, i.e., they do not concentrate on their

individual utility functions but but instead focus on the joint utility function, then

the objective functional is given by

max
u1,u2

E

{∫ ∞

0

e−rt

[

−u2
1(t) + u2

2(t)

2
+ 2

(

ax(t) − bx2(t)
)

]

dt |x(0) = x0

}

. (2.16)
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The finite horizon approximation approach leads the Hamilton-Jacobi-Bellman equa-

tion to be given by

rV (t, x; T ) − ∂

∂t
V (t, x; T )

= max
u1,u2

{

−u2
1 + u2

2

2
+ 2

(

ax − bx2
)

+
∂

∂x
V (t, x; T ) +

σ2x2

2

∂2

∂x2
V (t, x; T )

}

.
(2.17)

A necessary condition of maximizing equation (2.17) is given by

u∗
1 = u∗

2 =
∂

∂x
V (t, x; T ). (2.18)

Substituting equation (2.18) into equation (2.17), gives

rV (t, x; T ) − ∂

∂t
V (t, x; T )

=
σ2x2

2

∂2

∂x2
V (t, x; T ) +

[

∂

∂x
V (t, x; T )

]2

− δx
∂

∂x
V (t, x; T ) +

(

ax − bx2
)

.

(2.19)

The solution for equation (2.19) is defined by the form A(t; T )x2 + B(t; T )x +

C(t; T ). Substituting equation (2.19) into equation (2.18), gives the following

ordinary differential equations

A′(t; T ) = −4A2(t; T ) +
(

r + 2δ − σ2
)

A(t; T ) + 2b,

B′(t; T ) = (r + δ − 4A(t; T )) B(t; T ) − 2a,

C ′(t; T ) = rC(t; T ) − B2(t; T ).
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Next it is necessary to derive the fixed points for the above system. To satisfy

equation (2.5), A(t; T ), B(t; T ) and C(t; T ) are convergent to

Ac
p =

(r + 2δ − σ2) −
√

(r + 2δ − σ2)2 + 32b

8
< 0,

Bc
p =

2a

r − 4Ac
p + δ

> 0,

Cc
p =

(

Bc
p

)2

r
> 0.

Now comparing the free rider effect for the cooperative case with the non-cooperative

case: as seen above, the free rider effect is affected by the negative slope Ap and Ac
p.

A lower slope leads the free rider effect to be more apparent. Since

Ac
p − Ap =

(r + 2δ − σ2) −
√

(r + 2δ − σ2)2 + 32b

8
−

(r + 2δ − σ2) −
√

(r + 2δ − σ2)2 + 24b

12

=
(r + 2δ − σ2) − 3

√

(r + 2δ − σ2)2 + 32b + 2
√

(r + 2δ − σ2)2 + 24b

24

≤
(r + 2δ − σ2) −

√

(r + 2δ − σ2)2 + 32b

24
≤ 0,

it can be seen that the free rider effect is more apparent under the cooperative

condition. On the other hand, it can be proved that Ac
p ≤ 3

2
Ap and this implies that

Bc
p ≥ 2Bp; indeed,

Bc
p − 2Bp =

2a

r − 4Ac
p + δ

− 2a

r − 6Ap + δ

=

a

[

√

(r + 2δ − σ2)2 + 24b −
√

(r + 2δ − σ2)2 + 32b

]

(

r − 4Ac
p + δ

)

(r − 6Ap + δ)
≤ 0.
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On the other hand, it can be shown that Ac
p ≥ 2Ap and Cc

p ≥ 2Cp. Therefore,

the difference between the joint optimal utility function and the sum of optimal

utility functions,
(

Ac
p − 2Ap

)

x2 +
(

Bc
p − 2Bp

)

x +
(

Cc
p − 2Cp

)

, has the minimum
2Bp−Bc

p

2(Ac
p−2Ap)

≤ 0. This therefore implies that agents prefer to compete if

x ∈
[

−
(

Bc
p − 2Bp

)

−
√

K

2
(

Ac
p − 2Ap

) ,
−
(

Bc
p − 2Bp

)

+
√

K

2
(

Ac
p − 2Ap

)

]

,

when K ≥ 0 is given by

K =
(

Bc
p − 2Bp

)2 − 4
(

Ac
p − 2Ap

) (

Cc
p − 2Cp

)

.

It can be seen that agents prefer to cooperate when x is sufficiently large or low.

When x is large, agents free ride others more obviously under cooperation and this

leads x to decrease significantly. On the other side, a lower x implies a lower risk

and therefore agents cooperate under a lower risk. It can be shown that the limit

of the expectation of x(t) under cooperation is larger than under non-cooperation.

Even though the free rider effect is more apparent when cooperating, the limit of

the expectation of the public good value is larger.

A numerical example of this case is presented. This is based on the assumptions

that r = 0.1, δ = 0.3, σ = 0.2, a = 2 and b = 1. To single out the expectation of the

corresponding state, it is assumed that T = 10 and 20000 trajectories are simulated.

In Figure 2.1, it can be seen that if we fix x = 0, the optimal utility function is

decreasing. On the other hand, if x = 5 is fixed, the optimal utility function is

increasing. In Figure 2.2, for any fixed x, the optimal utility function is decreasing.

In Figure 2.3, it can be seen that the limit is approximately 0.91 and less than the

deterministic version, and this is caused by the risk. The difference of the optimal
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utility functions are also presented, between the deterministic and stochastic cases,

see Figure 2.4. A larger x implies a larger difference due to the volatility σx. On the

other hand, to solve the Kolmorogov forward equation numerically, it is assumed

that F (10) = 1 and this leads to a boundary value problem. The density of the

equilibrium distribution of x(t) is presented in Figure 2.5 and it can be seen that

the probability density function has the maximum around the limit of 0.91.

2.4. The case where volatility depends on the contribution rate

In this section it is assumed that the risk is independent of the level of the public

good, but instead depends on the current contribution rate of the agents, i.e.,

σ(ui, uj) = σ
√

ui + uj.

The interpretation of this is that an extremely large contribution rate may cause the

public good to fluctuate more heavily than under a low contribution rate. This is in

many cases a reasonable assumption. According to equation (2.10), a Nash-optimal

control then satisfies

u∗
i = V ′(x) +

σ2

2
V ′′(x).

Substituting this into the Hamilton-Jacobi-Bellman equation generates the following

value function

3σ4

8
[V ′′(x)]

2
+

3σ2

2
V ′′(x)V ′(x)+

3

2
[V ′(x)]

2−δxV ′(x)−rV (x)−bx2+ax = 0. (2.20)
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The finite horizon approximation approach leads investor i to obtain the corre-

sponding optimal utility given by V (x) = Amx2 + Bmx + Cm, where

Am =
(r + 2δ) −

√

(r + 2δ)2 + 24b

12
< 0,

Bm =
6σ2A2

m + a

r − 6Am + δ
> 0,

Cm =
3

2r

(

σ4A2
m + 2σ2AmBm + B2

m

)

.

Note that Am is independent of σ. The Nash-optimal strategy is then given by

u∗
i (x) = 2Amx + σ2Am + Bm.

It is assumed that

(r + δ)2 σ2 + 12a > (r + δ) σ

√

(r + δ)2 + 24b,

which therefore implies that σ2Am + Bm > 0. This guarantees that u∗
i (0) > 0 and

therefore that when the public good level reaches the value 0, agents have a positive

contribution rate. In the deterministic case this would be sufficient to guarantee

that the level of the public good x remains positive at all times, and therefore

that the contribution rate always remains positive and hence admissible. It also

guarantees that Cm is positive. In the stochastic case, a large negative random

shock produced by the underlying Brownian motion, could formally cause the level

x of the public good and hence also the contribution rate u∗
i (x) to become negative.

In order to avoid negative contribution rates in this model, it is necessary to assume

that δ > 4σ2A2
m

σ2Am+Bm
. This is sufficient, as can be seen from the following discussion.

The state trajectory corresponding to the strategies u∗
i (x) is the solution of the
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following stochastic differential equation

dx(t) =
[

4Amx(t) + 2Bm + 2σ2Am − δx(t)
]

dt+σ
√

4Amx(t) + 2Bm + 2σ2AmdW (t)

(2.21)

Under the affine transformation z(t) = 4Amx(t) + 2Bm + 2σ2Am = 2u∗
i (t) the

solution of process (2.21) becomes a Cox-Ingersoll-Ross process, i.e.

dz(t) = κ(θ − z(t))dt + ν
√

z(t)dW (t),

z(0) = 4Amx0 + 2σ2Am + 2Bm.

with κ = (δ − 4Am), θ = 2δσ2Am+2δBm

δ−4Am
and ν = 4σA. It is well known, Alos and

Ewald (2008) [?], that positivity is guaranteed by the condition 2κθ > ν2 which leads

exactly to the condition on δ. As z(t) = 2u∗
i (t) this then guarantees that along any

realized path the contribution rate toward the public good is always positive. Any

Cox-Ingersoll-Ross process is mean reverting to θ with mean reversion speed κ. This

process is mean reverting to 2δσ2Am+2δBm

δ−4Am
with mean reversion speed δ−4Am. From

this it can be seen that the parameters Am and δ play an important role in how fast

the public good level will converge to its mean reversion level, leaving uncertainty

effects aside. Equation (2.6) can be rewritten as

dw(t) = (δ − 4Ac)

(

2δBc

δ − 4Ac

− w(t)

)

dt

where w(t) = 4Acx(t) + 2Bc. It can be seen that the mean reversion speed of the

deterministic version is also given by δ − 4Am since Ac = Am. On the other hand,

it can be concluded from [?], page 309, that the density function of the equilibrium
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distribution of z(t) is given by

PZ(y) =

(

2β

γ2

) 2α

γ2 1

Γ
(

2α
γ2

)y
2α−γ2

γ2 e
− 2β

γ2
y

where α = 2δ (σ2Am + Bm), β = δ − 4Am, γ = 4σAm and Γ(x) is the gamma

function. The density function for the equilibrium distribution of x(t) is given by

PX(x) = −4AmPZ(4Amx + 2Bm + 2σ2Am)

Note that z(t) = 2u∗
i (t) and therefore the density function of the equilibrium

distribution of u∗
i (t) can be easily derived. Moreover, u∗

i (t) is always non-negative

and the value of the good is bounded above. In the long term, the mean reversion

level determines the expectation, thus obtaining

lim
t→∞

E {x(t)} =
2Bm + 2σ2Am

δ − 4Am

. (2.22)

The process (2.21) describing the public good level under the equilibrium strategies

in the framework of this section is much more regular than the process described in

(2.13). In fact process (2.21) admits a stationary distribution for which analytical

formulas exist. In contrast to (2.13) the variance of (2.21) is bounded. This can

be interpreted as reduced uncertainty, once the equilibrium strategies have been

adopted. It can be seen that the expectation is functionally different from the type

of volatility given by σx and the case of the deterministic model in section 2.1. Note

however, that the Nash-equilibrium is also linear with a negative slope coefficient.

Next, the impact of the depreciation rate will be studied. For this, it is assumed

that each equation is a function of δ. It can be shown that Am is increasing and
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Bm is decreasing in δ. Indeed,

∂

∂δ
Am =

1

6



1 − r + 2δ
√

(r + 2δ)2 + 24b



 > 0

and
∂

∂δ
Bm =

12σ2Am
∂
∂δ

Am − 2
(

1 − 6 ∂
∂δ

Am

)

(6σ2A2
m + a)

r − 6Am + δ
< 0.

Similarly to the case of σx, a larger depreciation rate leads the free rider effect to

be less apparent. On the other hand, because Am is independent of σ, the free rider

effect is not affected by the risk, which means that in this case it can be analogous

to the deterministic version. Note that a positive long-term expected value for the

public good level can be guaranteed by the condition Bm > −σ2Am. Economically,

it is easy to see that each investor does not have any incentive to invest into this

project, if the expectation of it is negative. This assumption also implies a positive

Cm. The Nash-equilibrium is a linear function with a negative slope and therefore

reinforces the free rider effect. By computing the first derivative of equation (2.22)

one can see that it is decreasing with δ. It can also be seen that a larger value

of depreciation rate leads to a lower project value. On the other hand, it can be

shown that the expectation of the corresponding state is less than in the case of the

deterministic model considered in section 2.1. The difference is in fact given by

2σ2Am (r + δ)

(δ − 4Am) (r − 6Am + δ)
< 0.

A larger value of σ therefore implies a lower value for the expectation of the project

value. Furthermore Bm and Cm as functions of σ are increasing. In the utility

function, however, they are still offset by the effect on Am and a higher value of

σ implies a lower contribution rate under the Nash-optimal strategy, which means
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both agents invest less if the uncertainty is rising. This can be proved by computing

the derivative of u∗
i with respect to σ, which is given by

d

dσ
u∗

i (x) = 2σAm +
d

dσ
Bm =

2σ (r + δ) Am

r − 6Am + δ
< 0

The interpretation of this is that both agents do have less investment incentive due

to higher uncertainty. On the other hand, it also leads to a lower project value.

Now, moving to the case where agents cooperate, the joint objective functional is

given by equation (2.16) and the finite horizon approximation leads the Hamilton-

Jacobi-Bellman equation to be defined by

rV (t, x; T ) − ∂

∂t
V (t, x; T )

= max
u1,u2

{

−u2
1 + u2

2

2
+ 2

(

ax − bx2
)

+
∂

∂x
V (t, x; T ) (u1 + u2 − δx) +

σ2 (u1 + u2)

2

∂2

∂x2
V (t, x; T )

}

.

(2.23)

A necessary condition for maximizing equation (2.23) is given by

u∗
1 = u∗

2 =
∂

∂x
V (t, x; T ) +

σ2

2

∂2

∂x2
V (t, x; T ). (2.24)

Substituting equation (2.24) into (2.23), gives

rV (t, x; T ) − ∂

∂t
V (t, x; T )

=
σ4

4

[

∂2

∂x2
V (t, x; T )

]2

+ σ2 ∂

∂x
V (t, x; T )

∂2

∂x2
V (t, x; T ) +

[

∂

∂x
V (t, x; T )

]2

− δx
∂

∂x
V (t, x; T )

+ 2ax − 2bx2.

(2.25)
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The solution for equation (2.25) is given by V (t, x; T ) = A(t; T )x2 + B(t; T )x +

C(t; T ). Substituting the solution into equation (2.25), gives

A′(t; T ) = −4A(t; T )2 + (r + 2δ) A(t; T ) + 2b,

B′(t; T ) = [r − 4A(t; T ) + δ] B(t; T ) − 4σ2A2(t; T ) − 2a,

C ′(t; T ) = rC(t; T ) − σ4A2(t; T ) − 2σ2A(t; T )B(t; T ) − B2(t; T ).

The finite horizon approximation leads A(t; T ), B(t; T ) and C(t; T ) to converge to

Ac
m =

(r+2δ)−
√

(r+2δ)2+32b

8
, Bc

m = 4σ2(Ac
m)2+2a

r−4Ac
m+δ

and Cc
m = 1

r

[

σ4 (Ac
m)2 + 2σ2Ac

mBc
m + (Bc

m)2],

respectively. Note that Ac
m is not dependent on σ, which means that no matter how

large σ is, the free rider effect is not affected. Since Ap = Am and Ac
p = Ac

m when

σ = 0 , Ac
m ≤ Am, which means that the free rider effect is more apparent under

cooperation. On the other hand, when x is sufficiently large, the joint optimal

utility function is larger than the sum of optimal utility functions. However, due to

the property of the public good, agents do not prefer a larger x. Because they free

ride others heavily when x is large, it is realistic that agents cooperate to reduce

x. It can be seen that the limit of expectation for the corresponding state under

cooperation is larger than under non-cooperation. Indeed,

2Bc
m + 2σ2Ac

m

δ − 4Ac
m

−2Bm + 2σ2Am

δ − 4Am

=
2 [δ (Bm − Bc

m) + δσ2 (Am − Ac
m) + 4 (AmBc

m − Ac
mBm)]

(δ − 4Am) (δ − 4Ac
m)

is increasing in σ and the case that σ = 0 has been proved in the previous section.

Numerical results are provided for this case using the same parameters as in

section 2.3. In Figure 2.6 similar behaviour can be observed to the case of level

dependent volatility, i.e., σx. In Figure 2.7, it can be seen that for any fixed x,

the optimal utility function is increasing. In Figure 2.8, the expectation converges

to around 0.92; in contrast with the case of σx, it is closer to the maximum of a
2b

.
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The difference of the optimal utility functions between deterministic and stochastic

versions is represented in Figure 2.9. It can be seen that the difference is less than in

the case of level dependent volatility. This is realistic because agents can reduce the

uncertainty by choosing their contribution rate. On the other side, comparison with

Figure 2.4 shows that a lower x implies a larger difference while in Figure 2.9, this

is reversed. The density function of the equilibrium distribution x(t) is presented

in Figure 2.10, and similar to Figure 2.5, the probability density function has the

maximum at 0.92.

2.5. Conclusions

Fershtman and Nitzan’s model [?] has been successfully extended by introduc-

ing two different uncertainty effects. The first effect is due to level dependent

volatility, while the second effect is due to contribution related volatility. In both

cases analytical solution of the Nash-equilibrium strategies understood as stationary

Markovian Nash-equilibria strategies have been computed. This analysis also shows

that uncertainty affects the strategies of the agents.In opposition to the idea that

an increase in uncertainty may reduce the free rider effect, it was found that in

fact in the case where volatility is dependent on the level of the public good, the

free rider effect is emphasized by uncertainty. Lastly, it was evident that under the

same level of public good in both cases, the free rider effect is more apparent when

agents are allowed to cooperate. These results might be of particular interest in

public insurance.
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Graphical Illustration

Figure 2.1: Value function in terms of x and δ for volatility depending on the level of
the public good under r = 0.1, σ = 0.2, a = 2 and b = 1

Figure 2.2: Value function in terms of x and σ for volatility depending on the level of
the public good under r = 0.1, δ = 0.3, a = 2 and b = 1
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Figure 2.3: State and limit for volatility depending on the level of the public good under
r = 0.1, δ = 0.3, σ = 0.2, a = 2, b = 1 and T = 10
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Figure 2.4: Difference of value functions between deterministic and stochastic version
for volatility depending on the level of the public good under r = 0.1, δ = 0.3, σ = 0.2,
a = 2 and b = 1
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Figure 2.5: The Density function of the equilibrium distribution of x(t) for the volatility
depending on the level of the public good under r = 0.1, δ = 0.3, σ = 0.2, a = 2 and b = 1

Figure 2.6: Value function in terms of x and δ for volatility depending on the contribution
rate under r = 0.1, σ = 0.2, a = 2 and b = 1
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Figure 2.7: Value function in terms of x and σ for volatility depending on the contribution
rate under r = 0.1, δ = 0.3, a = 2 and b = 1
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Figure 2.8: State and limit for volatility depending on the contribution rate under r =
0.1, δ = 0.3, σ = 0.2, a = 2, b = 1 and T = 10
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Figure 2.9: Difference of value functions between deterministic and stochastic version
for volatility depending on the contribution rate under r = 0.1, δ = 0.3, σ = 0.2, a = 2
and b = 1
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Figure 2.10: The density function of the equilibrium distribution of x(t) for volatility
depending on the contribution rate under r = 0.1, δ = 0.3, σ = 0.2, a = 2 and b = 1



Chapter 3

A Stochastic Differential Fishery

Game for a Two Species Fish

Population with Ecological

Interaction

The first mathematical models of fisheries were developed in the 1950’s with the

works of Gordon (1954) [?] and Schaefer (1957) [?]. Clark (1976) built on these

early models and considered the conflict between agents fishing for the same species

in a dynamic game model, see [?]. Various recent works focus on continuous time

and are based on differential game models. Among them are Dockner et al. (1989)

[?], Haurie et al. (1994) [?], Jorgensen and Yeung (1996) [?] and Kaitala (1989) [?].

All consider the case of a single species. Kaitala (1989) presented a deterministic

game model in which he assumed that the price of the species is given by a constant

p while costs for each agent i are defined by a proportionality constant ci, see [?]. He

studied the competitive case and derived a feedback Nash-equilibrium. Hamalainen,

52
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Haurie and Kaitala (1985) studied a slightly different model and derived an open-

loop Nash equilibrium, see [?]. The authors also considered the cooperative case and

provided two numerical examples. Dockner et al. (1989) considered a continuous

time framework involving uncertainty, see [?]. They studied the non cooperative case

and followed the concept used in Clark (1980) [?] and Simaan et al. (1978) [?] for

the specification of a price function. Dockner et al. assumed that the price depends

on the quantity harvested by all agents. Furthermore, Dockner et al. derived not

only a feedback Nash-equilibrium but also a Stackelberg-equilibrium. Hamalainen

et al. (1994) [?] studied the cooperative case and Haurie (1991) (1993) extended

on these ideas in [?] and [?] to model the triggering mechanism as a Markov jump

process and the retaliation duration as an exponential random variable. Jorgensen

and Yeung (1996) studied a model where the concept of price is similar to [?] and

costs are not constant, but depend on a function which is decreasing in the stock

of biomass, see [?]. These authors derived a feedback Nash equilibrium and also

considered the cooperative case. Moreover, they also analyzed surplus maximization

and optimal market size.

This chapter will examine a model where fishery agents compete against each

other to fish for two different species. Ecologically, these two species are assumed

to interact with each other. The assumed interactions include the cases of predator,

prey and competition. The model is assumed to be time homogeneous and each

agent to be facing an infinite time horizon. The case of a two species predatory

game theoretic fishery model has been studied before by Quirk and Smith (1977)

[?] and Anderson (1975) [?] and furthermore by Sumaila (1997) [?]. Sumaila focused

on the case of the Barents Sea and the species Cod and Capelin. In this particular

case, Cod preys on Capelin and Sumaila provides various results which document the

importance of studying fisheries within a general multi-species ecological context.
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Without this realization, game theoretic models will produce inefficient fishery

strategies. In particular Sumaila compares the situation where two fisheries are

managed by their individual owners with fishing rights exclusive for one particular

species, with the case of joint management or competitive fishing of both species. He

showed that the ecological interaction of the two species has a significant economical

effect on the fisheries.

The models considered by Sumaila (1998), Quirk and Smith (1977) and Anderson

(1975) are neither continuous time, nor do they include ecological uncertainty.

Both of these aspects are, however, crucial for the setup of a realistic dynamic

model. The aspect of continuous time can, in principle, be mimicked by using a

discrete time model with small enough time steps, but the case presented here

allows computation of semi analytic solutions which are numerically tractable.

The inclusion of ecological uncertainty is fundamental and new in this context.

In a world of climate change and increasing sea temperatures with unpredictable

effects, the author and his supervisor consider it to be an absolutely necessary.

A consequence of including ecological interaction in this way is, of course, that

mathematically the model becomes far more challenging than corresponding single

species models. The analysis requires solution of partial differential equations

including two state variables, rather than a differential equation depending on single

state variable in the time homogeneous case. Nevertheless it has been possible to

solve the model semi-analytically, by which it is meant that the author and his

supervisor have derived explicit forms for the strategies and value function which

depend on certain constants, which can be computed numerically by an iterative

process. Following this, there is a discussion of how different parameters affect the

solution and their economical interpretation. In addition to the setup where each

fishery can harvest both species, the case where fisheries are restricted to harvest
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only one of the two species is examined, as well as the case where the fisheries

cooperate, e.g. are jointly managed. In both cases, the economic consequences are

highlighted, along with the ecological impact. One significant observation is that

a competitive ecological system may thrive better under cooperative management,

while a predatory ecological system may thrive better under competition between

the fisheries. These results are considered to have very striking policy implications.

The remainder of the chapter is organized as follows: in section 3.1, there is a brief

review of a typical deterministic model of two ecologically interacting species and,

based on this set up, the current game theoretic model which includes uncertainty.

This model will be analyzed to derive a feedback Nash equilibrium by the Hamilton-

Jacobi-Bellman approach. Section 3.2 contains a detailed sensitivity analysis. In

section 3.3, the case where regulation restricts each fishery to concentrate on one

particular species is examined, together with the economic inefficiencies and con-

sequences resulting from this. Section 3.4 introduces the concept of cooperation

between the fisheries. Section 3.5 presents the numerical results and the main

conclusions are summarized in section 3.6.

3.1. A stochastic differential fishery game with ecological interaction

The case of deterministic combined predator-prey and competitive interactions

will first be briefly reviewed. Hofbauer and Sigmund (1998) have presented various

examples of such dynamic systems, see in particular [?], page 11 for a predator-

prey dynamic and page 26 for a competitive dynamic. These two models have

been combined and modified accordingly with the aim of achieving an analytically
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tractable model. The result is the following dynamics:

x′
1(t) = x1(t)

[

α1
√

x1(t)
− β1 − γ1

√

x2(t)

x1(t)

]

x′
2(t) = x2(t)

[

α2
√

x2(t)
− β2 − γ2

√

x1(t)

x2(t)

]

.

(3.1)

In this interpretation xi(t) represents the biomass of species i at t. All coefficients

are assumed to be constant. The birth rate of species j is given by
αj√
xj

and the

death rate by βj. There are effects on the size of biomass of both species due to

predation of one species on the other, as well as competition. The function

Fj(xj) = xj

[

αj√
xj

− βj − γj

√

xj′

xj

]

is referred to as the natural growth function for species j = 1, 2. The case of a pure

predator-prey system where species 2 hunts species 1 is represented α1 > 0, α2 < 0,

β1 = β2 = 0, γ1 < 0 and γ2 > 0, compare [?] equation (2.1). A purely competitive

system is represented by the case where all constant are positive. Four stationary

points can be derived from this dynamic and are given by (0, 0),
(

α2

1

β2

1

, 0
)

,
(

0,
α2

2

β2

2

)

and

(

(

α1β2−α2γ1

β1β2−γ1γ2

)2

,
(

α1γ2−α2β1

β1β2−γ1γ2

)2
)

. Linearization of system (4.1) around the latter

gives





x′
1

x′
2



 =







α1

2
√

x∗
1

− β1 −
γ1

√
x∗
2

2
√

x∗
1

−γ1

√
x∗
1

2
√

x∗
2

−γ2

√
x∗
2

2
√

x∗
1

α2

2
√

x∗
2

− β2 −
γ2

√
x∗
1

2
√

x∗
2











x1 − x∗
1

x2 − x∗
2



 (3.2)

where (x∗
1, x

∗
2) =

(

(

α1β2−α2γ1

β1β2−γ1γ2

)2

,
(

α1γ2−α2β1

β1β2−γ1γ2

)2
)

. The other fixed points will not be

analysed because, in these cases, at least one species has become extinct, and in
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this case the resulting model is identical to a single species model. The eigenvalues

of the matrix in system (3.2) are computed via

e± =
(a11 + a22) ±

√

(a11 + a22)
2 − 4 (a11a22 − γ1γ2)

2

where

a11 =
α1

2
√

x∗
1

− β1 −
γ1

√
x∗

2

2
√

x∗
1

a22 =
α2

2
√

x∗
2

− β2 −
γ2

√
x∗

1

2
√

x∗
2

.

Note that
√

(a11 + a22)
2 − 4 (a11a22 − γ1γ2) is always positive. If e± are both nega-

tive, then the fixed point is asymptotically stable and both species survive. This is

the case of stable coexistence; see Figure 3.1. Conversely, if e+ > 0 and e− < 0, the

fixed point is unstable. Without intervention, one of the two species will eventually

become extinct. This case is called a bistable case, see Figure 3.2.

When introducing the effect of fisheries harvesting, both populations introduce

ecological uncertainty into the system (3.1). Jorgensen et al. (1989) (1996), see

[?] and [?], regarded the control ui for agent i as the harvest rate of species i.

Alternatively, Kaitala et al. (1994) (1989) defined the control for i as the fishing

effort, see also [?] and [?]. This analysis will follow the line of Jorgensen et al. and

define the control as the harvest rate for each agent. The state equations for the
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biomass of the two species are then given by

dx1(t) =

{

x1(t)

[

α1
√

x1(t)
− β1 − γ1

√

x2(t)

x1(t)

]

−
N
∑

i=1

u1
i (t)

}

dt + σ1x1(t)dW1(t)

dx2(t) =

{

x2(t)

[

α2
√

x2(t)
− β2 − γ2

√

x1(t)

x2(t)

]

−
N
∑

i=1

u2
i (t)

}

dt + σ2x2(t)dW2(t)

(3.3)

where αi, βi, γi and σi have the same interpretation as before and N is the number

of fishery agents. W1(t) and W2(t) are two Wiener processes. For simplicity it

is assumed that W1(t) and W2(t) are uncorrelated. The harvest rate of species j

adopted by agent i is denoted as uj
i . Note that xj = 0 forces uj

i = 0 because it is

impossible to harvest an extinct species. This poses natural restrictions on the set

of admissible controls. Each agent tries to maximize his or her objective functional,

given by

max
u1

i ,u2

i

E

{

∫ ∞

0

e−rt

2
∑

j=1

[

P j(t)uj
i (t) − Cj

i (t)u
j
i (t)
]

dt |x1(0) = x10, x2(0) = x20

}

(3.4)

where r is a discount rate. P j(t) and Cj
i (t) are price and cost functions of species

j for agent i, respectively. It is proposed that the price function is given by

P j(t) =
1

√

pj

∑N

i=1 uj
i (t)

, j = 1, 2 (3.5)

and the cost function for agent i is defined as

Cj
i (t) =

cj
i

√

xj(t)
, j = 1, 2 (3.6)
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where pj and cj
i are constants. that this uses the same cost functions as Jorgensen

and Yeung (1996) [?] and the price functions have been multiplied by 1√
pj

because

this is a two species model. Equation (3.5) implies that prices decrease as the

amount of total harvest increases. This accounts for the relationship between supply

and demand. On the other hand, in equation (3.6), a larger value of stock of biomass

j implies a lower value of costs for i. This assumption is also realistic. It is proposed

that cj
i = cj and this leads the model to be time homogeneous and symmetric. Under

this perspective the objective will be to identify a stationary symmetric feedback

Nash-equilibrium. Within a time homogeneous framework, the value function sat-

isfying the Hamilton-Jacobi-Bellman equation does not explicitly depend on time.

While this reduces the dimension of the PDE by one, it brings with it the loss of

the terminal condition, which helps to identify the value function. Classically, a so

called transversality condition is employed, see [?], page 124. In most cases this

transversality condition can, however, only be effectively used when the structure

of the value function is known. In a framework which relies on numerical solution of

the Hamilton-Jacobi-Bellman equation, the transversality condition is in many cases

not practicable. Therefore, the finite horizon approximation approach is employed

again, which was introduced in section 1.2 and applied in the previous chapter.

Now supposing that T is a finite terminal time. Then the Hamilton-Jacobi-Bellman

equation for agent i is given by

rVi(t, x; T ) − ∂

∂t
Vi(t, x; T ) = max

u1

i ,u2

i















2
∑

j=1









uj
i

√

pj

(

uj
i +
∑

k 6=i u
j∗
k

)

− cju
j
i√

xj

+
σ2

j x
2
j

2

∂2

∂x2
j

Vi(t, x; T )

+
∂

∂xj

Vi(t, x; T )

(

αj

√
xj − βjxj − γj

√
x1x2 − uj

i −
∑

k 6=i

uj∗
k

)]}

(3.7)
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where x = (x1, x2). A necessary condition for maximizers uj∗
i of the right hand side

of (4.7) is

uj∗
i =

(2N − 1)2

4pjN3
(

cj√
xj

+ ∂
∂xj

Vi(t, x; T )
)2 , j = 1, 2. (3.8)

Substituting equation (4.8) into equation (4.7), produces the following partial dif-

ferential equation

rVi(t, x; T ) =
2
∑

j=1







2N − 1

2pjN2
(

cj√
xj

+ ∂
∂xj

Vi(t, x; T )
) − cj (2N − 1)2

4pjN3√xj

(

cj√
xj

+ ∂
∂xj

Vi(t, x; T )
)2

+
∂

∂xj

Vi(t, x; T )






αj

√
xj − βjxj − γj

√
x1x2 −

(2N − 1)2

4pjN2
(

cj√
xj

+ ∂
∂xj

Vi(t, x; T )
)2







+
σ2

j x
2
j

2

∂2

∂x2
j

Vi(t, x; T )

]

+
∂

∂t
Vi(t, x; T )

(3.9)

with boundary condition given by

Vi(T, x; T ) = 0 (3.10)

Following the solution form provided by Jorgensen and Yeung [?], it is assumed that

the solution of (3.9) with boundary condition (3.10) is of the following type

Vi(t, x; T ) = A1(t)
√

x1 + A2(t)
√

x2 + A3(t). (3.11)

Note that if W1(t) and W2(t) are correlated, the solution does not follow the form

(3.11). Substituting equation (3.11) into equation (3.9), results in a system of
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ordinary differential equations

A′
1(t; T ) = k1A1(t; T ) − 2N − 1

p1N2 (2c1 + A1(t; T ))
+

(2c1 + NA1(t; T )) (2N − 1)2

2p1N3 (2c1 + A1(t; T ))2 +
γ2A2(t; T )

2
,

A′
2(t; T ) = k2A2(t; T ) − 2N − 1

p2N2 (2c2 + A2(t; T ))
+

(2c2 + NA2(t; T )) (2N − 1)2

2p2N3 (2c2 + A2(t; T ))2 +
γ1A1(t; T )

2
,

A′
3(t; T ) = rA3(t; T ) − α1A1(t; T ) + α2A2(t; T )

2
,

(3.12)

where kj =
(

r +
βj

2
+

σ2

j

8

)

. First considering the case of a two species competitive

ecological system, i.e., all coefficients are positive. To apply the finite horizon

approximation approach, it is necessary to find out the fixed points of the system

(3.12) and examine which one satisfies equation (3.10). To derive the fixed points,

the following polynomial system must be solved

k1A1 −
2N − 1

p1N2 (2c1 + A1)
+

(2c1 + NA1) (2N − 1)2

2p1N3 (2c1 + A1)
2 +

γ2A2

2
= 0 (3.13)

k2A2 −
2N − 1

p2N2 (2c2 + A2)
+

(2c2 + NA2) (2N − 1)2

2p2N3 (2c2 + A2)
2 +

γ1A1

2
= 0 (3.14)

rA3 −
α1A1 + α2A2

2
= 0 (3.15)

In equation (3.15), A3 can be easily derived from A1 and A2. So the solution starts

by concentrating on equation (3.13) and (3.14). Note that if A2 is fixed in [0, X2),

with

X2 =
2N − 1

2c1γ2p1N3
,

equation (3.13) is a cubic polynomial and it can be shown that it has a unique

positive solution. Existence can be proved by the intermediate value theorem and

uniqueness can be shown by contradiction. A similar argument works for equation
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(3.14) if an A1 is given and lies in [0, X1), where X1 is defined by

X1 =
2N − 1

2c2γ1p2N3
.

In [?], the authors claimed that the solution is given by the form A
√

x+B and A is

positive to guarantee that the value function is concave. However, this model, has a

more complex dynamic with interactions between the two species and it is not clear

why the value function should be concave, neither mathematically nor economically.

On the other hand, it is assumed that fishery agents can benefit more from species

j if the biomass is larger and this guarantees that Aj is positive. The following

proposition says that the system of equations (3.13) and (3.14) have a unique pair

of positive solutions.

Proposition 3.1.1. (Competitive Case) Equations (3.13) and (3.14) have a unique

pair of positive solutions (A1, A2), if, for (j, j′) = (1, 2) and (2, 1), one of the

following conditions holds:

Condition (1). 4c1c2pj′γj ≤
(2N − 1) (2N − 3)

N2

Condition (2). Xj ≥
−2cjkj +

√

2c1c2pj′γj

pj
− (2N−1)(2N−3)

2pjN2

kj

with Xj defined above.

Proof. For the existence, a constructive proof is presented, as within the numerical

analysis it is necessary to compute a pair of solutions, and the method described

in this proof is used. Starting with X ′
j = 2N−1

2cjγj′pjN3 , where (j, j′) = (1, 2) and (2, 1).
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Consider the polynomials

fj(x) = kjx
3 + 4cjkjx

2 +

[

4c2
jkj +

(2N − 1) (2N − 3)

2pjN2

]

x +
cj (1 − 2N)

pjN3

gj(x) =
γj′

2
(2cj + x)2

(3.16)

Note that equation (3.13) can be represented as f1(A1)+g1(A1)A2 = 0 and equation

(3.14) can be represented by f2(A2) + g2(A2)A1 = 0. Substituting Xj into fj(x),

gives

fj(Xj) = Xj

[

kjX
2
j + 4cjkjXj +

(

4c2
jkj +

(2N − 1) (2N − 3)

2pjN2
− 2c1c2pj′γj

pj

)]

(3.17)

Each condition implies that the right hand side of equation (3.17) is positive. Since

fj(x) is continuous and fj(0) < 0, by the intermediate value theorem, there exists

an A∗
1 such that fj(A

∗
j) = 0, which implies that (0, X2) and (A∗

1, 0) solve equation

(3.13). Similarly, (X1, 0) and (0, A∗
2) solve equation (4.14). On the other hand , in

equation (3.13) and (3.14), a positive root Aj is decreasing as Aj′ is increasing. Note

that (0, X2) solves equation (3.14). Constructing two convergent sequences. Setting

A∗
2 = A1

2, substituting A1
2 into equation (3.13) into equation (3.13) and solving it,

gives the positive A1
1. Similarly, substituting A1

1 into equation (3.14), gives the

positive A2
2. Repeating this process results in a sequence {a1, b1, a2, b2, ..., an, bn, ...},

where

an = (An
1 , A

n
2 ) , n = 1, 2, 3, ...

bn =
(

An
1 , A

n+1
2

)

, n = 1, 2, 3, ...

It can be seen that an and bn solve equation (3.13) and (3.14), respectively. Fur-

thermore, {An
1} is increasing and {An

2} is decreasing. The reason for this is that
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Aj is increasing if and only if Aj′ is decreasing, and the process of constructing

the sequence {an, bn} guarantees this. Since A∗
1 is an upper bound of {An

1} and

0 is a lower bound of {An
2}, they are both convergent and the limit solves both

equations (3.13) and (3.14). Note that the existence can also be proved by the

intermediate value theorem. Now, moving on to prove the uniqueness: let F13(A1)

and F14(A1) denote the implicit functions that solve equations (3.13) and (3.14),

i.e. (A1, F13(A1)) solves (3.13) for all A1 and (A2, F14(A1)) solves (3.14) for all A1.

Uniqueness would then follow, if it can be shown that there exists at most one

A1 s.t. F13(A1) = F14(A1). The latter would hold, if it can shown that F13 is

concave and F14 is convex. Note that, since F13(0) = X2 > F14(0) = A∗
2, this would

also guarantee existence of a pair of solutions, as established in the first part, but

this proof of existence is non-constructive. It is now necessary to show that F13 is

concave and F14 is convex. In equation (3.13), A2 can be represented by a function

of A1, i.e., A2 = −f1(A1)
g1(A1)

= F13(A1). It can be shown that A2 is strictly decreasing,

as the derivative is given by

dA2

dA1

=
−f ′

1(A1)g1(A1) + f1(A1)g
′
1(A1)

g2
1(A1)

Note that either condition (1) or (2) implies that f1(A1) is negative in [0, A∗
1). It

can be proved that −f ′
1(A1)g1(A1) + f1(A1)g

′
1(A1) is decreasing by deriving the

derivative,

d

dA1

[−f ′
1(A1)g1(A1) + f1(A1)g

′
1(A1)] = −f ′′

1 (A1)g1(A1) + f1(A1)g
′′
1(A1) < 0

and g1(A1) is strictly increasing. This implies that dA2

dA1

is a strictly decreasing

function, which means that the second derivative of F13(A1) is negative. Therefore,

A2 is a strictly decreasing and strictly concave function of A1. Similarly, in equation
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(3.14), A1 = f2(A2)
g2(A2)

is a strictly concave function of A2. Since f2(A2)
g2(A2)

is strictly

decreasing, the inverse function exists. It can be shown that the inverse function of

a strictly convex function is strictly concave by the definition. Therefore, F13(A1)

is strictly concave and F14(A1) is strictly convex and uniqueness is guaranteed. �

Proposition 3.1.1 shows that under the given assumptions Vi(t, x; T ) has a limit

given by A1
√

x1 + A2
√

x2 + A3, where A1, A2 and A3 are the positive fixed points

of (3.12). Indeed, supposing that

Ω = {(A1(t; T ), A2(t; T )) ≥ (0, 0) |A′
1(t; T ) ≤ 0, A′

2(t; T ) ≤ 0} ,

, it can be seen that Ω is non empty since (F (t), 0) ∈ Ω for some functions F (t) <

2N−1
2c1γ2p1N3 for all t ∈ [0, T ]. Note that the first two equations in system (3.10) can be

rewritten as

A′
1(t; T ) =

f1(A1(t; T ))

(2c1 + A1(t; T ))2 +
γ2A2(t; T )

2
,

A′
2(t; T ) =

f2(A2(t; T ))

(2c2 + A2(t; T ))2 +
γ1A1(t; T )

2
,

where fj(x) is defined in (3.16). It can be proved that the RHS of the above two

equations are increasing in A1(t; T ) and A2(t; T ), respectively. Indeed,

d

dx

fj(x)

(2cj + x)2 =
f ′

j(x) (2cj + x) − 2fj(x)

(2cj + x)3 > 0,

d

dx

γjx

2
=

γj

2
> 0,

if a pair of functions is chosen such that (A1(0; T ), A2(0; T )) is in Ω. Since they

solve the above system, which is equivalent to system (3.12), and the derivatives

are negative at t = 0, it can be seen that the derivatives are always negative for all
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t ∈ [0, T ] and A1(T ; T ) = A2(T ; T ) = 0. On the other hand, as T tends to infinity,

each Aj, j = 1, 2, 3, tends to its unique positive fixed point. This can be shown by

computing the sign of fj(Aj(s)) + gj(Aj(s))Aj′(s), where s = T − t. Therefore, a

stationary symmetric feedback Nash equilibrium of the infinite horizon model for

agent i is given by

uj∗
i (xj) =

(2N − 1)2 xj

pjN3 (2cj + Aj)
2 , j = 1, 2 (3.18)

and the corresponding optimal utility function is defined by

Vi(x1, x2) = A1

√
x1 + A2

√
x2 + A3. (3.19)

Note that in equation (3.18), u∗
i (0) = 0. This guarantees that the strategy pair

derived is admissible. It can be proved that equation (3.19) is indeed a solution

of the Hamilton-Jacobi-Bellman equation for the infinite horizon model. A minor

adaptation of a standard verification theorem such as Oksendal, [?] Theorem 11.2.1

implies that the function Vi(x1, x2) is in fact the value function for the stochastic

differential game. The details are omitted here.

Moving on to the case of a predator-prey system. Without loss of generality, it

is assumed that α1 < 0, α2 > 0, β1 = β2 = 0, γ1 < 0 and γ2 > 0, i.e., x1 is the

predator and x2 is the prey. The following proposition guarantees that equation

(3.13) and (3.14) have a unique pair of positive roots in [0, X1] × [A1
2, X2], where

A1
2 is defined in the proof of Proposition 3.1.1 and X1 is the unique root for f1(A1)

defined in system (3.16).

Proposition 3.1.2. (Predator-Prey Case) The system of equations in (3.13) and

(3.14) have a unique pair of positive roots in [0, X]× [A1
2, X2] if one of the following
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conditions

Condition (1). 4c1c2p1γ2 ≤
(2N − 1) (2N − 3)

N2

Condition (2). X2 ≥
−2c2k2 +

√

2c1c2p1γ2

p2

− (2N−1)(2N−3)
2p2N2

k2

and

Condition (3). 48c2
2k2p2N

3 ≥ (2N − 1) (2N − 3)

hold.

Proof. To prove the existence and uniqueness of the pair of positive roots, this

analysis takes advantage of system (3.16). Note that either condition (1) or (2)

implies that f2(A2) has a root at A1
2 < X2. On the other hand, it has been already

shown that A2 = −f1(A1)
g1(A1)

is decreasing in [0, X1]. Condition (3) leads A1 = −f2(A2)
g2(A2)

to be a strictly increasing function in [A1
2,∞), which therefore implies that the

inverse function exists and increases in [0,∞). Continuing with the notation F13(A1)

and F14(A1) from the competitive case and it can be seen that F13(A1) is decreasing

and F14(A1) is increasing in [0, X1]. Moreover, F13(0) = X2 > F14(0) = A1
2 and

F13(X1) = 0 < F14(X1). It can be proved via the intermediate value theorem that

there exists a pair of positive roots. On the other hand, since F13(A1) and F14(A1)

are strictly decreasing and increasing respectively, uniqueness is guaranteed. �

To guarantee that the (A1(t; T ), A2(t; T )) converges to (A1, A2) for T tending to

infinity, the idea for the competitive case is adopted. Note that it is necessary to

start at some points in [0, X] × [A1
2, X2] instead of [0, X1] × [0, X2]. The details are

omitted here.
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3.2. Sensitivity analysis

This section will examine how each of the various parameters affects the optimal

utility and control functions. This will start with the case of a two species competi-

tive ecological system. The discussion will be divided into three parts: The first part

consists of considering the coefficients which do not relate to equation (3.13) and

(3.14); the second part will study those that affect only one of equations (3.13) and

(3.14); while the last part consists of considering those which change both equations

(3.13) and (3.14). It can be seen that αj is the only coefficient which is not related to

equation (3.13) and (3.14). It is then obvious that A1 and A2 do not depend on αj,

but A3, however does. In fact, A3 is increasing as either α1 or α2 is increasing. As

indicated above, αj is related to the birth rate of species j and it can be seen that a

higher birth rate leads to a larger optimal utility. The coefficients affecting only one

of the equations (3.13) and (3.14) are r and N . Taking the following proposition:

Proposition 3.2.1. (Competitive Case) The fixed point A1 and A2 are both de-

creasing in r and N .

Proof. The concept of this proof is similar to Proposition 3.1.1 and it will use the

same notation. Given r′ > r, we construct sequences Bi
1 and Bi

2 in analogy to the

proof of Proposition 3.1.1. For the r′ equation (3.16) has a lower unique positive

root, for j = 1, 2. Suppose that (0, B1
2) solves equation (3.14). Then it can be seen

that B1
2 < A1

2. Substituting B1
2 into equation (3.13) allows derivation of the positive

root B1
1 . Now it can be seen that in equation (3.13), for a fixed A2, the positive root

A1 is decreasing as r is increasing: : Differentiating equation (3.13) with respect to
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r, gives

A3
1 + 3k1A

2
1

∂

∂r
A1 + 4c1A

2
1 + 8c1k1A1

∂

∂r
A1 + 4c2

1k1A1

+

[

4c2
1k1 +

(2N − 1) (2N − 3)

2p1N2

]

∂

∂r
A1 + (γ2A1A2 + 2c1γ2A2)

∂

∂r
A1 = 0

(3.20)

Performing the same operation with equation (3.14), but omitting the computation

from the resulting two equations, by extracting ∂
∂r

A1 and using condition (1), it

can be seen that ∂
∂r

A1 < 0. Substitute B1
2 into equation (3.13) with r to derive

the positive root A1 and compare it to B1
1 . It can be seen that B1

1 is lower than

A1. Substituting B1
1 into equation (3.14) and deriving the positive root B2

2 , it can

be shown that B2
2 is lower than the positive root of equation (3.14) with r and B1

1 .

Repeating this process allows construction of a sequence which is lower than the one

we have constructed with r. Furthermore, the sequence satisfies the same properties

we have mentioned in the proof of Proposition 3.1.1. Therefore, the limit is lower

than the one with r.

Looking at the case of N , it was proved earlier that, with a fixed value of A2, in

equation (3.13), a larger N implies a lower positive root A1 and similarly, it can be

shown that equation (3.14) has the same property with a fixed A1. The derivative

of equation (3.13) with respect to N is given by

3k1A
2
1

∂

∂N
A1 + 8c1k1A1

∂

∂N
A1 +

4N − 3

p1N4
A1 +

[

4c2
1k1 +

(2N − 1) (2N − 3)

2p1N2

]

∂

∂N
A1

+
cj (4N − 3)

pjN4
= 0.

(3.21)

Similarly, a sequence can be constructed which satisfies all properties in Proposition

3.1.1, but is lower than the one in Proposition 3.1.1. The idea is similar to the case



70

of r and the proof is omitted. �

It follows from Proposition 3.2.1 that a larger discount r implies a lower optimal

utility. On the other hand, it follows from equation (3.18), that uj∗
i is increasing

as r increases. The economic interpretation of this is that agents facing a larger

discount rate have to harvest more to keep higher payoffs. The impact of the number

of agents on individuals is that optimal utility is decreased when N is increased.

Furthermore

lim
N→∞

uj∗
i (xj) = lim

N→∞

(2N − 1)2 xj

pjN3 (2cj + Aj)
2 = 0, j = 1, 2.

On the other hand, since

d

dN

(2N − 1)2

N3
= −(2N − 1) (2N − 3)

N4
< 0,

d

dN

(2N − 1)2

N2
=

4N − 2

N3
> 0,

more agents joining the fishery game implies a greater aggregate amount of harvest

of species j, but a lower individual harvest of species j for each agent.

Now, moving on to the second case, i.e., those coefficients which change only one

of the equations (3.13) and (3.14). They are cj, pj, βj, γj and σj for j = 1, 2. In

the case of cj, economically, a larger cj implies a larger cost of xj and intuitively,

agents may harvest less xj, which implies that Aj is increasing in cj. However,

mathematically this is not correct. Even though the cost of xj increases, xj may be

still more profitable than x′
j and each agent could still have an incentive to harvest

more xj. The numerical example presented in section 3.5 is a counterexample. The

following propositions examine the remaining parameters:

Proposition 3.2.2. (Competitive Case) For a fixed pj′, Aj is increasing and Aj′
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is decreasing as pj is decreasing. This result also holds for βj and σj. On the other

hand, for a fixed cj′ or γj′, a larger γj leads to a larger Aj and a lower Aj′.

Proof. Without loss of generality, we suppose that j = 1. First considering the

case of p1. Note that p1 is not a coefficient in equation (3.14). Multiply equation

(3.13) by 2p1N
3 (2c1 + A1)

2 and fix A2. The derivative of this equation with respect

to p1 is given by

k1N
3A1 (2c1 + A1)

2 + 2k1p1N
3A1 (2c1 + A1)

∂

∂p1

A1 + k1p1N
3 (2c1 + A1)

2 ∂

∂p1

A1

+ 2N (N − 1) (2N − 1)
∂

∂p1

A1 + γ2N
3A2 (2c1 + A1)

2 + 2p1γ2N
3A2 (2c1 + A1)

∂

∂p1

A1 = 0.

(3.22)

It follows from equation (3.22) that ∂
∂p1

A1 < 0. By applying the same idea as in the

proof of Proposition 3.1.1. For p′1 > p1, a sequence (Bi
1, B

i
2) is constructed which is

compared to the original sequence (Ai
1, A

i
2). First solve equation (3.16) with j = 2

and then derive the positive root A1
2. It can be seen that (0, A1

2) is a solution of

equation (3.14). Substituting of A1
2 into equation (3.13) allows derivation of the

positive root B1
1 . It is lower than A1

1 derived in Proposition 3.1.1. Using B1
1 to find

the positive root B2
2 in equation (3.14), it can be seen that B2

2 is larger than A2
2 in

Proposition 3.1.1. Repeating this process, gives

Bn
1 < An

1 , n = 1, 2, ...

Bn
2 > An

2 , n = 1, 2, ....

Therefore, the limit of Bn
1 for n tending to infinity is lower than A1 and the limit

of Bn
2 is larger than A2. The same argument also works for the cases of βj and σj.

On the other hand, in the case of γj, for fixed γ2, equation (3.14) for a fixed A2
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implies that
∂

∂γ1

A1 =
f2(A2)γ1 (2c2 + A2)

g2
2(A2)

< 0 (3.23)

which therefore implies that A1 is decreasing as γ1 is increasing. Starting at (0, A1
2)

which was constructed in the proof in Proposition 3.1.1. Substituting A1
2 = B1

2

into equation (3.13), the positive root is given by B1
1 = A1

1. Now substitute B1
1

into equation (3.14) and the positive root is B2
2 . Since A1 is decreasing as γ1 is

increasing, B2
2 < a2

2 and iteratively Bi
2 < ai

2 . Similarly, the relationship Bi
1 > Ai

1

can be obtained. Therefore, the result holds. �

In the case of pj, a lower pj implies a higher price of xj, see equation (3.5). Agents

will then harvest less xj and more xj′ to keep high utility. The coefficients βj, σj and

γj all have an impact on xj. It can be seen that larger βj, σj and γj lead to a smaller

xj. There are differences between the coefficients, though. In the case of βj and

σj, a larger βj or σj leads agents to have more incentives to harvest xj now, as the

biomass of xj is likely to be less in the future. On the other side, although a higher

γj implies a lower biomass of xj, agents can harvest more xj′ to keep the stock of xj

at a higher level, which reduces the harvest of xj and increases the harvest of xj′ .

Moving on to the case of a predator-prey system.

Proposition 3.2.3. (Predatory Case) A2 is decreasing in either r or N .

Proof. Let r′ > r be given and fix A1. It can be shown that f1,r′(A1) > f1,r(A1),

which hence implies that F13,r′(A1) = −f
1,r′ (A1)

g1(A1)
< −f1,r(A1)

g1(A1)
= F13,r(A1). For any

increasing function H(x) defined on [0, X1] with H(0) < F13,r′(0), where X has been

defined in the proof of Proposition 3.1.2, F13,r′(A1) − H(A1) < F13,r(A1) − H(A1)

and F13,r′(xr′) < F13,r(xr), where xr′ and xr are the roots of F13,r′(A1)−H(A1) and

F13,r(A1) − H(A1) respectively. It can be proved via condition (3) in Proposition

3.1.2 that F14,r′(A1) < F14,r(A1). On the other hand, it can also be shown that
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for any decreasing function K(x) defined on [0, X] with K(0) > F14,r(0), K(A1) −
F14,r′(A1) > K(A1) − F14,r(A1) as well as F14,r′(xr′) < F14,r(xr), where xr′ and

xr are the roots of K(A1) − F14,r′(A1) and K(A1) − F14,r(A1) respectively. Since

F13,r′(A1) − F14,r(A1) < F13,r(A1) − F14,r(A1), A2,r > A2,r,r′ . Similarly, F13,r′(A1) −
F14,r′(A1) > F13,r′(A1) − F14,r(A1) implies that A2,r,r′ > A2,r′ . Therefore, A2 is

decreasing in r. In the case of N , the proof is analogous to to the case of r and it

is omitted here. �

Proposition 3.2.3 states that either a larger discount rate r or a larger number of

agents N implies more harvest of x2, the prey. Since x2 is the food source of x1, it

reduces the biomass of x1, which in turn increases the costs of each agent harvesting

x1. As a result, agents may have less incentive to harvest larger amounts of x1. On

the other hand, mathematically, there exist two groups of parameters such that

one leads A1 to increase in either r or N and the other leads to the opposite. For

example, suppose that r = 0.2, α1 = −1.3, α2 = 4, β1 = 0.25, β2 = 0.1, γ1 = −1,

γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, p1 = 0.3, p2 = 1, c1 = 0.45, c2 = 1 and N = 2,

it can be derived numerically that A1 = 0.21356 and A2 = 0.48059. On the other

hand, if r = 0.5 while all other parameters remain the same, then A1 = 0.21753

and A2 = 0.2746. Note that in this case, x1 is more profitable and costly than x2.

Even though agents expect that the food resource of x1, i.e., x2, is reduced, they

still harvest less x1 and therefore A1 decreases. This result also holds for N ; even

though more agents join the game, each agent still harvest less x1. On the other

hand, in the case of σj, γj and pj, the following proposition can be put forward:

Proposition 3.2.4. (Predatory Case) A1 and A2 are both decreasing in γ2 as well

as A1 and A2 is decreasing and increasing in γ1, respectively. In the case of σj, for

a fixed σ2, A1 and A2 are decreasing in σ1. On the other hand, for a fixed σ1, A1 is

increasing and A2 is decreasing in σ2. In the case of p1, A1 and A2 are decreasing
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in p1.

Proof. The proof of this result is analogous to the proof of Proposition 3.2.3. �

In the case of σj, a larger σ1 implies a greater impact of x1 in the future and

therefore each agent tends to harvest more x1. Since less x1 leads the biomass of

x2 to increase, agents will harvest more x2 simultaneously. On the other hand, an

increasing σ2 leads agents to harvest more x2 and leads x1 to have a lesser resource

of food. Hence agents tend to harvest less x1. In the case of γ1, a larger −γ1 leads

x1 to increase and then x2 is decreasing due to an increased stock of predators. It

is interesting that this result shows that fishery agents harvest less x1 and more x2.

The interpretation is that agents may observe a lower biomass of x2 in the future

and hence catch more x2 now. This leads x1 to decrease in the future due to a lack

of food resources and therefore agents harvest less x1. On the other side, a larger γ2

causes x2 to decrease, while x1 is decreasing since it is the predator. Agents expect

lower stock of both species in the future and therefore, they catch more x1 and x2

now. In the case of p1, a higher p1 leads agents to benefit less from x1. They will

need to harvest more x1 to maintain the same level of utility. On the other hand,

this leads the biomass of x2 to increase and they also tend to harvest more x2. In

the case of cj and p2, however, it is not possible to give a definitive answer as to

how agents change their strategies and how those parameters affect the fixed points

are not clear. It can also been seen that the harvest of x2, the prey, is increasing in

each parameter, which may cause x1 to decrease in the future. The results of this

section have been organised into the following tables, where the first and second

tables represent the competitive and predatory-prey cases, respectively.
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Parameters Fixed Points

r or N A1 and A2 are decreasing.
pj, βj or σj Aj is decreasing and Aj′ is increasing.

cj or γj Aj is increasing and Aj′ is decreasing.

Table 3.1: Competitive Case

Parameters Fixed Points

r or N A2 is decreasing.
γ1 A1 is decreasing and A2 is increasing.

p1 or γ2 A1 and A2 are decreasing.
σ1 A1 and A2 are decreasing.
σ2 A1 is increasing and A2 is decreasing.

Table 3.2: Predator-Prey Case

3.3. The case of single-species restricted fisheries

In this section, without loss of generality, it is supposed that there are two agents,

say agent 1 and agent 2, and agent i is only allowed to harvest species xi. This

assumption is realistic given that fishery agents could harvest via different fishing

vessels and techniques. Datta and Mirman (1999) also considered this case and

argue that this situation could occur, see [?]. In [?], the fishery agents represent

different countries which have different consumption characteristics and species

preferences. The objective functional for i is defined by

max
ui

E

{

∫ ∞

0

e−rt

[

√

ui(t)√
pi

− ciui(t)
√

xi(t)

]

dt |x1(0) = x10, x2(0) = x20

}

, (3.24)
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and state equations are given by

dxi(t) =

{

xi(t)

[

αi
√

xi(t)
− βi − γi

√

xi′(t)

xi(t)

]

− ui(t)

}

dt + σixi(t)dWi(t),

dxi′(t) =

{

xi′(t)

[

αi′
√

xi′(t)
− βi′ − γi′

√

xi(t)

xi′(t)

]

− ui′(t)

}

dt + σi′xi′(t)dWi′(t).

(3.25)

As before, the finite horizon approximation approach will be applied to solve this

problem. The Hamilton-Jacobi-Bellman equations for the finite time horizon ap-

proximation for agents i = 1, 2 is given by

rV1(t, x1, x2; T ) − ∂

∂t
V1(t, x1, x2; T )

= max
u1

{√
u1√
p1

− c1u1√
x1

+
∂

∂x1

V1(t, x1, x2; T ) (α1

√
x1 − β1x1 − γ1

√
x1x2 − u1)

+
∂

∂x2

V1(t, x1, x2; T ) (α2

√
x2 − β2x2 − γ2

√
x1x2 − u∗

2)

+
σ2

1x
2
1

2

∂2

∂x2
1

V1(t, x1, x2; T ) +
σ2

2x
2
2

2

∂2

∂x2
2

V1(t, x1, x2; T )

}

(3.26)

and

rV2(t, x1, x2; T ) − ∂

∂t
V2(t, x1, x2; T )

= max
u2

{√
u2√
p2

− c2u2√
x2

+
∂

∂x2

V2(t, x1, x2; T ) (α2

√
x2 − β2x2 − γ2

√
x1x2 − u2)

+
∂

∂x1

V2(t, x1, x2; T ) (α1

√
x1 − β1x1 − γ1

√
x1x2 − u∗

1)

+
σ2

1x
2
1

2

∂2

∂x2
1

V2(t, x1, x2; T ) +
σ2

2x
2
2

2

∂2

∂x2
2

V2(t, x1, x2; T )

}

.

(3.27)
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Necessary conditions for maximizing the RHS of equation (3.26) and (3.27) are

ui =
1

4pi

1
[

ci√
xi

+ ∂
∂xi

Vi(t, xi, xi′ ; T )
]2 (3.28)

for (i, i′) = (1, 2) and (2, 1). Substituting equation (4.28) into equation (4.26) and

(4.27), results in a system of PDE’s

rV1(t, x1, x2; T ) − ∂

∂t
V1(t, x1, x2; T )

=
1

2p1

[

c1√
x1

+ ∂
∂x1

V1(t, x1, x2; T )
] − c1

4p1
√

x1

[

c1√
x1

+ ∂
∂x1

V1(t, x1, x2; T )
]2

+
∂

∂x1

V1(t, x1, x2; T )











α1

√
x1 − β1x1 − γ1

√
x1x2 −

1

4p1

[

c1√
x1

+ ∂
∂x1

V1(t, x1, x2; T )
]2











+
∂

∂x2

V1(t, x1, x2; T )











α2

√
x2 − β2x2 − γ2

√
x1x2 −

1

4p2

[

c2√
x2

+ ∂
∂x2

V2(t, x1, x2; T )
]2











+
σ2

1x
2
1

2

∂2

∂x2
1

V1(t, x1, x2; T ) +
σ2

2x
2
2

2

∂2

∂x2
2

V1(t, x1, x2; T )

(3.29)
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and

rV2(t, x1, x2; T ) − ∂

∂t
V2(t, x1, x2; T )

=
1

2p2

[

c2√
x2

+ ∂
∂x2

V2(t, x1, x2; T )
] − c2

4p2
√

x2

[

c2√
x2

+ ∂
∂x2

V2(t, x1, x2; T )
]2

+
∂

∂x2

V2(t, x1, x2; T )











α2

√
x2 − β2x2 − γ2

√
x1x2 −

1

4p2

[

c2√
x2

+ ∂
∂x2

V2(t, x1, x2; T )
]2











+
∂

∂x1

V2(t, x1, x2; T )











α1

√
x1 − β1x1 − γ1

√
x1x2 −

1

4p1

[

c1√
x1

+ ∂
∂x1

V1(t, x1, x2; T )
]2











+
σ2

1x
2
1

2

∂2

∂x2
1

V2(t, x1, x2; T ) +
σ2

2x
2
2

2

∂2

∂x2
2

V2(t, x1, x2; T )

(3.30)

with boundary conditions

V1(T, x1, x2; T ) = 0 (3.31)

V2(T, x1, x2; T ) = 0 (3.32)

As before, a sophisticated guess will be made with regard to the functional form of

the solution for equations (3.29), (3.30), (3.31) and (3.32)

V1(t, x1, x2; T ) = A1(t)
√

x1 + A2(t)
√

x2 + A3(t)

V2(t, x1, x2; T ) = B1(t)
√

x1 + B2(t)
√

x2 + B3(t).

Substituting these into equations (3.29) and (3.30) generates a system of ordinary

differential equations. To apply the finite horizon approximation approach, it is then

necessary to derive the fixed points and to solve the resulting system of polynomials.
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The polynomial system is

k1A
3
1 +

(

4c1k1 +
γ2A2

2

)

A2
1 +

(

4c2
1k1 −

1

2p1

+ 2c1γ2A2

)

A1 + 2c2
1γ2A2 −

c1

p1

= 0

[

k2 +
1

2p2 (2c2 + B2)
2

]

A2 +
γ1A1

2
= 0

rA3 −
α1A1

2
− α2A2

2
= 0

[

k1 +
1

2p1 (2c1 + A1)
2

]

B1 +
γ2B2

2
= 0

k2B
3
2 +

(

4c2k2 +
γ1B1

2

)

B2
2 +

(

4c2
2k2 −

1

2p2

+ 2c2γ1B1

)

B2 + 2c2
2γ1B1 −

c2

p2

= 0

rB3 −
α1B1

2
− α2B2

2
= 0

(3.33)

Economically, in the case of a two species competitive system, it would be expected

that A1 and B2 will be positive and A2 and B1 will be negative. The reason for this

is that agent i only benefits from species xi. On the other hand, a greater biomass

of xi′ implies a lower biomass of xi. In the case of a predator-prey system, both

A1 and A2 are positive, while B1 is negative and B2 is positive. The interpretation

of this is that an increase in the biomass of x2 leads the biomass of x1 to increase,

which therefore implies that agent 1 will also benefit from x2. In system (3.33), the

second equation is substituted into the first equation and the third equation into

the fourth, with the following results:

[

k1 +
γ2f (B2)

2

]

A3
1+[4c1k1 + 2c1γ2f (B2)] A

2
1+

[

4c2
1k1 −

1

2p1

+ 2c2
1γ2f (B2)

]

A1−
c1

p1

= 0

(3.34)
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and

[

k2 +
γ1g (A1)

2

]

B3
2+[4c2k2 + 2c2γ1g (A1)] B

2
2+

[

4c2
2k2 −

1

2p2

+ 2c2
2γ1g (A1)

]

B2−
c2

p2

= 0

(3.35)

where

f (B2) = − γ1p2 (2c2 + B2)
2

2k2p2 (2c2 + B2)
2 + 1

g (A1) = − γ2p1 (2c1 + A1)
2

2k1p1 (2c1 + A1)
2 + 1

This gives rise to the following proposition:

Proposition 3.3.1. Under the assumption that

4c2
jk1k2pj − c2

jpjγ1γ2 − 2kj′ ≥ 0

hold for (j, j′) = (1, 2) and (2, 1), equation (3.34) and (3.35) have a unique positive

pair of solutions.

Proof. The condition with j = 1 implies that equation (3.34) has a positive and

unique root. Similarly, when j = 2, the condition leads equation (3.35) to have a

positive and unique root. Note that, in the case of a two species competitive system,

it is possible to construct two increasing sequences and each sequence has an upper

boundary due to this condition. On the other hand, in the case of a predator-prey

system, one of these two sequences will increase with an upper bound while the

other will decrease with a lower bound. Hence, the proof of this result is analogous

to the proof of Proposition 3.1.1. �

The optimal utility and optimal control obtained in the setup of this section will

now be compared with the optimal utility from the previous section. Starting with
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the case of a two species competitive system: Equations (3.13) and (3.34), consist

of cubic polynomials. Moreover, the coefficients of A3
1, A2

1 and A1 in equation (3.13)

are greater than those in equation (3.34). On the other hand,

0 > 2c2
1γ2A2 −

3c1

8p1

> 2c2
1γ2A2 −

c1

p1

> − c1

p1

(3.36)

Similar properties hold for equations (3.14) and (3.35). It can be proved that

the solutions for equation (3.13) and (3.14) are less in value than the solutions of

equation (3.34) and (3.35). On the other hand, the optimal controls for agent 1 and

2 with restriction are given by

ur∗
1 =

x1

p1 (2c1 + Ar
1)

2

ur∗
2 =

x2

p2 (2c2 + Br
2)

2

while without any restriction they are

unr∗
i =

9xi

8pi (2ci + Anr
i )2 , i = 1, 2.

Since Anr
1 ≤ Ar

1 and Anr
2 ≤ Br

2, agent i with restriction harvests less than without

restriction. The interpretation of this is that overexploitation of xi leads xi′ to

increase in biomass. This will therefore reduce the biomass of xi and increase the

utility of agent i′. On the other hand, without any restriction, agents harvest both

species and do not worry about the biomass of xi′ . This may cause one of the

species to become extinct. On the other hand, it can be seen that if the following

inequalities hold

Ar
1 − Anr

1

Anr
2 − Ar

2

√
x1 +

Ar
3 − Anr

3

Anr
2 − Ar

2

≥ √
x2 ≥

Br
1 − Anr

1

Anr
2 − Br

2

√
x1 +

Br
3 − Anr

3

Anr
2 − Br

2
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then agents obtain more utility in the case of restriction than the case of competition.

In the case of a predator-prey system, however, the idea of comparing each

coefficient in equation (3.13) and (3.14) to (3.34) and (3.35) cannot be applied.

Economically, it would be expected that agent 2 would prefer to harvest more x2.

The reason for this is that the biomass of x1 is increasing if agent 2 harvests less

x2, which therefore implies that agent 1 benefits more from x1. On the other hand,

even though agent 2 harvests less x2 to maintain a sustainable biomass of x2, x1

still hunts for x2, causing a reduction in the biomass of x2. In this case, agent 2

not only competes with agent 1 but also species x1. The situation is that if agent

2 harvests more x2 and causes x2 become extinct, then x1 will become extinct in

the future. This causes agent 2 to have more bargaining power and agent 1 may be

forced to cooperate.

3.4. The case of maximizing joint utility

In this section, it is proposed that all agents are allowed to cooperate. The idea is

then to derive the optimal joint utility function. Since the model developed above is

symmetric, it is natural to assume that each agent shares the catch equally among

all members. The joint objective functional is given by

max
v1,v2

E

{

∫ ∞

0

e−rt

2
∑

j=1

[

√

vj(t)
√

pj

− cj√
xj

vj(t)

]

dt |x1(0) = x10, x2(0) = x20

}

(3.37)

where

vj(t) =
N
∑

i=1

uj
i (t), j = 1, 2
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and the state equations are given by

dx1(t) =

{

x1(t)

[

α1
√

x1(t)
− β1 − γ1

√

x2(t)

x1(t)

]

− v1(t)

}

dt + σ1x1(t)dW1(t)

dx2(t) =

{

x2(t)

[

α2
√

x2(t)
− β2 − γ2

√

x1(t)

x2(t)

]

− v2(t)

}

dt + σ2x2(t)dW2(t).

(3.38)

It can be seen that the model is consistent with the case N = 1. Therefore, the

optimal controls and joint utility function can easily be derived from equation (3.18)

and (3.19). Furthermore, the optimal controls can be obtained by Proposition 3.2.1.

On the other hand, the aggregate amount of harvest for the case of cooperation is

less than that for the case of competition. This gives rise to a new proposition:

Proposition 3.4.1. In the case of a two species competitive system, if either con-

dition (1) or (2) in Proposition 3.1.1 and the condition in Proposition 3.3.1 hold,

then equation (3.13) and (3.14) under N = 1 has a pair of positive and unique fixed

points. On the other hand, in the case of a predator-prey system, the conditions in

Proposition 3.1.2 and Proposition 3.3.1 guarantees that equation (3.13) and (3.14)

under N = 1 has a pair of positive roots.

Proof. The proof of this result is analogous to the proof of Proposition 3.1.1 and

Proposition 3.1.2. �

Suppose that (Ac
1, A

c
2) denotes the fixed points for the case of cooperation and

(Anc
1 , Anc

2 ) denotes the fixed point for the case of competition. This gives

xj

pj

(

2cj + Ac
j

)2 ≤ xj

pj

(

2cj + Anc
j

)2 ≤ N
(2N − 1)2 xj

pjN3
(

2cj + Anc
j

)2 (3.39)
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since (2N−1)2

N2 ≥ 1. Clark (2006) highlighted several methods to reduce the impact

on the ecological system and one of these is cooperation between agents, see [?],

Chapter 1. It can be seen in inequality (3.39) that, in the case of cooperation, the

impact on the ecological system is less than under competition, i.e., the aggregate

amount of harvest under cooperation is lower than under competition. The next

section shows an example where this relationship can be reversed, if the system is

predator-prey, rather than competitive.

3.5. Some numerical results

This section will present some numerical results from the equations generated

above. An iterative method will be applied in order to derive a positive pair of

solutions to equation (3.13) and (3.14), as well as equation (3.34) and (3.35). The

concept is to start with a sufficiently large discretization of the set of potential values

for A1 i.e. {Ai
1 |i = 0, ..., n}. Substituting each Ai

1 into equation (3.14) and solving it

numerically by Newton’s method gives {Ai
2 |i = 0, ..., n}. Each pair (Ai

1, A
i
2) is then

examined via equation (3.13) in order to identify which Am
1 leads equation (3.13) to

have a minimum. The pair (Am
1 , Am

2 ) are then chosen as an approximation of the

positive pair of solutions. Note that in the proof of Proposition 4.1.1, Proposition

4.3.1 and Proposition 3.4.1, it can be seen that this technique will leads Ai
1 and Ai

2

to be consistent with the property of the sequences we have constructed in those

proofs.

Starting with the case of a two species competitive system and assuming that

the coefficients for the ecological system are given by α1 = 1.3, α2 = 1, β1 = 0.6,

β2 = 0.55, γ1 = 0.9, γ2 = 0.7, σ1 = 0.15 and σ2 = 0.55. For the agents it

is assumed that r = 0.2, p1 = 1.85, p2 = 1.65, c1 = 1.45, c2 = 1.3 and N =

2. This case results in Figures 3.3 to 3.12 in Graphical Illustration. Note that
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these parameters satisfy Condition (1) in Proposition 3.1.1 and the condition in

Proposition 3.3.1. This guarantees that fixed points exist. Under the coefficients

chosen, Anr
1 = Anc

1 ≈ 0.030531, Anr
2 = Anc

2 ≈ 0.051864, Anr
3 = Anc

3 ≈ 0.22889, Ar
1 ≈

0.38468, Ar
2 ≈ −0.31754, Ar

3 ≈ 0.45635, Br
1 ≈ −0.306, Br

2 ≈ 0.4615, Br
3 ≈ 0.15926,

Ac
1 ≈ 0.078766, Ac

2 ≈ 0.14608 and Ac
3 ≈ 0.62119. Figure 3.3 represents the optimal

utility function without any restriction for each agent. It can be seen that optimal

utility is increasing as either x1 or x2 is increasing. This is reasonable because agents

benefit from both species. On the other hand, in Figure 3.4, agent 1 is bound to

harvest x2 and since x2 competes with x1, a larger x2 implies a lower optimal utility.

Similarly, in Figure 3.5, agent 2 receives less utility if x1 is larger. The optimal joint

utility function is presented in Figure 3.6 while Figure 3.7 displays the difference

between the optimal joint utility function and the sum of the utility functions in

competition. From the analysis in section 5, if agents observe that the biomass of

each species satisfies

0.9585
√

x1 − 0.61575 ≥ √
x2 ≥ 0.82154

√
x1 − 0.16998,

they may prefer the restricted case because they obtain more benefits than under the

competitive regime. Figure 3.8 and 3.9 represent the difference of the optimal utility

functions between restriction and competition for agent 1 and 2 respectively. As an

approximation to an infinite time horizon, this uses a finite time horizon of T = 50.

The initial states are given by the fixed points of the deterministic ecological system,

see section 3.1. In this case, they are x10 = 0.38028 and x20 = 1.0678. In the case

of no restriction, it can be seen that in Figure 3.10, x1 is decreasing around x10 and

then increasing until it converges to around 2.89. On the other hand, x2 is decreasing

and tends to 0.09, which means that x2 may become extinct relatively easily. The

interpretation of this is that since x2 is more profitable and costs less than x1, the
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likelihood of x2 becoming extinct is quite large. Since x2 cannot compete with x1,

the biomass of x1 is increasing. On the other hand, if each agent is restricted, it

can be observed from from Figure 3.11 that the expectations of both species are

increasing and converge to around 3.35 and 0.35, respectively. In the case of the

optimal joint utility function, both species survive. It can be seen in Figure 3.12

that x1 converges to around 3.30 and x2 tends to around 0.30. In order to prevent

over-exploitation of resources, some restriction may be necessary. In this case, either

forcing fisheries to fish a single species or cooperation between the fisheries leads

both species to maintain a sustainable biomass.

Now moving to the case of a predator prey system: Assuming that that α1 = −1.3,

α2 = 4, γ1 = −0.9, γ2 = 0.7, σ1 = 0.15 and σ2 = 0.55. For the agents it is assumed

that r = 0.2, p1 = 1.85, p2 = 3, c1 = 1.45, c2 = 2 and N = 2. Figures 3.13 to 3.22 in

the Graphical Illustration relate to this case. It can be computed numerically that

Anr
1 = Anc

1 ≈ 0.015258, Anr
2 = Anc

2 ≈ 0.08893, Anr
3 = Anc

3 ≈ 0.83971, Ar
1 ≈ 0.10726,

Ar
2 ≈ 0.19463, Ar

3 ≈ 1.5977, Br
1 ≈ −0.067684, Br

2 ≈ 0.045, Br
3 ≈ 0.66997, Ac

1 ≈
0.039422, Ac

2 ≈ 0.23986 and Ac
3 ≈ 2.2705. Note that x1 is more profitable and less

costly than x2 due to those parameters. For instance, if sharks are harvested for their

fins this causes the population of sharks to decline. On the other hand, the biomass

of other species hunted by sharks increases because the biomass of sharks declines.

This clearly has a great effect on the ecological system. In Figure 3.13, it can be seen

that even though the parameters selected cause x1 to be more profitable and less

costly than x2, each agent benefits more from x2 than x1. This numerical example

shows that the benefit from the profitable predator might not be as high as expected.

On the other hand, in Figure 3.14, agent 1 obtains higher utility than without any

restriction. The difference between the two utility functions is presented in Figure

3.18. The utility function in the case where agent 2 is allowed to harvest only x2 is



87

presented in Figure 3.15. It can be seen in Figure 3.19 that agent 2 obtains lower

utility than under the unrestricted competition condition. This may lead agent 2 to

have less incentive to be restricted. The case of cooperation is presented in figure

3.16 and each agent obtains higher utility than under competitive conditions, which

was expected, see Figure 3.17. Note that a larger x1 in cooperation than under

competition.

The graphs relating to the ecological system for each case are presented in Figures

3.20, 3.21 and 3.22. As initial values used are taken from the fixed points of the

deterministic ecological system, in this numerical example they are given by x10 =

32.653 and x20 = 2.0864. We choose T = 500 was chosen for each case. In Figure

3.20, 3.21 and 3.22, it can be seen that x1 is decreasing and x2 is increasing at the

beginning. Since x1 has more resources of food, it is increasing and therefore causes

x2 to decrease by predation. However, they are both decreasing around t = 30

and both tend to 0, which means that both x1 and x2 become extinct. Although

Figures 3.20, 3.21 and 3.22 are similar, the rate of convergence to zero is different.

In the case of competition, x1 and x2 converge to zero with a significantly lower

rate. It can be seen that both species survive longer when agents compete with

each other. Once x2 becomes extinct, x1 will soon be extinct. It can be seen that

both cooperation and restriction are not efficient in a predator-prey system and

cause both species to become extinct earlier than in the case of competition.

3.6. Conclusions

The author has presented a continuous time game theoretic model of a two

species fishery with ecological interaction and uncertainty. This line of research

extends and combines previous studies of two species fishery models in discrete

time with no uncertainty by Andereson (1975) [?] and Quirk and Smith (1977) [?]
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as well as the line of stochastic differential game models developed by Hofbauer

and Sigmund (1998) [?] and Jorgensen and Yeung (1996) [?] which focuses on one

species fisheries. There is sufficient motivation for either of the two research lines,

but it is only by combining them that a more realistic model containing uncertainty,

continuous time and ecological aspects can be obtained. The new model is richer,

but also mathematically more complex. It has been shown that, under appropriate

assumptions, this model has a stationary feedback Nash equilibrium and various

formulas and equations have been derived which characterize it. It was possible to

determine a semi- analytic solution, by which it is meant that an analytic form of

the solution has been derived, but it is necessary to numerically calculate certain

parameters within it. The comparative statics of the model have been discussed,

together with the numerical results, and an economic interpretation has been given.

The different cases of competitive, restricted and cooperative fisheries management

have been discussed, along with the differences in their impacts on the ecological

system. According to the numerical example, it can be seen from the perspective of

conservation that it is necessary to introduce some fishery policies. Therefore, the

next chapter will introduce the concept of maximum sustainable yield.
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Graphical Illustration
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Figure 3.1: Stable Coexistence Case
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Figure 3.2: Bistable Case
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Figure 3.3: Optimal utility function in competition under α1 = 1.3, α2 = 1, β1 = 0.6,
β2 = 0.55, γ1 = 0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 1.65,
c1 = 1.45, c2 = 1.3 and N = 2

Figure 3.4: Optimal utility function with restriction for agent 1 under α1 = 1.3, α2 = 1,
β1 = 0.6, β2 = 0.55, γ1 = 0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85,
p2 = 1.65, c1 = 1.45 and c2 = 1.3
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Figure 3.5: Optimal utility function with restriction for agent 2 under α1 = 1.3, α2 = 1,
β1 = 0.6, β2 = 0.55, γ1 = 0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85,
p2 = 1.65, c1 = 1.45 and c2 = 1.3

Figure 3.6: Optimal joint utility function under α1 = 1.3, α2 = 1, β1 = 0.6, β2 = 0.55,
γ1 = 0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 1.65, c1 = 1.45, c2 = 1.3
and N = 2
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Figure 3.7: Difference of optimal joint utility function and the sum of utility functions
in competition under α1 = 1.3, α2 = 1, β1 = 0.6, β2 = 0.55, γ1 = 0.9, γ2 = 0.7, σ1 = 0.15,
σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 1.65, c1 = 1.45, c2 = 1.3 and N = 2

Figure 3.8: Difference of optimal utility functions between restriction and competition
for agent 1 under α1 = 1.3, α2 = 1, β1 = 0.6, β2 = 0.55, γ1 = 0.9, γ2 = 0.7, σ1 = 0.15,
σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 1.65, c1 = 1.45, c2 = 1.3 and N = 2
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Figure 3.9: Difference of optimal utility functions between restriction and competition
for agent 2 under α1 = 1.3, α2 = 1, β1 = 0.6, β2 = 0.55, γ1 = 0.9, γ2 = 0.7, σ1 = 0.15,
σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 1.65, c1 = 1.45, c2 = 1.3 and N = 2
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Figure 3.10: Means of corresponding states for competition under α1 = 1.3, α2 = 1,
β1 = 0.6, β2 = 0.55, γ1 = 0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85,
p2 = 1.65, c1 = 1.45, c2 = 1.3, N = 2 and T = 50



94

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

Time

M
ea

n
The expectations with T = 50

Mean for x
1

Mean for x
2

Figure 3.11: Means of corresponding states with restriction under α1 = 1.3, α2 = 1,
β1 = 0.6, β2 = 0.55, γ1 = 0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85,
p2 = 1.65, c1 = 1.45, c2 = 1.3 and T = 50
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Figure 3.12: Means of corresponding states for the case of optimal joint utility function
under α1 = 1.3, α2 = 1, β1 = 0.6, β2 = 0.55, γ1 = 0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55,
r = 0.2, p1 = 1.85, p2 = 1.65, c1 = 1.45, c2 = 1.3 and T = 50
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Figure 3.13: Optimal utility function in competition under α1 = −1.3, α2 = 4, γ1 =
−0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 3, c1 = 1.45, c2 = 2 and
N = 2

Figure 3.14: Optimal utility function with restriction for agent 1 under α1 = −1.3,
α2 = 4, γ1 = −0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 3, c1 = 1.45,
c2 = 2 and N = 2
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Figure 3.15: Optimal utility function with restriction for agent 2 under α1 = −1.3,
α2 = 4, γ1 = −0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 3, c1 = 1.45
and c2 = 2

Figure 3.16: Optimal joint utility function under α1 = −1.3, α2 = 4, γ1 = −0.9, γ2 = 0.7,
σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 3, c1 = 1.45 and c2 = 2
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Figure 3.17: Difference of optimal joint utility function and the sum of utility functions
in competition under α1 = −1.3, α2 = 4, γ1 = −0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55,
r = 0.2, p1 = 1.85, p2 = 3, c1 = 1.45, c2 = 2 and N = 2

Figure 3.18: Difference of optimal utility functions between restriction and competition
for agent 1 under α1 = −1.3, α2 = 4, γ1 = −0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2,
p1 = 1.85, p2 = 3, c1 = 1.45, c2 = 2 and N = 2
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Figure 3.19: Difference of optimal utility functions between restriction and competition
for agent 2 under α1 = −1.3, α2 = 4, γ1 = −0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2,
p1 = 1.85, p2 = 3, c1 = 1.45, c2 = 2 and N = 2
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Figure 3.20: Means of corresponding states for competition under α1 = −1.3, α2 = 4,
γ1 = −0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 3, c1 = 1.45, c2 = 2,
N = 2 and T = 500
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Figure 3.21: Means of corresponding states with restriction under α1 = −1.3, α2 = 4,
γ1 = −0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85, p2 = 3, c1 = 1.45, c2 = 2,
N = 2 and T = 500
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Figure 3.22: Means of corresponding states for the case of optimal joint utility function
under α1 = −1.3, α2 = 4, γ1 = −0.9, γ2 = 0.7, σ1 = 0.15, σ2 = 0.55, r = 0.2, p1 = 1.85,
p2 = 3, c1 = 1.45, c2 = 2, N = 2 and T = 500



Chapter 4

Sustainable Yields in Fisheries:

Uncertainty, Risk-Aversion and

Mean-Variance Analysis

Maximum sustainable yield models were among the first mathematical models

applied to fishery economics and are now well established, see for example Clark

(2006) [?]. While models such as the Schaefer model (1957) [?], which takes

economic considerations such as profit taking into account, are seen as more realistic

than maximum sustainable yield models, the latter are still used as a benchmark,

in particular when it comes to policy implications. Evidence of this can be found

in articles by Maundner (2002) [?], Jacobson et al. (2002) [?] and Roughgarden

and Smith (1996) [?]. Sustainability as a concept, of course, has had somewhat of a

renaissance in recent years, as people rethink their approaches to the environment,

renewable resources and wildlife conservation. With the exception of Bousquet et

al. (2008) [?], models taking maximal (optimal) sustainable yield as their primary

objective have only been considered in a deterministic framework. The analysis in

100
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this case is very simple. The underlying deterministic logistic growth dynamic with

constant harvesting effort u is given by

x′(t) = κx(t) (θ − x(t)) − qux(t). (4.1)

Without adopting any fishing effort, (4.1) has two fixed points, i.e., 0 and θ. In

the case of 0, it represents the situation where the species becomes extinct. On the

other hand, the fixed points θ represents the case of an ecological equilibrium. The

non-zero fixed point can be easily computed, in fact

x(∞, u) = θ − qu

κ
, (4.2)

and the effort level u that maximizes this fixed point is called the maximum sus-

tainable yield effort, here

u∗ =
θκ

2q
. (4.3)

The maximum sustainable yield (MSY) is then given as MSY = qu∗x(∞, u∗).

Now, it is clearly the case that fish populations do not grow deterministically,

but are affected by random sources which can be caused either environmentally,

e.g., climate change, or ecologically, e.g., availability of food sources or existence of

predators. The issue that fish populations are affected by uncertainty was taken

up in the previous Chapter. In this Chapter, the classical deterministic model

has been extended by adding a level dependent diffusion term to equation (4.1).

The dynamics are then governed by a stochastic differential equation and fixed

points no longer exist, therefore the classical notion of maximum sustainable yield

does not make sense in this context. It was shown, however, that the general

concept of sustainability and maximization can be carried over to this more realistic
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setup. Firstly, while stochastic differential equations seldom admit fixed points,

they often admit so-called stable or equilibrium distributions. For the case of the

fishery, this would mean that, once this distribution is reached, fish numbers can

still fluctuate stochastically, but the underlying distribution no longer changes over

time. The equilibrium distribution of a stochastic differential equation of type (4.1)

is nowadays, in principle, well understood. The non-equilibrium distribution has

only been computed very recently by Yang and Ewald (2008) [?] and may play a

role in future work. Fisheries may now want to maximize certain functionals that

depend on this equilibrium distribution. The first such functional that comes to

mind is the expected value of the equilibrium distribution, leading to the concept

of maximum expected sustainable yield, and this will be discussed in section 4.3. A

detailed study will be made of the effect of uncertainty on the harvesting behaviour

of the fishery.

In reality, it is well known that economic agents behave in a risk averse fashion

and act in such a way as to trade-off between expectation and risk. It is natural

to assume that fisheries are, in general, willing to accept a lower expected yield in

turn for a lower level of risk. This aspect is taken into account in section 4.4 and

a linear combination of expected value and variance of the equilibrium distribution

of (4.1) is used as a performance measure. The problem of maximizing expected

yield is also studied under a variance constraint, as well as minimizing variance, e.g.

risk, under an expected sustainable yield constraint. The author and his supervisor

refer to this approach as Mean-Variance Analysis of Sustainable Fisheries, since it

essentially relates to aspects studied by Markowitz (1952) [?],which it is well known

led to a revolution in finance and a Nobel prize.

This chapter is related to the article by Bousquet et al. (2008) [?] who also

consider sustainable yields in a stochastic dynamic environment, but consider dis-
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crete time, and do not reflect on issues such as risk aversion. While the continu-

ous time setup is considered more realistic by the author, it must be emphasized

that, mathematically, it is no more difficult. In fact, the available results on the

equilibrium distributions of continuous time diffusions shorten the mathematical

exposition significantly and allow it to appear more elegant in places, the latter,

of course, being a matter of taste. Models in continuous time with the same or

similar underlying diffusion processes to this thesis have been considered by various

authors. However, these authors have not considered sustainability as the primary

objective of the fishery. The aspect of sustainability is, for example, considered

in Pindyck (1984) [?], but only in the way that the equilibrium distribution under

profit maximizing strategies is computed, which of course is conceptually different

than optimization of sustainable yields. Pindyck also assumes that the firms are

risk neutral. Further significant contributions along the line taken by Pindyck have

been made by Lande et al. (1995) [?], Alvarez and Schlepp (1998) [?] as well as

Shah and Sharma (2003) [?]. It is also worth mentioning recent work by Hartman

[?] in this field. He does, however, focus on profit maximization, and sustainable

yields or equilibrium distributions do not play any role in this work. The author

considers that this thesis makes new conceptual contributions to the current body

of work, not only with respect to sustainable yields, but also and in particular with

respect to the issue of risk aversion and mean-variance analysis.

4.1. The Model

It is assumed that, without interference by the fishery, the total mass of the fish

population follows the stochastic logistic growth dynamic

dx(t) = [κx(t) (θ − x(t))] dt + σx(t)dW (t), (4.4)
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with κ, θ and σ positive constants. This dynamic is basically the classical determin-

istic logistic growth dynamic, extended by a level dependent diffusion term. The

expression dW (t) represents the increment of a Brownian motion, e.g., a continuous

time random walk. Equation (4.4) is, on the other hand, a geometric mean reverting

process. For a full specification of (4.1) it is necessary to apply an initial condition

x(0) = x0 and it is assumed that x0 > 0. Interestingly the precise value of x0 will

not play a role in the following sections. Given that the fishery harvests the fish

following a constant effort strategy u, the actual mass rate of fish harvested is then

assumed to be qux(t), where q > 0 denotes an efficiency parameter. The dynamic

for the fish population is then given by

dx(t) = [κx(t) (θ − x(t)) − qux(t)] dt + σx(t)dW (t), (4.5)

which is equivalent to

dx(t) = κx(t)
({

θ − qu

κ

}

− x(t)
)

dt + σx(t)dW (t). (4.6)

This has the same dynamic structure as (4.4), with the mean reverting parameter

θ replaced by θ − qu

κ
. Note that the fishing effort influences the mean reversion

parameter, and hence also the long term expectation and variance of this process,

which will be discussed in the following section. Be warned at this point though,

that the long term expectation does not coincide with the mean reversion parameter,

Merton (1975) [?] identified this feature and called it expectation bias. It will be

indicated in Chapter 5 that geometric mean reversion appears in various economic

and biological models. For example, in a stochastic Solow model, the process

appears as an interest rate process in the work of Merton.
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4.2. Sustainability and Equilibrium distribution

The stochastic differential equation (4.6) does not have any fixed point other than

0 and the deterministic equilibrium analysis does not apply. Clearly at each point in

time, x(t) is random, and convergence and asymptotic behaviour then needs to be

understood in terms of probabilities and distribution. Under regularity conditions

which are outlined in Malliaris and Brock (1982) [?], page 106, the process x(t)

indeed converges in distribution to a random variable and one formally writes

lim
t→∞

x(t) =: x(∞). (4.7)

The distribution of x(∞) is then called the equilibrium distribution of (4.6). It is, in

principle, possible to conclude from Merton’s work, that under the condition 2κθ >

σ2 + 2qu the equilibrium distribution exists; it is independent of the starting value

and essentially represents a Gamma distribution. This requires some relabeling of

coefficients and transformations, as Merton’s model is set up as a macro economic

growth model. Alternatively, a simple derivation of the equilibrium distribution

can be found in Ewald and Yang (2007) [?], equation (25). The author and his

supervisor conclude the following:

Proposition 4.2.1. Under the assumption 2κθ > σ2 + 2qu the fish population

reaches equilibrium distribution. This density function is given by

ρ(x) =







bγ

Γ(γ)
xγ−1e−bx x > 0

0 x ≤ 0

with coefficients γ = 2(κθ−qu)
σ2 − 1 and b = 2κ

σ2 .
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If the condition 2κθ > σ2 + 2qu is not satisfied, there is a positive probability that

the population is driven to extinction. Clearly, harvesting efforts which are likely

to cause extinction are considered to be non-sustainable. In terms of the harvesting

effort, this gives the following sustainability condition

0 ≤ u <
2κθ − σ2

2q
. (4.8)

It is worthwhile to note, that this sustainability condition becomes more restrictive,

the higher the uncertainty parameter σ is, which of course makes sense. It is also

assumed that harvesting effort is non-negative. Condition (4.8) becomes meaning-

less unless we assume 2κθ > σ2, a standard condition which will be assumed from

now on. This assumption appears repeatedly in other mean reverting models; see,

for example, Alos and Ewald (2008) [?]. In reality it may of course be possible

that the condition 2κθ > σ2 is not satisfied. Reasons for this may be extremely

high uncertainty, caused by factors such as global warming, pollution etc.. or low

mean reversion speeds, e.g. low values of κ, which can be found in populations

which reproduce at a very slow rate, for example whales or sharks. If this is the

case, there is a positive probability that the population will die out, even if a zero

harvesting policy is adopted.

4.3. Maximum expected sustainable yield

If the fishing effort u satisfies the sustainability condition (4.8), the corresponding

expected sustainable yield (ESY) from this effort is defined as

ESY (u) = quE(x(∞, u)) = qu

∫ ∞

0

xρ(x, u)dx, (4.9)
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where u has been used as an additional argument in the notation to emphasize

the fact that the equilibrium distribution of (4.6) depends on u. The objective in

this section is to determine the value of u that maximises the expected sustainable

yield. As u is assumed to be sustainable 2 (κθ − qu) > σ2 and it is concluded from

Ewald and Yang (2007) [?], equation (31), that the first moment of the equilibrium

distribution of (4.6) is given by

E {x (∞)} =
κθ − qu

κ
− σ2

2κ
. (4.10)

The maximum expected sustainable yield (MESY) and the maximizing fishing effort

u∗ can then be derived by computing the maximizer of

ESY (u) = quE {x (∞, u)} =
κθqu − q2u2

κ
− σ2qu

2κ
. (4.11)

The latter is very easy as (4.11) merely presents a quadratic equation in u. The

optimal fishing effort is given by

u∗ =
2κθ − σ2

4q
, (4.12)

and the expected maximum sustainable yield is obtained by substitution as

MESY =

(

θq − σ2q

2κ

)

2κθ − σ2

4q
− (2κθ − σ2)

2

16κ

=
(2κθ − σ2)

2

16κ
.

(4.13)

Note that (4.12) indeed satisfies the sustainability condition (4.8). Also note that for

σ = 0 this expression coincides with expression (4.3). This of course is expected, as

the case σ = 0 corresponds to the deterministic setup reviewed in the introduction
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of this Chapter. However, expression (4.12) was derived using the equilibrium dis-

tribution, and the fact that in the limit case σ = 0 the deterministic expression can

be derived: this implies a certain regularity property of the equilibrium distribution.

It is not difficult to see, that MESY is decreasing in σ. Indeed we have

∂

∂σ
qu∗E {x (∞)} = −σ (2κθ − σ2)

4κ
< 0

for σ2 < 2κθ, which is implied by the sustainability condition. Fisheries or fishery

agencies whose objective it is to guarantee sustainability need to take this very

carefully into account. On the other hand, it can easily be shown by differentiating

equations (4.12) and (4.13) with respect to κ, that u∗ and MESY are both increasing

in κ. As κ effectively represents the speed at which the ecological system reacts,

this means that extra care needs to be taken, when the target species has a low κ

value, for example with whales and sharks that reproduce very slowly.

4.4. Optimal sustainable yield under risk aversion

The pure notion of sustainability, of course, already incorporates a component

of risk aversion. The worst case scenario for a particular fishery is that the fish

population dies out, and economic rents from the species harvested are extinguished.

The fishery may, of course, move to another species, but from an ecological and bio-

conservation point, this case should be avoided at all costs. The numerical example

in Chapter 3 shows that, once the prey becomes extinct, the predator will also

become extinct in the future. Another point, however, is that under a sustainable

fishing effort, the fishery may be willing to trade-off expected sustainable yield for

more certainty, e.g., less variance of the equilibrium distribution. There are several

conceptually different approaches about how to incorporate risk aversion using the
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variance as a measure of risk. One possibility is to use the variance as a penalty

function. Alternatively, one may think of maximizing the expected sustainable yield

under a variance constraint or minimizing variance of the equilibrium distribution

under an expectation constraint. This thesis will examine the first point in this

section and the second point in the next section. More sophisticated approaches

using utility theory or more general risk measures are also possible, but at present

these three elementary ways to model risk aversion will be studied. Considering the

problem

max
u

E {qux (∞, u)} − αV ar (qux (∞, u)) , (4.14)

where α ≥ 0 represents the level of risk aversion. The problem will be solved

by taking advantage of the analytic formulas for first and second moments of the

equilibrium distribution of geometric mean reversion in Ewald and Yang (2008) [?].

It is concluded that

E {qux (∞, u)} − αV ar (qux (∞, u))

= quE {x (∞, u)} − αq2u2
E
{

x2 (∞, u)
}

+ αq2u2 (E {x (∞, u)})2

=
ασ2q3

2κ2
u3 +

(

ασ4q2

4κ2
− αθσ2q2

2κ
− q2

κ

)

u2 +

(

θq − σ2q

2κ

)

u. (4.15)

Differentiating the latter equation with respect to u and setting the derivative equal

to 0, gives as necessary condition for the optimal fishing effort

3ασ2q3

2κ2
u2 −

(

ασ2q2A

κ
+

2q2

κ

)

u + qA = 0, (4.16)

where A = θ − σ2

2κ
> 0. Equation (4.16) has two positive roots since

(

ασ2q2A

κ
+

2q2

κ

)2

− 6ασ2q4A

κ2
=

q4 (ασ2A − 1)
2

κ2
+

3q4

κ2
≥ 0.
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These roots are given by

u± =
κ

3ασ2q

[

(

ασ2A + 2
)

±
√

(ασ2A − 1)2 + 3

]

.

To find out which positive root is the maximizer, the second derivative of equation

(4.15) is computed with respect to u as

3ασ2q3

κ2
u −

(

ασ2q2A

κ
+

2q2

κ

)

.

It can be seen that only u− causes the second derivative of equation (4.15) to be

negative, which therefore implies that u− is the maximizer. Applying de l’Hospital’s

rule, it can easily be seen that in the limit for α tending to 0, this gives expression

(4.13) from u−. This of course is as it should be, as the case α = 0 is the case where

there is no explicit risk aversion. Furthermore it can be shown that u− is decreasing

in α and increasing in κ. Indeed,

∂

∂α
u− =

κ

(

−2
√

(ασ2A − 1)2 + 3 + 4 − ασ2A

)

3α2σ2q
√

(ασ2A − 1)2 + 3
≤ 0.

As (4.13) is sustainable and with α increasing and the fishing effort decreasing, the

following is obtained

u∗ = u− =
κ

3ασ2q

[

(

ασ2A + 2
)

−
√

(ασ2A − 1)2 + 3

]

(4.17)

is indeed sustainable for all α > 0 and therefore represents the optimal sustainable

fishing effort. Substituting u∗ into equation (4.15), gives the optimal expected

sustainable yield (OESY). It can be seen that in the range 2κθ > σ2 ≥ κθ the
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optimal fishing effort u∗ is decreasing in σ. Indeed,

∂

∂σ
u∗ =

κ

3ασ3q









σ

(

2ασA + ασ2 ∂

∂σ
A

)



1 − ασ2A − 1
√

(ασ2A − 1)2 + 3









−2

[

(

ασ2A + 2
)

−
√

(ασ2A − 1)2 + 3

]}

and 2ασA + ασ2 ∂
∂σ

A ≤ 0 if σ2 ∈ [κθ, 2κθ). As seen above, the optimal fishing

effort is decreasing in the level of risk aversion. While the mathematics behind this

result is sound, its intuition is not trivial. It cannot a priori be said that more risk

aversion causes lower optimal fishing effort. There are essentially two effects here, a

higher fishing effort potentially leads to a lower level of the population, and hence a

lower variance; however, on the other hand, yields become higher and the variance

of the yield may, in fact, increase. These effects are also traded off, with a similar

effect applying to expectation. The result obtained here nevertheless clearly shows

that more risk aversion causes lower optimal fishing effort. The analysis carried out

in this section can easily be extended to take higher moments of the equilibrium

distribution into account. As indicated earlier, all moments can easily be computed

from Merton (1975) [?] or iteratively from Ewald and Yang (2007) [?], and these

moments can be used to construct more complex risk measures. For example it is

possible to study exponential utility and in fact as non-integer moments are also

available, the case of constant relative risk aversion. These cases will be considered

in future work.

4.5. Mean-Variance Analysis of Sustainable Yields

This section will consider an approach which accounts for risk in a slightly

different way than in the previous section. In finance, this approach is classically
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known as mean-variance analysis and thus it will be called the mean variance

analysis of sustainable yields. It is believed that this approach has never been

applied to sustainable yields fishery models before. There are, in principle, two

related problems. These are:

• maximization of expected sustainable yield under limited risk, e.g., variance.

• minimization of risk under guaranteed minimum level of expected sustainable

yield.

Considering the first problem, e.g.

max
u

E {qux(∞)} ,

subject to

V ar(qux(∞)) ≤ L,

2κθ − 2qu − σ2 ≥ 0,

where L > 0 is a constant representing the maximum acceptable risk and the second

constraint is the sustainability condition (4.8); the latter system is equivalent to

min
u

q2

κ
u2 −

(

θ − σ2

2κ

)

qu

subject to

σ2q3

2κ2
u3 −

(

θσ2

2κ
− σ4

4κ2

)

q2u2 + L ≥ 0,

−2qu + 2κθ − σ2 ≥ 0.
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The Kuhn-Tucker theorem will be used to solve this constraint optimization prob-

lem. The Kuhn-Tucker conditions are

2q2

κ
u −

(

θ − σ2

2κ

)

q −
[

3σ2q3

2κ2
u2 − 2

(

θσ2

2κ
− σ4

4κ2

)

q2u

]

µ1 + 2qµ2 = 0

[

σ2q3

2κ2
u3 −

(

θσ2

2κ
− σ4

4κ2

)

q2u2 + L

]

µ1 = 0

(

−2qu + 2κθ − σ2
)

µ2 = 0

(4.18)

where µ1 and µ2 are non negative. There are four cases to consider:

1. µ1 = µ2 = 0 ⇒ u∗ =
κ

2q

(

θ − σ2

2κ

)

2. µ1 6= 0, µ2 = 0 ⇒ u∗ is a positive solution for the cubic function defined by constraint 1

3. µ1 = 0, µ2 6= 0 ⇒ u∗ =
2κθ − σ2

2q

4. µ1 6= 0, µ2 6= 0 ⇒ u∗ =
2κθ − σ2

2q
, for some L.

Cases 3 and 4 do not provide sustainable yields, but in order to apply the Kuhn-

Tucker theorem, it is necessary to formally allow for these cases. Nevertheless, they

would give E {qu∗x(∞)} = 0 = V ar (qu∗x(∞)) which excludes both cases from

providing maximizers. Note that in the range of sustainable yields 0 ≤ u < 2κθ−σ2

2q

the variance term V ar(qux(∞)) is bounded and therefore, if L is chosen to be

sufficient large, the variance constraint becomes meaningless. In fact this is the case

when L ≥ 4κσ2

27

(

θ − σ2

2κ

)3

. Then case 1 applies and κ
2q

(

θ − σ2

2κ

)

is the maximizer.

Note that this level of fishing effort coincides with (4.12). This is no surprise,

because the acceptable level of risk L is higher than that which can actually be

caused by the fish population under any fishing effort and agents effectively become

risk neutral. If however the acceptable level of risk L is lower than 4κσ2

27

(

θ − σ2

2κ

)3

,
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then the maximizer is defined via case 2, and it is necessary to solve

σ2q3

2κ2
u3 −

(

θσ2

2κ
− σ4

4κ2

)

q2u2 + L = 0 (4.19)

and obtain µ1 from the first equation in (5.18). Then, since σ2q3

2κ2 u3−
(

θσ2

2κ
− σ4

4κ2

)

q2u2

is decreasing when u ∈
[

0, 2κ
3q

(

θ − σ2

2κ

)]

, the equation will lead to a maximizer

which is less than κ
2q

(

θ − σ2

2κ

)

. Note that the cubic (4.19) always has a unique

positive root if L < 4κσ2

27

(

θ − σ2

2κ

)3

. The reason for this is that the function

σ2q3

2κ2 u3 −
(

θσ2

2κ
− σ4

4κ2

)

q2u2 is decreasing, continuous and has a sign-change on the

interval
[

0, κ
2q

(

θ − σ2

2κ

)]

. As there are analytic formulas for the solution of cubic

equations, (4.19) can in principle be solved. The explicit expression is omitted

at this point, though, because it is quite lengthy and, due to its complexity, it

is difficult to analyse. If the maximizer is given via case 1, it has already been

proved in section 4.3 that both u∗ and MESY are increasing in κ. If the maximizer

is given via case 2, e.g. lower risk tolerance L, and σ2 ∈ [κθ, 2κθ), then since

σ2q3

2κ2 and
(

θσ2

2κ
− σ4

4κ2

)

q2 are decreasing and increasing, respectively, u∗ is decreasing.

Now, considering the second, dual approach, where risk, e.g. variance, is minimized

when keeping expected sustainable yield above a certain level. More precisely, it is

assumed that the fishery tries to solve the following constraint optimization problem:

min
u

V ar(qux(∞)),

subject to

E {qux(∞)} ≥ L,

2κθ − 2qu − σ2 ≥ 0,
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where L ≥ 0 is the lowest expectation that is agreeable for the fishery. This system

is equivalent to

min
u

−σ2q3

2κ2
u3 +

(

θσ2

2κ
− σ4

4κ2

)

q2u2,

subject to

−q2

κ
u2 +

(

θ − σ2

2κ

)

qu − L ≥ 0,

−2qu + 2κθ − σ2 ≥ 0.

It is necessary to assume that
(

θ − σ2

2κ

)2

≥ 4L
κ

, as otherwise the first constraint

does not allow any sustainable fishing efforts. This condition follows from the

boundedness from above, of the expected sustainable yields, and if L is above that

boundary the expected sustainable yields simply cannot be achieved. The Kuhn-

Tucker conditions are then

−3σ2q3

2κ2
u2 + 2

(

θσ2

2κ
− σ4

4κ2

)

q2u −
[

−2q2

κ
u +

(

θ − σ2

2κ

)

q

]

µ1 + 2qµ2 = 0

[

−q2

κ
u2 +

(

θ − σ2

2κ

)

qu − L

]

µ1 = 0

(

−2qu + 2κθ − σ2
)

µ2 = 0

(4.20)

where µ1 and µ2 are non negative. There are again four possible cases:

1. µ1 = µ2 = 0 ⇒ u∗ = 0 or u∗ =
2κ

3q

(

θ − σ2

2κ

)

,

2. µ1 6= 0, µ2 = 0 ⇒ u∗ =

(

θ − σ2

2κ

)

±
√

(

θ − σ2

2κ

)2 − 4L
κ

2q

κ

,

3. µ1 = 0, µ2 6= 0 ⇒ u∗ =
2κθ − σ2

2q
,

4. µ1 6= 0, µ2 6= 0 ⇒ u∗ =
2κθ − σ2

2q
, for some L.
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As before, cases 3 and 4 imply E {qu∗x(∞)} = V ar (qu∗x(∞))=0, which is not

an option, unless L = 0, which is unrealistic. It can be proved that the objective

functional is increasing when u ∈
[

0, 2κ
3q

(

θ − σ2

2κ

)]

, which in case 1 would imply that

u∗ = 0. This however again implies E {qu∗x(∞)} = 0 which does not satisfy the

constraint, unless L = 0. Therefore, case 2 applies in all non-trivial cases. Clearly

u∗ ∈







(

θ − σ2

2κ

)

−
√

(

θ − σ2

2κ

)2 − 4L
κ

2q

κ

,

(

θ − σ2

2κ

)

+

√

(

θ − σ2

2κ

)2 − 4L
κ

2q

κ







satisfies the constraint, the second equation in (4.20). Substituting

(

θ−σ2

2κ

)

±
√

(

θ−σ2

2κ

)

2

− 4L
κ

2q
κ

into the objective functional, gives

σ2κ

16







(

θ − σ2

2κ

)

±
√

(

θ − σ2

2κ

)2 − 4L
κ

2q

κ







2 





(

θ − σ2

2κ

)

∓
√

(

θ − σ2

2κ

)2 − 4L
κ

2q

κ







and it can be seen that the minimizer is given by

(

θ−σ2

2κ

)

−
√

(

θ−σ2

2κ

)

2

− 4L
κ

2q
κ

. Therefore,

the risk-minimizing sustainable effort with agreeable expected sustainable yield L

is given by

u∗ =

(

θ − σ2

2κ

)

−
√

(

θ − σ2

2κ

)2 − 4L
κ

2q

κ

. (4.21)

Differentiating the minimizer with respect to σ, gives

∂

∂σ
u∗ =

σ

2q



1 − θ − σ2

2κ
√

(

θ − σ2

2κ

)2 − 4L
κ



 ≤ 0,
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and it can be observed, again, that the higher the uncertainty is, the lower the

optimal effort. On the other hand, in order to study how κ affects the optimal

fishing effort, it is necessary to compute ∂
∂κ

u∗. Indeed,

∂

∂κ
u∗ =

∂

∂κ

(

2κθ − σ2 −
√

(2κθ − σ2)2 − 16κL

)

4q

=
1

4q



2θ − 4θ (2κθ − σ2) − 16κL

2
√

(2κθ − σ2)2 − 16κL





=
1

4q



2θ



1 − 2κθ − σ2

√

(2κθ − σ2)2 − 16κL



+
8L

√

(2κθ − σ2)2 − 16κL



 ≥ 0.

The physical interpretation of this is that, when the fishery objective is to minimize

the variance and the mean reversion κ goes up, the population of fish recovers faster

and this causes the variance to be larger. Therefore, fishery agents would prefer to

harvest more fish to reduce the variance. In the authors’ point of view, this last

approach is the most conservative, as the objective here is really a minimization of

risk, e.g. variance, which can be interpreted as keeping the population stable, under

an agreeable minimum expected sustainable yield.

4.6. Numerical Illustration

To illustrate the effect of parameter choice, in particular the uncertainty parame-

ter σ, numerical examples will be provided for each case considered in sections 4.3,

4.4, and 4.5. First assuming that θ = 1 and q = 0.6. Figure 4.1 shows MESY as a

function of κ and σ. It can be seen that MESY is increasing in κ and decreasing in

σ, as we have concluded in section 4.3. Figure 4.2 shows that OESY for approach

1 has similar properties to MESY. The case where the fishery maximizes expected
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yield with variance bounded by a given level L, which is sufficiently low to avoid a

trivial case, is represented in Figure 4.3. It can be seen in this case that the optimal

fishing effort is decreasing in σ and increasing in κ. Moreover it can be seen, that a

larger σ offsets the effect of an increasing mean reversion speed κ, i.e., u∗ increases

in κ significantly more under a lower σ than under a high σ. For the case where

the fisheries’ objective is minimization of the variance under a minimum agreeable

expected sustainable yield, it can be seen from Figure 4.4 that the optimal fishing

effort is increasing in κ and σ.

4.7. Conclusion

This work extends the classical logistic growth-based sustainable yield model to

accommodate uncertainty in terms of a level dependent uncertainty term. The

notion of sustainable yield is introduced in this context, relying on the results of

the equilibrium distribution of geometric mean reversion, and an expression for the

maximum expected sustainable yield has been derived. Furthermore, the case of

risk averse fisheries, which balance expected sustainable yield with risk, has been

considered. This has been measured in terms of the variance of the equilibrium

distribution and the effect of risk aversion on optimal sustainable yields. Finally,

the concept of mean-variance analysis in sustainable fisheries was introduced and

the optimal fishing efforts were derived in this context.
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Graphical Illustration

Figure 4.1: The maximum expected sustainable yield when θ = 1 and q = 0.6

Figure 4.2: The optimal expected sustainable yield under risk aversion when α = 1,
θ = 1 and q = 0.6
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Figure 4.3: The optimal fishing effort for maximizing E {qux(∞)} under V ar(qux(∞)) ≤
L when L = 10−4, θ = 1 and q = 0.6

Figure 4.4: The optimal fishing effort for minimizing V ar(qux(∞)) under E {qux(∞)} ≥
L when L = 0.5, θ = 1 and q = 0.6



Chapter 5

Irreversible investment with

Cox-Ingersoll-Ross type mean

reversion

In this chapter, it is supposed that a financial manager faces an infinite time horizon

and that the discount rate is either given exogenously or is implied by the existence of

a complete spanning asset. This is in common with the approach taken in [?]. It was

indicated in section 1.1 that one application of real option theory in environmental

economics is to model the consumption of resources. Dixit and Pindyck (1994)

presented an example where they considered that the price of oil followed a mean

reverting process, see [?], Chapter 12. The main difference that will be seen in

this exposition is that it is assumed that the value of the underlying financial

project follows a Cox-Ingersoll-Ross process. In most of the previous work, it was

assumed that the underlying financial project follows a geometric Brownian motion.

It has been argued, however, by many influential authors in the economic literature

that geometric Brownian motion, although convenient and mathematically easy to

121
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handle, is not a realistic assumption for the project value process: see, for example,

Dixit and Pindyck (1994) [?], Epstein et al. (1998) [?] and Metcalf and Hasset

(1995) [?]. Basic microeconomic theory explains that, in the long run the price

of a commodity ought to be tied to its long-run marginal cost. This feature does

not exist in geometric Brownian motion models, but is present in so called mean

reverting models.

Mean reverting models that have been discussed in the literature include Ornstein-

Uhlenbeck, exponential Ornstein-Uhlenbeck and geometric mean reversion. The

case of an Ornstein-Uhlenbeck process, i.e., a process follows

dx(t) = θ (µ − x(t)) dt + σdW (t),

where W (t) is a Wiener process, is highly unrealistic as it leads to negative values

of the project value. The remedy for this is to take an exponential of an Ornstein-

Uhlenbeck process, but the mean reverting structure obtained from this remains

questionable. The most favoured model is the so called geometric mean reversion

process, which is sometimes modified by including an economic growth factor, see

Metcalf and Hasset (1995) [?]. For this process, explicit solutions for the irreversible

investment problem in terms of the Kummer M function ( also called confluent

hypergeometric function ) have been derived by Dixit and Pindyck, while empirical

studies have been undertaken by Metcalf and Hasset (1995) [?]. It can be shown

that the geometric mean reversion process always stays positive and, for suitable

parameter constraints, has good analytical properties, such as the existence of an

equilibrium distribution, see Ewald and Yang (2007) [?].

Geometric mean reversion can be interpreted in two ways: the first is that the

expected relative rate of return of the project value is actually mean reverting, the

second is that the mean reversion speed is proportional to the project value; however,
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this setup is not economically reasonable in all cases. One process which guarantees

a positive project value and has a constant mean reversion speed is the so called Cox-

Ingersoll-Ross process, which will be studied in detail in section 5.1. This process

which was introduced by Cox, Ingersoll and Ross (1985) in [?] has been studied in

great detail in the context of interest rate models and stochastic volatility models in

finance. Nevertheless, it has never been used in the context of real option models. In

this chapter, the explicit solution is derived for the irreversible investment problem

under the assumption that the project value follows a Cox-Ingersoll-Ross process.

The solution shows various similarities to the case of the geometric mean reversion

case and these are explored by comparative analysis. Certain aspects are then

illustrated, which the authors believe should lead to a general preference for the

Cox-Ingersoll-Ross process with regards to the geometric mean reversion process.

5.1. Some facts about the Cox-Ingersoll-Ross process

A stochastic process which follows the dynamics

dV (t) = κ (θ − V (t)) dt + σ
√

V (t)dW (t), (5.1)

with constants κ, θ, σ > 0 and a Wiener process W (t) is generally referred to as

Cox-Ingersoll-Ross process, although other names are used from time to time. These

names include, for example, Heston volatility and the square-root process. It can be

shown that the process (5.1) is effectively a re-parameterized squared Bessel process

( see for example Alos and Ewald (2008) [?] ) and has carefully been studied by

various authors since the early 1950’s, most rigorously by Yor (1992) [?]. The process

was introduced into finance as a model for short rate interest by Cox, Ingersoll and

Ross (1985) in [?] to replace the existing Vasiczek model. The Vasiczek model
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suffered from the fact that the interest rate can become negative, a phenomenon

that has only been observed once in Japan, see [?]. Usage of the Cox-Ingersoll-Ross

process as a model for the short rate leads to an affine term structure model which

can easily be calibrated and this was the key to its success. On a different level,

the same process was used by Heston several years later, to model the volatility of

a stock, see Heston (1993) [?]. The resulting stochastic volatility model has become

known as the Heston model. When compared to the Black-Scholes model, it has the

advantage that it produces volatility smiles, while still being accessible and allowing

analytic formulas for plain vanilla options.

A sophisticated look at the dynamics of (5.1) seems to indicate two potential

problems. The square-root function is not defined for negative values and has infinite

slope at 0. The first problem could potentially be cured by taking the absolute

value inside the square root on the right hand side of equation (5.1). The classical

existence and uniqueness results for solutions of stochastic differential equations,

however, fail, as they assume a Lipschitz condition for the coefficients which is

clearly violated. Using results of Yamada and Watanabe, see Karatzas (1988) [?],

Chapter 5 Proposition 2.18., it can be shown, however, that in the case where the

coefficient condition

2κθ > σ2 (5.2)

holds, a unique strong solution to (5.1) exists for arbitrary positive initial conditions

V (0) = V0 > 0 and that the process remains strictly positive for all times with

probability one. The latter can be concluded from the fact that, under condition

(5.2), the Cox-Ingersoll-Ross process is a reparameterized squared Bessel process

of dimension greater than 2. The Cox-Ingersoll-Ross process has various other

desirable properties such as smoothness in the Malliavin sense, see Alos and Ewald

(2008) [?], as well as the existence of an equilibrium distribution which is centered



125

around the mean reversion level θ. In particular, examining expectation in (5.1)

shows that it satisfies

E {V (t)} = V0 +

∫ t

0

κ (θ − E {V (t)}) ds,

which therefore implies the ordinary differential equation

d

dt
E {V (t)} = κ (θ − E {V (t)}) , (5.3)

with the initial value condition E {V (0)} = V0. Equation (5.3) can be solved

analytically and leads in particular to

E {V (t)} = θ + (V0 − θ) e−κt. (5.4)

Therefore limt→∞ E {V (t)} = θ. This fact makes it possible to interpret the θ

as the parameter which represents the demand/supply market clearing feature in

equilibrium. As Ewald and Yang (2007) showed in [?], the popular geometric mean

reversion model, which they also discuss in section 4, does not satisfy this criterion.

The equilibrium distribution of geometric mean reversion is shifted away from the

mean reversion level θ and the expectation is convergent to θ− σ2

κ
, which is extremely

sensitive to changes in the volatility σ or mean reversion speed κ. As they also

have shown in [?], geometric mean reversion stays strictly positive automatically

without referring to any further coefficient condition, but if the value theoretically

falls to zero (for example by imposing a shock), it remains there forever; if the

same happens to the Cox-Ingersoll-Ross process, the infinitesimal drift κθdt will

push the process back to a positive value and cause the system to recover. This

effect may be economically reasonable or not. One example is that if the process
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models the value of a company, a value of 0 could be interpreted as bankruptcy and

all further considerations about the future of this company may end; on the other

hand, another investor may take over the company and bring it back to life if the

stock of the resources is still sufficient. In the case where the reserve of resources

is undeveloped, it may not be realistic that the current value of the resources of

zero causes the value to remain at zero in the future. Putting these hypothetical

considerations aside, on a technical level, the Cox-Ingersoll-Ross process produces

more continuity and regularity at V = 0 than the geometric mean reversion process

does. Because of these technical aspects, the Cox-Ingersoll-Ross process is preferred

over geometric mean reversion. Further arguments will be presented later during

the quantitative analysis.

5.2. Irreversible Investment

The following problem should be considered. The value of an investment project

is given by a stochastic process which follows the dynamics

dV (t) = α(V (t))dt + σ(V (t))dW (t), (5.5)

with α(V ) and σ(V ) sufficiently smooth functions and W (t) a Wiener process. It

is assumed at this point that α(V ) and σ(V ) satisfy appropriate conditions which

guarantee positivity of the project value for all times. For the Cox-Ingersoll-Ross

process such conditions have been given in the previous section, i.e., 2κθ > σ2. An

agent can then choose a time τ to invest into this project for a sunk investment cost

I and by this means to receive a payoff of current value

e−ρτ (V (τ) − I) , (5.6)
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where ρ is a discount rate. In doing this the agent’s objective is to maximize

expected payoff. This leads to an optimal stopping problem

F (V ) = max
τ

E
{

e−ρτ (V (τ) − I) |V (0) = V
}

, (5.7)

in which τ can be chosen among all stopping times. At the moment it is assumed

that the discount rate is given exogenously. Note that the current model is au-

tonomous and the optimal stopping time has been converted into finding out the

value to invest. The current value of the option to invest, i.e. the value of waiting

to invest at some later time, when more information on the investment project is

revealed, is given by F (V ). The option is exercised and investment is undertaken

when the investment threshold is reached. This leads to the following condition,

which is usually referred to as value-matching condition

F (V ∗) = V ∗ − I. (5.8)

This condition says that the option is exercised, if and only if its intrinsic value

F (V ∗) is equal to its current payoff. In order to guarantee certain differentiability

properties of the value function, a second so called smooth-pasting condition is made

F ′(V ∗) = 1. (5.9)

Finally in the continuation region, i.e., before the option is exercised, the total

expected return on the investment opportunity must be equal to its expected rate
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of capital appreciation. This gives the so called Bellman equation

ρFdt = E {dF} . (5.10)

It follows from the Itô formula and equation (5.5) that

dF (t) = α(V (t))
d

dV (t)
F (V (t))dt+

σ2(V (t))

2

d2

d (V (t))2F (V (t))dt+σ(V (t))
d

dV (t)
F (V (t))dW (t),

(5.11)

and therefore (5.10) implies that

σ2(V )

2
F ′′(V ) + α(V )F ′(V ) − ρF (V ) = 0. (5.12)

Equation (5.12) is a second order ordinary differential equation in which the value

function F (V ) has to satisfy the two conditions (5.8) and (5.9). In general the

solution of a second order ordinary differential equation is uniquely characterized

by two independent conditions for F and F ′, however, in the current problem the

value V ∗ at which F and F ′ are determined is also unknown, and this is called a free

boundary problem. In order to obtain a unique solution it is therefore necessary

to introduce a third condition. The classically used dynamics, geometric Brownian

motion and geometric mean reversion techniques, both lead to fixed points at V = 0;

this condition is usually taken to be

F (0) = 0. (5.13)

This condition has to be interpreted in a way that, once the value of the investment

project has hit zero, it stays zero forever and the option to invest has therefore lost

all of its value. This assumption will be discussed further in the framework of the
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Cox-Ingersoll-Ross process and the authors will later argue that it makes sense to

replace this condition by a finiteness condition

F (0) < ∞. (5.14)

Furthermore, this will not affect the analysis of the classical cases. To solve the

optimal investment problem, it is therefore necessary to solve (5.12) with respect to

(5.8), (5.9) and (5.13). Note that in general, and this includes the classical cases,

at least one of the equations (5.8) and (5.9) has to be solved numerically. The

main critique of the approach presented above is that the discount rate ρ is given

exogenously and, in general, it is hard to specify. In the following, the author and

his supervisor present an alternative approach to compute the value of the option

to invest, which is based on classical contingent claims analysis. This concept was

mentioned in section 1.2, and it assumes that there exists a financial asset which

is traded on a liquid market, and whose price dynamic is driven by the same noise

generating process as the project value, in this case one dimensional Brownian

motion W (t). Such an asset is generally referred to as a total spanning asset. It is

assumed that the traded asset has a risk adjusted expected rate of return µ and is

therefore paying a risk premium of µ−r. According to equation (5.1), the expected

rate of return of the investment project is α(V )
V

. It is important to stress again

that the investment project is not understood as a tradable asset. If, however,

theoretically it was, then for arbitrage reasons it would need to pay a dividend rate

of

δ(V ) = µ − α(V )

V
. (5.15)

Here it is assumed that the tradable asset has the same volatility structure. The

option to invest can now be identified with a perpetual option on this dividend pay-
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ing hypothetical stock. The classical approach of constructing a riskless portfolio,

which contains the option F (V ) and a certain number of shares of stock V , then

leads to the following differential equation

1

2
σ2(V )F ′′(V ) + (r − δ(V ))V F ′(V ) − rF (V ) = 0 (5.16)

The two conditions (5.8) and (5.9) remain the same. The advantage of (5.16) is

that it does not include the discount rate ρ, which is generally difficult to specify.

On the other hand, the contingent claims approach depends on the existence of a

total spanning asset. This assumption is in some cases unrealistic. See Ewald and

Yang [?] for a utility based approach, which operates in the presence of a partial

spanning asset and includes risk aversion toward idiosyncratic risk. These ideas are

not, however, followed up in the current chapter.

5.3. The classical cases : Geometric Brownian motion and geometric

mean reversion

This section will present the analysis introduced above for the two classical cases

where the project value is modelled as a geometric Brownian motion and as a

geometric mean reversion process. In the case of geometric Brownian motion,

dV (t) = α · V (t)dt + σ · V (t)dW (t), (5.17)

which in the notation of the previous section gives

α(V (t)) = α · V (t), σ(V (t)) = σ · V (t). (5.18)
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In this case (5.12) translates to

1

2
σ2V 2F ′′(V ) + αV F ′(V ) − ρF = 0. (5.19)

Since in the ordinary differential equation above V occurs with the same power as

derivatives are taken, it follows that the value function is of the type

F (V ) = C1V
β1 + C2V

β2 . (5.20)

Substitution of this into equation (5.19) leads to

[

C1β1(β1 − 1)σ2

2
+ C1αβ1 − C1ρ

]

V β
1 +

[

C2β2(β2 − 1)σ2

2
+ C2αβ2 − C2ρ

]

V β
2 = 0,

and then we have

β1 =
−
(

α − σ2

2

)

+

√

(

α − σ2

2

)2
+ 2σ2ρ

σ2
, (5.21)

β2 =
−
(

α − σ2

2

)

−
√

(

α − σ2

2

)2
+ 2σ2ρ

σ2
, (5.22)

which are the two solutions of the so called characteristic equations. Obviously it

is assumed that β2 < 0 and this guarantees a finite option value at V = 0, or, in

this case equivalently (5.13) it is necessary to choose C2 = 0. Denoting C = C1 and

β = β1 then gives

F (V ) = CV β, (5.23)

where C and V ∗ are then determined from (5.5) and (5.6). Using the contingent

claims approach, it can be shown that the implied proportional dividend rate (5.15)

is in fact constant and equations (5.12) and (5.16) are formally identical, with ρ
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replaced by r and α replaced by r − µ− α. The solution for F (V ) can then simply

be obtained from (5.23) and (5.21) by substituting these values. In the case of

geometric mean reversion we have

dV (t) = κ(θ − V (t))V (t)dt + σV (t)dW (t), (5.24)

which in the notation of the previous section corresponds to the choices

α(V (t)) = κ(θ − V (t)) · V (t), σ(V (t)) = σ · V (t), (5.25)

and therefore (5.12) translates to

1

2
σ2V 2F ′′(V ) + κ(θ − V )V F ′(V ) − ρF (V ) = 0. (5.26)

From the particular form of this differential equation, it can be assumed that the

solution is of the type F (V ) = V βh(V ). On substitution in (5.26) it can be inferred

that

β1 =
1

2
− κθ

σ2
+

√

(

1

2
− κθ

σ2

)2

+
2ρ

σ2
(5.27)

β2 =
1

2
− κθ

σ2
−

√

(

1

2
− κθ

σ2

)2

+
2ρ

σ2
(5.28)

and

F (V ) = C1V
β1h1(V ) + C2V

β2h2(V ), (5.29)

with hi(V ) satisfying

1

2
σ2V h′′

i (V ) + (σ2βi + κ(θ − V ))h′
i(V ) − κβihi(V ) = 0. (5.30)
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The function hi(V ) can be identified as a Kummer M functions, compared with the

discussion in the next section. The Kummer M function however, takes the value

1 at V = 0 and therefore, as the exponent β2 is clearly negative, it is necessary to

impose the condition C2 = 0 in order to obtain a finite value for the option to invest

at V = 0, i.e. condition (5.14) holds. Solving the equation for h1 then gives

F (V ) = CV βM

(

β, 2β +
2κθ

σ2
,
2κ

σ2
V

)

, (5.31)

with C = C1, β = β1 and M(a, b, x) denoting the Kummer M function which is

also known under the name confluent hypergeometric function: see Abramowitz and

Stegun (1972) [?]. The values of C and V ∗ have to be determined from (5.31) in

addition to (5.8) and (5.9). Using the contingent claims approach, it is found that

in the case of geometric mean reversion the implied proportional dividend rate is

given by δ(V ) = µ − κ(θ − V ). In this case equation (5.16) becomes

1

2
σ2V 2F ′′(V ) + κ

((

θ +
r − µ

κ

)

− V

)

V F ′(V ) − rF (V ) = 0, (5.32)

which is equivalent to (5.26) via the substitution of r for ρ and θ + r−µ

κ
for θ. Using

these values in (5.27) and (5.31) leads to

F (V ) = CV βM

(

β, 2β +
2(r − µ + κθ)

σ2
,
2κ

σ2
V

)

, (5.33)

with

β =
1

2
+

(µ − r − κθ)

σ2
+

√

(

1

2
+

µ − r − κθ

σ2

)2

+
2r

σ2
. (5.34)
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5.4. Solution for Cox-Ingersoll-Ross type project value

In this section, it is assumed that the dynamic project value is given by a Cox-

Ingersoll-Ross process whose dynamic is given by (5.1). It is believed that this

process has never been used before in the theory of real options and irreversible

investment, even though it has significant advantages compared to the classical

choices of geometric Brownian motion and geometric mean reversion. This was

discussed in section 5.1 and will be expanded upon in the next section. In the

notation of section 5.2

α(V (t)) = κ(θ − V (t)), σ(V (t)) = σ
√

V (t). (5.35)

This has two fundamental differences when compared to the geometric mean re-

version process (2.24). Firstly, the mean reversion speed is not level dependent

and secondly, the variance is proportional to the current level V (t) rather than the

standard deviation. Applying the general methodology introduced in section 1.2

produces
σ2V

2
F ′′(V ) + κ(θ − V )F ′(V ) − ρF (V ) = 0. (5.36)

The value function of the irreversible investment problem F (V ) must therefore

satisfy (5.36) with respect to the value-matching and smooth-pasting conditions, i.e.,

equations (5.8) and (5.9). The following section will show explicitly how to solve

this differential equation. Dividing equation (5.36) by 1
k

and using the following

transformation

a :=
ρ

κ
, b :=

2κθ

σ2
, z :=

2κ

σ2
v, (5.37)
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and furthermore writing F (v) = w
(

2κ
σ2 v
)

leads to the following differential equation

for w(z):

zw′′(z) + (b − z)w′(z) − aw(z) = 0 (5.38)

This is the well known Kummer equation. It has two fundamental solutions from

which all solutions can be obtained by linear combinations. These are the Kummer

M function and the Kummer U function. These are classically denoted with

M(a, b, z) for Kummer M and U(a, b, z) for Kummer U . The Kummer U function

can be expressed in terms of the Kummer M and its use can be avoided, see [?],

equation 13.1.3. From this, the general solution to equation (5.36) is given by

F (V ) = C1M

(

ρ

κ
,
2κθ

σ2
,
2κ

σ2
V

)

+ C2U

(

ρ

κ
,
2κθ

σ2
,
2κ

σ2
V

)

. (5.39)

The Kummer M and U functions show the following extremal behaviour for the

limit V → 0

lim
z→0

M(a, b, z) = 1 (5.40)

lim
z→0

U(a, b, z) = ∞ (5.41)

From this it becomes clear that the condition F (0) = 0 cannot be satisfied in any

case but the trivial one C1 = C2 = 0. This choice, however, would not satisfy

the value-matching and smooth-pasting condition and, furthermore, it would be

economically unreasonable. It is therefore necessary to relax this condition. In

terms of the discussion at the beginning, this is perfectly natural and economically

sound. The option value at V = 0 must be positive as the dynamic of the Cox-

Ingersoll-Ross process at V = 0 drives the project to a strictly positive value in an

instantaneous amount of time. Note that formally substituting the value V (t) = 0
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into the dynamic (5.1) gives a strictly positive drift of κθdt. This behaviour of the

Cox-Ingersoll-Ross process is fundamentally different than in the classical cases. In

order to avoid F (0) = ∞ which is economically unreasonable , it is necessary to

choose C2 = 0. It can be seen that, by working with the Cox-Ingersoll-Ross process

as a model for the project value, the classical condition (5.13) needs to be replaced

with condition (5.14). It was demonstrated in section 5.3 that this replacement does

not have any effect on the solution of the classical cases. In the classical cases, (5.14)

in fact implies (5.13) and therefore it is proposed to make this adjustment in general.

The property of the current model that the option value at V = 0 is not zero however

clearly distinguishes the Cox-Ingersoll-Ross based irreversible investment problem

from the classical ones. In the author and his supervisor’s opinion, this makes the

assumption of a Cox-Ingersoll-Ross process much more realistic, when the project

is able to resurface after it has hit bankruptcy. It is now necessary to choose the

parameters C1 and the investment threshold V ∗ such that the smooth-pasting and

value-matching conditions are satisfied. Starting with the smooth-pasting condition

(5.9), this condition leads to the equation

C1 =
κθ

ρM
(

ρ

κ
+ 1, 2κθ

σ2 + 1, 2κ
σ2 V ∗

) . (5.42)

Solving for C1 and substituting this value in (5.39) gives

F (V ) =
κθM

(

ρ

κ
, 2κθ

σ2 , 2κ
σ2 V

)

ρM
(

ρ

κ
+ 1, 2κθ

σ2 + 1, 2κ
σ2 V ∗

) (5.43)

with V ∗ the unique solution of (5.8). In common with the case of geometric

mean reversion where the Kummer M function occurs as well, it is not possible

to solve the value-matching equation analytically; instead, it is necessary to use

numerical methods. This, however, is no more challenging than in the geometric



137

mean reversion case. Moving on to the case where the option to invest is evaluated

with the contingent claims approach, in this case the resulting differential equation

for the option value is

σ2V

2
F ′′(V ) + [κ(θ − V ) + (r − µ)V ] F ′(V ) − rF (V ) = 0. (5.44)

Denoting

κ̃ := κ + µ − r (5.45)

θ̃ :=
κθ

κ + µ − r
, (5.46)

it can be seen that (5.44) is identical to (5.36) where κ and θ are replaced by κ̃

and θ̃ and ρ is replaced by r. The value function F (V ) for the option to invest is

therefore given by

F (V ) = CM

(

r

κ + µ − r
,
2κθ

σ2
,
2(κ + µ − r)

σ2
V

)

(5.47)

with C given by

C =
κθ

rM
(

r
κ+µ−r

+ 1, 2κθ
σ2 + 1, 2(κ+µ−r)

σ2 V ∗
) (5.48)

and V ∗ determined by (5.9). As the Kummer M function gives the value 1 for

V = 0, C is identified as the value of the option at V = 0.

5.5. Qualitative and Quantitative differences to the classical choices

This section presents several numerical examples and it can be seen that the

Cox-Ingersoll-Ross process is a more natural option within a real option framework
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than the geometric mean reversion process. In order to achieve this, numerical

results for the geometric mean reversion dynamic (5.24) will be reproduced, as

obtained by Dixit and Pindyck (1994) [?], Figures 5.11-5.17, pages 164-170. The

same parameters will then be used with the Cox-Ingersoll-Ross process dynamics

defined by (5.1), and in this way it is possible to make precise comparisons and

highlight the differences between the two approaches. Note that Dixit and Pindyck

used a slightly different notation in which κ and θ map to η and V̄ , respectively, and

the common parameters which remain unchanged in all cases are the interest rate

r = 0.04, the volatility parameter σ = 0.2 and the sunk cost I = 1. The following

observations relate to the figures in Graphical Illustration. Odd numbered figures

correspond to the Cox-Ingersoll-Ross process, while even numbered figures refer to

the geometric mean reversion process.

Figures 5.1 to 5.6 show the dependence of the value of the option to invest F (V )

with respect to the project value V . It can be seen that, in all cases, a higher

value of the mean reversion parameter θ leads to a higher value of the option and,

furthermore, that the value of the option is increasing with regard to the project

value V . This makes sense from an economic point of view. For a rather small

mean reversion speed κ = 0.05 the value functions in Figure 5.1 and 5.2 appear,

at least from a qualitative point of view, to be very similar. A difference that

can be observed is that the graphs in Figure 5.1 all start from a strictly positive

value while in Figure 5.2, they all start at 0. This is expected from the analysis

in section 5.1, 5.3 and 5.4. The same behaviour can be observed in Figure 5.3

and 5.4 where the mean reversion speed is increased to κ = 0.1. For the higher

mean reversion level considered here, θ = 1.5, however, it can now be seen that,

in the case of geometric mean reversion, i.e., Figure 5.4, the value function has a

slightly awkward bend and is qualitatively very different than the corresponding
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value function for the Cox-Ingersoll-Ross process. Increasing the mean reversion

speed further to κ = 0.5 reinforces this effect. Note in Figure 5.6, the graph for the

value function still starts at F (0) = 0 and with an almost infinite slope to attain

a similar level to the value function for the Cox-Ingersoll-Ross analogue. Within

the Cox-Ingersoll-Ross framework, i.e. Figure 5.5, the value function starts at a

finite positive level and has an upward bend. Further raising the speed of mean

reversion increases this characteristic. The result is that, in the geometric mean

reversion framework, the value of the option to invest is extremely sensitive with

respect to small changes, when the value of the project is low.In both the author and

his supervisor’s opinion, it is much too sensitive, even with reasonable parameter

choices. In contrast, the value function in the Cox- Ingersoll-Ross framework shows

a very regular behaviour for small project values and should therefore be considered

to be the preferred choice.

Figures 5.7 to 5.10 display the dependence of the investment threshold V ∗ with

respect to the mean reversion speed κ in each of the two cases, for high and low

return rate µ of the hedging asset. Figure 5.7 and 5.9 only display the range starting

from κ = 0.1 since the Cox-Ingersoll-Ross dynamic is only well defined under the

condition 2κθ > σ2 and lower values cause problems with the numerical solution

routine. It can be seen that investment thresholds in the geometric mean reversion

model are generally higher than in the Cox-Ingersoll-Ross framework. A closer

inspection of Figure 5.8 and 5.10 shows that in the case of a high mean reversion

level θ = 1.5 the critical value V ∗ does not demonstrate monotonic behaviour.

In the parameter range studied, the effect is, however, rather insignificant. More

significant is the common property between the Cox-Ingersoll-Ross framework and

the geometric mean reversion framework, that depending on whether the current

value is higher or lower than the mean reversion level, θ, the investment threshold
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is initially decreasing or increasing with respect to the mean reversion speed κ.

Figures 5.11 to 5.14 display the dependence of the investment threshold on the

return rate of the hedging asset. Here the qualitative behavior in the two case

Cox-Ingersoll-Ross and geometric mean reversion is very similar, but again the

investment threshold under the Cox-Ingersoll-Ross dynamic is significantly lower

than under the geometric mean reversion dynamic. In all cases the investment

threshold V ∗ is decreasing with the return rate µ. Economically, this can be

explained by the fact that increases in µ lead to increases in the implied proportional

dividend yield (5.15), and increasing the dividend yield provides an incentive to

exercise the option earlier, therefore lowering V ∗.

5.6. Conclusions

An explicit solution has been derived for the value function for the option of

irreversible investment into a project whose value is modelled as a Cox-Ingersoll-

Ross process. The results have been compared with the classical ones obtained

for the cases of geometric Brownian motion and geometric mean reversion. This

includes a numerical analysis and graphical illustrations. The various advantages

of the Cox- Ingersoll-Ross process with respect to the geometric mean reversion

process have been examined and discussed.
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Graphical Illustration
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Chapter 6

Conclusions and Future Work

This thesis presents several applications of the differential game theory and real

option approaches in environmental economics. Note that all models presented in

the thesis are theoretical models, not empirical models. Differential game theory has

been used to study games defined in continuous time and a differential game model

contains objective functionals for each player and states equations given by some

differential equations. On the other hand, due to the role played by uncertainty, it

is possible to consider the state equations as stochastic differential equations, which

allows study of how uncertainty affects the models. The technique used to solve the

stochastic differential games is the Hamilton-Jacobi-Bellman equations, which lead

to a system of differential equations. Differential game theory is widely applied in

several fields such as management, finance and economics.

The applications of stochastic differential games presented in this thesis are public

goods and fisheries. In Chapter 2, the author has considered a public good whose

property is that suffering is caused by it if the value is sufficiently high. One example

of this is over-development of environmental resources. Two types of uncertainty

have been analyzed and it has been demonstrated that higher risk reinforces the free
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ride effect, which is opposite to the prediction that increased uncertainty reduces

free rider effect. Since each agent’s revenue is offset by a higher uncertainty, it leads

to a more apparent free ride effect.

On the other hand, over-conservation of environmental resources may lead eco-

nomic development to be hampered and it leads to one extension of Chapter 2.

Stratford (2008) studied the case of the island of Tasmania in Australia and notes

”Conflicts over conservation and development emerged again over the period from

1989 to 1994 when the Tasmanian State Government, led by Premier Michael Field,

confronted a fiscal crisis and was subject to intense local pressures to embrace the

new international rhetoric of sustainable development as it had been conceived in the

Brundtland Report (World Commission on Environment and Development, 1987)

and gained momentum via Australian Government strategies for ecological sustain-

able development”, see [?]. Therefore, when considering development, governments

and individuals should also be concerned with conservation, i.e., it is important to

avoid both over-development and over-conservation.

In Chapters 3 and 4, the fishery problem has been studied. This thesis analyses

how market prices, individual costs and the interactions between species affect the

harvest rates for fishery agents. Two different cases of ecological system have been

examined, i.e. a competitive, and a predator-prey system. Different competitive

arrangements between the fishery agents have also been analysed, i.e. the case

where fishery agents are competing, where they are allowed to catch a single species,

and where they cooperate. In the case of the competitive ecological system, the

results demonstrate that, both economically and ecologically, cooperation may be

a better option, while in a predator-prey system, cooperation may lead species

to become extinct earlier. It can be seen that under some conditions the prey

may become extinct easily, which in turn causes the predator to lack food and
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also become extinct. In the model presented, it was assumed that the price for

each species was not dependent on the other species. This may not be realistic

in some cases, but this simplification makes it possible to solve the model semi-

analytically. The numerical example generated shows that, under a predator-prey

system, both species become extinct. Therefore, to provide data to support the

possibility of policy management, the stochastic version of maximum sustainable

yield is developed in Chapter 4. Several different cases have been analyzed and it

has been identified that the impact of a sufficiently high uncertainty always leads

to a lower optimal harvest rate.

Fisheries have suffered from climate change and the model presented identifies

how fishermen choose harvest rates under conditions of higher uncertainty. On the

other hand, some regulatory policies have already been introduced by governments

such as imposing a tax on fish caught and individual quota management. These

policies lead to some extensions of Chapter 3 and 4. The former has been examined

by Pradhan and Chaudhuri (1999) [?], where they studied a deterministic model in

which the regulatory agent imposes a tax to control the harvest rates. Arnason, on

the other hand, introduced the idea of an individual quota system and adopted it

in 1975, the first in the world. Quota systems have been applied in many countries

such as the United States, Australia and the Republic of Chile. The mechanism

used involves the allocation of quotas to each fishery and the sum of all quotas is

less than the total allowable catch (TAC). Agents are allowed to trade the quotas

in a market. One advantage of quota systems is that agents have more incentive to

invest in their equipment so that they catch fish more efficiently and reduce their

costs. More details can be found in the report by Hatcher, Pascoe, Banks and

Arnason (2002) [?]. Arnason also presented a paper in 1998 in which he studied a

continuous model with a single agent and adopted the individual transferable share
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quota system, see [?]. In this system the agents trade shares in the market instead

of the number of quotas. Since the sum of quotas is limited and there should be

several agents in the market, it would be worthwhile investigating a game model of

an individual transferable quota system.

The real option approach is used to derive an optimal stopping time for an

irreversible investment. Two examples of an irreversible investment are investing in

undeveloped oil reserves and adopting new policies. The former example involves

a huge amount of capital and firms have to consider the optimal timing to invest

in undeveloped oil reserves, while in the latter example, authorities are concerned

about the fact that the policies affect both development and conservation. These

policies, therefore, lead authorities to consider the optimal timing to adopt these

policies. It has been proposed that the project value follows a stochastic differential

equation and then the Hamilton-Jacobi-Bellman equation leads to a differential

equation. This differential equation is associated with two conditions, namely value-

matching and smooth-pasting conditions, which leads to a free boundary value

problem.

In Chapter 5, the real option approach was applied to study the case of a Cox-

Ingersoll-Ross process which follows the form,

dx(t) = κ (θ − x(t)) dt + σ
√

x(t)dW (t),

under the scenario in [?], Chapter 5. A Cox-Ingersoll-Ross process represents a

project which can recover, i.e. if the value reaches 0, it increases immediately. This

occurs, for example, with the price of oil. Even though the stock of oil is reduced

permanently, the stock so far is still sufficient to meet demand and represents one

of the world’s main resources. The example given in [?], Chapter 12 C, is based on

a geometric mean reverting process. Since such processes remain at zero if zero is
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ever achieved, it is worth considering that the price of some non renewable resources

are defined by a Cox-Ingersoll-Ross process. The reason for this is that the main

resources are still needed and, if the price drops too low, it would be expected to

increase. It has been demonstrated that, in the case of a Cox-Ingersoll-Ross process,

the value around 0 is regular while in the case of a geometric mean reverting process,

the value increases dramatically. Such phenomenon may not be realistic.

On the other hand, real option theory can be applied to other problems in environ-

mental economics. One example is anti-pollution. Two examples of such a problem

have been reported. In 2006, over a thousand villagers from the village of Mehdiganj

in the north Indian state of Uttar Pradesh protested at the headquarters of the

Coca-Cola Company in Gurgaon because of polluted groundwater and soil. The

second illustration refers to an event that took place in China in 2005. According

to a report by AsiaNews, see [?], 60,000 Chinese people in Huaxi Village, Zhejiang

Province protested in April 2005 against high levels of pollution emitted by 13

chemical plants located in the area. Real option theory can be applied to find the

optimal timing when a firm should adopt the pollution abatement facilities. Such

an application also provides governments several policies how to help the firms to

invest in the pollution abatement facilities earlier.

The models presented in this thesis are either based on the real option theory or

a differential game due to the requirements of mathematical tractability. However,

some applications such as exploitation of environmental resources could be relevant

to both techniques. For example, the Exclusive Economic Zone (EEZ) of the Repub-

lic of Kiribati is around 3.5 million km2 ,which is a significant tuna fishing zone for

industrial fleets from a number of distant-water fishing nations (DWFNs) including

Japan, Taiwan, Korea, the United States, and Spain. The current situation is that

foreign fishery companies buy licenses to catch fish in the fishery zone and this is
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one of the major sources of revenue for the country. Instead of selling licenses, the

government could consider the idea of imposing a tax on fish caught by foreign

companies. To catch fish in Kiribati, the foreign company is required to invest

in equipment such as vessels and warehouses in Kiribati. In this case, a foreign

company has to concentrate on two aspects, i.e., the optimal timing when it should

invest in the country and the harvest rate. The former represents a good case for

applying the real option approach, while the latter could be a differential game

among the government and all fishery agents. Such applications allow combination

of both techniques in order to study more realistic models.
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