
Lapedo: Hybrid Skeletons for
Programming Heterogeneous Multicore

Machines in Erlang

Vladimir JANJIC, Christopher BROWN, Kevin HAMMOND

School of Computer Science, University of St Andrews, UK.
{vj32, cmb21, kh8}@st-andrews.ac.uk

Abstract. We describe Lapedo, a novel library of hybrid parallel skeletons

for programming heterogeneous multi-core/many-core CPU/GPU sys-
tems in Erlang. Lapedo’s hybrid skeletons comprise a mixture of CPU

and GPU components, allowing skeletons to be flexibly and dynamically

mapped to available resources. We also describe a model for deriving
near-optimal division of work between CPUs and GPUs, ensuring load

balancing between resources. Finally, we evaluate the effectiveness of

Lapedo on three realistic use cases from different domains, demonstrat-
ing significant speedups compared to executing the same application on

only CPU cores or a GPU.

Keywords. Parallel skeletons, Hybrid skeletons, Cost models, Heterogeneous

multi-core systems, GPU offloading

1. Introduction

Following the initial stages of the multi-core revolution, further major changes
in computer hardware are now ongoing. Hardware is getting increasingly hetero-
geneous, integrating accelerators, such as graphic processing units (GPUs), field
programmable gate arrays (FPGAs) and even lightweight many-core CPU ac-
celerators, with traditional multi-core processors. These heterogeneous systems
have a potential to deliver orders of magnitude more performance than tradi-
tional CPU-only based systems, and are increasingly found in high-performance
architectures. In order to fully exploit the potential that these systems offer, pro-
grammers needs to combine several different low-level programming models, e.g.
OpenCL for GPUs, WHDL or Verilog for FPGAs and OpenMP for CPUs. They
must also explicitly manage data transfers between main memory and acceler-
ator memory, schedule computations, fetch results, etc. Moreover, the solutions
that perform optimally are usually tied to a specific heterogeneous architecture
and cannot easily be ported, yielding problems in terms of e.g. increased mainte-
nance costs and lack of longevity. This makes programming heterogeneous multi-
core/many-core systems extremely difficult and complex compared with program-
ming multi-core CPUs. What is needed are high-level programming abstractions,

hiding the hardware complexity of such systems by abstracting over the varying
low-level models, while still achieving (near-)optimal accelerated performance.

This paper presents Lapedo1, a novel system of parallel skeletons for program-
ming heterogeneous multi-core/many-core systems in the functional language Er-
lang. Functional programming approaches naturally provide high-level abstrac-
tions through e.g. higher-order functions. In Lapedo, we exploit this to build skele-
tons: parameterised parallelism templates that abstract over low-level parallelism
details and parallel structures of a program. Hybrid skeletons contain alternative
implementations of their components for different processor types, automatically
providing tedious and error-prone code for transferring data to/from processor
types, scheduling, fetching results, etc. Lapedo also provides mechanisms for divid-
ing work between different processor types, ensuring load balancing and eliminat-
ing the need for extensive profiling and performance tuning. This allows skeletons
to be flexibly deployed on an arbitrary combination of CPUs and GPUs, allowing
us to achieve performance results that are better than either CPU or GPU exe-
cution alone, while still keeping a very high-level of abstraction. Although in this
paper we focus only on GPU accelerators, our low-level implementation is based
on OpenCL and our work can, therefore, be easily extended to a wide range of
other accelerators, including Intel Xeon PHIs, FPGAs and DSPs. The general hy-
brid skeleton approach can also be applied to other language frameworks, such as
C++, Java, Haskell, etc. This paper makes the following research contributions:

1. we describe the Lapedo Erlang library of hybrid skeletons that allow CPU
and accelerator components to be combined within the same skeleton;

2. we describe the current Lapedo implementation on heterogeneous CPU/
GPU combinations;

3. we describe a mechanism that allow automatic derivation of near-optimal
division of work between CPUs and GPUs for simple skeleton configura-
tions; and,

4. we demonstrate that Lapedo allows us to produce efficient and scalable
code for heterogeneous systems, achieving real speedups of up to 21.2 over
sequential Erlang programs on a 24-core machine with a GPU.

2. Heterogeneous Parallelism and Skeletons

Compared to traditional CPUs, accelerators usually offer higher-performance (in
terms of e.g. FLOPS) at lower clock speeds and with reduced energy usage per
unit of performance. However, they are usually restricted in terms of the par-
allelism model that is offered (often only data-parallel) and can be much more
difficult to program than traditional CPU-only systems. This creates a signifi-
cant barrier for applications programmers. In this paper, we will restrict our at-
tention to CPU/GPU combinations, representing the current most widely-used
class of heterogeneous multicores. However, since our implementations target the
OpenCL programming model, which is supported by other types of accelerators
(such as FPGAs), our work is also applicable in wider settings.

1Named after the hybrid Lapedo or Lagar Velho Neanderthal/Homo Sapiens skeleton.

Conventional Approaches to GPU Programming The two most widely-used ap-
proaches to GPU programming, CUDA and OpenCL provide similar portable,
but low-level SIMD programming interfaces. Unfortunately, programmability is
still generally lacking with these models: the programmer needs to take care of a
number of very low-level programming aspects, including the number of threads
and thread blocks, data transfers between CPUs and GPUs and scheduling of
computations on the GPUs. Some newer standards, such as SyCL2, aim to fur-
ther simplify GPU programming by offering further abstractions. In addition,
there are several algorithmic skeleton libraries (see Section 2.2) for programming
GPUs, such as SkePU [6] and SkeCL [11]. However, all of these models are either
restricted to GPUs only or require the programmer to have a deep understanding
not only of the problem that is being solved, but also of the underlying hardware
architecture. This usually results in a solution that is heavily optimised for a par-
ticular hardware system and which, therefore, lacks performance portability. The
GPU-specific code is also often highly fragile and likely to be error-prone.

2.1. (Heterogeneous) Parallel Programming in Erlang

Erlang [1] is a strict, impure, functional programming language. It is widely used
in the telecommunications industry, but is also beginning to be used more widely
for high-reliability/highly-concurrent systems, e.g. databases [8], AOL’s Market-
place by Adtech [12], and WhatsApp [9]. It has excellent support for concurrency
and distribution, including built-in fault-tolerance. Erlang supports a threading
model, where processes model small units of computation. The scheduling of pro-
cesses is handled automatically by the Erlang Virtual Machine, providing basic
load balancing mechanisms. We build on these lower-level mechanisms to pro-
vide higher-level parallelism abstractions, using algorithmic skeletons. We exploit
all the usual Erlang distribution mechanisms to build highly-distributed scalable
systems, where individual nodes can exploit accelerators using Lapedo.

Accelerator Programming in Erlang Erlang has no native support for program-
ming accelerators. However, a library containing OpenCL bindings is avail-
able [10], which provides an Erlang interface to low-level OpenCL functions to set
up accelerator computations, transfer data to/from the accelerators, and launch
kernels implemented in OpenCL, plus basic marshalling mechanisms between bi-
nary data structures in Erlang and C arrays. While enabling programmers to
write their code in Erlang, this library does not simplify GPU programming, since
the programmer is still required to write code that is equivalent to programming
directly in OpenCL. In the Lapedo library, we build on this library to provide
higher-level skeletons that encapsulate most of the required OpenCL code.

2.2. Skeletons

Algorithmic skeletons abstract commonly-used patterns of parallel computation,
communication, and interaction [4] into parameterised templates. For example,
we might define a parallel map skeleton, whose functionality is identical to a stan-

2https://www.khronos.org/sycl

https://www.khronos.org/sycl

dard map function, but which creates a number of Erlang processes (worker pro-
cesses) to execute each element of the map in parallel. Using a skeleton approach
allows the programmer to adopt a top-down structured approach to parallel pro-
gramming, where skeletons are composed to give the overall parallel structure of
the program. Details such as communication, task creation, task or data migra-
tion, scheduling, etc. are embedded within the skeleton implementation, which
may be tailored to a specific architecture or class of architectures. This offers an
improved level of portability over typical low-level approaches. A recent survey
of algorithmic skeleton approaches can be found in [7].

2.3. The Skel Library for Erlang

Lapedo is integrated into the Skel [3,2] library, which defines a small set of clas-
sical skeletons for Erlang. Each skeleton operates over a stream of input values,
producing a corresponding stream of results. Skel also allows simple composition
and nesting of skeletons. We consider the following skeletons:

• func is a simple wrapper skeleton that encapsulates a sequential function as
a streaming skeleton. For example, in Skel {func, fun f/1} denotes a func

skeleton wrapping the Erlang function, f, with f/1 denoting the arity of f.
In this paper, we denote func skeleton simply by {func, fun f}. When func
is instantiated, a new Erlang process is created and mapped to a single OS
thread, which executes the function sequentially without any parallelism.

• pipe models a composition of skeletons s1, s2, . . . , sn over a stream of in-
puts. Within the pipeline, each of the si is applied in parallel to the result
of the si−1. For example, in Skel: {pipe, [{func, fun f}, {func, fun g},

{func, fun h}]} denotes a parallel pipeline with three stages. Each pipeline
stage is a func skeleton, wrapping the Erlang functions, f, g, and h.

• farm models application of the same operation over a stream of in-
puts. Each of the n farm workers is a skeleton that operates in paral-
lel over independent values of the input stream. For example, in Skel:
{farm, 10, {pipe, [{func, fun f}, {func, fun g}]}} denotes a farm where
the worker is a parallel pipeline with two stages (each the func skeleton
wrapper for the functions f and g, respectively). This example farm has
10 workers, as specified by the second parameter, therefore running 10
independent copies of the pipeline skeleton.

• cluster is a data parallel skeleton, where each independent input, xi can be
partitioned into a number of sub parts, x1, x2, . . . , xn, that can be worked
upon in parallel. A skeleton, s, is then applied to each element of the sub-
stream in parallel. Finally the result is combined into a single result for each
input. An example, in Skel: {cluster, {func, fun f}, fun dec, fun rec}

denotes a cluster skeleton with each worker a simple sequential function,
where the dec function is used to decompose each input list into chunks,
and the rec function is used to recompose the list of result from the chunks
of results. This is similar to the farm skeleton example above, except the
number of workers is not specified for the map skeleton but rather implicitly
computed by the dec function. Note that decom and recom can be identity
functions, in which case we get the usual map skeleton applied to each

element of input stream, where the func skeleton is applied to each element

of an input list in parallel.

• feedback wraps a skeleton s, feeding the results of applying s back as new

inputs to s, provided they match a filter function, f .

3. The Lapedo System for Hybrid Skeletons

Lapedo extends the Skel library described in Section 2.3 with hybrid versions of

the farm and cluster skeletons that combine CPU and GPU components, which

are expressed by wrapping operations using the func skeleton. This ensures that

operations written for a CPU will be mapped to single sequential OS thread, and

GPU operations will be mapped to a GPU device. In general, a programmer is

required to provide these components which, in the case of the GPU, contain

all the code for creating buffers, transferring data to and from the GPU and

scheduling the kernel that implements the actual operation. Lapedo provides a

mechanism for automatically generating this boilerplate code, and, in order to use

the hybrid skeletons, a programmer is only required only to write Erlang CPU

components and relatively simple problem-specific GPU kernels in OpenCL.

Hybrid Farm. Similarly to the CPU-only farm skeleton (Section 2.2), hybrid

farm applies the same operation to a stream of inputs in parallel. It requires two

skeleton instances that provide implementations of the operation for a sequential

CPU thread and a GPU. Each element of the input stream is tagged with either

cpu or gpu tag3 and, depending on this tag, sent to one of the two inner skele-

tons. In this way, different processor types process input elements in parallel. The

syntax of the hybrid farm skeleton is

{hyb farm, CPUSkeleton, GPUSkeleton, NCPUWorkers, NGPUWorkers}

where NCPUWorkers and NGPUWorkers are the number of instances of the CPUSkeleton

and GPUSkeleton that are created. These determine how many input elements will

be tagged with the cpu and gpu tags. For example, if there are 20 input tasks,

and NCPUWorkers is 4 and NGPUWorkers is 1, then 16 tasks will be tagged with

the cpu tag and 4 will be tagged with the gpu tag. For example

{hyb farm, {func, fun f CPU/1}, {func, fun f GPU/1}, 4, 1}

defines a hybrid farm skeleton, where the operation is a simple function, f_CPU

being a sequential CPU operation and f_GPU for a GPU operation. As mentioned

above, the code for f_GPU can be generated automatically, based on a programmer-

provided OpenCL kernel that implements a function equivalent to f_CPU.

3In the future, additional tags will be supported to accommodate additional accelerator types.

Hybrid Cluster. Similarly to the Section 2.2, we focus on a list version of the
hybrid cluster skeleton, where each element in an input stream is a list, and each
of these lists is decomposed into sublists that are processed in parallel. Lapedo
also provides a more general version of this skeleton, that works on arbitrary data
structures. The syntax of the hybrid cluster skeleton is

{hyb cluster, CPUSk, GPUSk, DecompFun, RecompFun, NCPUW, NGPUW}

As in the case of the hybrid farm, CPUSk and GPUSk provide CPU and GPU im-
plementations of the operation that is to be applied to the sublists (generated by
DecompFun) of each list of an input stream. Decomposing an input list appropri-
ately in the case of the hybrid cluster is usually non-trivial, due to a difference in
performance of a CPU thread over a GPU for a given problem. For this reason,
we provide two variants of the hybrid cluster skeleton that automatically find a
good decomposition of work:

• {hyb_cluster, CPUSk, GPUSk, ChunkSizeMult, TimeRatio, NCPUW, NGPUW},
where ChunkSizeMult is a minimal length of each sublist, with the length of
each sublist after decomposition being its multiplier. TimeRatio is a ratio
between the processing time of a single sublist of size ChunkSizeMult on a
CPU and on a GPU (which can be obtained using profiling). This parame-
ter determines how much faster the GPU is in processing work than a CPU
thread (or vice versa). NCPUW and NGPUW determine how many sublists will
be processed by sequential CPU threads and how many by GPUs. These
two parameters also determine the total number of chunks that each task
is decomposed into (NCPUW+NGPUW) and, together with TimeRatio, determine
the length of each sublist. For more details about how lengths of sublists
are calculated, see Section 3.1

• {hyb_cluster, CPUSk, GPUSk, ProfChunk, NCPUW, NGPUW}, which is similar
to the above version, with the difference that ChunkSizeMult and TimeRatio

parameters are here automatically calculated by doing profiling on a user
provided example sublist ProfChunk, which needs to be representative of
the sublists that will be processed by CPUSk and GPUSk.

3.1. Division of Work Between CPUs and GPUs.

The hyb_cluster skeleton requires the numbers of CPU and GPU workers to be
specified explicitly (NCPUW and NGPUW parameters). Where there is no nesting of
skeletons, i.e. where there is only a hyb_cluster skeleton at the top level, and the
CPUSk and GPUSk skeletons are simple func skeletons, we can simply set NCPUW and
NGPUW to be the number of CPU cores and GPU devices in the system, respectively.
The problem with this, however, is that for suitable problems, GPUs are much
faster in processing tasks than CPU cores. Therefore, if we divide input lists into
equally-sized sublists, the same amount of work will be assigned to each CPU
and GPU worker, in which case GPUs will finish much faster than CPU cores,
resulting in load imbalance.

The aforementioned problem can be avoided if we do a smarter decomposition
of input lists. Assuming that a given problem is regular (i.e. that it takes the

same amount of time to process each element of an input list) and that we can
obtain timing information (e.g. using profiling) to determine how much faster can
a GPU process one list item (or a set of list items) than a CPU core, we can,
using some simple formulae, derive how many list items should be processed by
the GPUs and how much by each CPU core in order to get the best execution
time. For example, assume that we have g GPU and c CPU cores in a system,
and that the ratio between processing time for k items between a CPU and a
GPU is ratio. If an input list has n items (where n is divisible by k), then we can
estimate the time it takes to process all of the items in the list if nc items are
processed by CPU cores by

T (nc) = max

{⌈ nc
k
· ratio

c

⌉
,

⌈
n−nc

k

g

⌉}
,

where the first argument of the max is the time it takes to process nc items on
CPU cores, and the second argument is the time it takes to process the remain-
ing items by the GPUs. The best time we can obtain is then min{T (nc)|nc ∈
{0, k, 2k, ..., n}}, and the optimal number of items to process on CPU cores is
such nc for which this minimum is obtained. In this way, we calculate a pair
(nc, n − nc) for the number of list items to be processed by CPU cores and the
GPUs, respectively. Sublists lengths sizes for CPU cores are then


⌊nc

c

⌋
,
⌊nc

c

⌋
, . . .

⌊nc

c

⌋
︸ ︷︷ ︸

c−(nc mod c) times

,
⌈nc

c

⌉
,
⌈nc

c

⌉
, . . . ,

⌈nc

c

⌉
︸ ︷︷ ︸

nc mod c times

 .

We can similarly calculate the chunk sizes for the GPUs. The parameter k above
should be chosen so that it gives the best parallelism on the GPU, i.e. it should be
maximum number of list items that the GPU can process in parallel (parameter
ChunkSizeMult in the description of hyb_cluster skeleton).

4. Evaluation

We evaluate Lapedo on three realistic use cases: Ant Colony Optimisation, Football
Simulation and Image Merging. The experiments were conducted on a system
that comprises two 12-core 2.3GHz AMD Opteron 6176 processors, 32GB RAM
and NVidia Tesla C2050 GPU with 448 CUDA cores. We evaluate the speedups
relative to the sequential Erlang versions.

4.1. Ant Colony Optimisation

Ant Colony Optimisation (ACO) [5] is a heuristic for solving NP-complete optimi-
sation problems. We apply ACO to the Single Machine Total Weighted Tardiness
Problem (SMTWTP) optimisation problem, where we are given n jobs and each
job, i, is characterised by its processing time, pi deadline, di, and weight, wi. The

0 1 2 4 6 8 10 12 16 20 24

1

4

8

12

16

No. CPU workers in the cluster

S
p

ee
d
u
p

CPU-only

Hybrid

(a) Ant Colony Optimisation

0 1 2 4 6 8 12 16 20 24

1

8

16

24

No. CPU workers

S
p

ee
d
u
p

CPU Only

Hybrid

(b) Football Simulation

0 1 2 4 6 8 10 12 16 20 24

1

8

16

24

No. CPU workers

S
p

ee
d
u
p

CPU-only

Hybrid

(c) Image Merge

Figure 1. Speedups for Ant Colony and Football Simulation

goal is to find the schedule of jobs that minimises the total weighted tardiness,
defined as

∑
wi ·max{0, Ci − di}, where Ci is the completion time of the job, i.

The ACO solution consists of a number of iterations, where in each iteration each
ant independently tries to improve the current best schedule, and is biased by a
pheromone trail.The top-level skeleton structure is:

Pipe = {pipe, [{hyb cluster, [{func, fun ant c/1}] , [{func, fun ant g/1}]}] ,
TimeRatio, fun struct size/1, fun make chunk/2,
fun lists : flatten /1, NrCPUW, NrGPUW},

[{func, fun update and spawn/1}]},
Feedback = {feedback, [Pipe], fun ant feedback/1},

A speedup graph is given in Figure 1(a). We can see that the CPU-only ver-
sion shows modest speedups, up to 5.13 on 22 cores, degrading slightly when all
24 cores are used (this is probably the result of a saturation/scheduling conflict
with other applications). The GPU-only version (where the number of CPU cores
is 0) shows a better speedup of 7.52 than any CPU-only version. Combining CPU
threads with a GPU gives clear benefits over either processor type alone, deliver-
ing speedups of up to 12.2 when 20 CPU threads and a GPU are used. The graph
shows some anomalies, e.g. at 2 CPU threads plus a GPU, the performance is
less than one CPU thread plus a GPU; at 18 CPU threads, there is a slight dip
in speedup; and beyond 20 threads, performance plateaus. This can probably be
mostly explained by the effects of work division described in Section 3.1. In the
case of 1 CPU thread plus a GPU, our algorithm derives good work division where
the CPU threads and GPU finish the execution at approximately the same time.

Adding 1 thread, more work is given to the CPU threads, and in this case it may
happen that the GPU finishes its portion of work earlier, resulting in imbalance.

4.2. Football Simulation

Football Simulation predicts the outcomes of football games, and is used by bet-
ting companies to calculate the winning odds for matches. Each simulation ac-
cepts information about the teams involved in a match (e.g. attack and defence
strength), and uses a randomised routine to predict the end result of the match.
The final prediction for each match is averaged over multiple simulations. The
top-level skeleton structure is

Cluster = {hyb cluster, {func, fun(P) −> sim match cpu(P, NrSims) end},
{func, fun(P) −> sim match gpu(P, NrSims) end},
ChunkSizeMult, TimeRatio, NCPUW, NGPUW},

AllRes = skel:do(Cluster, AllPairs),
Results = [get average score(OnePairRes) || OnePairRes <− AllRes].

P is a pair of tuples that contains the necessary information about one match,
i.e. information about one pair of teams. In the simplest case, we provide just
two floating point numbers for each team, attack and defence strength. For each
pair of teams, sim_match_cpu or sim_match_gpu is called NrSimulations times, and
then the average score is computed using the get_average_score function. The
speedups of Football Simulation are given in 1(b). Both CPU-only and hybrid
version show improved speedups (from 1 and 8.3) when more CPU workers (and,
therefore, CPU threads) are used, up to the point where the best speedup is
obtained (20.2 with 18 CPU workers for hybrid version and 20 with 22 workers
for CPU-only version). After this point, when more CPU workers are added, the
performance starts to drop. This is due to unpredictability of performance of
workers as the total number of Erlang processes approaches the number of cores,
due to scheduling issues. This also has the effect that the division of work between
CPU and GPU workers in the hybrid case is sub optimal when more than 18
CPU workers are used, explaining the earlier dip in performance for the hybrid
case. Altogether, we can observe that when a smaller number of CPU threads are
used, the hybrid version significantly outperforms the CPU-only version.

4.3. Image Merge

Image Merge is an application from the computer graphics domain. It reads a
stream of pairs of images from files, and merges images from each pair. The top-
level skeleton structure is

Farm = {hyb farm, {func, fun merge cpu/1}, {func, fun merge gpu/1}},
FinalImages = skel:do(Farm, Images).

The speedups for Image Merge are given in Figure 1(c). We can observe that the
hybrid version significantly outperforms the CPU-only version regardless of the
number of CPU workers used, with the best speedups of 17 and 10 for hybrid

and CPU-only version. We also observe an increase in speedup as the number of
CPU workers increases. As usual, when the number of CPU workers approaches
the number of CPU threads, we observe a drop in performance.

5. Conclusions and Future Work

This paper describes Lapedo, a system of hybrid skeletons for Erlang. Skeletons
abstract commonly-used patterns of parallel computation, communication, and
interaction into parameterised templates. Hybrid skeletons combine components
that are specialised for different processor types , thus allowing efficient exploita-
tion of heterogeneous multi-core/many-core systems while still offering a very
high-level programming model. We have focused purely on CPU/GPU combina-
tions, but since our library is built on top of OpenCL, it can also be used with
other accelerators. We have also described a simple mechanism for dividing work
between processor types. Finally, we have demonstrated Lapedo on three real-
istic Erlang applications. Our results show clear benefits of using hybrid skele-
tons, giving significantly better speedups compared to CPU-only skeletons with
only a modest increase in programming effort, programmers are only required to
write relatively-simple OpenCL kernels. In the future work, we plan to extend
the Lapedo library with additional, domain-specific skeletons (e.g. orbit skeleton)
and to adapt it to support emerging accelerator classes.

References

[1] J. Armstrong, S. Virding, and M. Williams. Concurrent Programming in Erlang. Prentice-

Hall, 1993.
[2] I. Bozó, V. Fordós, Z. Horvath, M. Tóth, D. Horpácsi, T. Kozsik, J. Köszegi, A. Barwell,

C. Brown, and K. Hammond. Discovering Parallel Pattern Candidates in Erlang. In Proc.

13th Erlang Workshop, Erlang ’14, pages 13–23. ACM, 2014.
[3] C. Brown, M. Danelutto, K. Hammond, P. Kilpatrick, and A. Elliott. Cost-Directed

Refactoring for Parallel Erlang Programs. IJPP, 42(4):564–582, 2014.

[4] M. I. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel
Computation. PhD thesis, 1988. AAID-85022.

[5] M. den Besten, T. Sttzle, and M. Dorigo. Ant Colony Optimization for the Total Weighted

Tardiness Problem. In PPSN VI, volume 1917 of Lecture Notes in Computer Science,
pages 611–620. 2000.

[6] J. Enmyren and C. W. Kessler. SkePU: A Multi-backend Skeleton Programming Library

for multi-GPU Systems. In Proc. HLPP ’10, pages 5–14. ACM, 2010.
[7] H. González-Vélez and M. Leyton. A Survey of Algorithmic Skeleton Frameworks: High-

level Structured Parallel Programming Enablers. Softw. Pract. Exper., 40(12):1135–1160,
Nov. 2010.

[8] Rashkovskii, Yurii. Genomu: A Concurrency-Oriented Database. In Erlang Factory SF,

2013.
[9] Reed, Rick. Scaling to Milions of Simultaneous Connections. In Erlang Factory SF, 2012.

[10] T. Rogvall. OpenCL Binding for Erlang. https://github.com/tonyrog/cl.
[11] M. Steuwer and S. Gorlatch. SkelCL: Enhancing OpenCL for High-Level Programming of

Multi-GPU Systems. In Par. Comp. Tech., Springer LNCS vol. 7979, pp. 258–272. 2013.
[12] Wilson, Ken. Migrating a C++ Team to Using Erlang to Deliver a Real-Time Bidding

Ad System. In Erlang Factory SF, 2012.

https://github.com/tonyrog/cl

