Response to Colvin and Qian: Zinc-mediated regulation of the cardiac ryanodine receptor occurs via multiple binding sites

Jason Woodier¹, Richard D. Rainbow², Alan J. Stewart¹ & Samantha J. Pitt^{1*}

¹School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK.

Correspondence: Dr Samantha J. Pitt, School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, St Andrews, Fife, KY6 9TF Email: sjp24@st-andrews.ac.uk, Tel: +44 (0)1334 463516

We would like to thank Colvin & Qian for their interest in our recent publication [1] where we demonstrate for the first time that Zn²⁺ acts as a high affinity activator of the cardiac ryanodine receptor (RvR2). We are aware that BAPTA is not a Ca²⁺-specific chelator and can also bind Zn²⁺ when present. The purpose of the experiment represented in Figure 4, was to show that Zn^{2+} can directly activate RyR2 when levels of Ca^{2+} are sub-activating rather than to provide the absolute Zn^{2+} concentration required for Zn^{2+} -dependent channel openings. This was addressed in the experiments carried out in the absence of BAPTA, where our data reveal that Zn2+ is the primary activating ligand of RyR2 at concentrations >1 nM (Figures 1 & 3). The estimates of free Zn²⁺ levels in the presence of BAPTA offered by Colvin & Qian in no way alter the interpretation of our data and it is unclear why this led them to speculate that the action of Zn²⁺ is through a single site on the channel [2]. A single site model is not consistent with the finding that 100 pM Zn²⁺ sensitizes Ca²⁺-mediated RyR2 activity yet higher concentrations of Zn²⁺ (1-100 nM) enable switching from Ca²⁺-dependent to Ca²⁺independent gating. Thus separate Zn²⁺ sites must exist to enable Ca²⁺-sensitization and Zn²⁺activation, respectively. A single site model is also not consistent with the observation that very high concentrations of Zn²⁺ (1 mM) abolish all channel openings. Collectively, our data highlight a new and important role for intracellular Zn²⁺ in shaping Ca²⁺-dynamics in cardiomyocytes and that this is mediated through Zn²⁺ binding at multiple sites on RyR2.

References

- 1. Woodier J, Rainbow RD, Stewart AJ & Pitt SJ. (2015) Intracellular zinc modulates cardiac ryanodine receptor-mediated calcium release. *J Biol Chem* **290**, 17599-610.
- 2. Colvin RA & Qian C. (2016) Zinc modulation of cardiac RyR2 gating: Alternate interpretation of the interplay between zinc and calcium. *J Biol Chem* (eLetter to the Editor)

²Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, LE3 9QP, UK.