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Abstract  

Environmental pollution often accompanies the expansion and urbanisation of human 

populations where sewage and wastewaters commonly have an impact on the marine 

environments. Here we explored the potential for faecal bacterial pathogens, of anthropic 

origin, to spread to marine wildlife in coastal areas. The common zoonotic bacterium 

Campylobacter was isolated from grey seals (Halichoerus grypus), an important sentinel 

species for environmental pollution, and compared to isolates from wild birds, agricultural 

sources and clinical samples to characterize possible transmission routes. Campylobacter 

jejuni was present in half of all grey seal pups sampled (24/50 dead and 46/90 live pups) in 

the breeding colony on the Isle of May (Scotland), where it was frequently associated with 

histological evidence of disease. Returning yearling animals (19/19) were negative for C. 

jejuni suggesting clearance of infection whilst away from the localised colony infection 

source. The genomes of 90 isolates from seals were sequenced and characterized using a 

whole-genome multilocus sequence typing (MLST) approach, and compared to 192 

published genomes from multiple sources using population genetic approaches and a 

probabilistic genetic attribution model to infer the source of infection from MLST data. The 

strong genotype-host association has enabled the application of source attribution models in 

epidemiological studies of human campylobacteriosis, and here assignment analyses 

consistently grouped seal isolates with those from human clinical samples. These findings are 

consistent with either a common infection source or direct transmission of human 

campylobacter to grey seals, raising concerns about the spread of human pathogens to 

wildlife marine sentinel species in coastal areas. 

 

Introduction 

Marine mammals can act as sentinel species with their health reflecting that of the wider 

coastal marine ecosystem (Bossart 2011; Moore 2008; Reddy et al. 2001). Contamination of 

environmental waters is commonly associated with sewage either from municipal waste 

water treatment works or runoff from agricultural land. Several studies have shown that 

marine mammals can be infected with pathogens of known terrestrial origin and this may be 

the result of faecal to oral transmission via sewage. For example, multidrug resistant 

Escherichia coli have been isolated from free-ranging bottlenose dolphins (Tursiops 

truncatus) in South Carolina and Florida (Greig et al. 2007) and Toxoplasma gondii 

transmitted from cat faeces is currently a major cause of mortality in the threatened southern 

sea otters (Enhydra lutris nereis) (Conrad et al. 2005; Shapiro et al. 2012). Two zoonotic 
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gastrointestinal pathogens, Campylobacter and Salmonella, have also been found in juvenile 

northern elephant seals, with a higher prevalence in seals that became stranded along the 

coast of central California than in seals on their natal beaches that had never entered the water 

(Stoddard et al. 2005).  

 

Campylobacter is of particular importance as it is currently a major public health concern in 

the UK, being the most commonly reported cause of bacterial gastroenteritis, with over 

500,000 community cases, 20,000 hospitalisations and 110 deaths estimated to occur 

annually (Strachan & Forbes 2010; Tam et al. 2012). Despite this, the epidemiology of this 

organism is poorly understood as most human Campylobacter infections are sporadic and the 

source of outbreaks can be difficult to detect. A large number of mammalian and avian hosts 

(wild and domestic) have been found to carry Campylobacter and transmission from reservoir 

hosts to humans has been well studied (Sheppard et al. 2009a; Sheppard et al. 2009b; 

Strachan et al. 2009). However, little is known about the transmission of Campylobacter to 

wild animals.   

 

Campylobacter populations are highly structured into clusters of related lineages that reflect 

the clonal ancestry under the influence of mutation, horizontal gene transfer and natural 

selection. Multilocus sequence typing (MLST) of Campylobacter jejuni and C. coli has 

proved effective for examining this, and assigning genotypes that share 4 or more alleles at 7 

MLST loci to the same ‘clonal complex’ (Dingle et al. 2005). By characterizing isolates from 

multiple populations in this way it became clear that there is substantial genetic 

differentiation between C. jejuni populations from different host species (Miller et al. 2006; 

Miller et al. 2005; Sheppard et al. 2011). Some clonal complexes are strongly host associated 

while others display a generalist distribution (Gripp et al. 2011; Sheppard et al. 2011). More 

recently, whole genome analysis of C. jejuni populations has built on this research to show 

accessory genome differences between lineages suggesting that host adaptation may be 

reflected in the genome (Sheppard et al. 2013b) and that different lineages may occupy 

different niches within a single host (Sheppard et al. 2014). 

 

Quantitative information about the degree of niche segregation among isolates from different 

host species is useful for understanding Campylobacter ecology and evolution but also has 

another practical use. Specifically, the segregation of gene pools allows the attribution of 

isolates to original source populations. Population genetic attribution models  have been used 
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to attribute human Campylobacter infection to host species of origin, based on reference data 

sets from a range of animal species and the environment (Boysen et al. 2013; de Haan et al. 

2010; Kittl et al. 2013; Mullner et al. 2009; Sheppard et al. 2009b; Wilson et al. 2008). These 

models, which generally implicate poultry as a major source of human infection, are robust to 

temporal and spatial variation in the data because of the strength of the host association signal 

(Sheppard et al. 2010), and the increasingly large MLST data archives for isolates from 

multiple sources (Jolley & Maiden 2010) provide a basis for investigation of the transmission 

of isolates to other host species. 

 

Grey seals (Halichoerus grypus) are top predators in the British marine environment and are 

potential sentinels for the health of marine food webs. Until now, little work has been done to 

investigate Campylobacter in this species. In this study we investigate the prevalence of 

Campylobacter infection in neonatal and juvenile Scottish grey seals from a breeding colony 

on the Isle of May (Scotland, UK) and relate this information to evidence of pathogenicity. 

Using MLST and comparative genomics, the seal-associated Campylobacter population is 

analysed and a quantitative source attribution model is used to determine the likely origin of 

C. jejuni infections and investigate evidence of a possible land-sea transfer of this important 

zoonotic pathogen.  

 

 

Materials and Methods 

Bacterial sampling from grey seals 

During autumn 2011, rectal swabs were taken from 90 wild-caught live grey seal pups and 19 

live wild-caught yearling grey seals on their natal colony of the Isle of May (56° 11′ 9″ N, 2° 

33′ 27″ W), as well as 32 live grey seal pups that had become stranded along the Scottish 

coastline. Live free-ranging grey seal pups were sampled on their natal colony from 3 sites 

with different ground substrates (tidal boulder beach, muddy grassy slope and rocky stagnant 

pools), each at 3 different time-points (early, mid and late pupping season). Stranded seals 

were sampled within 24 hours of admission for rehabilitation to the Scottish Society for the 

Prevention of Cruelty to Animals (SPCA) National Wildlife Centre, in Fife, Scotland. In 

addition, rectal swabs were taken from 50 dead free-ranging grey seal pups found on the Isle 

of May and 9 stranded grey seal pups that died or were euthanized on humane grounds at the 

Scottish SPCA National Wildlife Centre. All dead pups (colony and stranded) were sampled 

within 48h of death. Amongst the stranded seals, 9 animals died and the delay in processing 
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results provided unreliable results, so these were not further analysed. Three sediment 

samples were also taken from each of two pupping locations within the colony (muddy grassy 

slope and rocky stagnant pools); samples from the boulder beach were not taken due to the 

nature of the substrate. All sampling of live free-ranging animals was carried out under UK 

Home Office Project (No. 60/4009) and Personal Licences as issued to the Sea Mammal 

Research Unit under the Animals (Scientific Procedures) Act, 1986. Stranded grey seal pups 

were sampled within 24h of arrival at the rehabilitation centre as part of the routine health 

assessment procedure. Date of sampling and location of sampling/stranding was recorded for 

each animal. Rectal swabs were placed in Amies transport medium with charcoal (Medical 

Wire and Equipment (MWE), Corsham, UK) and processed within 8h in the field laboratory 

on the Isle of May for the free-ranging live pups, dead pups and live yearlings. Swabs from 

stranded live or dead grey seal pups were sent by first class post to SAC Consulting 

Veterinary Services, Inverness, where they were processed, incurring a delay of up to 4 days 

between sampling and processing in some cases. 

 

Biochemical identification of Campylobacter sp. 

Rectal swabs were plated onto Campylobacter selective blood-free agar (CCDA, Oxoid, 

Basingstoke, UK), incubated at 37°C under a microaerophilic environment (Campygen 

sachets, Oxoid) in airtight containers and assessed at 48 hours, 4 days and 6 days post 

inoculation for suspect Campylobacter colonies. From each plate, a maximum of 3 distinct 

colonies were selected for further identification. Campylobacter identification was performed 

using Gram stain and a wide range of phenotypical tests (On 1996; On & Holmes 1991, 

1992). Briefly, biochemical assays tested the activity of catalase (Biomerieux, Basingstoke, 

UK), oxidase (1% w/v N-N-N'-N'- tetramethyl-p-phenylenediamine dihydrochloride, Thermo 

Fisher Scientific, Loughborough, UK); hippuricase (hippurate hydrolysis) (Rosco 

Diagnostica, Taastrup, Denmark); alkaline phosphatase (Rosco); urease (Rosco); gamma 

glutamyl aminopeptidase (Bioconnections, Leeds, UK); acetate esterase (Rosco) and the 

ability to reduce nitrate (Rosco). Sensitivity to nalidixic acid (Oxoid), cefoperazone (Oxoid), 

cephalexin (Oxoid) and bile (Rosco) along with H2S production on Triple Sugar Iron (TSI) 

slopes (Oxoid) was assessed under a microaerophilic environment. Growth at 22°C, 25°C and 

42°C on Columbia agar with sheep blood (Oxoid) was assessed. In addition, and growth on 4 

different agar media (MacConkey agar (Oxoid), nutrient agar (Oxoid) supplemented with 1% 

glycine (Scientific Laboratory Supplies, Nottingham, UK), nutrient agar supplemented with 

1.5% NaCl (Scientific Laboratory Supplies)) and nutrient agar supplemented with 3.5% NaCl 
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was assessed under a microaerophilic environment. Growth was also assessed under 

anaerobic (Oxoid), CO2 enriched (Oxoid) and aerobic atmospheres. For each individual 

animal from which Campylobacter was isolated, one to three strains were selected for whole 

genome sequencing on the basis of their phenotypic characteristics: arbitrarily hippurate 

hydrolysis; reduction of nitrate; growth on agar supplemented with 1% glycine and resistance 

to nalidixic acid. In total, 90 strains of Campylobacter were selected from 74 seals and 2 

sediment samples. The prevalence of Campylobacter in different conditions was analysed 

using a generalized linear model (GLM) with binomial errors to compare sampling site for 

live pups on the colony, time point for live pups on the colony, weight, sex, stranded vs. 

colony, group (dead colony, dead rehab, live colony, live rehab, yearling colony) and age for 

pup and yearling on the colony only. The significance of individual comparisons of 

prevalence were tested using Fisher's exact tests, for example between Campylobacter in 

pups with and without colitis. 

 

Histopathology and immunohistochemistry of dead grey seal pups 

A full post-mortem examination including extensive histopathology was performed on each 

of the 50 dead animals from the colony, from which bacteria were sampled. Samples of large 

intestine from all these 50 dead pups were fixed in 10% neutral buffered formalin and 

processed routinely to paraffin wax. Sections (5μm) were stained with haematoxylin and 

eosin (HE) and graded as to the degree of colitis in each section (normal to minimal, mild, 

moderate to severe). Normal to minimal inflammation of colonic mucosa was characterised 

by small numbers (≤5) of lymphocytes and plasma cells in the lamina propria between crypts 

with well differentiated crypt epithelium. Mild inflammation was characterised by an 

increased number of inflammatory cells, which filled the inter-cryptal region and mildly 

increased separation of crypts. Mild crypt epithelial dysplasia was present with occasional 

colonic crypts dilated by cellular debris. Moderate to severe inflammation was characterised 

by inflammatory cells filling the inter-cryptal region and moderately to markedly increasing 

separation of crypts with moderate to marked crypt epithelial dysplasia and occasional crypt 

abscessation.  

 

Fisher’s exact tests were performed in R to assess the association of colitis with 

Campylobacter presence. Immunohistochemistry was performed on selected sections of large 

intestine to detect Campylobacter (100  μl, dilution 1:1000, clone: Ab54125, mouse 

monoclonal, anti-Campylobacter primary antibody, BGN/2E10, 1 mg ml−1, Abcam Plc, 
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Cambridge, UK) as previously described (Haddock et al. 2010). Immunohistochemistry was 

analysed with reference to the effect of Campylobacter jejuni on the caecum and colon of 

experimentally infected pigs with positive and negative control tissues. Negative-control 

sections were incubated with isotype matched, IgM, mouse Ig(dilution 1:500, Sigma M5909, 

0.2 mg ml−1) in place of the primary antibodies. The immunoreactions were visualised with 

Nova red (Vector Laboratories, Peterborough, UK; 10 mins at RT) and sections were 

counterstained with Mayer’s haematoxylin. 

 

Whole-genome sequencing 

Two sets of C. jejuni and C. coli genomes were used in this comparative population study: (a) 

74 C. jejuni and 14 C. coli isolate genomes from seals and (b) 131 C. jejuni and 61 C. coli 

previously published genomes (Sheppard et al. 2014; Sheppard et al. 2013a; Sheppard et al. 

2013b) for a total of 280 whole genome sequences (Table S1). Campylobacter isolates from 

seals were subcultured and grown on selective CCDA agar, and their total DNA was 

extracted using the Masterpure DNA purification kit (Epicentre, Madison, WI, USA) 

according to the manufacturer’s instructions with minor modifications (pellets were incubated 

at 65°C with proteinase K and tissue lysis buffer for 30 minutes; ribonuclease (RNase) 

incubation was extended to 2 hours and elution was carried out with 100μl elution buffer). 

Sequencing was performed using an Illumina MiSeq sequencer at Glasgow Polyomics, 

Wolfson Wohl Cancer Research Centre, Glasgow, UK. A multiplex sequencing approach was 

used, involving 12 separately tagged libraries sequenced simultaneously in two lanes of an 

eight channel GAII flow cell. The standard Illumina Indexing protocol involved 

fragmentation of 2 μg genomic DNA by acoustic shearing to enrich for 200 bp fragments, A-

tailing, adapter ligation and an overlap extension PCR using the Illumina 3 primer set to 

introduce specific tag sequences between the sequencing and flow cell binding sites of the 

Illumina adapter. DNA cleanup was carried out after each step to remove DNA <150 bp 

using a 1:1 ratio of AMPure® paramagnetic beads (Beckman Coulter, Inc., USA), and a 

qPCR was used for final DNA quantification. Contiguous sequences of 10-200 kb were 

assembled de novo for each isolate individually using the Velvet software (Zerbino & Birney, 

2008), using default parameters to generate the consensus sequences. The average number of 

contiguous sequences (contigs) for all assemblies was 138.6 (average N50=84,457 bp; average 

N90=32,101 bp). All genome sequences were archived and analysed using the gene-by-gene 

approach implemented in the BIGSdb platform (Jolley & Maiden 2010). Assembled genome 

data and individual genome coverage information are available in the Dryad repository 
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(doi:10.5061/dryad.8p984). Short reads were uploaded to the Short Read Archive (SRA) on 

the NCBI repository. 

 

Phylogenetic analyses 

A reference pan genome approach was used to characterise the isolate genome contiguous 

sequence files (Meric et al. 2014). Briefly, gene-by-gene alignments were constructed, using 

the MUSCLE software (Edgar 2004), for 2,335 Campylobacter genes that constituted a 

reference pan-genome list. This list was composed of the genes from 7 Campylobacter 

genomes: C. jejuni subsp. jejuni strains NCTC11168, 81–176, 81116 and M1; C. jejuni 

subsp. doylei strain 269.97; C. coli strains 76339 and CVM N2970. Duplicate genes were 

excluded, and these were defined as having >70% sequence identity over ≥ 10% of the gene 

sequence (Meric et al. 2014). Allele numbers were assigned for each locus, including the 

determination of 7-locus MLST allelic profiles. Phylogenetic trees were constructed using 

concatenated sequences of 595 core genes shared by all C. jejuni and C. coli isolates in this 

study (Sheppard et al. 2014). Sequences were aligned gene-by-gene and concatenated into a 

single 362,598 bp sequence alignment. An approximation of the maximum likelihood 

algorithm was used to reconstruct the trees, using FastTree2 (Price et al. 2010). Trees were 

visualised from the Newick output of FastTree2 using MEGA6 (Tamura et al. 2013). 

 

Representative isolate collection for source attribution 

Seven-locus sequence types (STs) derived from genome sequenced seal isolates (n=74) were 

compared to STs of C. jejuni isolates from 5 source populations from previously published 

datasets (Sheppard et al. 2010; Sheppard et al. 2011). These included: clinical faecal samples 

(n=1298); chicken meat and faeces (n=1298); cattle faeces (n=597); sheep faeces (n=250); 

wild bird faeces (n=247). The genetic heterogeneity within and between groups was analysed 

using φ-statistics with analyses of molecular variance (Excoffier & Lischer 2010). The seven 

loci were concatenated and the number of polymorphic sites was determined. Permutation 

tests were used to assess significance, using 999 permutations. Genetic differentiation 

between groups, rather than within groups, and significance was performed using pairwise 

nested analysis of molecular variance (AMOVA). Low F-statistic values indicated low 

genetic differentiation. 
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Source attribution modelling 

Source attribution and associated analyses were performed using iSource, also termed the 

asymmetric island model (Sheppard et al. 2009b; Wilson et al. 2008). Within the iSource 

evolutionary model, C. jejuni STs from different hosts are considered to represent discrete 

islands where there is homogenous mixing within the islands and some migration between 

them. The model is a generalisation of Wright’s island model, called the migration matrix 

model (Kimura & Weiss 1964), and incorporates an evolutionary model where loci are 

considered to be in linkage disequilibrium using a recombination model suitable for bacteria.  

Here, seal isolates were assumed to reflect their source populations and non-seal populations 

were used to estimate migration, mutation and recombination. These estimates were used to 

generate posterior probability (F) and assign a source for test isolates with 95% confidence 

intervals (C.I.), estimated from the mean of the posterior distribution. The model was run 

with 100,000 iterations and the state of the Markov Chain Monte Carlo (MCMC) was 

sampled every 50 iterations and each run utilised a symmetrical Dirichlet prior with α of 1. 

For subsequent analysis a 1000 iteration burn-in was applied.      

 

The robustness of the attribution model for application to the C. jejuni isolates used in the 

present study was tested using empirical cross-validation, also termed self-attribution. This 

model testing allowed for a number of performance indicators to be assessed including: 

model sensitivity to sample size variation; the suitability of the resulting approximations to be 

used for inference; the robustness of the approach to genetic heterogeneity. This empirical 

cross-validation was performed on 100 semi-randomised datasets. In each cross-validation 

iteration, approximately half of the STs from one of the source populations was removed, 

designated as test isolates, and assigned to the remaining source populations. The accuracy of 

the model for correct self-assignment was quantified, for example the number of times that 

test isolates from cattle were correctly assigned to cattle. A total of 100 test isolate datasets 

underwent source attribution using standard attribution settings. From the resulting outputs 

three performance indicators were calculated: predicted proportion of isolates correctly 

assigned, bias and root mean square error (RMSE). These were calculated as previously 

detailed (Wilson et al. 2008). 
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Results 

Prevalence of Campylobacter in grey seals 

Historically, the cause of death and prevalence of umbilical infection has been reported to 

vary for seals colonising different areas of the Isle of May breeding colony (Baker & Baker 

1988), such as rocky stagnant pools, muddy grassy slopes or tidal boulder beaches (Figure 

1). Here, we investigated the prevalence of Campylobacter in seals from these three areas of 

the Isle of May breeding colony. Campylobacter was recorded in 48.0% (24/50) dead and 

51.1% (46/90) live grey seal pups on the colony (Figure 1; Table S2). Campylobacter was 

isolated from 11.1% (1/9) stranded dead and 12.5% (4/31) stranded live seals (Table S2).  

Campylobacter was not isolated from any of the returning yearling animals (0/19) but from 

2/6 sediment samples, both taken from the stagnant rocky pools. Campylobacter jejuni, C. 

coli and C. lari were identified amongst the isolates. Among free-ranging live grey seal pups, 

those sampled at the tidal boulder beach site were 2 to 3 times less likely to harbour 

Campylobacter when compared with seals sampled at the muddy, grassy slope site 

(OR=1.97; p=0.197) or rocky stagnant pool site (OR=2.98; p =0.04) (Table S2). Sampling 

time also influenced the likelihood of isolating Campylobacter spp. from live free-ranging 

grey seal pups with a statistically significantly lower prevalence in the mid-season when 

compared to both early (p=0.021) and late season (p=0.001) (Table S2). There was no 

correlation with sex or pup developmental stage.  

 

Campylobacter was infrequently isolated from grey seals admitted for rehabilitation to the 

Scottish SPCA National Wildlife Centre, in Fife, Scotland (Table S2). However, we did not 

compare the sampling from these animals with the sampling performed on the Isle of May, as 

although we sampled the animals within 24h of their admission, the delay between sampling 

and processing was long and variable for logistic reasons, and could have affected the counts. 

Also, these animals had typically been found by members of the public and transported back 

to the rehabilitation centre. Consequently, they could have been exposed to many possible 

other sources of contamination and are far from a closed population, as on the Isle of May. 

 

Intestinal histopathological and immunohistochemical examination of dead grey seals 

Histological examination of sections of large intestine showed a statistically significant 

correlation between the isolation of Campylobacter spp. from rectal swabs and the presence 

of moderate to severe colitis in dead grey seal pups on the Isle of May (Fisher’s exact test, 

p=0.02). Using specific immunohistochemistry, we observed that Campylobacter bacteria 
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were located within sections of the large intestine (Figure 2A). Well-defined curved bacterial 

organisms, consistent with Campylobacter, labelled specifically with IHC were located 

within the lumen and intestinal crypts (Figure 2A), principally on the apical surface of the 

enterocytes. The lack of invasion into enterocytes suggests that Campylobacter retains a 

relatively superficial location which nonetheless, given the general level of infection, could 

lead to significant faecal fluid loss and dehydration by acceleration of intestinal transit and 

malabsorbtion (Gelberg 2007). This may have contributed to the death of the grey seal pups 

although no causal link was made. 

 

Population structure of C. jejuni and C. coli from seals 

Phylogenetic trees were constructed using an approximation of the maximum-likelihood 

algorithm using 362,598 bp-long alignments from genes shared by C. jejuni and C. coli 

(Sheppard et al. 2014) which were extracted from 74 seal and 131 agricultural and non-

agricultural C. jejuni genomes, and 14 seal and 61 agricultural and non-agricultural C. coli 

genomes (Table S1, Figure 3). Campylobacter isolates from seals did not form an isolated 

cluster, separate from isolates from other sources. C. jejuni isolates from seals belonged to 

the ST-45 clonal complex (34 isolates), the ST-21 complex (22 isolates) and the ST-22 

complex (14 isolates). Additionally, two isolates belonged to two distinct clonal complexes 

(ST-1034 and ST-1332 complex) (Figure 3A). All C. coli isolates from seals belonged to the 

introgressed clade 1 ST-828 clonal complex (Sheppard et al. 2013a; Sheppard et al. 2008), 

with 12 ST-827 isolates (Figure 3B). For both species, isolates from seals were always 

clustered with agricultural Campylobacter, indicating very recent divergences between them, 

and consistent with the recent spread of isolates. There was some differentiation among the 

genome types isolated from different parts of the colony with higher proportions of ST-583 

and ST-827 isolates being isolated from dead pups compared to live pups but more sampling 

would be necessary to make robust inference of spatial variation. 

 

Core and accessory genome analysis of seal and agricultural C. jejuni isolates 

A total of 2,177 genes from a larger Campylobacter reference pan-genome (Meric et al. 

2014) were identified using BLAST in 205 C. jejuni isolates and 75 C. coli from source 

populations (clinical, chicken, cattle, wild birds) and seals. Due to the low number of isolates 

of C. coli from seals and their low genetic diversity (12/14 isolates were ST-827), these 

isolates were not included in the comparative analysis. There was a median of 1,662 detected 

genes per seal isolate genome, slightly fewer than the median of genes detected on the 
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genomes present in the NCBI repository as of March 2014 (1,760 genes; n=89), but 

comparable to the number of genes of the reference strain NCTC11168 (1,670 genes). No 

single gene was present or absent in all seal isolates compared to the background agricultural 

C. jejuni population. However, some genes showed from around 40% to 50% difference in 

prevalence between seal and non-seal isolates (Table 1). Interestingly, these include 4 genes 

of a cluster that are involved in ferric enterobactin acquisition in Campylobacter (Zeng et al. 

2013), which were detected in 40% less isolates from seals than from other sources. 

Additionally, a CRISPR-associated protein initially found in the C. coli strain 76339 

annotation (BN865_15240c) was detected in almost half as many seal isolates than isolates 

from other sources (55.6% vs. 81.8%, respectively; Table 1). Some genes were also found to 

be more prevalent in seal isolates than in other sources, including a gene putatively encoding 

for an adhesin (Cj_81-176_3910; Table 1). Although some genes were found to differ in 

prevalence, and could possibly indicate slight variations in host association, no obvious 

genotype was linked to seal isolates. This is consistent with the recent spread of isolates 

common in agricultural/clinical sources. 

 

The number of unique alleles per isolate was determined for different host groups for 704 loci 

shared by all C. jejuni isolates (Figure S1). Allelic diversity at core loci varied in isolates 

from different host groups. Isolates from wild birds had the highest core genome allelic 

diversity, with an average of 0.70 unique alleles per locus. Clinical isolates were also diverse, 

with around 0.46 unique alleles per locus. Chicken and cattle isolates showed a reduced 

allelic diversity with 0.31 and 0.30 unique alleles per locus respectively. The allelic diversity 

in seal isolates (0.47) was comparable with that in clinical isolates.  

 

Molecular variation in source populations 

Source attribution of seal isolates was estimated based on the frequency of MLST alleles in 

different source populations. Source populations comprised published MLST datasets from 

chicken meat and faeces (n=1298); cattle faeces (n=597); sheep faeces (n=250); wild bird 

faeces (n=247) for which isolates were compiled representing multiple sample locations 

(Sheppard et al. 2010; Sheppard et al. 2011). These data can be used for attribution of seal 

isolates from a discrete geographic location as host association is robust to variations in 

geographic structuring (Sheppard et al. 2010) and allele frequencies are considered not to 

differ sufficiently between studies or locations to erase this host signal. In order to test the 

differentiation between and within groups, analysis of molecular variance (AMOVA) was 
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used (Excoffier & Lischer 2010). Gene frequencies between and within groups were assessed 

using F-statistics (Table 2) with FST representing the genetic differentiation within each 

group and FGT, the genetic differentiation between the groups.  

 

Significant heterogeneity was observed between sub-groupings of the same population. These 

ranged from an FST of 1.47 % in chickens to 10.6 % in wild birds. The increased 

heterogeneity within the wild bird samples is likely to reflect the diversity of wild bird hosts. 

In order to perform source attribution effectively the differences must be larger between 

groups than within them in order to assign an isolate to a population. This was estimated 

using a nested AMOVA between paired populations (Table 2). All paired populations 

showed significant differentiation from one another to a greater or lesser degree. The FGT 

values ranged from 1.01 % between cattle and sheep to 18.44 % between sheep and wild 

birds. There are two paired groupings that showed low, but significant, differentiation. Cattle 

and sheep exhibited the lowest FGT value, indicating very low genetic differentiation. 

Additionally, humans and chickens showed low differentiation.  

 

Attribution model validation 

Empirical cross validation of the attribution model was performed with the source population 

datasets. A total of 100 simulated datasets were generated where the source information of 

half of the isolates were randomly assigned as test isolates (Table 3). From 100 simulations 

74% of test isolates were correctly assigned to their original source populations. The model 

was considered to be well calibrated as it only slightly overestimated the true proportion 

(76% predicted to be correctly attributed). For chicken, sheep and wild birds the model 

slightly underestimated the number of test cases that were attributable to these source 

populations. A slight overestimation was exhibited for cattle. In terms of model coverage, the 

number of simulations out of 100 in which the 95% credible interval incorporated the true 

value, both sheep and wild birds exhibited 95 or above. Chicken and cattle fell below this 

value, at 89 and 84 respectively, indicating that perhaps the slight bias led to an incorrect 

estimation of the proportion within these populations.  

 

Source attribution of seal isolates 

Statistical models, implemented in iSource (Wilson et al. 2008), were used to attribute the 

source of seal C. jejuni and C. coli isolates using two source datasets, first with chicken, 

cattle, sheep and wild birds isolates, and then with the addition human clinical isolates to this 
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dataset (Figure 4, Table 4). Human clinical isolates are themselves a population from mixed 

sources, as persistent carriage of C. jejuni is not thought to occur in humans. However, in the 

case of environmental contamination, human isolates can represent a source population with 

more delimited agricultural and non-agricultural sources.  

 

The majority of seal isolates were attributed to a human source 78.8% (C.I. 53.5%-93.7%) 

(Table 4). Interestingly, when human clinical isolates were removed from the sample dataset, 

the majority of seals isolates were attributed to the chicken (63.3%; C.I. 36.3%-87.6%) 

(Table 4). As both of these important reservoirs are linked (Sheppard et al. 2009a; Sheppard 

et al. 2009b; Wilson et al. 2008), this result suggests that the majority of seal isolates are 

most similar to C. jejuni isolates associated with human and poultry sources. It is interesting 

to note that the attribution of seal isolates to the human source was more robust than to the 

chicken source (Figure 4, Table 4). 

 

When human isolates were excluded from the source dataset, all seal isolates from the ST-45 

(n=34), ST-21 (n=22) and ST-22 (n=14) clonal complexes were attributed to the chicken 

source population (Table S3). Three seal isolates, from ST-696 (ST-1332 clonal complex), 

ST-1256 and ST-1457, were attributed to the wild bird source population. When human 

isolates were included in the source dataset, almost all clonal complexes were attributed to 

humans, except ST-1256. Within the ST-45 clonal complex, the ST-1003 did not have a clear 

attribution pattern, displaying a posterior probability of 0.41 to humans and 0.425 to wild 

birds (Table S4). 

 

Discussion  

Urbanisation and human expansion can be accompanied by chemical and biological 

contamination of the surrounding natural environment. This is especially true in coastal areas 

with high human population density, where sewage and wastewaters are discharged. Bacteria 

and protozoa associated with human activity have been isolated from several marine mammal 

species that live off the coast of urban areas (Conrad et al. 2005; Greig et al. 2007; Shapiro et 

al. 2012; Stoddard et al. 2005). Long lived marine mammals are important sentinel species, 

potentially providing evidence of the increasing anthropic biological contamination of the 

seas but few studies have considered the possibility that human pathogens could cause 

disease in these species. In this study, we examined the potential for the human pathogen 

Campylobacter to spread to marine wildlife in coastal areas. This organism has been isolated 
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from other seal species, such as the Northern Elephant seal (Mirounga angustirostris) 

(Stoddard et al. 2005), the Antarctic fur seal (Arctocephalus gazella) and the Weddell seal 

(Leptonychotes weddellii) (Garcia-Pena et al. 2010) and the present study represents the first 

isolation of C. jejuni, C. coli or C. lari in the grey seal. The lack of C. insulaenigrae, a 

putative marine mammal specific species of Campylobacter (Foster et al. 2004; Stoddard et 

al, 2007; Garcia-Pena et al. 2010; Gonzalez et al. 2011), in this study, is worthy of note. 

However, the high prevalence of Campylobacter in the grey seals (Halichoerus grypus) 

inhabiting the breeding colony of the Isle of May  in the Firth of Forth (Scotland, UK) may 

reflect the intense human activity in this area and possible infection from human or livestock 

sources.  

 

Asymptomatic carriage is usually assumed in the absence of clear evidence of pathology 

among animals infected with Campylobacter. However, experimental infections have 

demonstrated that Campylobacter can be pathogenic in terrestrial mammals including dogs, 

ferrets, immunodeficient mice and gnotobiotic piglets (Boosinger & Powe 1988; Hodgson et 

al. 1998; Macartney et al. 1988; Nemelka et al. 2009). While clinical signs were not 

identified in live healthy grey seals infected with Campylobacter, the correlation of 

Campylobacter in rectal swabs of dead seal pups on the colony with moderate to severe 

colitis and immunohistochemical demonstration of Campylobacter within intestinal crypts, is 

strongly suggestive of pathogenicity. 

 

Initial clues about the spread of Campylobacter from terrestrial sources comes from the 

distribution of infected seals. Specifically, prolonged residence on the Isle of May was 

associated with a higher prevalence of Campylobacter in seals, whereas returning yearling 

animals, that left the island and travelled around the North Sea, had lower infection rates, 

potentially having cleared the infection. Infection levels were also lower in seal pups living 

on the tidal boulder beach of the island and stranded seal pups on the coasts of the Scottish 

mainland. This distribution of infection is consistent with a scenario of contamination by 

exposure, in which ecological factors associated with the Isle of May influenced 

Campylobacter infection of seals. 

 

Genomic characterization of C. jejuni and C. coli isolates from seals revealed that they did 

not represent divergent seal-associated genetic clusters as has been observed for some 

lineages from wild birds (Sheppard et al. 2011; Griekspoor et al. 2013). In fact, isolates from 
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seals clustered phylogenetically with MLST clonal complexes commonly associated with 

agricultural and clinical sources. This included isolates belonging to the ST-45 and ST-21 

clonal complexes which are among the most common lineages in seals and human disease. 

The allelic diversity of seal and human/agricultural isolates was also comparable. In the 

absence of obvious divergence between strains from seals, human clinical isolates and 

agricultural animals, contamination from external sources and multiple recent Campylobacter 

infections of grey seals is the most parsimonious explanation.  

 

To obtain a quantitative estimate of the relative contribution of different Campylobacter 

reservoirs to seal infection, it is necessary to carry out source tracking methods that provide a 

probability that each isolate originated in one of the source populations. These methods have 

been used to attribute human Campylobacter infection to host sources, often implicating the 

consumption of contaminated poultry as a major cause of human infection (Sheppard et al. 

2009a; Sheppard et al. 2009b). Because the host association in C. jejuni is robust to temporal 

and spatial variation in isolate sampling, and there are large numbers of available isolates that 

have been sequenced at 7-MLST loci, it was possible to adapt these attribution methods to 

identify the putative infection source of grey seals.  

 

The Isle of May is an important habitat for several wild bird species, which are present at 

high density, and would be expected to be the major source of infection for seals.  However, 

this does not appear to be the case as attribution modelling implicates chicken and cattle 

reservoirs as the principal sources of C. jejuni in grey seals. The exact route of transmission 

to seals is unknown but in the absence of livestock on the island, it is possible that land run-

off or other farming activity around the estuary could contribute as a source of 

Campylobacter. Added to this is the possibility that human sewage could represent a source. 

Persistent carriage is not thought to occur in humans and therefore Campylobacter in clinical 

samples are representative of the source population, including cattle and poultry. Consistent 

with this, isolates infecting grey seals that are of cattle and poultry origin could have come 

via human sewage. The pathways of the land-sea transfer remain unclear, but the location of 

the Isle of May within a major shipping lane and the densely populated coastline of the Firth 

of Forth could be important factors. The role of wild birds as vectors, however, would 

warrant further investigation in case they are acting as vectors for transmission of poultry and 

cattle Campylobacter strains by moving between refuse sites on the mainland and the Isle of 

May. Similarly, investigation into the prevalence of Campylobacter in grey seal colonies 
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located in more remote areas may help elucidate risk factors for the presence of this 

pathogen. 

With increasing urbanization, the pressure on national nature reserves intensifies. This study 

demonstrates the spread of a human pathogen to a sentinel marine mammal species inhabiting 

a national nature reserve, probably through faecal contamination from agricultural land or 

human sewage. This has strong implications for understanding how the degradation of water 

quality of coastal habitats can influence the spread of important human pathogens.  
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 Data Accessibility 

The 88 assembled genome sequences generated in this study, core genome alignment, 

additional histopathology and immunohistochemistry pictures, and seal data information were 

deposited on the Dryad repository (doi:10.5061/dryad.8p984). The short reads have been 

uploaded to the NCBI Short Read Archive (SRA) and are available on: 

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA264388. 

 

Figures and tables legends 

Figure 1. Prevalence of Campylobacter in seals sampled from the Isle of May, Scotland. 

Map of the Isle of May grey seal breeding colony with sampling sites of Campylobacter 

positive (red) and negative (blue) dead seals indicated. The three different sampling sites of 

live pups on the island, and their description, are shown with prevalence of positive (red) and 

negative (blue) pups represented 

 

Figure 2. Intestinal histopathological and immunohistochemical examination of samples 

from dead grey seals and association of disease severity with Campylobacter. (A) 

Representative colon histology (H&E; haematoxylin and eosin stain) and 

immunohistochemical (IHC; counterstained with Mayer’s haematoxylin) visualisations of 

large intestinal crypts of dead free-ranging grey seal pups. Campylobacter organisms are 

located on the apical surface of enterocytes and within the intestinal crypt lumen (arrows). 

(B) Association of isolate culture and detection from rectal swabs from wild dead grey seals 

with the severity of inflammation as observed by histopathological observations. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Figure 3. Population structure of seal-associated C. jejuni and C. coli. Phylogenetic tree 

of 74 C. jejuni (A) and 14 C. coli (B) isolates of grey seal origin along with 131 C. jejuni and 

61 C. coli previously published genome sequences, from agricultural and non-agricultural 

sources. The tree is based on concatenated sequences of 595 core genes established using an 

approximation of the maximum likelihood algorithm using FastTree2 and visualised using 

MEGA6. Pink circles represent isolates from grey seals; yellow circles represent isolates 

from chicken; orange circles represent isolates from human clinical cases; blue circles 

represent isolates from cattle; grey represent isolates from sheep and white circles represent 

isolates from wild bird and riparian sources. Numeric labels correspond to sequence types of 

seal isolates, numeric labels in bold correspond to clonal complexes of seal isolates. 

 

Figure 4. Source attribution of C. jejuni from grey seals. A model of source attribution 

implemented in iSource (Wilson et al., 2008) was used to infer probability of sources from a 

representative isolate collection of MLST profiles from various possible host sources. (A, B) 

The origin of seal isolates was inferred from pools of chicken, cattle, sheep and wild birds 

isolates. (C, D) The origin of seal isolates was inferred using the same pools, with the 

addition of human clinical isolates, used as a possible source. 

 

Figure S1. Core genome allelic diversity in C. jejuni isolates from grey seals and other 

hosts. Core genome allelic diversity was calculated as the number of unique alleles found at 

each of the 703 core loci in all isolates from a particular host group divided by the number of 

isolates from the corresponding host group. The starting position of the 703 core loci was 

mapped onto the C. jejuni strain NCTC11168 annotation. The plots represent moving 

averages of allelic diversity values with a period of 20bp for each host group. The colour of 

the lines represent the different host groups, with grey: wild birds, yellow: humans, red: 

chicken, blue: cattle and pink: grey seals. The asterisk indicates a genomic region of lower 

diversity in each host group, corresponding to housekeeping ribosomal genes showing a 

lower allelic diversity across the whole species. 

 

Table 1. Highest differences in gene prevalence between isolates from seals and from 

agricultural, human clinical isolates and wild birds hosts. 
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Table 2. Genetic variation of C. jejuni within groups (FST) and between groups (FGT). 

Significant F-statistics are printed in bold. A Bonferroni correction was applied to control the 

family-wise error rate. 

 

Table 3. Performance of the source attribution model during empirical cross-validation. 

Isolates were assigned to a source population a posteriori based upon their most likely 

assignment probability (proportion of isolates correctly assigned). Coverage was the 

proportion of simulations where the true proportion fell within the 95% credible interval. Bias 

and RMSE were calculated for the sub-populations that were assigned pseudo-human during 

empirical cross-validation. 

 

Table 4. Summary of the posterior distribution (F) after source attribution for seal 

source populations against source datasets with and without human clinical isolates. 

 

Table S1. List of Campylobacter genomes used in this study. 

 

Table S2. Categorical risk factors of Campylobacter carriage in grey seals. These were 

calculated using univariate analysis, for all grey seals that are harbouring Campylobacter spp. 

(n=: group size; OR: odds ratio; 95% CI: 95% confidence interval; Sign: Statistical 

significance of results; NS: non-significant; *: p<0.05; **: p<0.01; ***: p<0.001) 

 

Table S3.  Summary of the sequence types of the 74 C. jejuni seal isolates used in the current 

study and their posterior probability after source attribution using chicken, cattle, sheep and 

wild bird isolates as sources. 

 

Table S4.  Summary of the sequence types of the 74 C. jejuni seal isolates used in the current 

study and their posterior probability after source attribution using human clinical, chicken, 

cattle, sheep and wild bird isolates as sources. 
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Table 1. Highest differences in gene prevalence between isolates from seals and from agricultural, 
clinical and wild birds hosts. 

 

Gene namea Description of 
predicted function 

Gene prevalence (%) Difference of 
prevalence between 
seals and non-seals 

isolates 
seals 

(n=17)b 
cattle 
(n=33) 

chicken 
(n=54) 

human 
(n=27) 

wild 
birds 

(n=11) 

11168_Cj1677 lipoprotein 1 
(5.6%) 

16 
(48.5%) 

29 
(53.7%) 

18 
(66.7%) 5 (45.5%) -47.1% 

11168_Cj0628 lipoprotein 2 
(11.1%) 

16 
(48.5%) 

30 
(55.6%) 

18 
(66.7%) 5 (45.5%) -42.3% 

11168_Cj1365c secreted serine 
protease 

5 
(27.8%) 

26 
(78.8%) 

34 
(63.0%) 

22 
(81.5%) 2 (18.2%) -39.4% 

Cc76339__15240c CRISPR-associated 
protein, Csn1 family 

9 
(55.6%) 

31 
(93.9%) 

52 
(96.3%) 

27 
(100%) 9 (81.8%) -39.1% 

11168_Cj0177 iron transport 
protein 

4 
(22.2%) 

18 
(54.5%) 

34 
(63.0%) 

21 
(77.8%) 2 (18.2%) -38.1% 

11168_exbB1 biopolymer 
transport protein 

4 
(22.2%) 

18 
(54.5%) 

34 
(63.0%) 

21 
(77.8%) 2 (18.2%) -38.1% 

11168_exbD1 biopolymer 
transport protein 

4 
(22.2%) 

18 
(54.5%) 

34 
(63.0%) 

21 
(77.8%) 2 (18.2%) -38.1% 

11168_tonB1 TonB transport 
protein 

4 
(22.2%) 

18 
(54.5%) 

34 
(63.0%) 

21 
(77.8%) 2 (18.2%) -38.1% 

11168_Cj1305c hypothetical protein 17 
(100%) 

22 
(66.7%) 

37 
(68.5%) 

8 
(29.6%) 9 (81.8%) 38.9% 

Cj_81-176_8305 dimethyl sulfoxide 
reductase subunit A 

12 
(72.2%) 

13 
(39.4%) 

16 
(29.6%) 

5 
(18.5%) 8 (72.7%) 37.9% 

Cj_81-176_3910 adhesin 10 
(61.1%) 

13 
(39.4%) 

10 
(18.5%) 

5 
(18.5%) 1 (9.1%) 37.4% 

Cj_81-176_4945 hypothetical protein 12 
(72.2%) 

15 
(45.5%) 

14 
(25.9%) 

7 
(25.9%) 8 (72.7%) 37.1% 

 

a. The gene name correspond to the genes from the reference pan-genome list and specifies the annotation of 
origin in the first part of the name. 

b. The number of unique clones based on the population structure observed on a phylogenetic tree was 
chosen to calculate prevalence in isolates from seals. 
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Table 2. Genetic variation of C. jejuni within groups (FST) and between groups (FGT). 
Significant F-statistics are printed in bold. A Bonferroni correction was applied to control the 
family-wise error rate. 

Genetic differentiation within groups (FST) 
 Chicken Cattle Sheep Wild Bird Human Seal 
FST 0.015 0.024 0.036 0.106 - - 
p 0.00 0.00 0.00 0.00   
Genetic variation between groups (FGT/p) 
Chicken - 0.000 0.000 0.000 0.000 0.000
Cattle 0.078 - 0.002 0.000 0.000 0.000 
Sheep 0.080 0.010 - 0.000 0.000 0.000 
Wild Bird 0.124 0.168 0.184 - 0.000 0.000
Human 0.015 0.056 0.048 0.161 - 0.000
Seal 0.091 0.153 0.159 0.133 0.142 - 

 

 

Table 4. Summary of the posterior distribution (F) after source attribution for seal source 
populations against source datasets with and without human clinical isolates. 

Proportion of isolates attributed to source population (F) 
 Human Chicken Cattle Sheep Wild bird 
Excluding human clinical isolates 
Mean - 0.633 0.050 0.183 0.135 
Median - 0.635 0.035 0.169 0.122 
Standard 
deviation 

- 0.133 0.050 0.118 0.083 

2.50% quantile - 0.363 0.001 0.010 0.016 
97.50% quantile - 0.876 0.183 0.444 0.331 
 
Including human clinical isolates 
Mean 0.788 0.089 0.026 0.036 0.060 
Median 0.806 0.063 0.0190 0.025 0.051 
Standard 
deviation 0.104 0.086 0.026 0.037 0.041 
2.50% quantile 0.535 0.002 0.001 0.001 0.007 
97.50% quantile 0.937 0.322 0.095 0.135 0.164 
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