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1 Introduction

Within the LATTE project a large number of different research questions
were pursued. Some of these were quite successful, while others revealed to
be dead ends or were peripheral to LATTE but might be worth to revisit
some time in the future.

As part of these research efforts there are a number of internal reports
which were produced and which would most likely became lost forever after
LATTE’s completion unless there was an easy way to access them.
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Therefore, in this document we present an exhaustive list of the reports
available in LATTE with a direct link to each one of these. This document
is intended to be distributed digitally in one of two ways:

1. as an 8 page pdf ”A description of LATTE outputs.pdf” with the as-
sociated mentioned documents archived in a couple of companion sub-
folders for papers and reports, such that links can be easily followed.

2. as a single 480 page pdf ”A description of LATTE outputs (with appen-
dices).pdf” which corresponds to a single file in which all the reports
mentioned in section 3.2 are included as appendices. The order by
which the reports appear as appendices is the same order as they are
presented in section 3.2, where following the information on page size
there is the indication of the page number where they start in the ap-
pendices version. If a printed version is required this would be the
obvious version to print from.

Hopefully this will mean that if at some point someone comes along and
decides to pick up on some thread started within LATTE, there is at least a
place to begin to address the problem in an efficient way.

We note upfront that this is really a window into material which by
its own nature might be incomplete and/or deprecated, hence readers are
warned that they use it at their own risk. The material which we thought
was complete in any sense of the word should be present in papers published
in peer reviewed journals. Where relevant the link to papers in which some of
the material described below is presented in a polished version are provided,
and for completeness a list of such papers is presented upfront in section 3.1.

2 Authorship and acknowledgements

All documents referred to below were authored by at least TAM and LT, but
many others have contributed for different documents. The due authorship
and acknowledgements are present in each one of the mentioned documents.

3 LATTE outputs

We separate documents into different types, listed below in a decreasing order
of completeness and relevance.
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3.1 Standard papers in peer review journals

A few standard papers were published, and for easier reading, we provide the
corresponding abstracts verbatim in a smaller font below:

• Langrock et al. (2013): Recent years have seen a fast-growing body of literature

concerned with the statistical modeling of animal movement in the two horizontal

dimensions. On the other hand, there is very little statistical work that deals

with animal movement in the vertical dimension. We present an approach that

provides an important step in analyzing such data. In particular, we introduce a

hidden Markov-type modeling approach for time series comprising the depths of a

diving marine mammal, thus modeling movement in the water column. We first

develop a baseline Markov-switching model, which is then extended to incorporate

feedback and semi-Markovian components, motivated by the observations made

for a particular species, Blainville’s beaked whale (Mesoplodon densirostris). The

application of the proposed model to the beaked whale data reveals both strengths

and weaknesses of the suggested modeling framework. The framework is general

enough that we anticipate that it can be used for many other species given minor

changes in the model structure. PDF DOI

• Moretti et al. (2014): There is increasing concern about the potential effects of

noise pollution on marine life in the world’s oceans. For marine mammals, anthro-

pogenic sounds may cause behavioral disruption, and this can be quantified using

a risk function that relates sound exposure to a measured behavioral response.

Beaked whales are a taxon of deep diving whales that may be particularly sus-

ceptible to naval sonar as the species has been associated with sonar-related mass

stranding events. Here we derive the first empirical risk function for Blainville’s

beaked whales (Mesoplodon densirostris) by combining in situ data from passive

acoustic monitoring of animal vocalizations and navy sonar operations with precise

ship tracks and sound field modeling. The hydrophone array at the Atlantic Un-

dersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups

of Blainville’s beaked whales and identify sonar transmissions before, during, and

after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and

source levels were combined with ship tracks using a sound propagation model to

estimate the received level (RL) at each hydrophone. A generalized additive model

was fitted to data to model the presence or absence of the start of foraging dives in

30-minute periods as a function of the corresponding sonar RL at the hydrophone

closest to the center of each group. This model was then used to construct a risk
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function that can be used to estimate the probability of a behavioral change (cessa-

tion of foraging) the individual members of a Blainville’s beaked whale population

might experience as a function of sonar RL. The function predicts a 0.5 probability

of disturbance at a RL of 150dBrms re µPa (CI: 144 to 155) This is 15dB lower

than the level used historically by the US Navy in their risk assessments but 10 dB

higher than the current 140 dB step-function. PDF DOI

• Laplanche et al. (2015): 1. Information about at depth behaviour of marine

mammals is fundamental yet very hard to obtain from direct visual observation.

Animal borne multi-sensor electronic tags provide a unique window of observation

into such behaviours. 2. Electronic tag sensors allow the estimation of the animal’s

3-dimensional (3D) orientation, depth, and speed. Using tag flow noise level to

provide an estimate of animal speed we extend existing approaches of 3D track

reconstruction by allowing the direction of movement to differ from that of the

animal’s longitudinal axis. 3. Data are processed by a hierarchical Bayesian model

that allows processing of multi-source data, accounting for measurement errors,

and testing hypotheses about animal movement by comparing models. 4. We

illustrate the approach by reconstructing the 3D track of a 52- minute deep dive

of a Blainville’s beaked whaleMesoplodon densirostris adult male fit with a digital

tag (DTAG)in the Bahamas. At depth, the whale alternated regular movements

at large speed (> 1.5 m/s) and more complex movements at lower speed (< 1.5

m/s) with differences between movement and longitudinal axis directions of up to

28◦. The reconstructed 3D track agrees closely with independent acoustic-based

localizations. PDF DOI

3.2 Technical Reports

3.2.1 Stand alone reports

A report was fully functional but technical in nature, and so published as an
internal CREEM report:

• ”Procedure description: using AUTEC’s hydrophones surrounding a
DTAGed whale to obtain localizations.pdf” presents the description of
the procedure used to localize animals on the AUTEC range, covering
the aspects of detection, TDOA interpolation and localization. (10
pages; appendices version page 9, also available at ”Online version”)
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3.2.2 Key reports

The report that essentially glues everything together and describes the sim-
ulation procedure used within LATTE is ”Combining building blocks for
simulating beaked whales at AUTEC”. (34 pages; appendices version page
19)

There are a number of additional key reports that support this main
report directly, namely:

• ”Modelling beaked whales movement, sound production and detection
at AUTEC” which does not contain analysis but describes the concep-
tual approach used. (45 pages, ; appendices version page 54)

• ”Implementing a SSM to obtain pseudo-tracks and georeferenced track
from DTAG data an application to Md248b” which describes the bulk
of what was produced in terms of georreferencing dives. (38 pages;
appendices version page 82)

• A key document related to the above is ”Using animal-borne tags to
estimate whale tracks in 3-dimensional space using state space models”,
a talk presented at ISEC 2012. (18 slides; appendices version page 120)

• ”Modeling beaked whale DTag data and simulating 3D movement via
a latent-variable approach with feedback and semi-Markovian compo-
nents”describes many of the intermediate steps and dead end exploring
of the analysis which led to Langrock et al. (2013). (47 pages; appen-
dices version page 138)

• ”Analysis of the 2009 Submarine Commander Course data.pdf” de-
scribes the exploratory data analysis of the data collected around the
2009 Submarine Commander Course. This was part of the data later
used in Moretti et al. (2014). (31 pages; appendices version page 185)

3.2.3 Peripheral support reports

A number of reports describe some particular details that were not addressed
fully in the above documents. These include:
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• ”Exploratory analysis of available DTAG data” presents an initial look
at the DTAG data that was available to LATTE. (12 pages; appendices
version page 216)

• ”Obtaining pseudo-tracks and georeferenced locations from DTAG data”
presents the initial stabs at georreferencing DTAG tracks including ex-
ploratory use of MATLAB code by Mark Johnson code later translated
in to R as the basis of our georrefencing implementation of a Kalman
filter. (20 pages; appendices version page 228)

• ”Explaining the code for the simulation of click count vectors.pdf” is
essentially an update and reproduction to a report produced in DE-
CAF where there was a precursor of a simulator of click counts per
hydrophone at AUTEC. While many of the specific implementation
details were abandoned in LATTE, it presents also the initial thoughts
for much of the simulation of beaked whale data within AUTEC used
in LATTE. (69 pages; appendices version page 248)

• ”Modelling group size as a function of autogrouper outputs.pdf”presents
a simple model relating visually estimated group sizes with statistics
derived by autogrouper. (13 pages; appendices version page 317)

• ”Mesoplodon densirostris cluster sizes in the Bahamas.pdf” presents an
exploratory analysis of Diane Claridge’s data on group sizes in the
Bahamas. (13 pages; appendices version page 330)

• ”Modeling the number of clicks as a function of depth.pdf” presents a
simple analysis modelling the number of clicks as a function of depth
using DTAG data from AUTEC; this is the base for simulating click
production conditional on simulated depth profiles. (16 pages; appen-
dices version page 343)

• ”An exploratory look over John Durban’s satellite tag.pdf” presents
an exploratory analysis of the available satellite Tags; this is the base
for embedding the notion of home range / site fidelity in the animal
movement simulation. (17 pages; appendices version page 359)

3.2.4 Exploratory or incomplete reports

• ”Exploratory analysis of a simultaneous multi animal DTAG data”
presents an incomplete analysis of a data set containing 3 sperm whale
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simultaneously tagged with DTAG’s. This was part of looking at syn-
chrony and at depth behaviour in deep diving cetaceans. (6 pages;
appendices version page 377)

• ”Modeling beaked whale density in the Bahamas.pdf” presents an anal-
ysis of a visual survey data set facilitated by Diane Claridge which was
supposed to lead to a spatial model of density in the Bahamas. How-
ever this analysis was halted after a number of problems where detected
in the data. (19 pages; appendices version page 383)

• ”Using dedicated Kalman Filter R packages to fit the georeferencing
SSM.pdf” describes the attempts to implement the Kalman Filter ap-
proach used for georreferencing using a couple of existing R packages,
namely KFAS (Helske, 2012) and MARSS Holmes et al. (2012). The
hope was that these would allow to generalize the methods in a straight-
forward way, but that proved not to be the case. (13 pages; appendices
version page 402)

• ”A note about the modelling and simulation of step lengths and turning
angles.pdf”presents an exploratory analysis of step length data showing
that in fact it might contain more correlation structure than turning
angle (which is the usual quantity people look at when dealing with
correlation in movement). (15 pages; appendices version page 415)

• ”A tutorial on simulated annealing.pdf” represents an exploration of
what simulated annealing (SA) is and how it works. This was part of
understanding the initial georreferencing procedure developed by Char-
lie White which used SA. (16 pages; appendices version page 430)

• ”A maximum likelihood localization procedure based on arrival times
at multiple sensors.pdf” includes a first stab at localization of animals
based on time of arrival (TOA). This is extremely unpolished material
and does not make the direct link with SECR (which is a way to do
localization using also the information on missed sensors - note this is
typically ignored in acoustic localization). (9 pages; appendices version
page 446)
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1 Introduction

One of the possible uses of DTAG (Johnson and Tyack, 2003) data is to estimate
the actual track of an animal based on the measurements made on the DTAG. This
is referred to as obtaining a“pseudo-track”. The reason this is called a pseudo-track
is because the procedure involved is prone to errors. However, if one combines the
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DTAG information with independent localizations of the animal, the procedure
can become much more robust. This is referred to as “georeferencing” the track.

As part of the process of georeferencing a dive track using DTAG data, AUTEC
hydrophones provide localizations of the tagged animal that are used to “adjust”
a pseudo-track derived from DTAG data alone. In this report we describe how
the AUTEC data is used jointly with the DTAG data to arrive at animal lo-
calizations, which can then be used as inputs into the procedure of obtaining a
track from DTAG data. The georeferencing itself is elsewhere described (Marques
and Thomas, 2012a) and implemented (Marques and Thomas, 2012b). Here we
look in detail to the “localization” procedure. This goes from the underlying raw
acoustic data, i.e. actual time of arrival (TOA) of clicks at AUTEC hydrophones
surrounding the tagged whale, plus the acoustical DTAG data, all the way up to
localizations of the animal at each click detected on surrounding hydrophones.

In most of the process described in this report, the only data that gets used
from the DTAG is the acoustic data, that is, the time of emission of the clicks from
the tagged whale. The exception is the last step, the localization algorithm itself,
where as described in section 3.5, data from the pressure sensors, namely depth,
is also used.

We explicitly ignore here all the processing of DTAG data that goes on “up-
stream” to obtain the pitch, heading and roll data, required for the pseudotracking
/ georeferencing itself. Readers are referred to Johnson and Tyack (2003) for
details on this, including an example on how to use the DTAG data to obtain a
pseudotrack. We note however that errors introduced by said process might propa-
gate upwards and, hence, be responsible for a large proportion of the measurement
error in the georeferenced localizations, and would probably deserve to be looked
at in close detail. That is not attempted here, and (despite knowing that they are
not!) we take those measurements to be error free.

The pre-processing of data required to obtain the inputs into the localization
algorithm is a relatively complex procedure. Due to its complexity it is hard to
quantify the uncertainty present in a given click localization (xn, yn) estimated for
the nth click, n = 1, 2, ..., N . Because the acoustic-based localizations are one of
the inputs in the current procedure used for georeferencing (see e.g. ISEC 2012
talk), it is important to understand this process thoroughly. In particular, it would
be interesting to build on it to come up with an integrated inferential framework
which would then allow for estimation of the track given DTAG data and AUTEC
hydrophones TOA’s. This would in turn allow to propagate the uncertainty in the
acoustic localizations into the final track estimate (i.e. incorporating both DTAG
data and acoustic localizations).

We note upfront that, to some extent, this might be an overkill: while ac-
counting for the uncertainty in the AUTEC’s acoustic localizations is elegant and
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conceptually appealing, it might be the case that these are very precise when com-
pared to the DTAG data alone, and so, the variance will be nonetheless dominated
by the latter.

In the next section we briefly describe the several steps involved, providing an
overview of the entire process. This is then followed by a separate section, in which
the procedure steps which require further clarification are expanded in separate
sub-sections.

2 Overview of localization algorithm

We have a “template” sound file from the DTAG, with clicks time-of-emission
(TOE). We assume that all sounds not representing clicks from the tagged whale
have been identified and removed, and hence, that we have an error free record of
all clicks TOE.

As stated above, the raw data corresponds to the TOA of clicks at each hy-
drophone. These TOA’s could, a priori, correspond to one of 3 categories:

1. TOA actually corresponds to a click emitted by the tagged animal;

2. TOA actually corresponds to a click emitted by any other animal;

3. TOA actually corresponds to a false positive (i.e. not corresponding to a
beaked whale click at all).

For our analysis, we hope to identify which belong to the tagged animal (1) vs
those who do not (2 and 3).

The hydrophones are assumed to be perfectly synchronized, so that hydrophone’s
time-difference-of-arrival (TDOA) can be calculated from TOAs. On the contrary,
note that the DTAG is not perfectly time synchronized with hydrophones and that
the DTAG likely suffers from clock drift. However, the recorded “DTAG time-on”
is used to time align the sound records from the DTAG and the hydrophones. More
than once this created problems, because it was later confirmed that the “DTAG
time-on” was incorrect. Usually, an up to 2 seconds difference shows up, which is
of little consequence. That difference might be up to say 5 seconds in ‘bad” cases,
but still not an issue. For really “pathological” cases it could be much more than
this, and such cases require identification as they could, otherwise, mess up the
entire procedure. An obvious example of problems would be when the TOA at the
hydrophone is before the TOE at the DATG. However, we note that perfect syn-
chronicity is not required because it is the TDOA between pairs of hydrophones
that gets used in the end for localization, and any time misalignment between

3
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DTAG and hydrophones gets canceled out because the hydrophones themselves
are perfectly synchronous.

Naturally, the time resolution is much higher on the DTAG, sampling at a
very high frequency, compared to the hydrophones. After processing the data
through the detector, Morrissey et al. (2006) refers the use of a 10.7 ms window,
which stems from the FFT time resolution being 10.67 ms. Further, the FFT uses
50% overlap. This should also be considered a quantifiable error associated with
detection time, which is then propagated into localization error.

A number of parameters need to be set before implementing the procedure:

• DTAG time window of 6 seconds; this corresponds to the “chunk” of time
on the DTAG that gets processed: for each click considered we use as data
for cross-correlation the recording time from TOE and TOE + 6 s;

• Hydrophone time window, Morrissey et al. (2006) refers the use of a 10 s
window. We consider the current click TOA at the DTAG to be time 0.
Then clicks before and after 10 seconds in the hydrophone are searched for.
This value was considered to make sure that the click in question would be,
if detected, present in this interval on all surrounding hydrophones;

• the bin width over which one considers whether there is a click or not. Note
there are two different “units” to be considered here:

1. the bin that gets slided each time, to get the TDOA, referred to as the
comb sieve bin width. This is set to 5 ms.

2. the bin over which a click is considered to be present if it is in the
same time bin in the DTAG and the hydrophone data. This is set, in
practice, to 10 ms

This is a consequence of how the algorithm is coded. The construct sieve
function (“con sieve.m”) automatically adds an additional 5ms bin subse-
quent to the detection bin, e.g. a ”fudge factor”, which means that a click
is considered to be present if it is in the same 10 ms bin in the DTAG and
the hydrophone data. JW found that using a 10 ms comb sieve bin width
to begin with, which would lead to effectively 20 seconds bin for matching,
resulted in many instances where more than one time delay would have the
same number of “matches” due to the presence of noise, conspecific clicks,
and steady click repetition rate.

Using the data and the above parameters, for each of the K hydrophones
surrounding the DTAGed whale, the following procedure is then repeated for all
the N clicks present in the DTAG record.

4
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For each hydrophone (k, k = 1, 2...,K):
For each click (n, n = 1, 2, ..., N):

1. time align DTAG and hydrophone data using the “DTAG time-on” and the
AUTEC’s hydrophone clock time; For each possible time alignment over the
20 seconds window (i.e. sliding the hydrophone sound file 5 ms at the time):

(a) calculate and store the number of bins (of 10 ms) which simultaneously
have clicks on them

(b) go to the next TDOA; if it is the last within the 20 second window go
to next step

2. assign a TDOA to the nth click, corresponding to the time difference that
results in the largest correlation between the DTAG data and the current
hydrophone data (further details on section 3.1);

3. go to the next click; if it is the N th click, go to the next step, else go back
to point 1 above

4. go to the next hydrophone; if it is the last hydrophone, procedure ends.

Then, using all the hydrophone-DTAG TDOA’s for all the click and hydrophone
combinations obtained as described above:

1. plot the resulting TDOA data, with time along the dive in the x axis and
TDOA on the y axis, which results in a “TDOA plot” (further details on
section 3.2);

2. “clean up the TDOA plot” from clearly imconsistent TDOAs, resulting from
spurious correlations (further details on section 3.3);

3. Interpolate the available TDOA measurements to obtain a TDOA for (es-
sentially) every click and every hydrophone (further details on section 3.4);

4. transform these TDOA’s between DTAG and hydrophone into hydrophone
TOA and feed the resulting TOA data into a localization algorithm, finally
obtaining each click’s localization (further details on section 3.5).

3 Zooming in on key algorithm steps

3.1 Creating TDOA’s

Note at this stage TDOA’s are between the hydrophone and the DTAG, not be-
tween pairs of hydrophones, although one can get the later from the former.

5
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For hydrophone k, the outcome of this previous step can be seen as a vector
of 0’s and TDOA’s, represented by TDOAk., where say

TDOAk. = (0, TDOAk2, TDOAk3, 0, 0, TDOAk6, ...)

means that of the first 6 clicks, only the 2nd, 3rd and 6th clicks were detected in
that hydrophone, and so only for these TDOA’s are available.

Note that in practice there is a very small number of 0’s (if any), because there
is no “correlation quality” check in this step. Even if all correlations are really low,
there is always one which is the highest. This contributes for adding noise (i.e.
spurious correlations) to TDOA plots (see below).

However, in the MATLAB code, several quality variables are created and out-
puted as part of the process, and hence could be used in the future to provide some
validation. These quality check quantities include variables like number of TOAs
in window, number of TOEs in window, number of matches and number of similar
matches (i.e. 2, 3 or more different TDOA’s could all produce the same number
of matches; in particular, the code defaults to use the first one if that is the case).

3.2 TDOA plots

These present conspicuously to the naked eye a set of “TDOA lines”, which would
be horizontal lines if the animal was stationary, but have slopes depending on how
fast the animal is approaching or moving away from the hydrophone involved in a
particular TDOA.

At this stage the plots are cluttered with TDOA’s, many (if not most) of which
are necessarily spurious, and hence a cleaning step is implemented, as described
next.

3.3 Cleaning TDOA data

While we tend to refer to this as cleaning TDOA plots, strictly, one is cleaning the
data, not the plot.

Spurious correlations, resulting from a multitude of reasons, will contribute
with considerable noise to the TDOA plots. As mentioned before, there are no
checks for the quality of the called TDOA, so the largest correlation wins, but
actually that could correspond in the limit to a single click being in the right time
bin, which could be caused by false positives (say false association of clicks).

For each hydrophone, the TDOA data is filtered by thresholding the histogram
of TDOAs in sequential blocks of time and then manually selecting whether to
include the selected points in the final TDOA output. The procedure involved is:

For each 1 minute period in the DTAG:

6
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• create an histogram from the minimum TDOA to the maximimum TDOA,
with bins with a width of 0.01 seconds

• find the bin with the maximum number of TDOA’s (the “maximum class”)

• select all the TDOA’s within 0.05 seconds of that bin and discard all others

• (a manual check of whether this was a reasonable thing to do, using a plot
with different colors for the removed and kept TDOA’s, was routinely im-
plemented)

The rationale behind this procedure is that given the hydrophones are fixed
and the animal moves slowly, TDOA cannot change abruptly over a short time
period. This step depends, to some extent, on an arbitrary threshold, namely
the bin width used and the range of TDOA’s considered, and these values where
obtained based on a trial and error empirical process, ending up with values that
lead to reasonable tracks.

An additional check that might be (but was not) implemented would be to
check that successive “maximum class” values were close, as these should not vary
abruptly either.

3.4 Interpolation

Due to the clicks narrow beam pattern, usually each click is at best only detected at
one or two, maximum 3, hydrophones. Using interpolation on can obtain a TDOA
for the clicks which were not detected at a given hydrophone, provided clicks (not
much) before and/or after were detected. Thes corresponds to interpolating the
clearly visible TDOA lines in the plots for times of clicks not detected. Therefore,
after the cleaning up step, the resulting TDOA is interpolated using a piecewise
method that preserves the original data. A binary matrix also records which
TDOAs are real versus interpolated.

For the conspecific analysis, the TDOA data was interpolated in sections, so
that a pause of 20 s or greater with no data would result in a new section being
created for interpolation. No interpolation was attempted during those longer
gaps with no measurements. This was not what was done for the georeferentiation
used in Marques et al. (2009), when the start and end times for interpolation were
manually chosen.

3.5 Localization of clicks

Finally, the (hydrophone-DTAG) TDOA sets are converted to hydrophone TOAs
by adding the DTAG TOE to the TDOA vector. The TOA vectors are indepen-

7
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dently solved by the localization algorithm using the depth of the tagged whale
for each click.

These position estimation problems typically utilize an hyperbolic model1. The
model generates a system of non-linear equations which must be solved to estimate
the object’s position. Additionally, a number of localization algorithm “flavours”
are possible: as an example, one might choose between considering the propagation
velocity sensor dependent versus constant across sensors. We do not dwell into the
details of the actual algorithm here. The reader is referred to Vincent II (2001) for
further details on localization algorithms and many additional references on the
subject.

The localization algorithm not only produces an estimate for the animal po-
sition when the click was emitted, as it also produces an estimate of the TOE of
the click. Checking this TOE against what it was supposed to be given the initial
time alignment was always done, as it allows an additional check for problems.

Note localization works even if the DTAG and the hydrophones are not per-
fectly synchronous, because what gets used are the between hydrophone TDOA’s,
and any asynchronous behavior cancels out when making the differences between
the TOA’s for pairs of hydrophones, as hydrophones are perfectly synchronous.

At this point there is a choice to be made about the quality of the TOA’s used
for localization. One could consider localizing the animal only for:

• all clicks for which there are at least 3 interpolated values (this actually
means you have sections of the localizations considered which are really
smooth, because they are based on smoothed TDOA’s), or

• for clicks for which there are at least two actual measured TDOA’s + 1
interpolated TDOA (this was what actually was used for the georeferencing
prior to the analysis reported by Marques et al. (2009), and leads to more
noisy localizations).

The TOA vectors are independently solved by the localization algorithm for
each click. It is important to state explicitly that the actual depth, as measured
from the DTAG (remember the pressure sensors from which depth is derived are
very accurate) is used as an input in the localization algorithm, hence significantly
improving the ability to localize in the (x, y) plane. Note this also means you
only need 3 TDOA’s (for an exactly determined solution, from 4 onwards on gets
an over-determined solution), rather than 4 required if depth was not used as an
input, for the localization algorithm to work.

1This is a consequence of the fact that the TOE is unknown. If it were known, we
could use a spherical model. Note that had the DTAG and hydrophones been perfectly
synchronized, that would be the case.
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Because localization is done independently on a click by click basis, it might
be inefficient, but on the other hand, it actually means once we plot all the local-
izations in 3D space if they do not look like a track, something went wrong: so
there is some internal consistency check that is automatically implemented. On
the other hand, if the process was not independently done click by click, the output
might look like a reasonable track just because the way it was built successively
using prior results.

4 Conclusions and potential work ahead

It is our hope that this report can serve as a record of what was done to obtain
localizations based on data collected at AUTEC hydrophones combined with the
DTAG data.

A number of areas that could benefit from further work include:

1. look closer to the procedure that occurs prior to obtaining the pitch and
heading from the DTAG accelerometer and magnetometer data. While this
data was not used here, because it is then combined with the locations
obtained here, it could have a major impact in the final output;

2. quantify uncertainty/precision for the x, y coordinates obtained through lo-
calization. These might presumably be obtained as a by-product from the
optimization algorithm (this is possible especially when one has more than
3 TDOA’s for the localization algorithm);

3. Understand the sensitivity of the procedure to a number of ad hoc settings,
including:

• bin width for the comb sieve

• adjustment for bin width for a match to be called

• time over which correlation is computed (in both DTAG and hydrophone
records)

• histogram settings for TDOA clean up

4. develop a one-stop-shop procedure that takes as inputs the heading, pitch,
depth and speed (strictly required to get pseudo-tracks) and the DTAG
TOE’s and hydrophone TOA’s. This would allow at once to obtain the
localizations that both best fit the acoustic data and the DTag data, and
that included error in the hydrophone TDOA’s in an appropriate way.
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1 Introduction

In this document we describe the building blocks required to create a simula-
tion engine within LATTE. We consider an agent based modelling framework,
in which whales with realistic behaviour will be used to populate AUTEC.
The goal is to simulate beaked whale movement, sound production and sound
detection at AUTEC. Figure 1 presents AUTEC within the wider region of
the Bahamas.

The key species studied under LATTE is Blainville’s beaked whale (BBW)
Mesoplodon densirostris. This species has been shown to be sensitive to navy
exercises on the AUTEC range, likely due to SONAR use (McCarthy et al.,
2011; Tyack et al., 2011). BBW behavior is characterized by frequent long
deep dives to forage at depth interspersed with periods of shallow diving.
During each deep dive the animals typically produce thousands of echolo-
cation clicks (Tyack et al., 2006). BBW echolocation clicks1 are commonly
detected year round at the AUTEC range.

In LATTE we propose to develop methods which combine different types
of data, with different spatio-temporal resolution:

1. AUTEC range data: cheap, easily available, in almost continuous time,
low resolution data, namely counts per hydrophone (and unit time) of
detected beaked whale cues;

2. DTAG data: provides high resolution in both space (meters) and time
(Hz), but expensive and with very restrict temporal coverage (hours);

3. satellite tag data: with an intermediate temporal (weeks) and spatial
(kilometers) resolution.

The idea is fit a joint Movement, Sound Production, and Sound Detection
(MSPSD) model that links these three data sources. This model will then be
used to make inferences about possible impacts of human generated sounds
on beaked whales. Such inferences would be obtained by comparing relevant
model parameter estimates (e.g. a group’s vocal period length) from data
collected in ‘baseline” periods of potentially disturbing sounds absence, with
data collected at “impacted” periods, in which potentially disturbing sounds
are being produced.

1In this report we often refer to these simply as “clicks” or “cues”.
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Figure 1: The AUTEC range location within the Bahamas region, with key
islands and regions.
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We note that within the realms of DECAF, we produced a simulation
engine which meant to reproduce click counts on the AUTEC hydrophones,
and hence many ideas on simulating these animal dives are taken from that
effort (see Marques and Thomas, 2008, for further details). This exercise
failed at the time to reproduce the observed click counts at AUTEC. This
was mostly due to the fact that, back then:

• the detection process was not yet well characterized;

• there was a large amount of false positives, which is now lower by over
an order of magnitude;

• apparent differences in hydrophone performance were present (which
we still have no good handle on, but this might be a minor problem in
practice).

An additional key problem is related to the fact that we only have access
to data to characterize individual animal movement, while these animals
happen to occur in groups. This problem persists as we write the current
report. Understanding within-group-at-depth-behaviour of these animals is
the focus of a recently funded ONR project (GROUPAM - Beaked whale
group deep dive behaviour from passive acoustic monitoring).

1.1 Previous reports

This work was built over a report produced within the realms of DECAF.
Therefore, in the corresponding DECAF folder there might be additional
useful information to understand this document. However, we have tried
to make this report self contained. Additionally, this work builds on ideas
scattered along several other internal DECAF/LATTE reports. We try to
provide such references in the appropriate sections, but we also list here key
sources, which have self explanatory names:

1. Explaining the code for the simulation of click count vectors 4 LATTE
(Marques and Thomas, 2012a)

2. Modeling beaked whales movement, sound production and detection at
AUTEC (Marques and Thomas, 2012c)

5
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3. Modeling beaked whale DTag data and simulating 3D movement via
a latent-variable approach with feedback and semi-Markovian compo-
nents Marques et al. (2013a)

1.2 Overview of the simulation process

The simulation process requires a number of components/modules which
we list below. A qualitative assessment of each of the components current
development and implementation status is also provided:

1. definition of the simulation region - conceptually straightforward; ac-
tual physical boundaries defined based on (1) depth constraints and (2)
some (essentially arbitrary) decisions for the northern boundary. The
actual way to keep animals within these boundaries over the course of
a simulation run is embedded in the process of movement simulation
itself (see component 4 below);

2. initial group location - conceptually straightforward, currently imple-
mented using a simple uniform density in space with mean intensity
following Marques et al. (2009); Moretti et al. (2010). We note that an
actual density surface could be obtained, by combining data from (1)
D. Claridge visual surveys and (2) AUTEC hydrophones. However this
was not not pursued within the realms of LATTE because: (1) it was
unlikely to lead to considerable changes in any of the outcomes ; (2)
any such pattern would be easily incorporated in the simulation with-
out changing any of its undelying features; (3) Diane’s data was not
formatted to allow easy use for this purpose; (4) using only data from
AUTEC would be a possibility, but it would be too much work without
a sensible objective, since it covers only the AUTEC range while we
simulate over a much wider area;

3. group size - conceptually straightforward, currenlty using data from
D. Claridge as cited in Marques et al. (2009); data from group sizes
obtained by modeling Autogrouper outputs might also be used (see
Marques et al., 2013b, for details), but then again these would prob-
ably represent an overkill for the AUTEC range while unavailable ev-
erywhere else;
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4. movement of animal over space and time - conceptually (and also imple-
mentation wise) is the hardest component. There are several sub-stages
involved. See section 3 for further details, but in short it consists of

(a) depth profiles simulated over time using models as in Langrock
et al. (2013)

(b) 2D displacement conditional on a depth derived behavioural state
(based on DTag data)

(c) constraints to avoid stranding. These are implemented via a bi-
ased random walk, conditional on distance to closest “shallow”
point. These are informed by DTAG data, satellite tag data, and
Diane Claridge’s personal communications.

(d) notion of home range, implemented via a biased random walk,
conditional on distance to home range center; informed by satellite
tags.

5. movement of animal(s) within a group - this is the component over
which we have the least information. Gathering data about at depth
behaviour of multiple animals is hindered by the fact that multiple
DTAGs on the animals of a single group are extremely rare. To the best
of our knowledge the only instance where this is available for beaked
whales was for a pair of Ziphius cavirostris as described in Zimmer et al.
(2005). Therefore, while we have a good knowledge of what an animal
does at depth, we do not know how animals behave with respect to
each other. The actual interaction and coordination between animals
will have a strong influence in the perceived acoustic footprint of a
group. We choose to consider that the above movement corresponds to
a focal animal - note that this is simply conceptual and pragmatic, and
no animal need to actually have said role. Defining it like this means
that for a group of size one, we already have simulated the movement
of the entire group. For a group of individuals we will only keep track
of the individual animals positions for the periods when the group is
vocally active. This is justified because (1) when the group is silent
it cannot be detected acoustically and (2) at the surface groups seem
to be very cohesive, with members in close vicinity, so keeping track
of the position of the “focal” animal is enough; there is essentially no

7
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data available to parameterize this component 2. Currently we are
considering a biased random walk with the focal animal being a 3D
center of attraction, representing a 3D extension of ideas proposed by
Langrock et al. (2014); ready to be implemented.

6. sound production - conceptually straightforward, we have opted to con-
sider a model of sound production conditional on depth, informed by
DTAG data; this could be instead based on literature, but a link to
existing simulated depth profiles would then be required; ready to be
implemented

7. sound detection - well characterized at AUTEC, as in Marques et al.
(2009); ready to be implemented

8. gathering data as would be observed at AUTEC is computational in-
tensivebut nonetheless conceptually straightforward given all the above
is in place

A practical problem is that all these components were separately dealt
with, so the spatial and temporal scales of analysis differ and hence glueing
them toghether is not as simple as one might hope for. As an example, sound
production and detection is essentially a continuous process but movement
modelling has been discretized, with 1 position per “time step”, but actual
“time steps” being different depending on the analysis (e.g. 10 seconds for
the fHSMM component, 0.2 seconds for the georreferencing component). We
have attempted to use a pragmatic approach to arrive at a full MSPSD
simulator, respecting the following three properties:

1. that the approach is modular, i.e. if an improved solution is found for
one of its components that component can be easily updated

2. that whenever arbitrary (in the sense of not being directly estimated
from data) parameters / decisions were necessary these were chosen
such that their impact would be negligible (or otherwise a remark on
sensitivity made)

2We note that, as mentined above, collecting information about this component is the
main objective of ONR’s project GROUPAM, and therefore we might later be able to
replace this module
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Figure 2: The AUTEC range hydrophones location (left) and an histogram
of hydrophone depths (right).

3. that realism is respected, except in situations were the burden of do-
ing so was considered too high, given the neglegible impact on the
results considering the spatio-temporal scale of analysis expected to
occur downstream.

2 Preliminaries about the simulation region

2.1 Hydrophone location

We begin by reading in the hydrophone data from a file obtained during
project DECAF. Note that in this file the locations are provided in an arbi-
trary coordinate system, and here it might be better to have them in latitude
and longitude, despite these having been shifted and jittered for security rea-
sons. For that reason, we considered using the information archived on OBIS
Seamap (available within the DECAF case studies data sets), as that has al-
ready been approved for public release. We consider here the data in file
“seamap678.csv”, which had to be tweaked to filter the adequate informa-
tion. Details are given in the .Rnw file. In figure 2 we present the relative

9
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location of the hydrophones and the distribution of the hydrophone’s depths.
We see these range between 1200 to 2000 meters, with a mean depth of −1652
m.

2.2 Bottom depth

We know these animals tend to avoid shallow areas. This simulation exercise
will have an intrinsic spatial component, and hence we need to harvest the
required information to be able to, at the very least, contain the animals
within some reasonable longitude (x), latitude (y) and depth (z) boundaries.
In practice, we will only explicitly constrain z, and this will then be used to
define the appropriate x, y boundaries.

2.2.1 Etopo1 data - deprecated

The depth data, “etopo1.xyz”, was downloaded from NOAA’s website http:
//www.ngdc.noaa.gov/mgg/global/global.html, and presents a resolution
of 1 arc-minute. This resolution is presumably too coarse for our objectives,
given that a whale’s entire dive could be considered to occur at constant
depth, but we will use it for the time being.

We can plot the depth contours and add AUTEC’s hydrophones (Figure
3). This figure hints for a clear mismatch between the depths and the hy-
drophone coordinates. As an example, hydrophone 56, the shallowest, seems
to be less than 500m deep, yet we know that it is at about 1300 m. This
seems to hint for a mismatch or severe inaccuracy in the depth data and/or in
the hydrophone location data. Inaccuracies of this type, with areas known to
be deeper appearing to be shallower, have been reported elsewhere (Amante
and Eakins, 2009). The depth contours in say Ward et al. (2012) are closer
to Andros Island (cf. Figure 4). No idea what might be the cause of this,
but it could actually be that Ward et al. (2012) contours were based on old
data, just for illustration purposes.

2.2.2 NUWC data

Motivated by the issues described in the previous section, a new source for
depth data was deemed necessary. A second data set containing depths was
provided by Jessica Shaffer (file : “Autec Weapons Range 0.2min bathy.txt”).
We read that file into R.

10
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Figure 3: The AUTEC range within the Tongue of the Ocean. Red dots
represent approximate hydrophone locations, and small black dots represent
areas where bottom depth is below 400 meters.
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Figure 4: The AUTEC range within the Tongue of the Ocean, taken from
Ward et al. (2012)
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The difference between the depths we have for each hydrophone and the
depth that it gets associated with once overlaid to the new AUTEC depth
data are much smaller than before, as evidenced in figure 5 (top row).

Because we know that the hydrophone’s true locations were shifted and
jittered, we would not expect a perfect match regardless of the depth data
quality. Assuming that the hydrophone positions were mostly shifted (i.e.
relative positions kept approximately constant, just moved in latitude and
longitude), one could estimate the true hydrophone locations. We coded a
simple function which evaluates the discrepancy between known hydrophone
depths and hydrophone depths as a function of shift. Correcting the available
hydrophone positions by the shift that minimizes that function probably
places the hydrophones closer to their true position.

We can plot the new depth data, with the AUTEC hydrophones loca-
tions, to see that these now make much more sense than what we previously
observed (Figure 6). We also show in the same figure, in green, the position
of the hydrophones which is obtained by minimizing differences in depth
given what we know to be true and that obtained by overlaying hydrophone
locations with AUTEC depth data. Assuming the bathymetry is correct, it
seems like the true positions are about a baseline (i.e. ≈ 4km) south of what
we have been provided.

FALSE [1] -77.7866 -77.2400

FALSE [1] 24.155 24.905

FALSE [1] -77.63994 -77.38663

FALSE [1] 24.30488 24.75803

FALSE Warning in nlm(f = getsum, p = c(0.01749869, -0.0505816)):

NA/Inf replaced by maximum positive value

FALSE Warning in nlm(f = getsum, p = c(0.01749869, -0.0505816)):

NA/Inf replaced by maximum positive value

FALSE Warning in nlm(f = getsum, p = c(0.01749869, -0.0505816)):

NA/Inf replaced by maximum positive value

FALSE Warning in nlm(f = getsum, p = c(0.01749869, -0.0505816)):

NA/Inf replaced by maximum positive value

In the following we will use as hydrophone positions those which are
internally most consistent with the new depth data, based on the assumption
that depth data provided by NUWC are reliable and that original positions
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were shifted north for security reasons.

2.3 Initial group locations and group sizes

Assuming that there are no whales present at shallower waters than those
above say 500 m depth, we can define the area over which we will want
simulations to occur. We leverage on the ability of R’s package spatstat to
define windows over which points might be created, using function owin.

Note that the area covered is approximately 3 degrees of latitude and 3
degrees of longitude, and that a degree is about 111 kilometers. The area
of our simulation window is about 5.2198 × 104 km2, which is conveniently
obtained using function area.owin. But actually only 27.14 % of the 3
degrees side square is below 500 m, so we have an area of about 1.4168× 104

km2. Given an estimate of approximately 25 whales per 1000 km2 (Marques
et al., 2009) would mean that in this area we should have 354 whales. An
average group size of 4.1 (Claridge (2006)) would actually mean that about
86 groups of whales would have to be generated in the area.

Beaked whales are known to exist in groups of animals. We assume for
the time being that density and group size are independent, and hence, for
each group that needs to be generated, we just simulate a random deviate
from the relevant distribution for group sizes. As mentioned above, Claridge
(2006) reported for the Bahamas an average group size of 4.1 animals, with
the standard deviation (SD) being 1.9. Based on this information, a tentative
model for the group sizes is Y = X + 1, where X is a Poisson with mean
3.1. This distribution has a SD of 1.76, which is a reasonable approximation
given the 1.9 SD referred above. In figure 7 we present the hypothetical
initial location of 86 groups in areas deeper than 400m. This was obtained
as a realization of a marked Poisson process, with marks representing group
sizes with distribution Y as defined above.

Note that a dedicated analysis based on Diane Claridge’s data provided
evidence that the value might be lower at AUTEC and surrounding areas
Marques and Thomas (2013), around 2.82 animals per group. Therefore, the
data presented in figure 7 are just for illustration.

Claridge (2013), reporting a 6 year mark-recapture study, presents no
recaptures of animals from her AUTEC site at the south Abaco Island site,
and vice versa. These sites are only separated by about 170 km, which
seems to strongly support the notion of two distinct (sub-)populations. For
this reason, in our simulation we will consider a boundary between New
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Figure 7: Location and group size representation (group size is proportional
to the size of the blue dots) of 86 groups of animals present in the TOTO
and surroundings.
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Providence Island and the Berry Islands, over which, for the time being at
least, we consider that, at the time scale our simulations occur, the animals
do not cross. The way to implement this in the simulation exercise might be
either via

• a simple, yet unrealistic, reflection of animals at a clearly defined
boundary, or

• by adding a probabilistic repulsion effect of said boundary that makes
it effectively impossible to cross by the animals, or

• by embedding animal movement behaviour with the notion of an home
range center to which animals are attracted to, effectively keeping them
local (this was the approach actually implemented, see details in section
3)

Further, Diane Claridge (pers. comm., 26 April 2013) noted that no
beaked whales have been detected in areas shallower than 50 meters, although
most are actually deeper than 500 m. Additionally, no whales have been
found closer than 300 meters to shore.

Considering this information, and the fact these animals forage typically
at considerable depths, we will assume in the following that animals strongly
avoid shallow areas, such that most frequently they occur in areas deeper
than 500m. This will be embedded by biased random walks avoiding shallow
depths when required. Additional details are provided in section 3.

3 Animal movement

3.1 General ideas

Considering the material in the previous section, it seems plausible to con-
ceptualize a movement model such that orientation would be independent of
the actual location, except if near the defined boundaries (e.g 500 m depth
isoline around TOTO + a boundary line between New Providence Island
and the Berry Islands), where the animal will have a mean direction that
somehow points away from the boundary.

On the other hand, it would seem also desirable that animals present
some kind of residency. This is perhaps something that can be implemented
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by assuming that the initial location represents the group home range center
around which the group moves freely based on parameters for movement
estimated from DTAG data. However, when the animals move “far” beyond
their home range center their movement becomes constrained. This could be
enforced using a biased random walk, biased back towards the home range
center. The strength of attraction could depend on the distance from the
home range center as described by McClintock et al. (2012). This feature
will allow groups to maintain a density pattern on average equal to what
they were simulated from, rather than moving towards infinity as time goes
by, which would be the case if simple random or correlated random walks
were considered.

The exact way to implement this will require some additional thought;
this is an extensive and certainly one of the most complex components of
the simulation exercise. For the sake of this document readability and orga-
nization, a separate document Marques et al. (2013a) presents the analysis
of DTag data integrated with a modelling framework based on HMM and
extensions in order to arrive at a plausible model for animal movement that
can be used for simulation. Adequate modeling of the animal movement will
be one of the key aspects of this simulation exercise. Fundamental points to
note from the onset include:

• movement models have almost exclusively been applied to a 2-dimensional
(2D) context, and here we require a 3-dimensional (3D) models;

• a state dependent mixture of biased and correlated random walks (BRW,
CRW and BCRW) seems like an adequate way to move forward, pos-
sibly based on feedback hidden semi Markov models (fHSMM) (e.g.
Morales et al., 2004; McClintock et al., 2012; Langrock et al., 2013);

• Note that fitting these to actual data from DTag’s requires that first
we obtain (x, y, z) coordinates from DTag data. While z =depth is
measured directly with presumably very low measurement error, (x, y)
coordinates need to be obtained by some form of dead reckoning (or
georeferencing of tracks). This is described in detail in Marques and
Thomas (2012d) and implemented in Marques and Thomas (2012b).

• Here we assume that the process involved in the georeferencing provides
3D tracks which can be used reliably as data with no error, to fit
fHSMM to. However, it would be desirable if an integrated method
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was used, allowing to incorporate the uncertainty in position estimates
into the state assignments and corresponding simulations. However we
note that this might be more of an analytical beautifulness than of
practical consequence, given that the fHSMM used is based on depth
alone, and hence the data is really very accurate;

• To begin with, we assume that the animals have different behavioral
states as in Langrock et al. (2013), corresponding to:

1. at the surface

2. deep diving

– descending

– at depth (essentially, this is the foraging stage, and hence
acoustically detectable)

– ascending

3. shallow diving

– descending

– at depth

– ascending

• For the movement in 2D horizontal plane (x, y) we can leverage the
Hidden semi Markov (fHsMM) models methods developed in Langrock
et al. (2012).

• For depth displacements we can follow the approach presented in Lan-
grock et al. (2013), using feedback Hidden semi Markov (fHsMM) mod-
els

• We will need to extend the independent 2D (horizontal movement, x, y)
+ 1D (depth, z) approach to 3D. A first approximation is to assume
that the distributions for 2D displacement (step length and turning
angle) are, conditional on the state, independent of the depth displace-
ments. This means that we can simulate independently horizontal and
depth displacements.

• we only have DTAG information about individual animal movement,
but these animals move in groups; a model for behaviour within group
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like that of Langrock et al. (2014) seems a good first approach, even if
at the moment we do not have much information to parameterize it

• given simulations occur over reasonable amounts of time (e.g. a week),
the unconstrained animal movement that one might assume given only
temporally restricted DTAG data will have to be combined with some
additional constraints (say via mechanisms similar to the feedback men-
tioned above) such that, at least during an undisturbed scenario:

– animals do not strand

– animals do not hit the ocean floor

– animals do not move away from AUTEC

– the animal density surface is kept approximately constant

• it might make sense at a first iteration to disregard pitch, heading
and roll. Another option would be to use positions at t, (xt, yt, zt),
and t + 1 (xt+1, yt+1, zt+1), to derive heading and pitch (ignoring roll,
which was not used any way to characterize the detection function),
therefore avoiding the need to track (and model) heading and pitch
over time. We can look at DTAG data to see to what extent there is a
strong correlation between heading and pitch derived in this way and
observed from DTag processing (but this was not implemented).

Additionally, given that via AUTEC we only have data for the acous-
tic part of the deep dives, the following simplifying assumptions and model
choices might make sense here:

• when animals are not vocalizing, i.e. for all behavioural states except
a foraging state, model (and hence simulate) only the group center
location over time; therefore we keep track of the approximate position
of each animal (approximated by the group center) but we do not really
need to track all animals at all times

• assume that Blainville’s beaked whale group’s behave, in some sense, by
following a leader (as described in Langrock et al., 2014); this means
that we can use DTAG data to inform directly about the model for
the group center, and only need to the find a way to parameterize
the biased or correlated or biased and correlated random walk model
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that keeps the groups cohesive over time, with respect to the focal
animal. A possible alternative would be modelling the center of the
group instead of a focal animal; this seems less sensible from a biological
point of view, but since this is mostly a conceptual difference the final
choice is certainly pragmatic and should be driven by implementation
simplicity. The only key advantage in modeling the leader than the
group center is that DTAG data provides direct information about a
given animal and not a goup center. A group center will, due to the fact
that it represents an average of coordinates across animals, tend to have
different properties, e.g. it will typically move slower than individual
animals, so the DTAg data will not typically be representative of such
center. The distinction would be inexistent if we all the animals within
each group were tagged.

Note that we do not expect any of the above considerations to exactly
mimic reality, but we expect the difference between these and reality to
be negligible for the purpose of our simulation exercise, while considerably
simplifying the simulation itself.

3.2 A 2D movement model

Addressing the characteristics required in the previous section, here we de-
scribe a plausible model for 2D movement with a few basic features:

• it uses DTAG data to parametrize movement in an “unconstrained”
state

• it uses satellite tag to parametrize movement respecting home ranges
and avoiding shallow depths, via 2 additional constrained states (es-
sentially ”home ranging” and “avoiding stranding” states)

• respecting the initial animal distribution over the long run (as a con-
sequence of the ”home ranging” state)

We consider movement defined as a succession of step lengths (τ) and
turning angles (φ). We consider a couple of simplifying assumptions:

1. step length distributions are derived from DTAG data only, i.e., con-
ditional on a depth derived state a la Langrock et al. (2013), a step
length distribution is determined based on DTAG data.
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2. the same happens for the turning angle variance.

Hence, most of the 2D movement “structure” will be associated with the
heading (rather than step length), which will be a function of additional
features conditional on a 2D movement state, as defined below.

Ignoring a possible time index t for simplicity, at each time step t we
require a number of quantities to be available (see figure 8):

• (xz, yz, zz) = pz, the closest point where depth is above a certain thresh-
old z considered incompatible with beaked whale movement (i.e. shal-
low depths)

• dz: the distance between the animal position and pz

• (xh, yh, zh) = ph, the home range center

• dh: the distance between the animal position and ph

• Φ: the heading of the animal (Φ=0 means the animal points north)

• Φh: the heading of the animal to move towards its home range center

• Φz∗: the heading of the animal to move away from pz (i.e. shallow
depths)

Heading at time t (Φt) will be potentially a function of heading at the
previous time t − 1 (Φt−1), or will be a function of the required heading to
avoid/approach a given feature (e.g. shallow depths or home range center).
In particular, the heading will be a function of where the animal is in space,
defining a set of 3 movement states (in 2D), with decreasing levels of strength
and complexity:

1. If the animal is closer to pz than k1 (i.e. dz < k1) then the dominant
feature of the heading is the need to avoid shallow depths, and so
heading will tend to be around Φz∗, else

2. If the animal is unusually far from to ph (i.e. dh > k2), where k2
represents a point beyond which the need to tend to the home range
center is triggered, then the dominant feature of the heading is the need
to move closer to ph, and so heading will tend to be around Φh, else
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Figure 8: Quantities and notation required for the 2D movement model.
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3. the animal is not far from its home range center nor risking strand-
ing, and hence movement is simply dictated by DTAG data, which for
simplicity we also refer to as the “unconstrained” state.

For simplicity, while in the “unconstrained” state the animal moves ac-
cording to an uncorrelated and unbiased random walk3, in the other two
constrained states the mean heading is a function of the previous heading
and the directional heading required to avoid or go towards a feature (so
essentially a biased and correlated random walk). The variance in turning
angle will be taken from the DTag data, conditional on the depth derived
state, irrespectively of the whether the whale is in an “unconstrained” mode
or not.

In terms of implementing the actual simulation, the required computa-
tions at time t are:

1. obtain (x,y,z) and depth derived state S = s at t− 1, as well as Φt−1

2. get τt and φt from the relevant τt|S = s and φt|S = s distributions, and
then Φt as Φt−1 + φt; these will be kept unless one of the two following
if statements is true

3. get pz and dz

4. if dz < k1 (i.e. animal in avoid shallow depth mode)

• get Φz∗

• and Φt = aΦz∗ + (1 − a)Φt−1. The function defining a should
be bounded by 0 and 1, where a tends to 1 as dz tends to 0,
and a tends to 0 as dz tends to k1. A logistic or an hyperbolic
tangent function were used in a similar context by McClintock
et al. (2012). Figure 9 presents an hypotetical general form for
such a function.

5. else get dh, and if dh > k2 (i.e. animal in return to home range center
mode)

• get Φh

3Note that uncorrelated at the turning angle scale can be correlated at the heading
scale, so stictly this wording is not correct.
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• and Φt = bΦh + (1 − b)Φt−1. The function defining b should be
bounded by 0 and 1, where b tends to 1 as dh tends to ∞, and
b tends to 0 as dh tends to k2. Figure 9 presents an hypotetical
general form for such a function.

Note therefore that k1, and the parameters of the function defining a, as
well as k2, and the parameters of the function defining b, must to be estimated
from data. We will use the available satellite tag data for that purpose.

Note also that while for the “unconstrained” state we simulate turning
angles (φ) and from these we obtain headings (Φ), in constrained states we
embed a notion of mean heading from which one can derive the required mean
turning angle. Note also this means that while tuning angles are independent,
the actual headings are correlated.

3.2.1 Simulation implementation

Here we describe the required steps in terms of simulation, which some-
what depart from the previous thoughts in terms of implementation. This
is because it would be prohibitively slow to implement a check on the two
required conditions at each time step: a) Is the animal in shallow depths? b)
Is the animal away from the home range center? The simulation currently
occurs at time steps of 1 second, i.e. 86400 time points per day per whale,
and the triggering of a constraint is intrinsically correlated (since it depends
on the animal’s position, which varies slowly and continously over time), so
occasional checking is likely enough.

A possible pragmatic approach is:

1. Simulate full track from DTAG based distributions

2. For each deep dive start point (i.e. first time step in deep diving descent
mode) check

3. whether dz < k1 and dh < k2

4. If dz < k1

• redo previous deep dive with correlated and biased random walk
avoiding shallow depths

5. else if dh < k2
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Figure 9: Hypotetical general form for functions defining a and b. See text
for details.
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• redo previous deep dive with correlated and biased random walk
towards home range center

6. reposition track from next deep dive onwards at the last simulated
position

7. go to next deep dive (i.e. return to step 3)

However, we further simplyfied the process. When one of the two condi-
tions is triggered we replace the steps 3-6 by a “rotation” of the simulated
track, such that the mean direction (currently as evaluated by the direction
of the first to last point in the dive) is opposite to that necessary to avoid
shallow depths / stay in the “vicinity” of the home range center.

This procedure is repeated until all deep dives starts respect the 2 con-
straints.

This is perhaps a cumbersome approach taken for the sake of pragmatism.
It is not necessarily the case that a rotation at the dive scale can achieve
the desired results. As an example, depending on the specific geometrical
configuration there might be no sigle rotation of a full dive that allows to
avoid a shallow area, say. Therefore, this is a component that could definetely
be improved upon.

3.2.2 Some notes about this 2D movement model

It might be the case that pairs (a, k1) and (b, k2) have large within-parameter-
correlation, i.e. it might be difficult to estimate say a and k1 independently,
or in other words, the way in which the function increases might be depen-
dent on the distance chosen, and so given a k1 the estimate of a might be
constrained.

Another option might be to consider that heading at time t (Φt) is always
obtained via the same mechanism. A way to do so would be to consider that

Φt = (Φt−1 + φz,t)×M1 + Φz∗ ×M2 + Φh ×M3 (1)

where the following conditions are enforced

• M1 +M2 +M3 = 1

• as dz tends to 0 M2 tends to 1
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• as dh tends to infinity M3 tends to 1

• if dz > k1 then M2 = 0

• if dh < k2 then M3 = 0

• M2 >> M3 if both dz < k1 and dh > k2

This corresponds to generating a turning angle with mean given by

φt =
Φt − Φz∗ ×M2 − Φh ×M3

M1

− Φt−1 (2)

3.2.3 A remark on pragmatism

This specific conceptual approach was taken but several others would be
possible, as there are a number of questions and features which could be
addressed diferently. A couple of examples would be:

• the two initial simplifying assumptions about step length and turning
angle variance dependent on depth state alone might be relaxed and
the model become more complex. The turning angle variance might be
a function of the current distance to some features (e.g. home range
center, shallow depths) rather than DTAG derived conditional on the
depth state. This would certainly have the knock-on effect of changing
the relationship between the previous heading and the current heading,
say at the level of the weighted mean parameter relationship.

• while we assume in the “unconstrained state” (i.e. purely DTAG based)
the animal moves according to an uncorrelated and unbiased random
walk, it seems likely that this could be actually a correlated random
walk to include persistence in both step length and turning angles (see
Marques and Thomas (2014) for details).

4 Ideas to keep in mind

There are some ideas relevant to this simulation exercise that we keep here
for reference and further discussion:

29

Page 47 of 466Version with appendices



• We will want to keep animals from diving into the sea floor and mov-
ing into shore. It would be desirable to set these up using some feed-
back mechanism that keeps them from moving to these areas in some
stochastic way, rather than setting hard boundaries.

• Consider a single animal to begin with. Having movement such that a
target density surface is preserved is similar to an MCMC in which a
stationary distribution is obtained via a series of steps in a Markov
Chain. Therefore ideas from implementation of Bayesian samplers
might be useful here. It does seem however unlikely that one is able to
preserve both the density surface and the fine scale movements as we
might estimate from data obtained say from georreferenced DTag data
then modelled using fHsMM approaches. There must be a compromise
in the realism that one can preserve in fine scale movement and the
ability to preserve a constant density surface.

• All the methods mentioned above for individual animal movement have
typically been fitted to single animal data. Langrock et al. (2012) do
address the problem of fitting to multiple animals via the inclusion of
a random effect in the model, i.e., by considering that some parame-
ters are common across animals but some others (typically very few
for practical implementation reasons) can vary according to some dis-
tributional form. In practice here the georreferentiation methods have
only been fitted to a single animal, the same happening to the fHSMM
approach for depth profiles, applied to a satellite time-depth tag, and
considerable problems were found when we tried to fit this approach
to DTAG depth data. This means that in terms of actually simulating
from these we are not adequately representing the possible range of
variability in observed movements. This is a point which to address
properly would require extensive work in fitting similar models to data
sets from several animals. Given the work required to fit these to single
animals it seems like a pragmatic approach at this point is to develop a
simulation tool which ignores this underestimation of variability, pro-
viding a way to glue all these components together.
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A Some useful spatstat functions

There are a number of functions and classes in library spatstat which can
be useful for our simulation exercise. We have mentioned a few in the text,
but here we also present a list that might be useful. These include:

• classes

– owin - area over which a point process occurs

– ppp - point process

– im - a pixel image, with values associated to each pixel. This can
be useful to represent e.g. a density surface

• functions

– bdist.points - check whether a given group is or not in the
vicinity of the boundary, although the coordinates to be checked
need to be converted to class ppp (point process) before.

– bdist.pixels to obtain for each pixel in a owin the distance said
pixel is from the boundary

– border, which computes the border region of a window, that is,
the region lying within a specified distance of the boundary of a
window.

– rpoint generates a random (use rmpoint if multitype if needed)
point pattern with a fixed number of points (or a fixed number
of points of each type in rmpoint). Note types could be used for
marks, as long as mark is finite and discrete. The way to define
the spatial distribution could be via a function f or a pixel image,
in which case the unnormalised density at a location (x, y) for
points of any type is equal to the pixel value of f for the pixel
nearest to (x, y)

In figure A.1, left plot, we present the simulation area with shading pro-
portional to the distance to the edge, obtained via bdist.pixels. Note that
at this point the units for distance are degrees, which do not necessarily have
a precise meaning. Using the ability to format the output of bdist.pixels
as an im object, in figure A.1, left plot, we present the simulation of a real-
ization of a point process which density is proportional to distance from the
edge of the simulation area.
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Figure A.1: Obtaining and using the distance to the edge of simulation area.
Left plot: representation of distance to the boundary of simulation window.
Right plot: simulation of a point process with distribution proportional to
distance to the edge.
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1 Introduction

The key species in LATTE is Mesoplodon densirostris, Blainville’s beaked
whale (BBW). This species has been shown to be sensitive to navy exercises
on the AUTEC range (McCarthy et al., 2011; Tyack et al., 2011), likely due
to SONAR use. BBW beahavior is characterized by frequent long deep dives
to forage at depth. During each deep dive the animals typically produce
thousands of echolocation clicks (Tyack et al., 2006b). BBW echolocation
clicks1 are commonly detected year round at the AUTEC range.

In LATTE we propose to develop methods which combine (at least) 2
types of data:

1. cheap, easily available, in almost continuous time, low resolution data
from the AUTEC range, namely counts per hydrophone (and unit time)
of detected beaked whale cues

2. DTAG data which provides high resolution in both space and time, but
expensive and with very restrict temporal coverage

The idea is to use these data to fit a Movement, Sound Production, and
Sound Detection (MSPSD) model that links the two data sources. This model
might, at a later stage, be used to make inferences about possible impacts of
human generated sounds on beaked whales, say by comparing relevant model
parameter estimates (e.g. a group’s vocal period length) from data collected
at baseline periods (that is, in the absence of potentially disturbing sounds)
with data collected at impacted periods (that is, in which such sounds are
being produced).

Here we start addressing some of the components needed for this far from
straightforward task. This report will act both as a working document and
as a place to record ideas which might, along the way, end up not being
used but still deserve to be put down somewhere. It will also contain some

1In this report we often refer to these simply as “clicks” or “cues”.
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background material that is useful for context and for building up the models
involved.

We note that within the realms of DECAF, we produced a simulation
engine which meant to reproduce click counts on the AUTEC hydrophones,
and hence many ideas on simulating these animal dives are taken from that
effort (see Marques and Thomas, 2008a, for further details). This exercise
failed at the time to reproduce the observed click counts. This was most
likely the case because when it was produced, the detection process was not
yet well characterized, but also due to the large amount of false positives
and apparent differences in hydrophone performance which we have no good
handle on. An additional problem related to the fact that we only had data
to characterize individual animal movement, and that these animals occur
most often in clusters.

We start with a brief review of relevant work on animal movement models
(section 2). This is followed by details on the different components of our
MSPSD model (section 3), plausible model components, and available sources
of data to parameterize them.

2 A review about animal movement models

In this section we present the current state of the art regarding models of
animal diving. Beaked whales are essentially “occasional surfacers”, hence
the aspect of diving is fundamental.

While animal diving is a process which occurs in 3 dimensions (3D), there
are not many studies which consider 3D data. Here we refer to an animal lo-
cation at time t as lt = (xt, yt, zt), referring respectively to longitude, latitude
and depth. While there is a growing literature about animal movement and
its modeling, this is usually conceptually implemented in two dimensions,
namely (x, y). On the other hand, diving itself has been often treated as a
1D problem, in which depth z is recorded as a function of time (such data
are often referred to as dive profiles), while discarding the x, y coordinates.

Understanding and quantitatively describing (i.e. modeling) the way an-
imals dive is important for many reasons. For example characterizing via
a statistical model the movement process of diving animals in the absence
of a disturbance, and measuring the change in the model parameters in the
presence of disturbance, might be a way to quantify impacts. There is consid-
erable work comparing predictions from optimal dive models and empirical
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dive observations (e.g. Heath et al., 2007). Diving and surfacing patterns can
inclusively have direct influence in the performance of methods used to es-
timate animal abundance, because they govern the availability for detection
(e.g. Okamura et al., 2006). Individual animal movement potentially plays an
important role in the understanding of population dynamics (Morales et al.,
2010).

There are two different aspects about models, namely models for dive
data. On can think about models which are used to simulate diving, or
models fit to diving data. To the best of our knowledge there have been
no attempts to fit models to 3D dive data, and there have been only a few
attempts to simulate dive data from simple models, namely Houser (2006)
(see section 2.3 for additional details about this paper). Within the DECAF
effort there was also an attempt to simulate beaked whale dives, as stated
above. A record of such effort can be found in Marques and Thomas (2008a)
and Marques and Thomas (2008b).

It is interesting to note that while in terms of movement models animals
are virtually always considered as independent units, in many cases animals
move in groups in which movement is highly correlated across individuals.
Lett and Mirabet (2008) present a review on modelling dynamics of animal
groups in motion. Lukeman (2009) presents some ideas about models re-
garding group movement, but at a scale unlikely to be useful for LATTE
purposes. There are not many instances in which data is simultaneously
available for multiple animals. Zimmer et al. (2005) presents an exception
where two Cuvier’s beaked whales (Ziphius cavirostris) where simultaneously
tagged. Mark Johnson (2010, pers. comm.) has also a couple of interesting
data sets with multiple simultaneous tags on sperm whales and pilot whales,
which might at the very least serve as a source of inspiration.

One of the key characteristics of movement data is the strong autocorre-
lation observed. See Dray et al. (2010) for a discussion of the implications of
this feature.

As stated above, we could not find any references fitting models to true
3D dive data. Nonetheless, some references dealing with work that might be
relevant include:

• Higgs and Ver Hoef (2012), which deals with drawing inferences on
covariates influencing depths of dives based on categorical dive data;

• Bailleul et al. (2008) apply a first-passage time analysis in the depth
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dimension to detect behavioral changes of southern elephant seals, not-
ing several (hardly surprising!) differences in inferences compared to
using only x, y data;

• Walker et al. (2011) use a SALSA smoother (spline-based) to classify
dive shapes, but without ever modeling the dives themselves in a way
that might be used for later general purposes;

• Dowd and Joy (2011) use a 2nd order autoregressive process to model
vertical velocity and depth data collected on seals. They do not address
the x, y comp+onent of the data, nor do they take into account the
bounding nature of the sea surface, such that simulations from their
model would lead to unrealistic movement patterns.

• Photopoulou (2012) has used sparse depth data to model dive profiles
(1D)

It is interesting to quote directly from Houser (2006) here: “Implemen-
tation of analytical results into models of marine mammal movement and
behavior is also a critical issue in need of addressing - whereas movement and
behavior models for terrestrial mammals enjoy a rich history of development
and application, similar models for marine mammals are all but nonexistent”.
Because one can think of the 3D case as a generalization of the 2D case, and
hence some of the 2D approaches might be extended to the 3D case, in sec-
tion 2.1 we present a short number of references which review ways to fit
models to 2D (x, y) data. In section 2.2 we present some of the work which
describes marine animal movement data. This kind of data will inevitably
be necessary to implement any model fitting exercises.

2.1 Modeling 2D movement

In recent years there has been a growing body of literature devoted to fitting
models to, and drawing relevant ecological inferences from, animal movement
data. We do not attempt a review of the area here, because a number of
related review papers have been recently published. Hence, the reader is
referred to the appropriate sources for further detail:

• Schick et al. (2008) present a review on understanding movement data
and processes.
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• Patterson et al. (2008) present an overview of the use of state space
models applied to animal movement.

• Smouse et al. (2010) present a review on stochastic modeling of animal
movement.

• Tomkiewicz et al. (2010) review the use of GPS data in animal behavior
and ecological research.

• Struve et al. (2010) describes current views as the outcome of a re-
cent workshop held at Silwood Park (UK, 9-11 March 2010), ”Spatial
models in animal ecology, management and conservation”, and due to
the intrinsic spatial nature of movement data, is also relevant source of
material.

Morales et al. (2004) presented the concept of using mixtures of random
walks to model movement data with different behavioral states. Jonsen et al.
(2007) report the use of switching state space models to identify behavior
states using such data, a procedure which might be interesting to use under
LATTE. Note that some details of their model are only given in Jonsen
et al. (2005). McClintock et al. (2012) extended that method, including the
ability to use reversible jump MCMC to sample across a model space in
which different models correspond to a different number of states and state-
dependent behaviors. Tremblay et al. (2009) describe an alternative way,
based on forward particle sampling, to fit models to movement data.

2.2 Available work describing dive data

Because the ultimate goal is on modeling dives, we concentrate our focus on
work developed for marine animals. We note however that similar models
might be applied in the modeling of movements of flying animals (e.g. birds
of prey), in which the earth surface acts as a boundary in the same way that
the sea surface does for diving animals.

In the following sections we list references which have dealt with different
kinds of marine movement and dive data.

2.2.1 One dimesional data: dive profiles

The development of tags capable of recording animal position under water
has allowed researchers to investigate dive patterns. However, we are unaware

6
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of attempts to model the actual dive data. Usually such data has been used
to test hypothesis about optimal dive models (e.g. Halsey et al., 2003).

There are a number of papers reporting dive profiles, i.e. animal depth
as a function of time, for considerably different species, but none of them
attempting to fit models to movement data. These include:

1. Watkins et al. (2002) provide dive depth information on a single sperm
whale

2. Hays et al. (2004) provide dive profiles on 4 leatherback turtles using
Satellite Relay Data Loggers (SRDL). In total a few thousands of dives
were available. Each SRDL included a pressure sensor, which was used
to measure the depth to an accuracy of 0.33 m every 4 s, but there is
actually quite a lot of “on-board” data processing involved, and only
5 points per dive are transmitted via the satellite, and hence that is
the only information available for each dive. Validating dive profiles
obtained from this process was described by Myers et al. (2006);

3. Baird et al. (2008) analyze diel patterns of beaked whale diving;

4. Baird et al. (2006) present analysis of time-depth data for beaked
whales;

5. Chilvers et al. (2004) present data on the diving behaviour of 15 dugongs
(Dugong dugon), documented using time-depth recorders (TDRs), which
logged a total of 39,507 dives.

2.2.2 Two dimensional data: movement projected on the sea sur-
face

As stated above, the interest on animal movement has led to a myriad of
work about the fitting of models to movement data. Often papers report
movement data, but make no attempt at modeling the data. One example is
Schorr et al. (2009) who present data for Blainville’s beaked whales off the
island of Hawai’i, based on satellite tags (8 individual whales tagged, 15 to
71 days of data, mean 48 days). In particular, these authors mentioned that
this “population is island associated and that individuals exhibit strong site
fidelity, both of which increase the susceptibility of this small population to
local perturbations”. The extent to which such conclusions might also extend
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to the whales which occupy the AUTEC range, in a different archipelago (and
Ocean), is unknown.

2.2.3 Three dimensional data: true dive data

Only with recent technology it has been possible to obtain 3D data on animal
dives. This kind of data is currently still quite expensive to obtain, and is
likely to remain so for a number of years to come. The process involves several
stages, from going to sea, locating the animal of interest, tagging the animal,
retrieving the data and processing the data. Much of this data, especially the
data with good resolution, is obtained from DTAG’s (Johnson and Tyack,
2003). We will use extensively DTAG data in LATTE. The sensor suite
comprises acceleration, magnetic field, and pressure sensors and is tailored
to measuring information on location, orientation and sound production at
sampling rates of up to 50 Hz, much higher than traditional time-depth
recorders. These measures are convertible to fine resolution information on
location (x, y, z) and relative animal position (heading, pitch and roll) over
time (see Johnson and Tyack, 2003, for details), for usually a small number
of hours. Available DTAG data sets include those described in:

1. Zimmer et al. (2003), for a single sperm whale

2. Johnson et al. (2004), for 4 beaked whales (2 Mesoplodon densirostris
and 2 Ziphius cavirostris)

3. Zimmer et al. (2005), for 2 simultaneously tagged Ziphius cavirostris

4. Tyack et al. (2006b), for 10 beaked whales (3 Mesoplodon densirostris
and 7 Ziphius cavirostris)

5. Watwood et al. (2006), analyzing data for 49 DTAG deployments on
sperm whales

6. Ward et al. (2008), for a single beaked whale (the key interest here
being that emitted clicks were also detected on AUTEC hydrophones)

There are instances in which one has data about (x, y, z) but not at the
same time nor with good resolution (e.g. Kuhn et al., 2010).
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2.2.4 Dive related data

There are some examples of how one might obtain relevant dive information
using bottom mounted sensors in the absence of tagged animals (e.g. Di-
Marzio et al., 2008). Further, development of effective and efficient detection
and localization algorithms from such systems (see e.g. Adam et al., 2006)
might lead to additional ways to collect information on dive patterns. While
this happens naturally only for sound producing species, and directly during
the vocal parts of the dives, one might be able to develop models to fit to
this kind of data which eventually might allow inferences about non vocal
parts of the dives.

This is in fact one of the goals of LATTE, to obtain a modelling framework
which allows the integration of data with different levels of resolution, from
DTAG data to data collected on navy acoustic ranges.

2.3 About Houser (2006)

Being the only paper that we are aware which has explicitly described a model
for 3D dives, Houser (2006) is described in additional detail here (see also
Frankel et al. (2002), were what seems a very similar preliminary approach
is taken, also involving Monte Carlo simulation of dives). Note that these
concepts have been used to develop a piece of software, 3MB, to simulate
the movement of marine mammals (Houser and Cross, 2009). This software
documentation contains detailed information about the use of the software
and reviews most of the concepts involved. The software is open source and
available at http://members.cox.net/biomimetica/download page.htm.

IMPORTANT NOTE: The following text is for most parts taken ver-
batim or only slightly modified from Houser (2006).

2.3.1 Model Overview

The 3MB software was specifically designed to assess the impact of sound
sources on marine mammals. Hence a scenario can be chosen, animats2

and sound sources distributed in space, and then exposure quantified for
each animal as it moves around. The user may specify the behavior of a

2This is the name given to simulated animals within the software.
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particular marine mammal species based upon current available knowledge
of that species’ oceanic activity.

In 3MB, movement and behavior is stochastically determined by sampling
from distributions describing:

1. rates of movement in the horizontal and vertical planes

2. direction of travel

3. time at the surface between dives

4. time at depth

5. time in and transition between behavioral states3

Hence, the way a species behavior is defined is by choosing specific sta-
tistical distributions (and their respective parameters). Then one samples
from these distributions to obtain parameter values used in simulation, and
associated with each parameter there is also the need to define when should
the parameter be “terminated” (i.e., when a new value gets sampled from the
original distribution and the simulation proceeds).

Once created, species definitions are used to control a predetermined num-
ber of individuals. The location of each individual at the start of a simulation
can be chosen form a random distribution (e.g. uniform in space) or user-
defined. This latter approach allows expert knowledge of species distribution
to be incorporated.

2.3.2 Species definition

A species is defined by distributions controlling the following processes (de-
tails regarding these can be found in the original source, but most names are
self explanatory):

1. Behavioral State

3The fact that one can separately define transition probabilities and time in state puts
this into the realms of semi-Markov chains. A continuous-time stochastic process is called a
semi-Markov process or“Markov renewal process” if the embedded jump chain (the discrete
process registering what values the process takes) is a Markov chain, and where the holding
times (time between jumps) are random variables with any distribution, whose distribution
function may depend on the two states between which the move is made. Verbatim from
Wikipedia at http://en.wikipedia.org/wiki/Semi-Markov process.
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2. Directional Movement

3. Horizontal Speed

4. Vertical Speed

5. Diving depth

6. Reversals

7. Surface Interval

In the context of sound exposure, one can also define distributions which
change once the animal is subjected to sound exposure (e.g. random move-
ment changes to say avoidance movement once a sound is emitted).

2.3.3 Distribution model types

The way one controls the above processes is via distributions, which in 3MB
can be of two types:

1. Vector Distribution Models - these models allow one to very precisely
define the distributions one is sampling from, including as much de-
tailed information as one wants. These include for example transition
matrices between behavioral states (and states can in turn influence
which distribution you sample from, say, values for speed). 4

2. Alternative Distribution Models - these are essentially Uniform (one
just defines the minimum and maximum) or Gaussian distributions (one
just defines the mean and variance), and are used mostly when there
is not enough information to parameterize vector models. In particular
for bearing there are available special cases of random walks, correlated
random walks and biased correlated random walks.

4It is not clear at this point if these do not correspond to sampling values directly from
actual vectors of data, hence the name “Vector distribution models”.
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2.3.4 Concluding remarks

It is recommended that the software should be used to simulate only data
from relatively small periods of time, because interactions with the environ-
ment are not embedded in the models used, and hence the animals are bound
to drift away. In AUTEC that would mean for example animals ending up on
land. This is a general problem for simulations of animals over space, which
might work relatively well in the sort term, but which lead to unrealistic
behavior over the long term for species with some kind of residency if there
is nothing in the movement that allows the simulated animals to respect said
residency.

One thing that might be interesting is, whenever we get a tentative model
for movement in 3D, try to fit that model to simulated data from 3MB and
see how it manages to capture the structure of the underlying models which
originated the data.

As an aside, so far, our attempts to implement simulations in M3B were
unsuccessful (even if just following the quick start guide). This is something
that we hope to solve in the future.

3 Model components

3.1 Introduction, data available and random comments

We envisage that models will be fitted in a state-space framework, and hence
it is relevant to start defining model components for the state and observation
process. The DTAG data is essentially continuous in the time dimension,
and at this stage it is unclear if we might want to use a “continuous-time
and continuous-space” or a “discrete-time and continuous-space” framework
(see McClintock et al., 2012, for examples and details), although for now we
assume the latter.

It is probably easier to discretize the data further than using the frequency
at which we have it on DTAG’s, to avoid small scale variance which gets
averaged out over longer time periods, e.g. difference between 100 data points
per second to 1 data point every 10 seconds, as well as to reduce the amount
of data we have to deal with, which might have a considerable influence
on algorithm performance/computer efficiency. Hence, while DTAG data is
collected many times per second, if movement is all we are interested in, we
could probably discretize time into larger periods (e.g. 1 position every 2
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minutes say, as an example, McClintock et al. (2012) consider time intervals
of 120 minutes (with data from a single animal), so one might wonder how
ambitious 2 minutes actually is!).

As stated in the introduction, the available data to fit the model to will
be

• click counts at given hydrophones over time (complex data, consider-
ably noisy due to say hydrophone specific differences5, and with poten-
tially a fair proportion of false positives - if we can not reduce these to
a residual amount then the observation model might have to include
this component; given the recent detection and classification results
presented at DCL 2010 (DiMarzio, pers. comm.), with false positives
at around 3%, this might be ignored to begin with.

• DTAG data, which gives us a good handle on the diving state, providing
information on time of clicks produced, depth (z), pitch (p), heading
(h) and roll (r) over time, multiple times per second; note from this one
might try to derive to latitude (y) and longitude (x). This data provides
also information about how to connect acoustic data on the range with
animals diving when there are tagged animals tracked simultaneously
using range hydrophones.

We note upfront that the key lack of knowledge regarding BBW seems
to be related to the way animals behave in a group, regarding a number of
different components:

• within groups, fundamental to define a group acoustical footprint;

• between groups, fundamental to define animal distribution over space;

• group stability, which might be a second order problem for now (al-
though this might deserve further thought). Some group rigidity is a

5I used to think that some of the observed counts differences in neighbor hydrophones
were nonsense, virtually impossible given the system at hand, and hence probably hardware
related. While recently reading Arranz et al. (2011) it became apparent that context, in
particular depth and slope, might be very important, and say a hydrophone at the bottom
of a suitable slope along which whales might feed could be much more insonified than
another one in a less adequate-for-feeding site. It does not necessarily mean that the data
must be right, but it at least provides an explanation for why it might not be wrong.
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desirable working assumption, and a likely to hold assumption in par-
ticular for Mesoplodon, but the extent to which it might hold is not
known at present.

Beaked whales seem to have distinct group behavior, and most likely
dive with some type of synchronism, but hard evidence of diving synchrony
is anecdotal, and in particular there is only a single instance in which two
animals were simultaneously fitted with DTAG’s (Zimmer et al., 2005) (this
was for Ziphius, not Mesoplodon). Mark Johnson provided access to a data
set in which 3 sperm whales were simultaneously fitted with DTAG’s, and
their diving is clearly non-independent, even if not all whales participated in
all deep dives (Figure 1). However, there is only so much one can say based
on a sample size of 1 event for a different species. In particular the distance
between these sperm whales probably means that they would be considered
(visually and/or acoustically) to be individual animals (that would certainly
be the case if they were to be beaked whales). Mark Johnson has some
additional data sets, in particular from pilot whales, but it is hard to know
what might be gained from considering these here.

3.2 Beaked whale movement

The next subsection is outdated, and in terms of behaviour states we are cur-
rently working with a system as described in Langrock et al. (tted). Nonethe-
less the material below is kept in for historical/archival reasons.

3.2.1 Behavioral state

We can consider that a single BBW might be, at any point in time, in one of
two states (deep diving, or not deep diving). The transition between these
occurs at any x, y location in 2D space, but at depths close to 0 by definition.
The movement of BBW will likely be different in each state. Therefore we
start by defining these states, which might be further divided in (sub-)states
as:

1. At the surface (between the end of a deep foraging dive and the start
of the next dive)
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Figure 1: The depth profiles of 3 simultaneously tagged sperm whales. Some
sort of dive synchrony seems clear.
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a resting

b performing shallow dives (we assume this ends when the animal
is at the surface for the last time before reaching the point where
it starts clicking)

2. Deep diving (from the start to the end of a deep foraging dive)

a descent (we assume this ends when the animal first moves up after
it produced the first click)

b foraging (we assume this ends when the animal produced last click
in a deep dive)

c ascent (we assume this ends when the animal reaches the surface
after a deep dive)

We have relatively good knowledge from DTAGs regarding these. How-
ever, any acoustical data are only relevant for the foraging phase (2b), as
that is the only time when the animals produce the echolocation clicks. This
might require some additional thought, because strictly the animals might
produce some clicks during the descent (2a) and descent (2c) phases. Given
that these are only conceptual states, one might alternatively define the states
as

1. At the surface

a resting

b performing shallow dives

2. Deep diving

a silent descent

b vocal

i descent-vocal

ii foraging

iii ascent-vocal

c silent ascent

and then animals only produce sounds, by definition, during phase 2b. A
number of points regarding these formulations are worth noting:
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• irrespectively of the formulation, for the purpose of our current model-
ing, it might be wise to ignore (at least) what happens within stage 1
(i.e. lump 1a and 1b);

• regarding the second formulation, it is clear that DTAG acoustic data
provides direct information exclusively about 2b (it might be infor-
mative about other components of the model given the links between
parameters enforced by the model itself). The rest of the process could
be thought about almost like a black-box, and one would only need to
have a distribution to link the point in time and space where an animal
stops clicking to the point where and when the animals starts clicking
again;

• the distributions of variables within state 2b is less simple for the sec-
ond formulation, as say the change in depth in the later state 2b is
much more variable than in the previous state 2d. Hence the division
presented above in additional sub-states within 2b;

• it does not make much sense to have the observation process controlling
the definition of the states of the model. Hence, we might prefer to stick
to the first formulation above.

The state at time t, St, can be represented by a vector with length equal to
the number of states, a 1 in the current state, and 0’s is all other entries. As
examples, an animal in the descent phase at time t would have St=(0,0,1,0,0),
and if the animal was performing shallow dives, St=(0,1,0,0,0). The state at
time t is a function of the previous state t− 1 according to

St = PSt−1 (1)

considering a probability transition matrix P like:

P =


P1a P1b,1a 0 0 P2c,2a

P1a,1b P1b P2a,1b 0 P2c,2b

0 P1b,2a P2a 0 0
0 0 P2a,2b P2b 0
0 0 P2a,2c P2b,2c P2c


This already incorporates some logical constraints, like the fact that an

animal can’t go from foraging to resting or shallow diving without going
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through the ascent phase. Some additional constraints might still be added,
say e.g. if we assume an animal can not cancel a dive once the descent phase
has started, then P2a,2c = P2a,1b = 0, or if the animal can not go back in the
phase order, then,

P =


P1a 0 0 0 P2c,2a

P1a,1b P1b 0 0 0
0 P1b,2a P2a 0 0
0 0 P2a,2b P2b 0
0 0 0 P2b,2c P2c


It seems more intuitive to model changes between states as a function of

the expected time (and variance) needed to change between different states,
rather than the probability of changing state at any time step. Using these,
one can consider different distributions for the times in each state, while the
time in a given state is an exponential random variable if all you can control
is the probability of changing state at any time step. The need to relax that
distributional constraint puts us into the realms of semi-Markov models (e.g.
Barbu and Limnios, 2008). These are related to Markov models but for which
the transition between states is not dependent on a fixed probability at every
time point. Instead, the time between transition events is governed by some
stochastic process which can have a variety of distributions.

Considering the latter transition matrix, we might instead consider a
matrix of times within each state:

T =


T1a 0 0 0 0
0 T1b 0 0 0
0 0 T2a 0 0
0 0 0 T2b 0
0 0 0 0 T2c


and so the animal remains in a state for a period of time governed by these
distributions, and then changes state using a transition matrix T similar to
the one we had before, but where now the probability of remaining in the
same state (given a state jump is about to happen) is 0, i.e., something like
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P =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


so that St = PSt−1 still holds.

In the above setting this makes no sense, but presumably the distribution
of time in the current state could depend on the previous state.

3.2.2 Individual animal movement

Movement in 2D (x, y) is often modeled as the outcome of displacement and
direction, given an initial location. Morales et al. (2004) used distributions
for step length and turning angles. These distributions were dependent on
the behavioral state, i.e., the parameter values might change for each state
(state at time t = zt). In Morales et al. (2004) the direction (turning angle
φ) usually comes from a circular distribution, like the wrapped cauchy:

f(φ|z, µz, ρz) =
1

2π

1− ρ2z
1 + ρ2z − 2ρzcos(φ− µz)

(2)

where µz represents the mean direction of movement, and ρz represents the
variance with respect to the mean, while displacement (d) is modeled con-
sidering an heavy tail Weibull distribution

f(d|z, az, bz) =
bz
az
{ s
az
}bz−1exp{−(

s

az
)bz} (3)

where az, bz > 0, 0 < φz < 2π (an angle) and 0 < ρ < 1 (a correlation).
Here we might do something similar, but in which the direction comes

from a spherical distribution. The displacement in the horizontal plane
x, y and displacement in depth z might be quite different, so we could con-
sider different simulation approaches to move from lt = (xt, yt, zt) to lt+1 =
(xt+1, yt+1, zt+1). As examples one might:

• sample to deal with the displacement in x, y only, using models like
those of Morales et al. (2004), and then sample a change in depth from
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a suitable distribution (say a gamma)6, or

• sample a 3D direction from a spherical distribution (or in practice a
circular distribution for “longitude” and a suitable distribution (say a
re-scaled beta) for “latitude”) and then sample (from say a Gamma or
Weibull) either:

– the displacement in 3D

∆(x, y, z) =
√

(xt+1 − xt)2 + (yt+1 − yt)2 + (zt+1 − zt)2

– displacement in 2D

∆(x, y) =
√

(xt+1 − xt)2 + (yt+1 − yt)2

– change in depth
∆(z) = (zt+1 − zt)

The angular central Gaussian distribution might be a suitable candidate
for the 3D direction, although it has symmetry assumptions which might not
hold here (see e.g. Tyler, 1987, for details).

3.2.3 Group movement

As stated above, a key issue relates to the fact that the DTAG data available
gives us a reasonable handle on individual animal movement, but not on the
correlation between the movement of animals in the same group over time.

In Marques and Thomas (2008a) we considered two random walks, one for
the center of the group (with some variance σg), the other for the individual
animals given its location with respect to the center of the group (with some
variance σi � σg), but really one might want some attraction/repulsion
effect rather than random walk movement. As an example, one might start
a dive close to the position defining the center of the group, be on a random
walk while in the descent and foraging phase, and then do the ascending in
a biased random walk, biased towards the center of the group. Structure
in the descent and foraging phases is also more likely than simple random

6But note that in fact the change in depth is likely correlated with displacement, in
the sense that a large displacement in x,y is likely associated with a small displacement in
depth, and vice versa.
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movement. Something that requires some thought is that the position of the
group (which is just an abstract construct, but probably useful for simulation)
changes over time, and so the attraction/repulsion behaviors would have to
be occurring towards points changing over time.

The formulation in McClintock et al. (2012), namely regarding the way
to parameterize biased random walks, might be useful here, as one might
imagine the center of the group as the “center of attraction” (using the word-
ing of McClintock et al. (2012)) in the end of a foraging period (2b), and the
“center of repulsion” at the beginning of the foraging period (2b), although as
stated above, these centers of attraction/repulsion might change over time.
This will mean that instead of having one potentially latent variable for the
location of the “center”, there might be as many latent variables as time
periods, which seems a complication to avoid. On the other hand that if
movement of the animals is independent of movement of the group one can
conceptually consider the movement of the animals with respect to the center
of the group as being referenced to a fixed center of a group, which is then
displaced according to the individual animal movement model.

3.3 Sound production and detection

Compared with the status of the knowledge about movement, individual
BBW sound production and sound detection, in particular at AUTEC, are
relatively well known. Regarding sound characteristics and sound production,
a number of references provide useful information:

• Johnson et al. (2004), showing that Z. cavirostris and M. densirostris
are highly vocal, producing high-frequency echolocation clicks above
the range of human hearing

• Madsen et al. (2005), which describe the way in which the clicks are
used for echolocation

• Zimmer et al. (2005), reporting “...source characteristics of Ziphius
echolocation clicks using the novel approach of two tagged whales record-
ing each other...” and “...the first estimates of the source level, directiv-
ity index, and spectral properties of Ziphius clicks, which are shown to
differ significantly from those produced by non-ziphiid toothed whales
described so far, suggesting a strong potential for passive acoustic mon-
itoring...”
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• Johnson et al. (2006) look at characteristics of Mesoplodon clicks, re-
porting that “...Blainville’s beaked whales produce two distinct click
types associated with different phases of echolocation-mediated forag-
ing”, and that“the unusual properties of FM search clicks may facilitate
passive acoustic detection of Mesoplodon...”.

• Tyack et al. (2006a) deals with “Acoustic behavior of beaked whales,
with implications for acoustic monitoring”, a self explanatory name.

Regarding click detection, there have been a number of references char-
acterizing this process:

• Zimmer et al. (2008) looks at dive detection, building on individual
click detection. The setting is not AUTEC, dealing with detections
at hydrophones close to the surface in an environment noisier than
AUTEC;

• in the process of estimating whale density, Marques et al. (2009) esti-
mated the probability of detecting BBW clicks at AUTEC hydrophones
as a function of distance (and off axis angles), using sounds produced
at known locations (via DTAG’s) and subsequently detected or not at
surrounding hydrophones to estimate a detection function via a GAM
based logistic regression approach;

• Kusel et al. (2011) considered a single hydrophone and sound propaga-
tion models to estimate the same detection function. Some differences
exist between these two and this later reference presents possible ex-
planations for this.
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1 Introduction

This document contains the analysis of the data from the whale md07 248b,
with the end game being obtaining the best possible track reconstruction
from all the available information.

Another objective of this exercise is to explore and get familiar with all
the data sets that correspond to a single whale, namely

• the click time data

• the prh data

• the tag-on data (time and location)

• the TDOA interpolation locations 1

• the georeferenced track locations

Additional details about the data sets are presented in section 2. We then
proceed with an exploratory data analysis (section 3), which has a dedica-
ted subsection to look at the distributions of different relevant variables in
the different behavioral modes (see Marques and Thomas (2012a) for details
about these behavioral modes).

Once that is accomplished, we will try to recreate what was done before
by others, namely Jessica Ward, Charlie White and Mark Johnson, in terms
of estimating pseudo-tracks (section 4).

Finally, we will address the georeferencing stage, by developing and fit
a simple state space model to this data to obtain a track in an alternative
framework (section 5).

We wrap up in section 6 by listing a number of possible extensions to the
work presented.

The document Marques and Thomas (2012b) constitutes mandatory re-
ading to fully understand what is being implemented here, and includes de-
tailed descriptions of:

• the movement model considered and the state space model formulation
used;

1Note that here we could go one step before and work directly with the times of arrival
(TOA), then building a likelihood for the location of the animal given the TOA’s

2
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• the Kalman Filter code that was developed by MJ and which we leve-
rage extensively here;

• the existing procedure to georreference tracks prior to this effort.

2 Data details

A number of data sets need to be combined and cross-referenced. These
include:

• Md248b Dive2 xygeoref.mat, Md248b Dive3 xygeoref.mat and Md248b Dive4 xygeoref.mat :
georeferenced locations. These were exported as txt and then read into
R. Note that I also had georreferenced locations used in Marques et al.
(2009), and I exported these from workspace gxestimate2.RData to use
here, as files geomd248b2.txt, geomd248b3.txt, geomd248b4.txt.

• Md248b Dive2 localize interp.mat, Md248b Dive3 localize interp.mat and
Md248b Dive4 localize interp.mat : localization files based on TDOA
analysis.

• Md248btagonXY: the location at which the tag started recording. This
matches up with the first record in the prh files

• md07 248b click data.txt: times of each click produced by the tagged
whale

• md07 248bprh.mat: these files contain 4 columns2, pitch heading roll
and depth files sampled at 5 Hz. I also have a separate old md07 248b click data.txt
which has data at a 1 Hz.

• HYDtable.txt - relevant hydrophone information

Note some of these might not be currently used, and so they can either
be in this report subfolder “datfiles”or in a separate mother folder “georrefe-
rencing DTAG tracks”.

2 Actually more, including accelerometer and magnetometer data, but we ignore these
here

3
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3 Exploratory Data analysis

All relevant data files were initially read into R. We begin by reading in the
hydrophone data.

The click times and positional prh data (1 Hz) were stored in objects
cli248b and sec248b, respectively.

> cli248b<-read.table("datfiles/md07_248b_click_data.txt")

> sec248b<-read.table("datfiles/md07_248b_sec_data.txt")

> #note this code chunk is not evaluated to speed up report generation

> #adding apropriate headings

> names(cli248b)<-c("cli","z","h","p")

> names(sec248b)<-c("sec","z","h","p")

To get a first feel for the data we plotted the dive profiles (with click
events), the heading and pitch through time (Figure 1). The first thing
worth noting is that the sound data is not as long as the positional data 3,
which covers more dives than the sound data. This is clear from the presence
of deep dives for which click events are not available. For md248b, while we
have click data for 4 dives there are 5 full deep dives with positional data.
Note that for some reason only dives 2 to 4 where georeferenced.

There was also some positional prh data available at a finer sampling
scale (5 Hz), which was separately read in and stored in object md07_248b.
Note however that this file includes more data than what was present in the
previous files. From the previous file, we know that the tag only worked for
about 63396 seconds, and so we remove from these data sets all records after
that time point. I seem to remember that Jessica Ward told me that there
were issues with the data after that period.

We can obtain the geo-referenced files as were used in the Marques et al.
(2009). Additionally, we can use the geo-referenced files sent by JW. Note in
particular that for whale mdd07 248b the first dive was not used in Marques
et al. (2009), because the raw sound files were not available. Nonetheless, JW
sent us a geo-referenced file for that dive based on FFT archived detections.

We can take a look at the location of the hydrophones within the AUTEC
range as well as the location of the tracks for our whale (Figure 3).

3 Presumably due to lack of memory on the DTag

4
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3.1 Characterizing distributions within states

We consider here the states described in Marques and Thomas (2012a), i.e.

1. At the surface

a resting

b performing shallow dives

2. Deep diving

a silent descent

b vocal

i descent-vocal

ii foraging

iii ascent-vocal

c silent ascent

Note that, for simulation, it is not simple to define changes in sub-states
within state 2b.

Further we currently lump states 1a and 1b, just because there seems to
be little gain in not doing so, and doing so would in fact require we manage
to divide them based on the current data, which is not that simple.

Here we would like to look at the distribution of relevant variables (and
their diferences, i.e. displacements), namely 2D and 3D displacement, depth,
pitch, heading, as a function of the state the animal is in. However, we do not
have direct access to those related to x, y coordinates outside of the periods
for which the animals was geo-referenced, i.e., outside the clicking periods.

First, we begin by defining the exact second each one the phases begins
(and ends). This information is depicted visually in figure 5. We can then
use that information to plot depth, heading and pitch as a function of the
phase of the dive (Figure 6). We can clearly see that the deepest locations are
recorded during phase 2b, and the shallowest in phase 1, a direct consequence
of the way one distinguishes the phases of a dive. As expected, heading seems
to be the variable less dependent on the phase. And extreme pitch is clearly
associated with the descent and ascent phases, with mean pitch close to 0 in
the surface (stage 1) and foraging stages (stage 2b).

7
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Figura 4: The dive profile for whale 248b. Note the green dots represent the
start of a dive cycle, the red dots the end of a dive cycle, the blue dots the
arrival back at the surface after a deep dive, and the green dashed vertical
lines represent the first and last click in each dive (i.e. the start and end of
phase 2b).

Unfortunately, at this stage, we do not have “reliable”data on x, y coor-
dinates when the animal is not on the foraging (i.e. vocal) phase 2b. But
nonetheless we can try to look at the coordinates from the dead-reckoning
track, to see if that contains useful information.

We can look at histograms of the information about horizontal displace-
ment and displacement in depth (Figures 8 and 9). Modeling these distri-
butions, coupled with a uniform distribution for heading, might allow the
simulation of dives. However, the problem is that these plots completely
ignore potential temporal correlation in the data, which is actually severe,
as can be seen from the next plots, showing the temporal autocorrelation in
these variables as a function of dive phase (Figure 10). Note in particular
that for heading, while a uniform might be adequate, there is also strong
temporal autocorrelation (Figure 11), and hence sampling independent va-
lues from a uniform would lead to totaly unrealistic simulated dives. Note
that clearly these 4 dives from a single whale do not contain the amount
of information one might expect, as the expected uniform distribution of
headings, irrespectively of the dive phase, is not really observed here.

8

Page 89 of 466Version with appendices



500 1500 2500 3500

−
10

00
−

60
0

−
20

0

Index

−
z

● ●
●●

8000 10000 12000

−
10

00
−

60
0

−
20

0
Index

−
z

● ●
●● ●

26000 27000 28000 29000

−
10

00
−

60
0

−
20

0

Index

−
z

●
● ●

39000 41000

−
10

00
−

60
0

−
20

0

Index

−
z

●
●● ●

Figura 5: Individual deep dives profiles. Note the green dots represent the
start of a dive cycle, the red dots the end of a dive cycle, the blue dots the
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Figura 6: The distribution of depth, heading and pitch as a function of the
phase of the dive.
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Figura 7: The distribution of 2D displacement as a function of the phase of
the dive.

4 Dead-reckoning

Here we present two attempts at dead-reckoning the whale track. In section
4.1 we consider a quick-and- dirty approach, based on a single average speed,
obtained from the initial section of the tagging period. Then in section 4.2
we build on that using a state space model fitted using a Kalman filter to
estimate a vector of whale speeds using depth and pitch recorded from the
DTag, and then use these speed estimates in a similar way to that presented
in section 4.1 to predict the whale position over time.

4.1 Dead-reckoning using a naive speed estimate

We can calculate a mean (horizontal) velocity by dividing the distance between
the tag-on position and the first click location by the elapsed time interval.
This leads to an average speed of 3.61 km per hour. This can be used with
the information in the prh file, coupled with the tag on location, to estimate
the animal track via dead-reckoning.

The dead-reckoning track is shown in figure 12. It seems like the speed
of the whale in the x, y plane was considerably overestimated, as in this
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Figura 8: Histograms of 2D displacement as a function of the phase of the
dive.
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dive.
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Figura 10: Autocorrelation functions for depth and horizontal displacement
as a function of dive phase.
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track (black line, green while deep diving below 300m) the whale shoots
off the range before reaching the third deep dive. Nonetheless, the overall
shape of the first two dives look reasonable, even if weirdly enough the whale
apparently moves north instead of south after the first deep dive. One must
remember that the velocity on the x, y plane, the one used for dead-reckoning,
from the initial period, where it is likely that the animal is moving (much)
faster in x, y plane than when it is coming up in its ascent phase, hence the
ascent phase actually presents a much lesser displacement in x, y than what
is ”inferred”from the dead-reckoning.

On the bottom plot of figure 12 we can see that the initial speed is pro-
bably underestimated. This would be expected, given we obtained the above
speed by using the initial part of the track, so after dividing it by 5, it is bound
to underestimate the speed in that part of the track. On the other hand, the
speed in several points after the first dive is probably still overestimated.

This poor performance leads naturally to the need to obtain a better
vector of speed estimates to improve track prediction.

4.2 Dead-reckoning using Kalman filter speed estima-
tes

So now we are going to try to use Mark Johnson’s (MJ) code to obtain whale
speeds via the Kalman Filter in order to implement dead-reckoning using
better estimates of whale speed.

4.2.1 Using MJ code

We consider here the use of MJ MATLAB code, namely the function kal-
manspeedest.m. To implement the Kalman filter 4 we used the code below
in MATLAB on top of the data set “md07 248bprh.mat”,

[speed fits] = kalmanspeedest(p,pitch,fs)

followed by code to export the vector of speeds as a txt
save('md07_248bspeed.txt', 'speed', '-ascii', '-double', '-tabs')

which is then read back into R.
4Something which I am failing to understand is that from what I can tell the code

should not produce estimated negative speeds, and yet it currently does so. This gives me
the opposite of a warm fuzzy feeling...
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Figura 12: The location of the georreferenced clicks for each of the first 4
dives of whale md07 248b (in blue). The numbers 1,2,3,4 represent the first
click of the 1st,2nd,3rd, and 4th dive respectively, and in black and green,
the locations obtained by dead-reckoning of the prh file combined with an
average speed for the whale (green portions of the track correspond to times
at which depth was below 300 m, i.e. deep dives). The average speed on the
top plot was derived by the animal speed between the tag on location and
the first localized click, while on the bottom plot that value was divided by
5.
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We can see that using this KF estimated vector of speeds we end up with
a track much closer to the geo-referenced locations (cf. Figure 13 with figure
12), as should be expected given this was the procedure that JW/MJ have
used to get those.

The original results obtained by MJ are presented in figure 15. We can
zoom in each dive to compare it better with these (Figure 14). Note here
he use the exact times to define what is the georreferenced bit of the track,
rather than the portion of the dive below 300 m as was the case in (Figure
13). The pseudo-track dives look about the same as the georreferenced dives,
just in the wrong absolute position, which is not unexpected due to drift
errors. If one compares our results with those from MJ, it is interesting to
note that while the third dive is placed to the NW of the true location by
MJ, it is placed to the SW by us, and then for the fourth dive it is even
further North to MJ than for us.

So the inconsistencies between ours and JW/MJ results might be due
to differences between now and when they implemented this, namely at the
level of:

1. the data: the data might have been updated/corrected since it was
used by MJ/JW;

2. the actual code: the code might have suffered minor tweaks since it
was used by MJ/JW;

3. code parameters: there are a number of tweaking parameters which
might have been responsible for the differences which are still present
between our results and those obtained by MJ, including the measure-
ment error variance (which is taken as given in MJ code) as well as the
state process variances (again, assumed fixed rather than estimated).
From the original MJ code it seems clear that some manual fine tuning
of these happened.

It is worth noting in particular that for us the first dive seems to cover a
longer distance in the geo-referenced file (the blue line in figure’s 14 top left
panel) compared to the portion of the pseudo-track that would correspond
to that period (the green line in figure’s 14 top left panel). It is unclear at
this point what this might mean, but it should not be an error in timing,
because otherwise such pattern would propagate through to the subsequent
dives, which apparently it does not.
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It would be great if we managed to implement the Kalman filter in R,
because that would avoid the going back and forth between MATLAB and R,
and would allow for a quick assessment of how changing parameters might
affect the track estimation process. This will be the subject of the next
section.

4.2.2 Migrating MJ code to R

In this section we try to implement the fitting of the Kalman filter di-
rectly in R. The pitch and depth data required as inputs are in objects
“md07 248bpitch”and“md07 248bdepth”, respectively. These contain 316980
records each, corresponding to a 5 Hz sampling scheme. We can use the same
tag on position as used in the previous section, i.e. x=7475.6 and y=-6630.1.

Function kalmanspeedest.m was converted into the function Kalman.Filter:

> #%implementing MJ Kalman Filter in R

>

> Kalman.Filter=function(z,phi,sf,r=0.001,q1p=0.02,q2p=0.08){

+ #this function was implemented by Tiago A. Marques on the

+ #01-06-20012 to mimic function kalmanspeedest.m

+ # tiago@mcs.st-and.ac.uk

+ #-------------------------------------------------------

+ #-------------------------------------------------------

+ # kalmanspeedest.m originally developed in MATLAB by Mark Johnson (MJ)

+ # kalmanspeedest.m preamble reproduced here

+ #-------------------------------------------------------

+ # % Estimate the swim speed of a whale with given depth profile, p, in m, and

+ # % pitch in radians, sampled at rate fs, Hz. Process is a 2-state Kalman

+ # % filter estimating speed and depth, followed by a Rauch smoother.

+ # % Output:

+ # % s is the swim speed estimate in m/s

+ # % fit is a structure of results including:

+ # % fit.ks = kalman filtered speed

+ # % fit.kd = kalman depth estimate

+ # % fit.rd = rauch depth estimate

+ # % fit.kp = kalman a posteriori state covariance (2x2xn)

+ # %

+ # % mark johnson, WHOI
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+ # % majohnson@whoi.edu

+ # % November 2004

+ #-------------------------------------------------------

+ #-------------------------------------------------------

+ # The underlying state space model being fiited t the data is described in

+ # "Estimating speed using the Kalman filter... and beyond", equations 5 and 6

+ # a LATTE internal report available from TAM

+ #-------------------------------------------------------

+ #-------------------------------------------------------

+ #inputs:

+ # z (was p in MJ code) is a vector of depths

+ # phi (was pitch in MJ code) is a vector of pitchs

+ # sf (was fs in MJ code) is the sampling frequency, in Hz

+ #-------------------------------------------------------

+ #-------------------------------------------------------

+ #number of times each observation was observed

+ n=length(z)

+ #defining some required quantities

+ #note currently these are constants

+ #measument error in depth

+ r = r

+ #state error in speed

+ q1 = (q1p/sf)^2

+ #state error in depth

+ q2 = (q2p/sf)^2

+ #sampling period

+ SP = 1/sf

+ #state transition matrix entry (2,1) - see equation 6

+ a = -sin(phi)/sf

+ #initial states, pitch = 1, and depth = initial observed depth

+ #TAM?: why start pitch at 1? why the different "conceptual" choice

+ # for pitch and depth?

+ shatm=matrix(c(1,z[1]),2,1)

+ # state noise matrix

+ Q=matrix(c(q1,0,0,q2),2,2,byrow=T)

+ #observation matrix (a vector here)

+ H=matrix(c(0,1),1,2)

+ # initial state covariance matrix

20

Page 101 of 466Version with appendices



+ # says how much we trust initial values of s and p?

+ Pm=matrix(c(0.01,0,0,r),2,2,byrow=T)

+ # place to store state predictions

+ skal = matrix(0,nrow=2,ncol=n)

+ # object for storing the kalman a posteriori state covariance (2x2xn)

+ Ps = array(data = 0, dim = c(2,2,n))

+ #TAM?: WHAT IS THIS OBJECT ???

+ Pms=Ps

+ #implementing the kalman Filter

+ for (i in 1:n){

+ # make state transition matrix

+ Ak=matrix(c(1,0,a[i],1),2,2,byrow=T)

+ #after the initial state only

+ #(hence this bit is ONLY not evaluated for the inital state)

+ if (i>1) {

+ # update a priori state cov

+ Pm = Ak%*%P%*%t(Ak) + Q

+ #a priori state estimate

+ shatm = Ak%*%shat

+ }

+ # compute kalman gain

+ K = Pm%*%t(H)%*%solve(H%*%Pm%*%t(H)+r)

+ # a posteriori state estimates

+ shat = shatm + K%*%(z[i]-H%*%shatm)

+ # forcing speed and depth always to be positive

+ #TAM?: must be a smarter way to do this ????

+ shat = ifelse(shat<0,0,shat)

+ # a posteriori state cov

+ P = (diag(2)-K%*%H)%*%Pm ;

+ #store results of iteration

+ skal[,i] = shat

+ Pms[,,i] = Pm

+ Ps[,,i] = P

+ }

+ #object to hold the states smoothed by the Rauch smoother

+ srau = matrix(0,nrow=2,ncol=n)

+ #the last time point does not require any smoothing, it's the point itself

+ srau[,n] = shat
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+ # Kalman/Rauch smoother

+ for (i in n:2){

+ # make state transition matrix

+ Ak=matrix(c(1,0,a[i-1],1),2,2,byrow=T)

+ # smoother gain

+ K=Ps[,,i-1]%*%t(Ak)%*%solve(Pms[,,i])

+ # smooth state

+ srau[,i-1] = skal[,i-1]+K%*%(srau[,i]-Ak%*%skal[,i-1])

+ }

+ #returning:

+ #a list containing

+ # speeds : the smoothed speeds

+ # fit.ks : the fitted speeds

+ # fit.kd : the fitted depths

+ # fit.rd : the smoothed depths

+ # fit.kp : the kalman a posteriori state covariance

+ return(list(speeds=srau[1,],fit.ks=skal[1,],fit.kd = skal[2,],fit.rd = srau[2,],fit.kp=Ps))

+ }

We can give it a test, by redoing the analysis as implemented in MATLAB:
This is presented in figure 16. Note this is exactly the same as figure

13, as would be expected5 given that implementing this in MATLAB and R
should be the same thing.

Small changes to the values of input parameters leads to minor changes
in the obtained track. As an example, we change the measurement error in
depth from 0.001 to 0.01 below, and also change the state noise variances,
and plot the 3 sets of tracks on top of each other (Figure 17).

So finally, we have been able to migrate Mark Johnson’s Kalman Filter
code to R, and we can now think about ways to improve the simulated
annealing component of the process to georeferencing dives.

4.3 Including latitude and longitude as states

The key diference now is that we are going to include latitude (x) and lon-
gitude (y) as states in the SMM, therefore leading to an integrated proce-
dure rather than a plug-in approach (i.e. a speed estimate plugged into a

5It provides the kind of warm fuzzy feeling that one always aims for in these situations!
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dead-reckoning algorithm). Amongst other things, this provides in a straight-
forward manner error bounds on the predictions of localization.

The results of the fitting can be seen in figure 18. As expected, the depth
profile is very well estimated (remember we actually observe depth, and with
relatively small error). It is interesting to see the increasing variance in x, y,
illustrating how drift errors add up over time.

One can take a closer look at the estimated speeds (Figure 19). It can
be seen that the CV on the speed estimates sometimes “explodes”, especially
when the animal is at the surface, which reflects that it is easier to estimate
speed at the deepest parts of the deep dives. Note also the effect of the ad
hoc rule to keep filtered speeds (and depths, not shown) strictly positive, and
how smoothed speeds sometimes (but not often) get negative. The current
implementations is not elegant nor theoretically justifiable, but seems to do
the job. But I wonder what else might we try to enforce this in a way that
essentially does not mean all the nice theoretical properties of the Kalman
Filter are gone to waste.

We implemented another version of the KF in which neither depth nor
speed were constrained (cf. green and black lines with blue and red lines in
top left plot of figure 20).

We can use the variance-covariance matrix on the estimated states to
construct 95% confidence ellipsoids for the location of the whale in space
(Figure 21. We can easily see that the predictions drift away and quite fast
they are completely in the wrong place (cf. green and black lines with blue
lines).

Another quick attempt was made to evaluate the impact of increasing the
measurement error in the depth observations.

Naturally, if one compares these (Figure 23) with the previous predictions
(cf. Figure 21), we have more error in the predictions, but that is still far
from being enough to overlap with the true known locations.

The above results of KF implementations suggest that we include in the
process the available observations about animal location from the acoustic
localizations on the AUTEC hydrophones. We do that in the next section.

5 Georeferentiation of dives

The key diference now is that we are going to include some observations about
x, y location in the SSM formulation. This means we are now considering
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a state space model along the lines of equations 7 and 8/9 in Marques and
Thomas (2012b). So now we have the same 4 states, but every now and then,
on top of a depth observation, we also have an x, y observation.

To do this, we create a new function to implement the Kalman Filter
under this context. In essence, this just means that when we have an obser-
vation from a state, we predict and update, but if there is no observation, we
just predict, but do not update the unobserved state components.

In order to do so, the first thing we must do is to be able to associate
with the prh file the corresponding x, y locations6. This requires some careful
thinking because of the way the different files are time indexed. We begin by
binding all the georeferenced information in a single object

We begin by testing the new function a couple of times. Once we include
the localizations, the results look just as one might expect (Figure 24), with
the predictions bang on the localizations when we have them.

We can take a look at predictions from this latest formulation (Figure 25).
As expected, we see that the variance in x, y vanishes every time we actually
have x, y observations. Additionally, as might be expected, the variance in
the other state predictions also decreases.

The next step in this process is an obvious one, and corresponds to inclu-
ding the pitch and heading as states. At the moment these are being taken
as covariates observed without error, which despite practical, is inconsistent
with the current implemented SSM framework.

6 Improving the entire process

We have now obtained a new state space model that allows us to estimate
the animal position as well as to quantify the uncertainty in the position
estimates. This material was the bulk of what was presented at ISEC 2012.
Nonetheless, there are still a number of possible improvements and potential
work ahead:

6A heads up: as implemented for the ISEC 2012 talk, the data used as localizations
was the data after georeferencing, rather than the data coming out of the interpolation
of TDOA’s. This needs to be looked into, as it’s totally circular, although of expected
little practical consequences, as the localizations and the georeferencing are supposedly
close enough. Additionally, only around 27000 locations, rather than 41230 were being
used, due to an error in the code. Similarly, now corrected and of negligible practical
consequences
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• improve current mechanistic model, which is clearly not adequate (very
biased outcome in the absence of acoustic localizations); e.g. water
current (velocity and direction) might need to be accounted for

• improve ad hoc (and previously unmentioned) procedure to keep speed
and depth estimates admissible (i.e. speed positive, depth below sur-
face)

• look into the interpolating TDOA’s algorithm to quantify measurement
error in the (x, y) observation process

• include pitch and heading as states; extend to non-linear, possibly non-
Gaussian, model

• and then look into the orientation algorithm to quantify measurement
error in the observation process of pitch and heading
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Figura 13: The location of the georreferenced clicks for each of the first 4
dives of whale md07 248b (in blue). The numbers 1,2,3,4 represent the first
click of the 1st,2nd,3rd, and 4th dive respectively, and in black and green, the
locations obtained by dead-reckoning of the prh file combined with a vector
of speeds obtained via MJ Kalman Filter for the whale (green portions of the
track correspond to times at which depth was below 300 m, i.e. deep dives).
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Figura 14: The location of the georreferenced clicks for each of the first 4
dives of whale md07 248b (in blue), with one dive per plot. The numbers
1,2,3,4 represent the first click of the 1st,2nd,3rd, and 4th dive respectively,
and in black and green, the locations obtained by dead-reckoning of the prh
file combined with a vector of speeds obtained via MJ Kalman Filter for the
whale (green portions of the track correspond to times for which deep dives
were georeferentiated).
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Figura 15: The same information as in figure 14, but as obtained directly by
MJ. This was sent to us by JW.
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Figura 16: The location of the georreferenced clicks for each of the first 4
dives of whale md07 248b (in blue). The numbers 1,2,3,4 represent the first
click of the 1st,2nd,3rd, and 4th dive respectively, and in black and green, the
locations obtained by dead-reckoning of the prh file combined with a vector
of speeds obtained via MJ Kalman Filter for the whale (green portions of the
track correspond to times at which depth was below 300 m, i.e. deep dives),
both directly in MATLAB and via our R implementation.
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Figura 17: The location of the georreferenced clicks for each of the first 4
dives of whale md07 248b (in blue). The numbers 1,2,3,4 represent the first
click of the 1st,2nd,3rd, and 4th dive respectively, and in black and green, the
locations obtained by dead-reckoning of the prh file combined with a vector
of speeds obtained via MJ Kalman Filter for the whale (green portions of the
track correspond to times at which depth was below 300 m, i.e. deep dives),
using 3 sets of slightly different input parameters.
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Figura 18: Results of fitting the SSM with 4 states and 1 observation to
the data. Top row: estimates. Bottom row: corresponding variances. Left:
Depth; Center: speed; Right: x, y coordinates.
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Figura 19: Additional results regarding the speeds. Top: speed CV. Center:
histogram of fitted speeds. Bottom: histogram of smoothed speeds.
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Figura 20: Results of fitting the SSM with 4 states and 1 observation to
the data, but with no constraints in depth and speed. Top row: estimates.
Bottom row: corresponding variances. Left: Depth; Center: speed; Right:
x, y coordinates. The third top plot shows but constrained and unconstrained
track, and one can see the diferences are minor.
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Figura 21: Track prediction and associated 95% confidence ellipsoids.
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Figura 22: Results of fitting the SSM with 4 states and 1 observation to the
data

”
but increasing the amount of error allowable in the depth observations.

Top row: estimates. Bottom row: corresponding variances. Left: Depth;
Center: speed; Right: x, y coordinates. The third top plot shows original
and added error track, and one can see the diferences are minor, but there is
drifting with time.
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Figura 24: Track prediction before using x, y observations (left) and after
using x, y observations. Note the predicted smoothed track is bang on the
known localizations.
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Figura 25: Results of fitting the SSM with 4 states and 3 observations to
the data. Top row: estimates. Bottom row: corresponding variances. Left:
Depth; Center: speed; Right: x, y coordinates.
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LATTE

This work is developed within LATTE - Linking Acoustic Tests and
Tagging using statistical Estimation: Modeling the Behavior of
Beaked Whales in Response to Medium Frequency Active Sonar.
LATTE’s end game:

1. develop movement models which integrate information at
multiple scales (DTAG data, AUTEC hydrophone data,
satellite tags)

2. fit models to baseline data from periods when sonar activity is
absent

3. fit models to periods when sonar is actively being used

4. compare parameter estimates from 2 and 3 to infer behavioral
changes
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DTAGs

DTAG’s (Johnson & Tyack 2003) are digital recording tags used on
marine mammals:

I The tag contains a large array of solid-state memory and
records continuously from a built-in hydrophone and suite of
sensors;

I The sensors sample the orientation of the animal in three
dimensions with sufficient speed and resolution to capture
individual fluke strokes;

I Orientation is deduced from the three-axis accelerometer and
magnetometer signals and is expressed in terms of pitch, roll,
and heading (PRH);

I the DTAG was NOT meant to be used to estimate a whale
track from it!

Marques et al Whale tracks in 3D using SSMs

Page 123 of 466Version with appendices



Talk Overview
Introduction

Proposed Model
First results

Discussion and Open Questions
Thanks and References

Example DTAG data: pitch roll and heading (PRH)

1 whale, 5 deep dives, around 18 hours, sampled 5 times per
second: a multivariate time series with over 300000 time points
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Existing procedure to estimate track from DTAG data

1. calculate 3D orientation (PRH) from three-axis accelerometer and
magnetometer signals

2. estimate whale speed using a bivariate state space model with speed and
depth as states and (noisy) depth observations (pitch assumed a known
covariate)

3. use this speed estimate, jointly with tag-on position, pitch and heading in
a dead-reckoning procedure to produce a “pseudo-track”

4. use the DTAG sound file to identify clicks produced by tagged whale

5. cross correlate these clicks with AUTEC hydrophones to find clicks time
difference of arrival (TDOA) pairs

6. interpolate TDOA lines to get multiple TDOA’s for each click

7. use multiple TDOA’s to localize click (hence whale) in 3D space

8. join output of step 7 with that of step 3 to arrive at a “georeferenced”
track, via a simulated annealing procedure
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State space models

A simple state-space model (SSM) can be thought of a couple of
equations, describing two “parallel” time series, the state and the
observation processes. The states are the underlying true
quantities we often want to make inferences about, while the
observations are some observable quantities which can be related
to the states by some known process:

ot = Ftθt + υt , υt _ N(0,Vt)

θt = Gtθt−1 + ωt , ωt _ N(0,Wt)

where θt represents the state in time t and vector ot represents the
observations at time t, and Vt and Wt represent respectively the
observations and states variance-covariance matrices.
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Kalman Filter: a useful tool to fit linear state space models

Initialize the Kalman filter and then, at each filtering iteration:

I prediction stage

I uses the mechanistic movement model (state equations) to
predict what the next value of the state(s) ought to be

I update stage

I compares predicted state(s) value(s) with observed value(s)
I predicts filtered value as a weighted version of what it ought to

be and what it was observed to be
I weight known as Kalman gain, a compromise between how

much faith we have in the model, and how much error we have
in the observation process

A useful by-product is the variance-covariance matrix describing the uncertainty
around the state estimates. After filtering, we go backwards in time, smoothing
the estimates, obtaining the best estimate for each time point given all the
data available.

Marques et al Whale tracks in 3D using SSMs

Page 127 of 466Version with appendices



Talk Overview
Introduction

Proposed Model
First results

Discussion and Open Questions
Thanks and References

Our initial approach

Consider a SSM to integrate1 the dead-reckoning (predicting x ,y)
stage with the speed (s) estimation using noisy depth (z)
observations2


st
zt
xt
yt

 =


1 0 0 0

− sin(φt−1)∆T 1 0 0
∆T cos(φt−1) sin(ψt−1) 0 1 0
∆T cos(φt−1) cos(ψt−1) 0 0 1




st−1

zt−1

xt−1

yt−1

+


ωst

ωzt

ωxt

ωyt



ozt = [0 1 0 0]


st
zt
xt
yt

 + vzt

1i.e. integrate steps 2 and 3
2note also the use of heading (ψ) and pitch (φ) as known covariates
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Our current approach

Integrate3 the dead-reckoning, the speed estimation, and the
information from acoustic localizations4 within the SSM

st
zt
xt
yt

 =


1 0 0 0

− sin(φt−1)∆T 1 0 0
∆T cos(φt−1) sin(ψt−1) 0 1 0
∆T cos(φt−1) cos(ψt−1) 0 0 1




st−1

zt−1

xt−1

yt−1

+


ωst

ωzt

ωxt

ωyt


 ozt

oxt
oyt

 =

 0 1 0 0
0 0 1 0
0 0 0 1




st
zt
xt
yt

 +

 vzt
vxt
vyt


3i.e. integrate steps 2, 3 and 8
4but note now we often have missing values in oxt and oyt .
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Predicting animal location - initial approach I
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Predicting animal location - initial approach II
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Predicting animal location - current approach

6000 8000 12000 16000

−1
00

00
−8

00
0

−6
00

0
−4

00
0

−2
00

0
0

20
00

Initial approach

Easting

N
or

th
in

g

48
51

52

53

54

55

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

80

81

82

●

6000 8000 12000 16000

−1
00

00
−8

00
0

−6
00

0
−4

00
0

−2
00

0
0

20
00

Current approach

Easting

N
or

th
in

g

51

52

53

56

57

58

59

6064

65

66

67

68
72

73

74

75

76
80

81

82

●

Marques et al Whale tracks in 3D using SSMs

Page 132 of 466Version with appendices



Talk Overview
Introduction

Proposed Model
First results

Discussion and Open Questions
Thanks and References

Existing procedure to estimate track from DTAG data

1. calculate 3D orientation (PRH) from three-axis accelerometer and
magnetometer signals

2. estimate whale speed using a 4-variate SSM with speed, depth, x and y
as states and (noisy) depth and ocasional x,y observations (pitch and
heading still assumed as known covariates)

3. use this speed estimate, jointly with tag-on position, pitch and heading in
a dead-reckoning procedure embedded in the SSM to produce a
“pseudo-track”

4. use the DTAG sound file to identify clicks produced by tagged whale

5. cross correlate these clicks with AUTEC hydrophones to find clicks time
difference of arrival (TDOA) pairs

6. interpolate TDOA lines to get multiple TDOA’s for each click

7. use multiple TDOA’s to localize click (hence whale) in 3D space

8. join output of step 7 with that of step 3 to arrive at a “georeferenced”
track
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Discussion

I integration of data seems possible and in particular provides error bounds
for 3D whale location prediction over time

I initial model is (as expected!) biased and likely underestimates variance

I information on localization is fundamental to tie down track to a
reasonable location

I improve current mechanistic model, which is clearly not adequate (very
biased outcome in the absence of acoustic localizations); e.g. water
current (velocity and direction) might need to be accounted for

I improve ad hoc (and previously unmentioned) procedure to keep speed
and depth estimates admissible (i.e. speed positive, depth below surface)
- any thoughts?

I look into the interpolating TDOA’s algorithm to quantify measurement
error in the x , y observation process
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Our future approach

I include pitch and heading as states
I extend this to non-linear, possibly non-Gaussian, model:

fancy, but still frightening!


st
zt
xt
yt
φt
ψt

 =


1 0 0 0 0 0

− sin(φt−1)∆T 1 0 0 0 0
∆T cos(φt−1) sin(ψt−1) 0 1 0 0 0
∆T cos(φt−1) cos(ψt−1) 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1




st−1
zt−1
xt−1
yt−1
φt−1
ψt−1

 +


ωst
ωzt
ωxt
ωyt
ωφt
ωψt



I look into the orientation algorithm to quantify measurement
error in the observation process of pitch and heading
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Thanks

I LATTE is funded by the US Office of Naval Research

I TAM partially funded by CEAUL

I I would like to thank Len Thomas, for not having fired me when he
should have had, hence allowing me to return to an ISEC! It feels
damn good to be here again.
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1 Preliminary note

This report was supposed to be about all that the introduction mentions it
should be. However, we hit a wall regarding the estimation of depth profile
model parameters based on DTag data, and therefore this report is essentially
halted while we try to understand what is going on.

2 Introduction

In this report we attempt to fit a multitude of hidden Markov models (and
extensions) to DTag data. The initial goal is to parameterize a model
from which we can simulate realistic movement tracks for individual beaked
whales.

This is a pre-requirement to a follow on objective not addressed here,
which includes incorporating external factors (e.g. depth, home range, sonar
exposure) in the movement model and adding the movement of whales within
a group.

This report constitutes a support document for another document which
describes the building blocks for setting up a simulation engine of beaked

2
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whales at AUTEC (Marques and Thomas, 2012a), which includes details
regarding the non-movement parts of said engine. A preliminary and dep-
recated report which might be relevant from an historical perspective to
understand this document is Marques et al. (2013), dating back from be-
fore Langrock et al. (2013) and containing thoughts about using HMM to
simulate dives.

We start by using the DTag data previously analysed in Marques and
Thomas (2012b) to obtain georreferenced tracks for whale Md248b.

The goal of this report is ambitious: to obtain, within AUTEC, a re-
alistic model to simulate beaked whale three dimensional dive tracks, both
for groups and individuals within groups. This can be subdivided into 6
successive objectives which follow a natural order:

1. build on material from Langrock et al. (2013) to “warm up” and to get
acquainted with the implementation of a fHsMM. This is also useful as
it might provide insights and initial parameter values for objective 3
below. Because we have the acoustic data for Md248b we can actually
use that data to evaluate when the whale was vocal, and hence to see
how reasonable was the state assignment from the Viterbi algorithm,
in particular regarding the 3rd behavioural state being interpreted as
a foraging state. Note also this ties in with a point raised recently by
McClintock et al. (2013) about the potential problems in identifying
behavioral states with partial information (in his case, just x, y vs x, y
combined with partial information on depth). Here the comparison
would be from using just depth profiles vs depth and acoustic data.

2. build on material from Langrock et al. (2012) to fit a model to the
whale’s 2D (x, y) data. Compare results with those obtained above,
especially also in terms of state assignment in view of the point raised
by McClintock et al. (2013).

3. build on the first two objectives output to fit a 3D model for movement,
at first assuming conditional independence given the state on horizontal
(i.e. in x, y) and depth (z) displacements.

4. build on the material in Langrock et al. (2014) to create a model for
the movement of animals in a group. Since we can only get feedback
from data when the animals are vocalizing, it seems adequate to do this

3
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only for the periods when the animals are vocal. This corresponds to
state 3 in the 7 behavioral states described in Langrock et al. (2013).

5. combine material from objectives 3 and 4 to get a way to simulate
complete 3D tracks for all animals within a group.

6. Ideally, all the above will then have to be somewhat constrained such
that the simulated movement also:

• respects obvious x, y (i.e. land) and z (i.e. bottom depth) bound-
aries

• preserves an existing density surface over a reasonable spatial and
temporal scale.

This report is divided in to a number of sections. Following a section
on the DTag data used, the above six objectives are addressed in turn in
separate sections below.

3 The DTag data

3.1 Reading data in

We begin by reading in the available DTag data, which corresponds to whale
Md248b, tagged at AUTEC in 2007. This whale DTag data has been anal-
ysed in detail in Marques and Thomas (2012b), and was the basis of the ISEC
2012 talk. Some of this data was taken directly from the R workspace used
to implement the georreferencing procedure, other corresponds to outputs
from that procedure.

We shortly describe the 3 objects read in:

• md07_248b - referenced to time since the tag-on event, a time indexed
data frame with 316980 rows. Sampling occurs at 5 Hz and includes
four variables: heading, pitch, roll and depth.

• cli248b - observed time, pitch, heading, roll and depth when each of
the 22869 clicks the whale was produced, in the first 4 dives (for the 5th
dive there was no longer an acoustic record - see Marques and Thomas
(2012b) for details)

4
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• testing.KF3.test1 - the output of a Kalman filter to georreference
the track building on independent localizations provided by AUTEC
hydrophones, as described in Marques and Thomas (2012b). We focus
here on the x, y estimated locations for each of the 316980 times in
md07 248b.

An additional data set corresponds to object interpxyz, which contains
the time indexed 3D localizations obtained from AUTEC’s TDOA data.

This data can be summarized in figure 1, where the horizontal displace-
ment and depth profiles are shown. Note we have data for 5 dives, but there
are only DTag acoustic records for the first 4 dives. Further, there are only
interpolation files for dives 2, 3 and 4. Dive 1 was harder to get georrefer-
enced because not enough AUTEC localizations could be obtained. However,
Jessica Shaffer did produce georreferenced files because the tag-on position
was available and drift from that was assumed negligible, so we also had a
georreferenced track based on said initial position.

3.2 Initial data processing

Because it might be interesting to compare the capability of the fHsMM used
in assigning states (see section 4.5 for details), especially the foraging state,
we also create a vocalization indicator variable (voc) inside md07_248b, such
that voc is 1 if there was a click in the 1 second vicinity of the current period,
and 0 otherwise1.

Additionally, given the feedback mechanism involved, we also need to
create a variable which represents the “time since the last deep dive”. As
defined in Langrock et al. (2013), this corresponds to “the time since the
whale last was more than 500 metres deep”.

Finally, as shown in the midle panel of figure 1, small scale measure-
ment error means that some depths very close to the surface are sometimes
registered as being above the water 2. This would not be a problem in gen-
eral, but because we are using a gamma random variable to model depth we

1Might a different variable be useful? As an example, could consider a voc2 such that
voc2 is 1 between all voc=1 previously defined within a deep dive. i.e., once vocal, the
animals will only be non vocal when switching to the ascent state. See figure 1 bottom
panel for details.

2Depth was never recorded to be more than 30cm above the sea level, which is reassuring
and consistent with small scale measurement error.

5
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Figure 1: DTag data. Top panel: two dimensional view of the DTag data
after georreferencing. Yellow represents locations from the interpolation
TDOAs. Midle panel: depth profile. Green dot represents the first avail-
able position. Small red dots represent depths above the surface (i.e. errors).
Red represents data below 400m depth. Bottom panel: the non vocal state
seconds are shown in black. See many of these occur during the vocal state.
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need a minor tweak of the data, with negligible consequences yet allowing
implementation of the gamma likelihood. Because the gamma cannot cope
with negative values (as the support of the gamma is strictly R+), we con-
vert all depths to their absolute value, therefore forcing depths to be below
the sea surface. Another perhaps more elegant alternative would be to con-
sider modelling a transformation of depth (e.g. exponential) such that when
transformed back to the original scale the response is necessarily positive.

4 One dimensional modelling of depth pro-

files

4.1 Model and data details

Langrock et al. (2013) presented a framework to model the depth profiles
of beaked whales using a feedback hidden semi Markov model (FHSMM).
The two extensions to the traditional HMM formulation were required for
different reasons:

• the feedback component was used to make transition probabilities de-
pend on the depth and time since specific events;

• the “semi”-Markovian component was used to allow non-geometric so-
journ times in some of the states, which would otherwise be necessarily
geometric due to the Markov model state transition formulation.

A gamma random variable was assumed for depth, with means and stan-
dard errors being conditional on one of 7 (hidden) behavioural states, which
a priori were considered to correspond to:

1. at the surface

2. descent phase of a deep dive

3. foraging

4. ascent phase of a deep dive

5. descent phase of a shallow dive

6. bottom phase of a shallow dive

7
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7. ascent phase of a shallow dive

A schematic representation of the model follows:

1

2

3

4

5

6

7
deep dive

shallow divep1,2 = f(tT4,1)

p1,1

1 − p1,2

f(zt)

1-f(zt)

1

NB(n, p)

1-f(zt)

f(zt)

p5,6
1-p5,6

p6,7

1-p6,7

1-f(zt)

f(zt)

It should be noted upfront that the gamma mean was parameterized in
such a way that the parameter to be estimated correspond to displacements
rather than depths themselves, i.e. in state k the depth at time t, zt, is
given by a gamma with mean µt = zt−1 − θk, so we estimate the depth
displacement rather than depth itself. Therefore, the parameter associated
with the mean depth, conditional on state, should be positive on a descent
state and negative in an ascent state, being approximately 0 in states for
which there is no overall depth change.

The full model as presented in Langrock et al. (2013) encompasses 27
parameters:

• 14 of which are associated with state dependent probabilities (one mean
and one standard deviation for each state)

• 13 are involved in transition probabilities, including those for the feed-
back and semi-Markovian components

Here we fit a similar model to data from Md248b. We overtly did not
look into model selection issues, including changing the number of series
terms used in the feedback mechanisms of some states. The input data
corresponds to depths obtained directly from the DTag.

8
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4.2 The code

A number of functions are required (and hence present in the underlying .Rnw
file that this report is build upon), and are essentially those presented in the
supplementary material to Langrock et al. (2013), upgraded with comments
and some minor changes. These include functions to implement:

• the transformation and back-transformation of parameters

• generation of matrices of transition probabilities

• the evaluation of the log-likelihood, mllk, given parameter values

• the log-likelihood maximization routine itself, mle, which calls within
it all the other functions

• a decoding function, viterbi, based on the Viterbi algorithm, which
is used to predict the most likely state-sequence given observations

4.3 Implementing the code

We present in this section results from a variety of fitting exercises. However
we leverage directly on analysis which have their own code and R workspaces
living in subfolders under this report’s folder “RunInOctopus”. There are a
couple of reasons why we proceed in this way:

1. this would be too much clutter to be all kept in the same .Rnw

2. these take so much time to run that they had to be run remotely in
other machines any way, namely flipper and octopus

Hence here we just use results from those remote runs.

4.3.1 Original run

For implementation we start by defining the initial values for the 27 param-
eters in our model. An initial state distribution is also required. We begin
by using for both of these sets of initial values those considered by Langrock
et al. (2013). The initial state distribution is currently hardwired in the code

9
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and as Langrock et al. (2013) we considered that the animal was certainly in
state 2 (descent on a deep dive) when the recording started3.

## initial parameter values used in the numerical maximization

#(several different sets of initial values should be tried

#in order to ensure hitting the global maximum)

theta0 <- c(-5,15,0,-8,4,0,-4)

sigma0 <- c(1,5,8,4,4,1,4)

omega0 <- c(0.93,0.97)

sm0 <- c(150,20)

zeta0 <- c(-0.4,0.03)

alpha0 <- c(-2,0.5,-0.03)

gamma0 <- c(0.5,-8)

beta0 <- c(-0.15,-0.2,0.05)

# size of the state aggregate in the HMM-based approximation of the model

#with semi-Markovian state 3 (needs to be sufficiently large,

#but not excessively large, as the HSMM component substantially

#increases the computational effort)

m <- 250

Finally, we can run the code to maximize the likelihood and obtain the
maximum likelihood parameter estimates.

#Note this would take tens of hours to run.

#Hence we rely on reading in data

#from other folders rather than using the code here.

#The original code is here for completeness

Sys.time()->s

# run numerical maximization of the likelihood

mle(dat4fhsmm,theta0,sigma0,omega0,sm0,zeta0,alpha0,gamma0,beta0) -> fHSMM

# display computing time

Sys.time()-s

# display results

3As described below, this will lead to problems as while it was reasonable for Langrock
et al. (2013), that was clearly not the case for Md248b

10
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# fHSMM

We represent the gamma state conditional mean and standard deviation
parameter estimates and the corresponding starting values in Figure 2. To
put these in context we also present the values from Langrock et al. (2013).
These were estimated for another whale, with a much longer depth time
series. There are a couple of striking differences, related to the means of the
gamma distribution for states 1 and 2. For both of these the values observed
for Md248b are, compared to those from Langrock et al. (2013), more in line
with what might be expected a priori:

• state 1 should have a mean value close to 0, although the interpretation
of this parameter is far from straightforward, due to the technicality4

described in equation 1 of Langrock et al. (2013). As µt = max(zt−1 +
θn, 1), the max operator enforces that, for this state, the mean depth
in time t, µt, is actually 1 rather than any value that the estimated
parameter θ itself might lead to. This occurs if zt−1 + θn was below 1
meter, which is very frequent for the 1st state (at the surface).

• the mean in state 2 seems too big in Langrock et al. (2013), while for
Md248b it is similar in absolute value to the mean in state 4. There
are two possible alternatives:

1. our result would make sense if the ascent and descent phases from
a deep dive took the same time at the same speed

2. but ascent and descent speeds have been reported to be different
elsewhere Tyack et al. (2006), implicitly leading to different time
lengths for ascent and descent, which would mean that the val-
ues reported in Langrock et al. (2013) would be probably more
adequate.

In section 4.3.2 we fit again the model to the data from Langrock et al.
(2013), with other starting values for these two mean related parameters, to
check whether the parameter estimates obtained for these two states might
have been unduly influenced by starting parameters, which is a priori unlikely
as that was extensively investigated by RL before.

4Some code to look at the effect of this technicality is embedded as comments in the
.Rnw file

11
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No clear patterns became apparent when looking at the parameter esti-
mates associated with transition probabilities (Figure 3).

Note that there are considerable differences in the time spent foraging in
a deep dive between the two whales considered, as can be seen in figure 4.
Nonetheless, given what is known about the diving behaviour of these whales
(e.g. Tyack et al., 2006, refer 26.6 minutes on average for the vocal phase),
the values obtained here for Md248b seem way too long for being adequate,
the average time spent in state 3 being beyond the observed maximum (33.1
minutes) for the vocal phase by Tyack et al. (2006).

We then used the Viterbi algorithm to decode the states, i.e., provide
an estimate of the most likely state at each time period given the available
observations. The outcome is in figure 5.

A possible source for the problems noted above might be the fact that
the animal seems to be at the surface when the recording starts, yet we have
assigned it to be in the descending state, given the initial state distribution
used. Zooming in the data we see that is certainly not adequate for Md248b
(figure 6). Based on this fact, and because it is convenient that the whale is
in state 2 when the analysis starts (because this does not require the time
since last deep dive covariate to be available), we opted by removing the first
48 data points (corresponding to 480 seconds) and refitting the model.

The state assignment results are shown in figure 7.
We can look at the impact on the time spent in state 3 (cf. figure 8),

which we had seen to be likely badly estimated before (cf. figure 4).
In a similar way, we can look again at the parameter estimates for this

final model.

#load up the results run in octopus,

#initial values same as JABES, but now with

#the first 48 data points removed

load("RunInOctopus/F2/F2.0/fHSMM6.Rdata")

What becomes apparent is that while the mean displacement in state 1
is indeed again estimated as essentially 0, the mean in state 2 becomes even
larger than before and similar to what Langrock et al. (2013) had obtained,
which given Tyack et al. (2006) is not implausible.

The likelihood surface is highly dimensional and hence one should attempt
to rerun the model with different starting values to assess the possibility that
we might have hit a relative maximum, rather than the absolute maximum
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Figure 4: Distribution of the estimated time spent in state 3 for Md248b and
the whale analysed in JABES. The dotted vertical lines represent the mean
and maximum duration of the vocal period reported by Tyack et al. (2006),
which should exceed slightly the time spent in state 3 (as some clicks are
known to be produced while on what would be the descent phase - state 2).
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Figure 5: State decoding using the Viterbi algorith for Md248b.

of this surface. Having run a number of different starting values we never
obtained a value lower5 than 1.01591 × 104, and hence we assume that this
is a reasonable approximation to the desired MLE.

Note that, as stated upfront, the data set used contains a small number of
transitions between each state (especially for deep diving states, as there are
only 5 deep dives), and hence it is not clear at this point whether parameters
associated with these are robustly estimated. In figure 10 we can take a look
at the estimated relationships between the transition probabilities and the
feedback covariates (depth and time). The functions are somewhat different
from those in Langrock et al. (2013), though the functional form is at least
similar, except for γ2,3, for which parameter estimates are meaningless. Ad-
ditionaly, it should be noted that the probability associated to transitioning
into a deep dive is so low compared to Langrock et al. (2013) that simulations
from such a model would not lead to reasonable dive profiles. In the next
section we continue to investigate why this might be the case by refitting the

5The numerical routine used works as a minimization routine on the negative log-
likelihood
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Figure 6: Zooming in the first few data points for Md248b. Left: the original
data, where clearly the animal is not in the descent phase when the recording
starts. Right: the same data deleting the first 48 time steps.
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Figure 7: State decoding using the Viterbi algorithm for Md248b after re-
moving the first 48 data points.
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model to the data from Langrock et al. (2013).

4.3.2 Refitting model to JABES data

We refitted the model of Langrock et al. (2013) with different starting values,
in particular with the mean for the 1st two states conditional means close to
0, and yet in fact the submitted parameter estimates were obtained, which
means that this is likely the maximum likelihood estimate of the parameters
involved. As previously stated, in particular the mean of state 1 is hard to
interpret due to the max operator.

The parameter values reported in Langrock et al. (2013) could not be
matched exactly, which was unexpected. Just using slightly different ver-
sions of R could cause us to observe small differences, and so the values
are nonetheless OK-ish for most parameters. The functional forms obtained
from these parameters are close to those reported in the paper (cf. figure 11,
estimated here, with figure 12, reproducing JABES results).

load("RunInOctopus/JABES again/hessian true/fHSMM.HT.Rdata")

#reproducing the parameter estimate values in table 3

#workspace with object fHSMM.HT object is attached

#OK-ish

round(fHSMM.HT$theta,2)

## [1] -4.94 14.90 0.10 -7.72 4.22 -0.12 -3.67

#OK-ish

round(fHSMM.HT$sigma,2)

## [1] 0.49 5.27 8.75 4.24 3.60 1.04 3.76

#ok-ish

round(fHSMM.HT$omega,2)

## [1] 0.93 0.97

#ok-ish

round(fHSMM.HT$sm,2)

## [1] 135.50 27.05
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Figure 10: Transition probabilities as a function of feedback covariates for
Md248b.
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#ok-ish

round(fHSMM.HT$zeta*c(1,10^3)*c(10,1/10),2)

## [1] -3.83 3.28

################################################################

# nonsense

round(fHSMM.HT$alpha*c(1,10^3,10^3)*c(10,1/10,1/1000),2)

## [1] -4.39 -135.10 -12.25

################################################################

#ok-ish

round(fHSMM.HT$gamma*c(10,1/10),2)

## [1] 4.86 -0.80

#ok-ish

round(fHSMM.HT$beta*c(1,10^3,10^3)*c(10,1/10,1/1000),2)

## [1] -1.35 -24.57 0.07

However, for the α parameters in particular we now get nonsense es-
timates, namely −4.386, −135.099 and −12.248, which are far from those
reported in the paper’s table 1, namely (-23.5,46.46/103,-0.03/103).

There were actually a couple of reasons for these differences:

• differences in data and code used: in the paper we had used data with
some missing observations (and the code that deals with them), while
here we were using data with those missing observations imputed (and
hence simpler code not having to deal with these)

• numerical instability: despite having managed to get adequate esti-
mates given some particular starting values (and these being appar-
ently a true maximum in the likelihood function), RL also found the
same nonsense estimates for other starting values, associated with local
maxima. So these methods seem to be very sensitive to numerical max-
imization problems6. This is hardly surprising given the high number

6As an aside, we had noted that minor differences in parameter estimates associated
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Figure 11: Transition probabilities as a function of feedback covariates for
JABES data, re-estimated here
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Figure 12: Transition probabilities as a function of feedback covariates for
JABES data, based on the paper’s table 1 values.
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of parameters to be estimated.

It seems that in particular parameters associated with the quadratic terms
are very unstable, and so one might consider

• not using them, if a linear term seems enough, or

• explore alternative functional forms in the predictors, e.g., using I-
splines, as a reviewer pointed out and then suggested in Langrock et al.
(2013).

The current problem is whether we can actually estimate the quadratic
term associated with transition from state 2 to 3 (ω2,3) with our Md248b (or
any similar sized) data set. While we have many non-transitions, i.e. state 2
at time t−1 and state 2 at time t, we actually only have five deep dives, i.e. 5
transitions where state 2 at time t−1 was followed by state 3 at time t. So it
is not surprising that we have trouble estimating this transition probability.
In the next section we attempt a fit removing the quadratic term, to see if
we get a sensible functional form for ω2,3.

4.3.3 Excluding quadratic terms from deep diving transition prob-
abilities

Because of the lack of information in deep dive transition probabilities noted
above, we decided to exclude quadratic terms from the deep diving transition
probabilities.

While the differences on estimated parameter values for the (state con-
ditional) gamma distributions was negligible, the estimated transition prob-
ability forms became nonsensical (figure 13). In particular, the probability
of entering a deep dive is still so small (bottom right) that simulating from
this model would lead to essentially no deep dives arising. This is clearly at
odds with the data, and must mean something is wrong.

4.3.4 Fitting to multiple whales

The work developed up to this point was fundamental but of little practical
consequence, because what we require is a model from which to simulate from.

with these quadratic terms led to considerable differences in the actual shape of the re-
sulting function, which in itself was a hint that numerical problems could occur
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Figure 13: Transition probabilities as a function of feedback covariates for
Md248b, considering a model without quadratic terms.
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Having parameter estimates based on a single data set will not account for
variability in parameter estimates across different animals, which would be
certainly desirable to, if not necessarily to trust7, to justify and explain to
others the inputs and outputs of such simulation.

A possible option might be to construct a likelihood using data from
multiple animals, hence ending up with a parameter estimate which would
include in its variance estimate the variability across different individuals.
Given the time it takes to fit the models to a single whale, this seems quite
demanding computationally. Further, this is not the conceptually best way
to include variance in the parameter estimates, as presumably what we would
want is to get estimates across multiple animals and then estimate the vari-
ance in parameter estimates (and their covariances across parameters) to
simulate from. Assuming that parameter estimates are distributed as a mul-
tivariate gaussian and simulating from it might be a possible approach (e.g.
using something like mvrnorm in package MASS).

To begin with we consider an additional data set, corresponding to whale
Md07 248a.

To allow the use of the same likelihood and in particular the same initial
distribution we consider truncating the data from Md07 248a, such that the
data used for fitting starts on state 2. Despite loosing some data, this is con-
venient because, as stated before, it means the time since the last deep dive,
otherwise unknown, is not needed. On the other hand, the initial bouncing
dives observed after the Tag was deployed might be atypical anyway. The
truncated data used for both whales is shown in figure 14. While the amount
of time is similar, the second whale considered has 2.5 additional dives than
our original whale.

This has already run, but the results from this have not yet
been analysed or reported here. However, these results were still
producing nonsensical parameter estimates, and are therefore on
hold until I can solve the issues with a single whale analysis.

4.4 Simulating from the model

Given that we have a fitted model, we can simulate depth profiles from that
model. To begin with we simulate from the model fitted to the data used in

7As the fine scale differences obtained by adequately accounting for variability on pa-
rameter estimates across animals might represent a level of tuning with little practical
influence on results, which will mostly be driven by the type of overall model considered.
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Figure 14: Depth profiles of the two whales used for jointly fitting the model.
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Langrock et al. (2013). An example realization is shown in figure 15. There
is nothing obviously wrong with this depth profile. We can take a look at the
autocorrelation function for depth displacements pooled across states and
within states (Figure 16).

Notice how depth differences conditional on state are independent when
we simulate from the model, yet these have significant autocorrelation func-
tions (acf) at lag larger than 1 in the original data (Figure 17). A couple of
remarks on these figures:

• the pattern in acf plot of depth displacements (top middle plot) is an
artifact created by an induced correlation structure in the differences
because within different states these tend to occur in different areas of
the 2D state space for the pooled successive differences, as shown in
the top left plot.

• for the data itself, some of the patterns in the state-conditional acf plots
might be artifacts as dwell time in some states is small. Therefore, one
should not just pool across successive state runs to get the autocorre-
lation function, as we have done here assuming that the consequence
of doing so would be minor, which would be the case if there were no
frequent state transitions. If the mean dwell time in a state is q time
units, the acf function can only be calculated up to lag q−1, and likely
just reliably estimated up to lag q− d, where d is some integer. There-
fore, acf functions are presumably more reliable for states 2-4 than for
states 1 and 4-7. TO DO: obtain the observed distributions of
dwell times per state.

In conclusion, we now have a way to simulate depth profiles for beaked
whales, but it is possible that our model does not capture all the correla-
tion structure present in the actual animal movement. We proceed under
the assumption that these are features which, at the level of detail we are
interested, can be considered negligible.

Unfortunately, and not surprisingly given the values for some of the es-
timated transition probabilities, when we simulate from the model fitted to
our Md248b, we just get a nonsense outcome (Figure 18), with simulated
depth profiles being nowhere close to what we observed. Which leaves us
wondering what we can do next...?
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Figure 15: A realization of a depth profile simulated from the model fitted
to data from Langrock et al. (2013).
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Figure 16: Autocorrelation within depth differences conditional on state as-
signment for the simulated data. Top left plot is the differences, with state
represented by a different color. Top center is the autocorrelation function
ignoring states. Other plots are autocorrelation functions within states.
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Figure 17: Autocorrelation within depth differences conditional on state as-
signment. Top left plot is the differences, with state represented by a different
color. Top center is the autocorrelation function ignoring states. Other plots
are autocorrelation functions within states.
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Figure 18: A realization of a depth profile simulated from the model fitted
to Md248b data.
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4.5 Can we predict vocal state from depth profiles
alone

There are many available data sets with depth profiles out there, and vocal
state is fundamental to understand cue rates and acoustic availability, two
key parameters for density estimation of beaked whales form passive acoustic
data. Therefore, it would be useful to be able to predict vocal state from
depth profiles. In figure 19 we present the outcome of such a preliminary
exercise. It seems clear that the whale typically starts vocalizing while still
on the descent phase of a deep dive (state 2), which adds up with what is
known already. So when the state is decoded as 3 we are almost sure the
whale is in a vocal state, but the converse is not true, so a whale might be
vocalizing and decoded as being in state 2.

5 Modelling displacement projected onto the

sea surface

A number of efforts concerning animal movement have chosen to model step
lengths and turning angles rather than x and y displacements (e.g. McClin-
tock et al., 2012; Morales et al., 2004). This is appealing for a number of
reasons, not the least because one might have clear expectations about these
over time and space. As an example, displacement should be higher and
turning angle variance lower in a migratory state, while the opposite might
be expcted in a foraging state. On the other hand, displacements in x and
y are harder to interpret and should average 0 across animals with no direc-
tional movement. Here too we choose to work with step length d and turning
angles ϕ.

5.1 Unconstrained movement

In this sub-section we address the modeling of unconstrained movement,
i.e. movement that ignores avoiding shallow depths and home ranges. A
plausible movement model might include state dependent step lengths and
turning angles.

A couple of functions are required a priori, to obtain turning angles from
the sequence of x, y locations. Here we actually leveraged on a very useful
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Figure 19: Predicting vocal state from depth profile. Top panel represents
the vocal and silent periods, obtained directly from the acoustic data on
the DTag. Bottom panel represents state assignment (state 3 vs. all other
states).
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post on a Quantitative Ecology blog which happened to include relevant code
to do so. The functions were tested and they are working well.

Given our requirement to keep the animals in a relatively small area,
due to the observed behavior of these whales which seem to be fairly con-
sistently sighted in the same place, one possible model would be to consider
random walks (e.g. Langrock et al., 2012; McClintock et al., 2012), such that
turning angle is unbiased when near the animal’s home range center, but
potentially biased towards this home range center when further away. Addi-
tionaly, the unbiased random walk could be correlated or not, and, if existing,
said correlation might be state dependent or not. It seems fair to assume
that the DTAG data available allows us to parameterize these potentially
state dependent distributions. A quick and dirty look into the step length
and turning angle distributions of Md248b shows clear signs of persistence,
most pronounced in step length, anticipating some correlation mechanism
(figure 20).

We need now to extend the 1D depth model to a 2D horizontal displace-
ment model. As a first step, we look into descriptive statistics for step length
d and turning angles ϕ conditional8 on the state assignment obtained in the
previous section, i.e. using depth alone.

A key point is that we have fitted the depth profile data at time steps
of 10 seconds. This means that when later simulating depth profiles we
will simulate depths as 10 second time steps. However, for the simulation
exercise itself we opted by considering simulations at 1 second time steps.
This creates an inconsistency which we decided to solve pragmatically: linear
interpolation of simulated depths will be considered. Therefore, hereafter we
look at turning angles and step lengths at 1 second resolution, rather than
10 second resolution.

Conceivably, the states decoded using depth alone are not only different
in terms of depths: in fact, it is quite likely that they are different also in
terms of the horizontal displacement characteristics.

Histograms of step length and turning angle conditional on state are
shown in figure 22 and corresponding summary statistics are presented in
table 1. General considerations from this data are not easy to make, but it
seems clear that as expected mean turning angles are close to 0. Further,
as might be expected, it seems like the behavior is more “calm”, perhaps

8In the next subsection we present a discussion of potential advantages and disadvan-
tages of using a conditional on depth approach.
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Figure 20: The distribution of step lenght and turning angles (top panels),
with the corresponding autocorrelation functions (bottom pannels).
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and weibull distribution fits added to the step length data and von Mises
and wrapped Cauchy added to the turning angle data
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1 2 3 4 5 6 7
mean d 0.66 0.82 1.24 0.74 1.07 0.43 0.63

sd d 0.25 0.34 0.43 0.50 0.60 0.47 0.29
mean ta -0.26 0.78 0.45 0.17 0.26 -0.02 0.27

sd ta 11.11 5.62 10.66 22.61 13.21 22.70 19.90

Table 1: The mean and standard deviation of displacement (d) and turning
angle (ta) for each of the seven states as decoded based on depth alone

less environmental but more physiologically driven (recovering from a deep
dive and preparing for the next one), in shallow dives than in deep dives,
where the animal is perhaps more focused and with clear behavioural objec-
tives (finding prey). The horizontal displacement is higher in the foraging
stage, which might be expected as that probably maximizes the encounter
rate with prey given an optimal depth was achieved. The large variance in
turning angles during foraging might also be related to the directed searching
behavior and the detection of new prey leading to a directional change. The
biological reason for why the horizontal displacement is relatively large for
the shallow descent phase is unclear. The low standard deviation of the turn-
ing angle at the surface state might represent the fact that these animals are
not reacting much to the environment in shallow waters. The same happens
for the shallow dive states, which is consistent with the same explanation.
In the same way, these standard deviations are larger for the deep diving
states, which might correspond to the animal’s need to adjust behaviour as
a function of environmental cues, either to find prey while going down or
to avoid predators when coming up. This seems to indicate that using 3D
information might have additional advantages over 1D information alone for
state assignment.

Despite the presence of correlation structure as evidenced in figure 20 as
a first approach we model turning angles and step lengths assuming indepen-
dence.

In table 2 we present the values of the estimated parameters for step
length, considering both gamma and Weibull distributions. Likewise, table
3 we present the values of the estimated parameters for turning angles, con-
sidering both von Mises and Wrapped Cauchy distributions. Note that for
the estimated mean of the Wrapped Cauchy the values around 6.3 are just
approximations of 2 × π, i.e., approximately 0 too as expected.
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state gdsh gdr gdm gdsd wd1 wd2 AICg AICw sldAICdiff
1 1.00 4.85 7.36 0.66 0.30 2.73 0.73 3523.86 1457.58 2066.28
2 2.00 7.84 9.55 0.82 0.29 2.44 0.92 601.88 1192.55 -590.66
3 3.00 6.80 5.47 1.25 0.48 3.01 1.39 11613.32 11000.21 613.11
4 4.00 2.21 3.00 0.74 0.50 1.56 0.82 9074.90 9199.86 -124.96
5 5.00 3.12 2.91 1.07 0.61 1.89 1.21 5455.14 5533.71 -78.57
6 6.00 1.07 2.51 0.43 0.41 1.01 0.43 6968.88 7040.40 -71.53
7 7.00 3.35 5.33 0.63 0.34 2.20 0.70 1928.40 1510.04 418.36

Table 2: Conditional on state (1 to 7) parameter estimates for the step length,
considering the gamma (g) and weibull (w) distributions. sh=shape, r=rate,
m= mean, sd= standard deviation. AIC values are also shown, as well as
AIC differences.

state vmm vmd wcm wcd AICvm AICwc tadAICdiff
1 1.00 -0.00 36.93 6.28 0.96 -9485.93 -21902.30 12416.38
2 2.00 0.01 105.48 0.01 0.96 -3647.76 -4186.90 539.14
3 3.00 0.01 33.48 6.28 0.95 -6075.27 -12616.17 6540.90
4 4.00 0.00 12.52 6.28 0.96 2921.12 -14774.68 17695.80
5 5.00 0.00 28.87 0.00 0.96 -1715.53 -6390.59 4675.06
6 6.00 -0.00 10.96 0.00 0.97 11601.92 -46039.00 57640.91
7 7.00 0.00 14.66 0.00 0.97 753.78 -8212.92 8966.70

Table 3: Conditional on state (1 to 7) parameter estimates for the turning
angle, considering the von Mises (vm) and wrapped Cauchy (wc) distribu-
tions. bm= mean, d= dispersion. AIC values are also shown, as well as AIC
differences.

5.2 Pros and cons of a conditional on depth approach

This is also very useful because from a pragmatic point of view one might
model directly these distributions conditional on a depth derived state. This
will naturally be much simpler than actually extending the 1D model to 2D
(x, y) or 3D (x, y, z). However, this means that turning angle and step length
are only dependent on state, but there is certainly a correlation structure
between the actual z displacement and step length and turning angle.

This is clear from figure 21, showing that despite eventually being a good
pragmatic solution capable of capturing overall movement patterns for sim-
ulation within LATTE, small scale movement correlations in 3D will be lost.
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However, it should be noted that this same issue arose when modeling 1D
depths with our fHSMM (cf. figures 16 and 17).

Despite a 3D model for state assignment being more appealing concep-
tually, it might be considerably harder to implement, as can be anticipated
because on average, compared to the 1D model, a 3D model will have 28
additional parameters: 7 means and 7 standard deviations for each of x and
y (or equivalently turning angle and step lengths). Given there is no a priori
reason to expect that each animal, over the long run, tends to turn always
preferentially left or right, it seems plausible to simplify this model such
that turning angle means are all 0, but that still corresponds to 21 extra
parameters.

An additional advantage of this step length and turning angle formula-
tion is that, within the simulation framework, using the turning angle mean
to avoid boundaries might be a reasonable way to keep the animals from
going out of the simulation range. Therefore, for animals that are close to
boundaries, the mean turning angle would be such that they would avoid
these.

6 WIP: Modelling three dimensional dive tracks

Extending the displacement in 2D to 3D is conceptually simple, because in
3D movement can still be represented by the same 2 components, a (now
in a sphere) angle and a 3D displacement (Marques and Thomas, 2012c, for
additional details).

In the .Rnw file there is code which will allow one to simulate spherical
angles using dmovMF from package movMF. If we manage to get a way to esti-
mate the parameters of such distributions conditional on state assignments
from our 1D model we have a relatively simple way to simulate 3D move-
ment assuming that, given the state, depth and horizontal displacements are
independent.

7 placeholder: Modelling animal movement

within a group

Just a placeholder

43

Page 180 of 466Version with appendices



8 placeholder: Modelling 3D animal move-

ment within a group

Just a placeholder

9 placeholder: Constraining movement mod-

els by 3D barriers

Just a placeholder

10 placeholder: Discussion and conclusions

As described in section 4.5, investigating further whether estimating cue rates
from depth profiles by linking inferences based on acoustic data + depth
profiles to depth profiles only is likely to be a useful research avenue.
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A Estimating parameter variance

Being based on maximum likelihood estimation (MLE), we can use the prop-
erties of MLE to obtain the variances on the parameters. When called with
the argument hessian=TRUE, nlm provides an estimate of the Hessian. In
general the Hessian is a square matrix of second-order partial derivatives
of a function, in this context the likelihood function with the derivatives
evaluated at the maximum likelihood estimates of the parameters of inter-
est. Being second-order derivatives, it intuitively conveys the notion that
the larger the value of the Hessian the steeper the likelihood function is, and
hence the lower the variance associated with the corresponding parameter
estimate. If we invert the Hessian - in R that is implemented by solve -
we obtain an estimate of the variance-covariance matrix associated with the
maximum likelihood parameters.

There is an additional complication for some of the parameters involved,
because these have been transformed prior to the numerical optimization, to
respect some obvious parameter constraints (e.g. variances must be positive).

As an illustrative example, consider θ2, the parameter of the gamma
distribution associated with mean depth in state 2. In state 2 the animal
tends to get deeper at each time step, therefore a priori we know that this
parameter should be positive. Hence, a transformation of the parameter was
used prior to the maximization, log(θ2) = θu2 , such that θ2 = exp(θu2 ), which
is always positive irrespectively of the actual values of θu2 ). This means
that the numerical optimization itself is over θu2 . Therefore, the variance
obtained from nlm’s Hessian applies to this transformed parameter only, i.e.
it corresponds to var(θu2 ). To approximate the variance of the parameter of
interest, which is naturally θ2, requires the back-transformation, here exp,
and hence we use the delta method as

var(θ2) = var(exp(θu2 )) = var(θu2 )
d exp(θu2 )

dθu2
= var(θu2 ) exp(θu2 ) = var(θu2 )θ2

(1)
so in this case the variance would be obtained by multiplying the pa-

rameters of interest by the variance of the parameter that the maximization
occurred over. An implementation in R for the variance for θ2 is shown here
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#get the variance covariance matrix

varscovars=solve(fHSMM.HT$H)

#now get a vector with the variances

vars=diag(varscovars)

#for depth dependent mean in state 1

c(fHSMM.HT$theta[1]-1.96*sqrt(vars[1]*fHSMM.HT$theta[1]^2),

fHSMM.HT$theta[1]+1.96*sqrt(vars[1]*fHSMM.HT$theta[1]^2))

## [1] -5.147669 -4.741786

and a further example with γ parameters is shown here

###################################################################################

# looking into variances and 95% CI #

###################################################################################

#example for

#for gamma parameters, positions 24 and 25

c(10*fHSMM.HT$gamma[1]-1.96*sqrt(10^2*vars[24]),

10*fHSMM.HT$gamma[1]+1.96*sqrt(10^2*vars[24]))

## [1] 3.766404 5.961713

c((1/10)*fHSMM.HT$gamma[2]-1.96*sqrt(vars[25]/100),

(1/10)*fHSMM.HT$gamma[2]+1.96*sqrt(vars[25]/100))

## [1] -0.9694756 -0.6236350

#example for beta_0, position 26

#c(10*fHSMM.HT£beta[1]-1.96*sqrt(10^2*vars[26]),

#10*fHSMM.HT£beta[1]+1.96*sqrt(10^2*vars[26]))

#using the delta method

#example for the sm parameters (negative binomial)

#c(fHSMM.HT£sm[1]-1.96*sqrt(vars[17]*fHSMM.HT£sm[1]^2),

#fHSMM.HT£sm[1]+1.96*sqrt(vars[17]*fHSMM.HT£sm[1]^2))

#c(fHSMM.HT£sm[2]-1.96*sqrt(vars[18]*fHSMM.HT£sm[2]^2),

#fHSMM.HT£sm[2]+1.96*sqrt(vars[18]*fHSMM.HT£sm[2]^2))
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1 Introduction

This document contains the analysis of the data collected during the 2009
Submarine Commander Course at AUTEC, regarding beaked whale vocal
group (VG) detections before, during and after military activities, as well
as some details regarding the sound sources produced during those military
activities. A VG is recorded for each detection of the vocal part of a beaked
whale deep dive. Hence associated with each VG there is a group with
an unknown number of animals in it. Given the beaked whale click and
AUTEC’s range characteristics (e.g. Marques et al., 2009; Ward et al., 2011;
Kusel et al., 2011) it is safe to assume that all deep dives are detected. Hence
the number of recorded VG should match the number of deep foraging dives
on the range during the recorded period.

Data sets from 2007 and 2008, with similar structure but shorter temporal
coverage, served as the basis for the analysis presented in McCarthy et al.
(2011) and Tyack et al. (2011) to evaluate the impact of military activities
on beaked whale behavior. Both these references pointed to a clear influence
of range operations on animal distribution and activity patterns.

2 Data details

We assume here that recorded VG correspond to foraging deep dives of
Blainville’s beaked whale (Mesoplodon densirostris). It is possible that a mi-
nor number of these might belong to other beaked whale species, but apart
from that, false positives are not expected and are assumed absent from this
data set.

As stated above, we assume that a VG vocalizing on the range is detected,
which is reasonable given the AUTEC-beaked whale system characteristics.
The main problems might be related to:
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• groups which dove close together and are classified as a single group (a
false negative)

• single group dive that is classified as two VG (a false positive) because
the animals are lighting up hydrophones in different parts of the range,
a possibility given the highly directional beam pattern of the beaked
whale clicks.

In some sense, it seems like the former is more likely than the latter, but
the truth is we have no data to perform an independent assessment of these.

Details about the key six data sets considered in this report, namely file
names, file sizes, period that the files cover, etc. are given in table 1. Most
of these data sets relate to vocal groups (VG), the exception being the one
in the last row in table 1 (D6), which lists all the military noise produced in
the AUTEC range during the analysis period. Some of the files information
relates to periods which overlap in time: the first data set, D1, is a temporal
subset of D2, which in turn is a temporal subset of the concatenation of (the
“BDA”) files: D3 (Before the Mini Wars), D4 (During the Mini Wars) and
D5 (After the Mini Wars).

The first two files were manually processed: D1 contains VG simultane-
ous to sonar, D2 contains VG simultaneous to some sort of noise producing
military operation. Both of these files have most of their records from the
Mini Wars period, but there are also occasional records from outside that
period. The remaining 3 files (D3, D4 and D5) were processed automatically
and contain all the VG detected during the entire period under consideration
(18 April to 20 Jun 2009). The reason why D1 and D2 are kept separated is
two fold, as these:

• also have additional information regarding the sound sources, and

• were processed manually, while the BDA files were processed in an
automated fashion.

Considering the during period (D4), the difference between manual and
automated processing is around 4% in terms of VG duration, and about
10% in the number of VG (Elena McCarthy, pers. comm., 15 June 2011).
While considered small differences, it is important to be aware that these
exist. The advantage of the automated procedure is essentially speed 1 but

1Say 5 minutes vs. 1 year of human time to process say 3 months of data!
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also repeatability: different human experts will have different results, because
their heuristic algorithms differ, but all computers will report the same result.

We also consider here a couple of additional data sets:

• exercise durations, a data set “manually harvested” by DM while we
met at Mt. Hood. This contains the time start and end of periods of
major activity during the mini wars. These were manually added into
R using code that can be found in the .Rnw file.

• sound exposure levels and maximum sound levels during each of the
exercises of the mini wars (see details in section 3.4).

3 Preliminary data analysis

Here we consider separate sections to explore the data in the vocal groups
BDA files (section 3.2), the military activity data (section 3.3, work in
progress), and the RMS and SEL data (section 3.4). Then in section 4 (not
really started yet, see details below) we combine the information of these
data sets.

The information regarding the manually processed data files is currently
not used, but might be used later.

3.1 Hydrophone data

We begin by reading in the required hydrophone location data. Note that
while these were originally in easting and northing arbitrary coordinates (as
used in say Marques et al., 2009), we have now been provided a table by
EM via e-mail on the 20th June 2011 that contains locations in latitude
and longitude, which is convenient here as the VG data uses latitude and
longitude for hydrophone and source locations.

3.2 Vocal groups

3.2.1 Initial data processing

We create a single .xls file containing the result of stacking D3,D4 and D5 on
top of each other, named “vaBDA.txt”. Finally the information is collected
in a data frame which contains the following columns:

4
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1. group - the number of the vocal group

2. date - the date the vocal group started vocalizing (deleted in the file
subsequently analyzed, see details below)

3. start - the time vocalization started (reformatted in the file subse-
quently analyzed, see details below)

4. stop - the time vocal group went silent (reformatted in the file subse-
quently analyzed, see details below)

5. duration - the duration of the vocal period 2 (reformatted in the file
analyzed, see details below)

6. HNcdtct - information regarding the vocal group click counts at each
hydrophone (will require a bespoke reading function to use, as the data
is in a very specific format/convention, but there is potentially very
interesting information in here).

7. edge - Whether all the hydrophones were edge hydrophones (reformat-
ted in the file subsequently analyzed, see details below)

8. nk – The number of hydrophones at which the vocal group was detected

9. center - The center hydrophone (i.e. hydrophone with largest number
of clicks detected) where the vocal group was detected

10. lat - The latitude of the vocal group (note this is weighted by activity
on each hydrophone in the group)

11. lon - The longitude of the vocal group (note this is weighted by activity
on each hydrophone in the group)

12. overlap - this field is empty unless the corresponding group overlaps
in time and space with another group, in which case it contains the ID
of the overlapping VG, e.g. [2-6] means that the vocal groups 2 and 6
overlap, and hence VG discrimination is not straightforward.

2What are the exact rules that go into defining the start and stop times, which directly
lead to a duration?
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13. BDA - a 3 level covariate created in the data subsequently analyzed
which indicates whether the date and time corresponds to before (B),
during (D) or after (A) the mini wars.

14. Comments - Any other relevant comments (deleted in the file subse-
quently analyzed, see details below)

Some of the information was slightly reformatted. For simplicity, we
converted the 3 fields date, start and stop times to a date format like
“”2009-04-18 17:34:44””, which means that we only need to use two columns
for obtaining the information in the current 3, and also it means that we
can get the duration using difftime. This automatically corrects for a few
incorrect duration values due to a misbehavior of an Excel function.

We also create a time indexing variable (time in days since the recording
started, tfs), as well as the time difference between successive VG (Inter
vocal group interval, IVGI, which provides an indication of activity, i.e. the
lower the animal activity (and density of course!) the higher these time
differences should be). Note that this IVGI is not group specific, i.e. the VG
start and previous VG end might not be (and most likely are not) from the
same original group.

3.2.2 Exploratory data analysis

We can start by looking at the duration of the vocal periods (Figure 1).
In fact, the mean (29.2) and median (28.1) vocal group durations reported
here are just above the deep dive average vocal period of 26 minutes value
reported in Tyack et al. (2006). Given the latter is for individual animals,
and here we deal with groups, these are remarkably consistent results.

We can also take a look at the number of hydrophones that vocal groups
are detected in. Intuitively, we would expect that number to be smaller for
VG defined as edge groups, which is clearly shown by the data (Figure 2).
Note this is simply a data collection artifact, in the sense that the way a VG
is defined as edge leads to this pattern.

An histogram of the number of times each hydrophone was the center
hydrophone of a vocal group reveals an atypical distribution (Figure 3). In
the left tail, there are clearly 4 hydrophones which are “problematic”, and
these are hydrophones 21, 86, 87 (no VG detected) and 40 (2 VG detected).
While hydrophones 86 and 87 were not operating, and hence this is an ex-
pected result, this seems to clearly indicate problems with the hardware in

6
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Figure 1: Histogram of the duration of vocal groups. The mean (red line)
and median (blue line) vocal group durations are comparable to the values
reported in Tyack et al. (2006) (green line).
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Figure 2: Box-plots of at how many hydrophones a vocal group was de-
tected, as a function of the hydrophone location (edge=1 versus non-edge=0
hydrophones).
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hydrophones 21 and 40. It was confirmed that a similar pattern was already
present (but went unnoticed) in the files analyzed in McCarthy et al. (2011)
and Tyack et al. (2011) (David Moretti, pers. comm.). This will be the
subject of further investigation, but for now it seems simpler to just ignore
these hydrophones in the analysis. On the right tail, there are a number of
hydrophones with counts above 150 VG which also look suspicious. Note
that these could result from slight differences in detectability of neighboring
hydrophones, more than problems with these hydrophones per se.

For a better spatial perspective, the hydrophones and respective counts
are presented in space (Figure 4), with the atypical hydrophones shown in
color. Curiously enough, all high count hydrophones are edge hydrophones.
This might indicate that this pattern is a data collection artifact. Edge
hydrophones pick up VG which were actually on range, close to them, but
also off range (because there are no other hydrophones closer to VG outside
the range), and hence have a wider survey area, than inner hydrophones. But
one must also not forget that when there is noise production on the range,
edge hydrophones are more likely to pick up VGs, as shown in McCarthy
et al. (2011) and Tyack et al. (2011), and so this might be the joint result of
these two effects.

The results of a spatial smooth GAM model (e.g. Wood, 2006) show “hot
spots” at the north and south western extremes of the AUTEC range, and
“cold spots” at the Wiskey 2 and south central AUTEC areas (Figure 5).
This is actually in contrast with an “old” beaked whale data set analyzed for
Marques et al. (2009), as shown in figure 5 and 6 in Marques and Thomas
(2008), where the northern eastern part of the range had the largest number
of beaked whale click counts3.

Regarding the duration of the vocal groups, there seems to be a minor
decrease of these during (D) the military operation period, as compared with
the before (B) and after (A) periods (Figure 6, top). Further, the IVGI
is clearly higher during the Mini Wars, which is consistent with a decrease
in animal vocal activity (likely also in foraging dive behavior) with military
activity (Figure 6, bottom).

The IVGI is shown as a function of time in figure 7. It seems clear that
the number of vocal groups is smaller, and the IVGI is higher, during the

3But remember the previously analyzed data set had a much larger amount of false
positives than what we are dealing with now, which can be a substantial cause for the
differences.
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Figure 3: Histogram of the counts per hydrophone.

military operations. The mean IVGI in minutes before and after the military
operations was respectively 11.4 and 12.6 minutes, while during the military
operations that increased to 28.9 minutes, showing clearly that there is an
impact of military activity in the frequency of VG.

We can also take a look at the pattern of the data in the latitude and
longitude fields. These represent weighted averages of hydrophones locations,
with weights being the number of click detections of a given vocal group in
each hydrophone. If we separate the data by the BDA period, there is a clear
pattern (figure 8). Note how this image reinforces the idea that animals are
brought in towards edge hydrophones, as no animals can be ”placed” outside
the bounding hull around the hydrophones.

3.2.3 Diel activity patterns

An interesting exploratory analysis relates to the diel patterns of beaked
whale activity, based on the VG. Plotting the number of VG as a function
of time of day (figure 9), it seems like the activity patterns are constant over
day and night, with the notable exception of the periods just before sunrise

9

Page 193 of 466Version with appendices



0 5000 10000 15000 20000 25000 30000

−
20

00
0

−
10

00
0

0
10

00
0

20
00

0
30

00
0

Easting

N
or

th
in

g

163 74

111 43 43

66 56

73 39

73 20
41

24 47

104
120

184

116
80

89

115
79

70
184

141
92

65
52

71
74

66
66

92

183
57

54
66

82
2

87

87
84

71
32

97
35

101

117
51

66
60

82
61

104

109
63

60
58

64
39

71
94

131
56

30
55

75
40

71
74

85
65

70
44

61
69

71
125

138
68

74
70

74
160

94
64

86
140

171
200

1 2

3 4 5

6 7

8 9

10 11 12

13 14

15
16

17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34

35
36

37
38

39
40

41

42
43

44
45

46
47

48

49
50

51
52

53
54

55

56
57

58
59

60
61

62
63

64
65

66
67

68
69 70

71

72
73

74
75

76
77

78
79

80
81

82
83

84
85

86
87

88
89

90
91

92
93

0

0
0

21

40

86
87

1

17

25

35

85

92
93

Figure 4: The number of vocal groups per hydrophone. Hydrophones with
atypically low VG counts are represented in red, and hydrophones with atyp-
ical high VG counts are represented in blue.
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Figure 7: Inter vocal group interval (IVGI) for each click. Vertical dashed
lines represent the start and end of the military operations. Red lines repre-
sent the fitted GAM model.

12

Page 196 of 466Version with appendices



●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●● ●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

−77.60 −77.55 −77.50 −77.45 −77.40 −77.35

2
4

.3
2

4
.5

2
4

.7

Before

lon

la
t

● ●
● ● ●

● ●

● ●
● ● ●

● ●

● ●●
● ● ●● ● ● ●

● ● ●
● ● ●● ● ● ●

● ● ● ● ● ● ●
● ●

● ● ● ● ●
● ● ● ● ● ●

●

● ●
● ● ●

● ●
●

● ● ● ● ●
● ● ●

● ● ● ● ● ● ●
●● ● ● ● ● ● ●

● ● ● ●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−77.60 −77.55 −77.50 −77.45 −77.40

2
4

.3
2

4
.5

2
4

.7

During

lon

la
t

● ●
● ● ●

● ●

● ●
● ● ●

● ●

● ●●
● ● ●● ● ● ●

● ● ●
● ● ●● ● ● ●

● ● ● ● ● ● ●
● ●

● ● ● ● ●
● ● ● ● ● ●

●

● ●
● ● ●

● ●
●

● ● ● ● ●
● ● ●

● ● ● ● ● ● ●
●● ● ● ● ● ● ●

● ● ● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●●
●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

● ●

●

●

●

● ●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●●

●

●
●

● ●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

● ●

●●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

−77.60 −77.55 −77.50 −77.45 −77.40 −77.35

2
4

.3
2

4
.5

2
4

.7

After

lon

la
t

● ●
● ● ●

● ●

● ●
● ● ●

● ●

● ●●
● ● ●● ● ● ●

● ● ●
● ● ●● ● ● ●

● ● ● ● ● ● ●
● ●

● ● ● ● ●
● ● ● ● ● ●

●

● ●
● ● ●

● ●
●

● ● ● ● ●
● ● ●

● ● ● ● ● ● ●
●● ● ● ● ● ● ●

● ● ● ●● ●

Figure 8: The “estimated” locations of vocal groups as a function of BDA
period.
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Figure 9: Number of vocal groups as a function of hour of day, pooled over
the entire recording time. Dashed lines represent the range of sunset and
sunrise hours during the surveyed period.

and during sunset, when the activity is lower. A GAM model considering
this data set retrieves a uniform pattern, but of course that would not be the
case if the data was properly analyzed using data accounting for the time
component, rather than pooled over time.

3.3 Military activity

3.3.1 Initial data processing

Finally, we also read in the data corresponding to D6, dealing with the mil-
itary activity data. Look in the .Rnw file the minor tweaking needed to get
the data into a workable format.

3.3.2 Exploratory data analysis

This data set contains the record of 266 sound production events. How-
ever, the available information regarding each of these can vary considerably.
Therefore, while for the 174 sources of level 3 we have the exact time the
sound was produced (but not location, at least in this file), for cources from
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Figure 10: Histogram of the duration of level 3 sounds.

level 2 and 1 the information is often very sparse, ranging from a sound might
have been produced somewhere sometime (mostly level 0 and 1 sounds), to
somewhere at a given time or in a given place sometime (mostly level 2
sounds). For the time being it seems like it might be a good idea to concen-
trate on level 3 sounds, which correspond loosely to MFA sonar.

We can take a look at the duration of sonar emissions for each of the
sound producing events (Figure 10). While most of the events only last for
a few minutes, there are instances of up to 3.5 hour emissions.

3.4 Sound exposure levels

We also have available, for each one of the 6 periods over which scenarios
were being run, the root mean square maximum sound level (RMS) and the
accumulated sound exposure level (SEL) evaluated at each hydrophone, and
at 4 depths (10, 100, 1000, 1500 m). These were sento to us by DM on the
26th March 2012. We can read all this data into R.

We can produce plots of spatial smooths for the RMS and SEL for each
scenario (Figures 11-16).
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4 Analysis strategy

After the EDAs, we have to cross the information in the BDA files (D3, D4
and D5 in table 1) with the information regarding the military sound activity
(D6 in table 1). This will allow an analysis of some VG derived variables like

• IVGI or number of VG in short time periods 4,

• VG duration

• number of clicks per VG

• probability of a VG starting in a given time period (and area) - this is
the idea on the basis of the dose response curve we have been discussing
about and might be submitted to the MMB conference in Tampa,
Florida.

as a function of potential covariates like

• latitude and longitude (needs careful thinking about what this might
be, and depends on the dependent variable used too)

• time since last sound source

• distance from last sound source

• last sound source type

• last sound source level

• modeled sound exposure

• etc

4 Note these two are somewhat equivalent analysis, if you think of counts and waiting
times in the context of a Poisson process, though here we have an over dispersed Poisson
process
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5 Modelling BBW activity as a function of

level 3 noise

Level 3 noise is the one likely to have a major impact on animal activity, and
also the one type of sound for which time and location of source is known in
detail. Hence, we start by creating an analysis in which potential measures of
activity (as VG length or IVGI) are modeled as a function of source distance
(to estimated VG location) and and time since last level 3 source.

5.1 Activity as a function of time since level 3 emission

A simple approach might be to compare the number of vocal groups initiated
on the range during an hour before sonar emission, and one hour after (the
start of) sonar emission. While this ignores the spatial component and arbi-
trarily considers a 1 hour time interval, it should provide a first indication if
there is any strong effect present. For that one needs to create an appropriate
data set that crosses information on vocal groups and level 3 sound emission.
The results of said analysis are presented in figure 17. Perhaps surprisingly,
there seems to be no effect, with very similar number of VG starting in the
period before and after the start of a level 3 sound emission. While at first
we thought that pattern would change once the spatial component was also
included, we concluded that most likely what is happening is that, after the
first level 3 event, i.e., when the Mini Wars start, the animals are no longer
in an undisturbed setting, and until the operations stop and enough time
is allowed for animals to resume their “normal” behavior, one can not inter-
pret the results of any sonar event on range without accounting for the fact
that the environment is no longer pristine (if ever AUTEC can be considered
pristine with all the activity that goes on in it, but any way!).

For this reason, and after discussions at LATTE meeting in Mt. Hood
(present: DM, DH, EM, LT, ND, RM and TM), we agreed that it might be
better to divide the time into 3 different periods:

• before Mini Wars started (the control) (and maybe also include the data
after the Mini Wards ended, allowing for some time for the system to
recover - McCarthy et al. (2011) and Tyack et al. (2011) will pe useful
to define what said period might be.

• after mini wars started (the impact), within which
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Figure 17: Difference in the number of vocal groups starting 30 (blue) and 60
(green) minutes before and after a level 3 sonar started emitting. Horizontal
lines represent the mean of the diferences, black line is at 0 (no effect).

– scenarios are being run (high impact)

– redeployment periods (low impact)

5.2 Activity as a function of distance from and time
since level 3 emission

A simple way to include the spatial component might be to repeat this anal-
ysis but concentrating on VG before and after the source in a circle of say
10 km around the source. For that we need to know the source location for
all sources. Given that we currently do not have that information, but also
due to the fact that, as described above, it is likely that this analysis will not
produce reasonable results as the entire Mini Wars period is impacted, this
section is not further implemented here.
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6 Combining vocal groups and military ac-

tivity data

As explained above in section 5, our initial attempt to infer an impact of
noise was unsuccessful, likely due to the fact that we concentrated on level
3 events, which occur all (but the very first one) during highly “impacted”
times.

In figure 18 we represent the number of vocal groups starting in each of
successive 5 hour periods, for the entire duration of the recordings. From
this figure it seems to be obvious why the analysis illustrated by figure 17
failed to produce any significant results. All level 3 events (thin red dashed
lines in figure 18) occur during highly impacted periods. At least visually it
seems that the number of VG increases when there is nothing going on on
the range, but that even a series of level 2 or 1 events (thin orange dashed
lines in figure 18) seem to have an effect on VG counts. A time series model
might help to clarify if these effects are real.

A model of the number of VG in a given time interval as a function of

• whether or not the time period is during the mini wars

• whether or not the time period is between mini wars end and last level
3 event

• time since last event

• level of last event

• an interaction term between time since last event and level of last event

might be useful here. A possible confounding factor is that really say a
level 0 event occurring just after a level 2 event might seem to have a bigger
impact than it really has (as one is just observing the effect from the level 2
event, just in the same way as when looking into the mini wars period one
cannot really observe the effect of particular level 3 events, it is just that the
animals are probably essentially all behaving as if “all hell has break loose”.).
This will be easier to address when an analysis considering the (modeled)
cumulative sound field is implemented.

Another interesting idea is to take a look at the data within the mini
wars period, using the start and end times provided by DM for the actual
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exercises, to see if we manage to spot an effect of the exercises even during
this highly impacted period. The result of that analysis is shown in figure
20, and that effect is clearly visible.

The only counter intuitive fact on this plot is that the 4th exercise, which
at least in terms of the duration (shortest exercise) and number of level 3
events (=16, minimum was 16, maximum was over 40) was quite small, seems
to have had a large impact on the animals, without any sign of recovery after
it. After the 5th and 6th exercises there were again signs of recovery, so we
wonder whether there was more to it during the exercise, i.e. if something
abnormal happened during what we call the ”recovery period”. Note that
there is something that differs for the 5th exercise that might explain an
atypical ”recovery period”. While for all the other exercises the exercise
always started from the south, the 5th exercise started in the north part
of the range, which necessarily means that something different happened
during the redeployment phase. It is hard to know if this might be a hint of
something real or whether this is just another “so... so... story”.

we can also look at the effect of the first exercise sound exposure levels,
and see if the counts per hydrophone within that period are dependent on
the observed hydrophone specific SEL.

7 Playing VG data as a video

This section is just a place holder for R code. The underlying .Rnw file
contains the code for implementing a tool that allows one to “replay” the
SCC vocal group data in real (or probably preferably, in fast forward) time.
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1 Introduction

In this document we present the available DTAG data. This is essentially
the same data which was used to estimate the detection function in Marques
et al. (2009), the corresponding internal DECAF report where analysis are
presented being Marques and Thomas (2008b)

Currently we DTag data available for 13 (3+3+3+4) dives from 4 whales
- Md296, Md245a, Md248a and Md248b, used for the detection function
estimation in Marques et al. (2009).

We also have some additional DTag data from 1 dive for Md245a, 1 dive
for Md248b and 6 dives from a fifth whale (Md227a). While these data
were not associated with the hydrophone data due to several reasons (animal
off the range, hydrophones not recording, etc.) and hence not used for the
detection function estimation, here we can use them in the same way as we
are not interested in the hydrophone information.
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2 Data details

After discussion with Jessica Ward, we agreed on an adequate data format
which would be easily updated as/if additional dives became available. This
would be a flat txt file, with as many rows as relevant hydrophone-click
combinations and the following 21 columns (the code in brackets represents
the name of the variable within the R workspace):

1. Tag - a code for the tag (tag);

2. Dive ♯ - a code for the dive (dive);

3. Year - the year the data was collected in (year);

4. Julian Day - the Julian day (jd);

5. GMT (seconds) - the number of seconds since the start of the year
(gmts);

6. Hyd - the hydrophone number (hyd);

7. Detection - 0 if click was detected at hydrophone, 0 otherwise (det);

8. Whale X (m) - the x coordinate of the whale (x)

9. Whale Y (m) - the y coordinate of the whale (y)

10. Whale Z (m) - the z (depth) coordinate of the whale (z)

11. Slant range (m) - the 3D distance from the whale to the hydrophone
(slant)

12. Horizontal Range (m) - the 2D distance (as projected on the sea surface)
from the whale to the hydrophone (dist)

13. Elevation Angle (rad) - the off-axis elevation angle, in (−π/2, π/2), also
named vertical aspect angle in previous reports (vaa). This is measured
on the frame of the whale

14. Azimuth Angle (rad) - the off-axis horizontal angle, in (−π, π), also
named horizontal aspect angle in previous reports (haa). This is mea-
sured on the frame of the whale

2
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15. Winds speed (m/s) - the winds speed in meters per second (wind)

16. Noise1 (5-ms rms dB - uncorrected direct measurement from wav file)
(noise1)

17. Noise2 (500-ms rms dB - uncorrected direct measurement from wav
file) (noise2)

18. Hydrophone Calibration constant (Db) N=Nrms-HydCal+20 (allesis to
wav gain)(hc)

19. Heading (heading)

20. Pitch (pitch)

21. Roll (roll)

Note we also require the location of the hydrophones, which is in a sepa-
rate file. Details about reading the data in and preliminary data manipulation
are in the source.Rnw file.

A dive indicator was added (dvid) to the data, as well as a variable
containing the vertical aspect angle in the full circle (vaa2). For some details
about vaa2, which we ended up not really using here (as well as for the
reasons for that choice), see Marques and Thomas (2008a).

3 Exploratory Data analysis

As a first step, we can compute how many inter click intervals we have (equals
to number of clicks -1) per dive, and what these look like (Table 1 and Figures
1-4). We can see that the reported mean

For direct comparison with Johnson et al. (2006), we removed anoma-
lously long and short ICIs. We can see that the reported mean of the mean
ICIs was 0.324 seconds, a value just slightly lower than that reported by
Johnson et al. (2006) (0.37 seconds, 1 whale, 4 dives, Canary Islands). Note
however that the mean ICI for no dive was as high as that reported value.
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Figure 1: ICI histograms for ICS’s above 0.1 second and below 1 second,
discriminated by dive.
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Figure 2: ICI histograms for ICS’s above 0.1 second and below 1 second,
discriminated by dive.
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Figure 3: ICI histograms for ICS’s above 0.1 second and below 1 second,
discriminated by dive.
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Figure 4: ICI histograms for ICS’s above 0.1 second and below 1 second,
discriminated by dive.
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4 Depth profile data

In this document we present a simple EDA of the data kindly sent to us by
Robin Baird on the 19th May 2008. This data corresponds to a time-depth
tag data deployed on a Mesoplodon densirostris in 2006. An exhaustive
analysis of this data (and several other whales) is in Baird et al. (2008).

> file <- "datfiles/CLEAN Md 2006Nov22 female 0390674 TM.csv"

> BWdat <- read.table(file = file, header = F, skip = 4,

+ sep = ",", na.strings = "", colClasses = "numeric")

> names(BWdat) <- c("Tday", "D", "D1")

> BWdat <- BWdat[BWdat$Tday < 39046.7275, ]

> BWdat <- within(BWdat, TdayS <- (Tday - Tday[1]))

> BWdat <- within(BWdat, ThourS <- TdayS * 24)

> BWdat <- within(BWdat, TminS <- TdayS * 24 * 60)

> BWdat <- within(BWdat, TsecS <- TdayS * 24 * 60 * 60)

> BWdat <- within(BWdat, TsecSr <- round(TdayS * 24 * 60 *

+ 60))

The continuous deep diving pattern is almost tiring just from watching
(Figure 5). If we zoom in in a couple of dives, it is simple to see why
these whales are rarely detected by visual observers (Figure 6). Because the
DTag data we have, as used in say Marques et al. (2009), corresponds to
data recorded at each click event, we do not have information regarding all
non deep dive parts of the track, but this would be useful to have and we
have already requested it to NUWC. In some sense, modeling explicitly what
happens or not outside the vocal parts of the dives might be unnecessary
(even if less interesting and realistic.). Treating this part of the movement
as a black-box, and just having a distribution to go from the point where the
whale goes silent (on the ascent phase) to the point where it starts vocalizing
again (in the descent phase of the next deep dice) might just be enough.
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Figure 6: Zooming in the first dive.
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Nall Nlow Nreg Nhigh meanall meanreg
D1.227a 4006 92 3818 96 0.362 0.303
D1.245a 1822 4 1785 33 0.387 0.327
D1.248a 3107 9 3028 70 0.448 0.351
D1.248b 4508 4 4406 98 0.393 0.322
D1.296 4905 8 4788 109 0.376 0.313
D2.227a 4336 19 4246 71 0.356 0.311
D2.245a 2365 16 2298 51 0.361 0.316
D2.248a 3124 10 3041 73 0.403 0.334
D2.248b 6166 11 6044 111 0.386 0.334
D2.296 4603 11 4486 106 0.374 0.308
D3.227a 3932 23 3828 81 0.389 0.326
D3.245a 2077 9 2022 46 0.365 0.322
D3.248a 3393 9 3302 82 0.417 0.346
D3.248b 5447 11 5343 93 0.386 0.337
D3.296 4517 4 4436 77 0.349 0.304
D4.227a 3514 10 3440 64 0.396 0.344
D4.245a 4162 6 4038 118 0.357 0.286
D4.248a 3896 6 3805 85 0.431 0.351
D4.248b 5815 9 5699 107 0.403 0.332
D5.227a 4051 19 3966 66 0.383 0.340
D6.227a 4473 13 4355 105 0.364 0.299
mean 4010 14 3913 83 0.385 0.324

Table 1: The columns represent, for each dive, respectively the Number of
ICIs available (Nall), the number of those less than 0.1 seconds (Nlow), the
ones between 0.1 and 1 second (Nreg), and those above 1 second (Nhigh), as
well as the means for all (meanall) and the regular (meanreg) ICIs.
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1 Introduction

In this document we describe the procedures involved in going from DTAG
data, in the form of “prh” files (time indexed files of pitch, heading and roll),
to pseudotracks and from those and acoustic localizations, to georeferenced
locations.

The document is structured as follows. Building on a brief description
of state-space models notation, in section 2 we address the current approach
to process DTAG data to obtain a pseudo-track over time. This is divided
in two parts: in section 2.1 we present the basic trigonometry involved, and
how locations can be updated based on this via dead-reckoning. In section
2.2 we present a state-space model1 to estimate states depth and speed from
depth observations (and where pitch is taken as a known covariate, i.e. pitch
is assumed to be observed without error). This is essentially what, to date,
has been fitted to DTAG data using a Kalman filter, based heavily on Mark
Johnson’s work (and code). We look in close detail to the Kalman filter code
created by Mark Johnson to estimate speed as a function of depth and pitch
collected from DTAG data. We refer to the use of this “best” speed estimate
together with depth, pitch, heading and tag on position to obtain a track, as
“pseudo-tracking”.

Including acoustic localizations (details of how these are obtained are
available in (Marques et al., 2012)) in this process to provide tracks which
are combined with locations assumed to be known with negligible error, and
hence counterbalancing the drift from dead-reckoning, leads to a process
referred to as“geo-referencing”. A brief description of how this has been done
to date, namely a simulated annealing algorithm implemented to process the
data used in Marques et al. (2009), is presented in section 3. This lays the
ground for possible improvements, as described in section 3.1, namely by
including behavioral states.

In section 4 we build on the existing model, namely to consider additional
states in the formulation, like actual location, heading and pitch. We lay
down such models in some detail because that will be the basis for subsequent
work, namely a state-space model which includes the acoustic localizations
of animals to improve on track estimation.

The implementation of these models is the subject of a separate LATTE

1Strictly speaking, we present it as a dynamic linear model, along the lines of Petris
et al. (2009)
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internal report Marques and Thomas (2012).

1.1 State-space model notation

A simple state-space model can be thought of a couple of equations, describ-
ing two “parallel” time series, the state and the observation processes. The
states are the underlying true quantities we often want to make inferences
about, while the observations are some observable quantities which can be
related to the states by some known process. Borrowing the notation from
Petris (2010) we have

ot = Ftθt + υt, υt _ N(0, Vt) (1)

θt = Gtθt−1 + ωt, ωt _ N(0,Wt) (2)

where θt represents the state in time t and vector ot represents the observa-
tions at time t, and Vt and Wt represent respectively the observations and
states variance-covariance matrices. For simplicity in the above we have as-
sumed the observation and state process errors to be Gaussian, but in general
they do not need to be so.

2 A state-space model to obtain pseudo-tracks

In this section we describe a possible state-space model to estimate whale
speed and depth from DTAG data, where the input observed data comprises
depth. Pitch is also a necessary input, but is taken as an external covariate,
not as part of the observation vector, and hence assumed to be known without
error. The reason this was implemented in this way was purely pragmatic:
at the time this was just a first stab at the problem (Mark Johnson, pers.
comm.).

The DTAG comprises a number of sensors which allow us to measure vari-
ables including depth, magnetic fields and acceleration (Johnson and Tyack,
2003). From these we can obtain, coupled with calibration information, esti-
mates of whale pitch, heading and roll (in the following we refer to these as
prh data, or prh files). Here we do not investigate further the methods/details
required for obtaining these files. Instead, we build on these files to try to
obtain a spatially indexed track. We note however that if one wants to delve

3
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deeper into the process, then this would be a good place to start: there is
a lot of complex 3D trigonometry involved in converting acceleration and
magnetometer data measured on the frame of the DTAG into pitch, heading,
and roll on the hearth frame (see Johnson and Tyack, 2003, for details).

Given an initial tag-on position, the prh data over time, and a reasonable
constant speed, simple 3D trigonometry leads to a track in 3D space through
dead-reckoning. Section 2.1.2 describes how this is implemented in detail.
However, this 3D track is affected by additive drift errors over time. An
example is shown in figure 5 in Mitani et al. (2003).

Here we concentrate on obtaining the best possible estimate of speed,
so that we can also obtain the best possible estimate for the track path, at
least without any additional information. We build on this in section 4.2),
by adding acoustic localization information to the process.

We present a state-space model which provides an estimate of speed (s)
and depth (z) as a function of pitch (φ) and depth (z) inputs. We explicitly
note a particularity of the proposed model: while depth is assumed to be
an observation made with error, pitch is taken as a known covariate. This
was a pragmatism-derived implementation decision, not really based on any
theoretical consideration. Note in particular that, from figure 5 in Johnson
and Tyack (2003), it seems clear that there is non negligible measurement
error associated with pitch.

Below we describe two processes:

1. The relation between depth, pitch and speed, as well as how to use
speed (and a starting location) to update an animal position over time
(section 2.1), considering a dead-reckoning process.

2. How to obtain an estimate of speed from the DTAG data (section 2.2),
using the Kalman filter (as previously stated, heavily based on MJ
code);

2.1 The geometry of the problem

2.1.1 Obtaining the depth state transition equation

We consider here that the animal moves in a straight line between successive
time points. Consider a depth difference ∆zt = zt−zt−1 between the animal’s
position a two successive time points t and t−1, such that ∆Tt = Tt−Tt−1 (We
assume for notation simplicity that ∆Tt = ∆T , for all t). Let ht represent

4

Page 231 of 466Version with appendices



the slant distance between the animal location at time t and time t−1. Then
by simple trigonometry2 we have that

∆zt = ht sin(φt)

which can be rearranged to

ht =
∆zt

sin(φt)

Assuming that the mean animal speed between time point t and t− 1 is
given by st, then

st =
ht

∆T

we can write that

st =

∆zt
sin(φt)

∆T
=

∆zt
∆T sin(φt)

(3)

We can therefore explicitly connect the depth observation (z) to the pitch
state (s), as well as writing down the depth state updating process, by rear-
ranging this expression, leading to

zt = sin(φt)st∆T + zt−1

We could also write pitch as a function of the depth (or speed) as

φt = arcsin{ ∆zt
st∆T

}

but this is not used here.

2.1.2 Dead-reckoning given speed, prh and initial position

Given a reasonable estimate of the whale initial x, y, z location, as well as
speed (s), depth (z), heading (ψ) and pitch (φ) over time, we can build a
pseudo-track by dead-reckoning.

2Note that as − sin (φ) = sin (−φ) depending on whether we define pitch angle positive
when pointing upwards or downwards one needs to change the sign associated with this
sin expression.
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We can estimate the (two dimensional, i.e. as projected on the sea surface)
easting (vx) and the northing (vy) velocity components as 3:(

vx
vy

)
= s cos(φ)

(
sin(ψ)
cos(ψ)

)
+ sc

(
sin(ρ)
cos(ρ)

)
The term cos(φ) accounts for the pitch of the whale (i.e., while the whale

displaces itself at a given speed s along the straight line that goes through
(xt, yt, zt) and (xt+1, yt+1, zt+1), that is reduced in the x and y dimensions by
a factor that depends on the pitch; the higher the pitch, the higher the re-
duction factor; this seems intuitive enough, but a plot would help visualizing
this effect.). The second term of this sum accounts for the water current,
assumed to have heading ρ and velocity sc. If sc = 0, i.e., if we assume
the influence of the current is negligible, the second part disappears. Note
that is the case presented by Wilson et al. (2007). We will assume this is a
valid assumption in our case, although presumably part of the problems we
encountered in drifting stem from this being an unreasonable, despite clearly
simplifying, assumption. However, lacking information on the currents at
AUTEC at the time the data was collected, it is hard to improve on this at
this point.

So now, to update the position in time we just need to update the x and y
positions by adding the previous coordinate to the product of velocity (in each
dimension) and elapsed time (note this product corresponds to displacement
for the corresponding x or y dimension), i.e.(

xt+1

yt+1

)
=

(
xt + ∆Tvx
yt + ∆Tvy

)
(4)

Note that this formulation hints towards the fact that x and y could
also be treated as states we want to estimate. This would mean we have it
all defined as a single procedure, rather than the current plug-in approach in
which we first estimate speed, and then use this estimated speed to propagate
the path, without accounting for the associated variance in this process.
Including location as states will in fact be the approach presented in section
4.1.

3this is equation 7 from Johnson and Tyack (2003), but TAM only really understood
this after reading Wilson et al. (2007), in particular around equations 1-3, and seeing these
are the same if one considers v = h

∆T ; Mitani et al. (2003) and Shiomi et al. (2008) also
helped in this process.
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2.2 Estimating speed via the Kalman Filter

2.2.1 Zooming in Mark’s tool

The Kalman Filter is a tool that can be used to estimate unknowns in a
system specified as a dynamic linear model (as in equations 1 and 2 above).
Intuitively, the filter proceeds by sequentially updating the current position
of the system states by a weighted average of (1) the next position given the
expected system evolution and (2) the observation (which is related to the
state value by some observation model), in which the weight depends on how
much relative faith we have (1) on the knowledge of the system vs (2) the
measurement error in the observation process.

Here we take a look into a couple of MATLAB .m files referred to as
“Mark’s tool”, which were developed by Mark Johnson and sent to us by
Jessica Ward. The reason to do so is because these two files should be
an implementation of the pseudo-track procedure, and hence understanding
these will help understand the entire process.

The two MATLAB files correspond to:

• ptrack.m - this script calculates the pseudo-track by dead-reckoning
(see section 2.1 for more details on this), given as inputs (vectors of)
pitch, heading and speed4; the input parameter p can be either be a
scalar, and then it is interpreted as a mean speed to be used for dead-
reckoning, or it can be a vector of depths, which then gets used with the
pitch vector in the next function, which implements a Kalman-Filter
to estimate speeds over time. These speeds then get used to implement
the dead reckoning. Within ptrack.m there is an optional low-pass
filter5 to be implemented over the track (x, y or x, y, z) and speeds.

• kalmanspeedest.m - this function is called inside ptrack.m, if (and
only if) p is a vector of depths. This implements the Kalman filter-
ing and smoothing to obtain speed and depth estimates which then
get used inside ptrack.m for dead-reckoning. From what we can tell,

4note other inputs are required by the function, but not relevant here so we ignore them
5Quoting MJ: The LPF is a bag on a dog. It is not the right way to do it but was

a quick hack to overcome problems at sharp pitch changes. Contrary to the very simple
dynamic model that I used in the kf, animals are not rigid and do not move without slip
or lift. this leads to awkward data at turning points in the dive where the animal can be
pitched upwards but still moving downwards. ideally the model should include inertia but
there is a limit to how much we can sophisticate it without courting unobservability again.
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only the estimated speeds, not the estimated depths, are used in the
ptrack.m function, but there is no reason to do so, and in fact, given
that these are supposedly a better estimate of depth, we should use
these for consistency. In practice, observed and estimated depths are
very similar.

We look below in closer detail to kalmanspeedest.m, to understand how
the Kalman Filter is implemented and to check the underlying state-space
model formulation.

The input parameters in kalmanspeedest.m are vectors with depth (p)
and pitch (pitch) (over time), as well as fs, the sampling frequency in Hz.

The first relevant chunk of code is:

% measurement noise cov. : this should be set equal to the noise power
% in the depth estimate, p, e.g., 0.05 m2. was 0.005
%TAM - strictly, this is not a covariance, but a variance %TAM - this

corresponds to the matrix Vt in equation 1
r = 0.001 ;
% speed state noise cov. : accounts for variations in speed, was 0.05
q1 = (0.02/fs)^2 ;
% depth state noise cov. : accounts for errors in pitch angle, was 0.05
q2 = (0.08/fs)^2 ;
% T is the time interval between successive measurements
T = 1/fs ;

This seems to imply that these variances are being fixed rather than
estimated. The comments in the code (e.g. “was 0.05”) probably mean
that there was some initial tuning to find variance values which provided
reasonable results.

Then the following code chunk follows:

% vector Kalman filter with 2 states: s and p
% transition matrix entry (2,1)
a = -sin(pitch)/fs ;

% starting state estimate
shatm = [1;p(1)] ;

% state noise matrix
%TAM: note this is matrix Wt in equation 2

8
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Q = [q1 0;0 q2] ;

% observation vector
%TAM: note this is matrix Ft in equation 1
H = [0 1] ;

% initializing the state covariance matrix:
% says how much we trust initial values of s and p
Pm = [0.01 0;0 r] ;

In the current implementation, Q, which corresponds to Wt in equation 2,
is assumed known, i.e. we assume we know the process error (a.k.a. process
noise). Similarly, the variance in the observations, r, is also cast in stone,
and does not get updated. There are Kalman Filter variants in which these
variances can also be estimated, but we do not consider them for now.

In the above the line stating“initial state covariance matrix:” is initializing
the estimation error covariance matrix (quantifies our precision around the
state predictions), which would correspond to P0 in Simon (2001) and P0|0
in Gannot and Yeredor (2008). Further r should be the measurement error
variance in depth6.

Note also that Pm gets updated at each iteration, and hence hopefully the
initial values we use for the variances in the predictions of speed and depth
will not have a big influence in the final outcome.

Given this, we can write the observation and state equations respectively
as

ot = [0 1]

(
st
zt

)
+ υzt (5)

and (note 1/fs = ∆T )(
st
zt

)
=

(
1 0

− sin(φt)∆T 1

)(
st−1

zt−1

)
+

(
ωst
ωzt

)
(6)

where we recall that here υ and ω are assumed to be Gaussian unbiased
errors (with some variance covariance matrix; here also so far we assume
covariances in the errors are 0). We then have a set of lines which initiates

6Apparently it is just a non-ideal coding shortcut that r is used twice, one for the
variance in the observation of depth, and another for the initial estimate of variance in
depth in the state process
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the objects used to store state estimates and state smoothed estimates (as
well as to store covariance matrices)

% place to store states
skal = zeros(2,length(p)) ;
% TAM: place to store smoothed state estimates
srau = skal ;

%TAM: place to store the Kalman
%a posteriori state predictions covariance matrix (2x2xn)
Ps = zeros(2,2,length(p)) ;

Pms = Ps ;

The next chunk of code is the beginning of the implementation of the
Kalman filter itself, defining for each observation

for k=1:length(p),

the actual state transition matrix, i.e. Gt in equation 2 and expression Φn in
(Gannot and Yeredor, 2008, equation 8.20)

Ak = [1 0;a(k) 1] ;

After this comes an expression7 that updates the state covariance matrix.

if k>1,

% update a priori state variance-covariance matrix

Pm = Ak*P*Ak' + Q ;

Note this is expression 8.33 in Gannot and Yeredor (2008), followed by
the deterministic part of equation 6 above:

% a priori state estimate

7It must be noted this expression is not evaluated for k = 1; this confused me for a
while because I could not understand where P or shat was obtained from, but then I
realized these are defined as the next chunk of code is evaluated when k = 1 and produces
the first instances of these objects

10
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% i.e. expression p1 in page 141 in Gannot and Yeredor (2008)
shatm = Ak*shat ;

end

Note that here shat is a 2 by 1 matrix with the current state estimates
(see how it gets defined below). Now finally we compute the Kalman gain

K = Pm*H'/(H*Pm*H'+r) ;

which corresponds to expression 8.32 in Gannot and Yeredor (2008) or to the
first equation on the top right corner of page 74 in Simon (2001) (although
in this case one needs that Mark’s Pm= Simon’s APk = Gannot’s Pn|n−1).
Then we finally compute the current state estimate

% a posteriori state estimate
shat = shatm + K*(p(k)-H*shatm) ;

% speed and depth must always be positive
% shat = max([shat';[0 0]])' ;

which is at the very essence of the Kalman filter, corresponding to equation
8.21 in Gannot and Yeredor (2008) or the second equation on the top right
corner of page 74 in Simon (2001). Note also there is a commented line of
code which, if evaluated (i.e. uncommented), enforces both speed and depth
to be strictly non negative.

Next there is the expression which computes the state covariance, which
is expression 8.35 in Gannot and Yeredor (2008). I suspect that this also
corresponds to the third equation on the top right corner of page 74 in Simon
(2001) (which might be a variation the form of equation 8.34 in Gannot and
Yeredor (2008)). Note that this matrix corresponds to the mean square error
of our prediction, and hence is of the uttermost importance to evaluate our
predictions quality (Gannot and Yeredor, 2008, ,cf. pag. 141).

% a posteriori state variance-covariance matrix
%TAM: note eye(2) returns the 2 × 2 identity matrix, [1 0; 0 1]
P = (eye(2)-K*H)*Pm ;

Finally we place current iteration results in the appropriate places, re-
spectively the current state estimates in skal, the a priori state variance-

11
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covariance matrix in Pms, and the a posteriori state variance-covariance ma-
trix in Ps:

skal(:,k) = shat ;

Pms(:,:,k) = Pm ;

Ps(:,:,k) = P ;

end

By now the filtering has been completed, and we move on to the smooth-
ing part of the algorithm (strictly, the Kalman filter is over at this point, but
the smoothing is such a common objective that it is sometimes treated as
part of the Kalman filter itself). Here the code starts with

%Vh is P(T) - TAM: not sure what this comment refers to (neither does
MJ!)

srau(:,length(p)) = shat ;

which just stores the last state as the smoothed estimate (as there is nothing
to smooth here “in the present”, we can only smooth “into the past”). Then,
for each of the remaining (p− 1) states, go backwards and compute

% Kalman/Rauch smoother
for k=length(p):-1:2,

% make state transition matrix
Ak = [1 0;a(k-1) 1] ;

% smoother gain TAM.
K = Ps(:,:,k-1)*Ak'*inv(Pms(:,:,k));
% smooth state
srau(:,k-1) = skal(:,k-1)+K*(srau(:,k)-Ak*skal(:,k-1)) ;

end

These equations are represented in Gannot and Yeredor (2008) by equa-
tions 8.68 and 8.69. We can see that the previous8 smoothed estimate is
obtained by the filtered estimate “updated” by an amount proportional to
the difference between the current smoothed estimate and the previous (a

8i.e next, as we are now going backwards in time... that is the definition of confusing
wording!
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priori) filtered estimate, where the constant of proportionality K is known
as the smoothed gain matrix (expression 8.69).

This is called a fixed-interval smoother, in which all previous filtered esti-
mates have a corresponding smoothed estimate. Note there are other possi-
ble types of smoothers: we could also have a fixed-lag smoother (sequentially
smooth an estimate m time steps into the past, based on all n > m data
points) or a fixed-point smoother (smooth a specific, fixed, time estimate).

This code was implemented elsewhere using the original MATLAB files,
and is then migrated into R for further developments.

3 Current georeferencing procedure

After obtaining a pseudo-track, one might want to improve on this track by
including independent information collected on the surrounding hydrophones.
This will actually be the focus of section 4.2.

To date, the process that tried to improve on the pseudo-track estimation
was based on code from Charlie White. Here we lay down the procedure:

1. a track is obtained by dead-reckoning, as described in section 2.1.2,
using a reasonable mean speed constant over time

2. the clicks emitted by the DTagged whale are cross-correlated with sur-
rounding hydrophone data. For all clicks detected at more than 1
hydrophone, we have a time-difference of arrival (TDOA). Given 2 or
more TDOA’s for a single click we can localize the animal in 3D space
using hyperbolic localization. Due to its acoustic characteristics, most
often a click is not detected at more than 2 hydrophones. However,
by interpolating the “TDOA lines” (over the entire dive) we can obtain
TDOA’s enough (some measured, some extrapolated) to localize the
animals. There might be some room for improvement at this extrapo-
lation step. See more details about this in section 4.2.

3. given these localizations, a geo-referencing procedure is implemented.
This uses a simulated-annealing (SA) optimization procedure (for more
details on his SA procedure, see Marques (2011)) to iteratively obtain
tracks which are closer and closer to the whale acoustics-based local-
izations (assumed known without error). This SA procedure goes in a
loop:

13
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(a) use current vector of speeds to obtain pseudo-track by dead reck-
oning

(b) calculate distance to known locations

(c) check if convergence is achieved (i.e. sum of distances is already
small enough, given some criteria) and if not

(d) change the previous vector of speeds by a random amount and go
back to step 3a

In step 3c above, if convergence is achieved, then we use the current
track as the geo-referenced track.

From what we can tell, this SA based procedure is complemented with
some manual tweaking which is hard to describe in a quantitative way. The
entire procedure seems currently a bit convoluted, because it is equivalent to
use a relatively complex optimization routine that converges when the track
goes close enough through the points assumed known. But the procedure
is not any better than just joining the points assumed known using a speed
equal to the mean speed required to join those points. In the current approach
you can have the animal backtracking in a random way, which might be more
realistic, but on average, the end result would be the same. We only improve
on “joining the dots” if we bring in additional information about animal
movement into the process.

3.1 Including behavioral states

The above formulation does not consider changes in animal behavior modes,
i.e., attempts no mechanistic description of the dive itself. An alternative
approach might be to consider that a whale dive is made up of a number
of different behavioral states, e.g. deep diving (descent, feeding, ascent) and
at the surface. It is likely that speed (and other relevant variables) present
different distributions depending on the behavioral state of the animal. Hence
accounting for that in the process might lead to improved inferences. An
option would be to have behavioral mode as a state. Depending of the
current state, other states are updated using different schemes.

It might make sense to include both heading and pitch as observations,
at least to include measurement error in the process. Potentially these might
also be included as states, if we want to introduce some Markovian depen-
dency over consecutive values of these variables, which would again probably
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make sense. For example pitch is likely correlated over time, and measure-
ment error in pitch is not constant over time either (see e.g. figure 5, bottom
panel, in Johnson and Tyack (2003)).

Also, as introduced in section 4.1, here we would want to move away
from the above formulation because we actually want the states to be (at
least) s, x, y and z. And every now and then we will have observations
about some of these states (with some error), namely about x, y coming
from the localizations on the AUTEC range hydrophones. This is easily
incorporated in the modelling framework, being simple to implement even
within the Kalman Filter framework. As a separate example, McClintock
et al. (2012) considered a discrete time state switching model, with movement
dependent on behavioral state, for which often, but not always, there were
observations of the animals locations.

4 Improving the current SSM formulation

Here we build on the original SSM framework developed by MJ in several
aspects:

1. considering x and y as states in the SMM, in section 4.1;

2. including observations from acoustic localization, in section 4.2;

3. considering heading and pitch as states, in section 4.3.

4.1 Considering location as states

Given that the (first!) end game is actually to predict animal locations, it
makes sense to include these as states in the model, rather than the current
plug-in approach, in which a vector of speeds is estimated using the Kalman
filter, and then dead-reckoning based on the initial location and speed, pitch
and heading information is implemented.

We could consider x, y locations as additional states, and use equation 4
combined with 6 to come up with a different state transition matrix as

st
zt
xt
yt

 =


1 0 0 0

− sin(φt)∆T 1 0 0
∆T cos(φt) sin(ψt) 0 1 0
∆T cos(φt) cos(ψt) 0 0 1




st−1

zt−1

xt−1

yt−1

+


ωst
ωzt
ωxt
ωyt

 (7)
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and considering a very similar observation process:

ozt = [0 1 0 0]


st
zt
xt
yt

+ vzt (8)

Note that this formulation exacerbates the approach inadequacy, as we
are trying to make inferences about 4 states using as inputs just observations
about one of the states (depth).

Note that, just as pitch was being considered before a covariate observed
without error, here we would require both pitch and heading to be included
as such.

4.2 Including observations from acoustic localization

Here we assume that every so often we might actually observe some x, y coor-
dinates from acoustic localizations. What this means is that the observation
equation becomes

 ozt
oxt
oyt

 =

 0 1 0 0
0 0 1 0
0 0 0 1




st
zt
xt
yt

+

 vzt
vxt
vyt

 (9)

but that we often have missing values in oxt and oyt .
Note that, regarding the localization data itself, there is actually more

to it than meets the eye. The data actually available to us are time-of-
arrival (TOA) of clicks at individual hydrophones. However, we have an
advantage over a traditional localization procedure: because we can use the
DTAG sound record as a template, we can use some sort of comb9 filter to
evaluate, of the clicks produced by the whale, which and when were these
detected at surrounding hydrophones. For each click detected at least at a

9This equates to sliding back and forth the sound record of an hydrophone against the
DTAG template sound record. For a fixed object, the TDOA corresponds the time delay
that maximizes the correlation between the two sound records, and naturally this should
be proportional to the distance between whale and hydrophone, with the speed of sound
in the water being the proportionality constant. What confuses me is the fact that the
whale moves over time, hence over the course of a dive this TDOA is changing.
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pair of hydrophones, this information can be used to get a time-difference-
of-arrival (TDOA, the difference in time between the arrival of a click at two
hydrophones). This TDOA instead leads to a location along an hyperbola.
Several TDOAs for the same click would hence allow to resolve the click’s
position. Because the clicks are highly directional, seldom a click is detected
at more than a couple of hydrophones, in fact more often than not it is
detected in a single hydrophone. Hence, we do not get enough TDOA’s for
each individual click to get reliable localizations. But successive TDOA’s
can in turn be used to produce, by interpolation, TDOA lines (effectively, a
set of points forming a line on a plot where TDOA is plotted against time).
These are then used in an hyperbolic algorithm to get localizations for each
individual click, even if not detected at a sufficient number of hydrophones
per se to provide a localization. We can see potential for improvement of this
process, in particular at the level of:

• the comb filter and the cleaning up of the TDOA plots

• the interpolation procedure and ways to improve it

• using the TDOAs to get the location. Would in not be smarter to get
the location from the TOAs? If so, should one not compare localization
from TDOAs with TOAs, to see what happens in the absence of the
DTAG data?

4.3 Considering heading and pitch as states

A natural extension given the above is to include both heading and pitch at
least in the state vector (and also as observations). This would lead to the
following observation equation

ot =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




st
zt
xt
yt
φt
ψt

+ vz (10)

where as before handling missing values, in particular in x, y, is straightfor-
ward, and state equation
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
st
zt
xt
yt
φt
ψt

 =


1 0 0 0 0 0

− sin(φt−1)∆T 1 0 0 0 0
∆T cos(φt−1) sin(ψt−1) 0 1 0 0 0
∆T cos(φt−1) cos(ψt−1) 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1




st−1

zt−1

xt−1

yt−1

φt−1

ψt−1

+


ωst
ωzt
ωxt
ωyt
ωφt
ωψt


(11)

at the cost of loosing the ability to use a “simple” tool like the Kalman filter
for fitting, because now inside the transition matrix Gt we have not only
constants but also the states at previous time points.

Instead of using matrices, it helps if we write down explicitly the state
transition equations:

st = st−1 + ωst
zt = zt−1 − st−1 sin(φt−1)∆T + ωzt
xt = xt−1 + st−1 cos(φt−1) sin(ψt−1)∆T + ωxt
yt = yt−1 + st−1 cos(φt−1) cos(ψt−1)∆T + ωyt
φt = φt−1 + ωφt
ψt = ψt−1 + ωψt

(12)

as clearly we cannot write these equations as linear combinations of the
states. And the question here is, so now what?

5 So now what?

From the above material, it seems like there are a number of places to improve
upon, and these include, in a random order, things as general as:

1. deal with the ad hoc way of keeping speed and depth with the proper
sign

2. delve into the procedure that creates the prh files to evaluate error in
pitch and heading

3. estimate one of rather than assume both process and observation errors
known
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4. delve into the data that exists prior to localizations (i.e. TOAs and
TDOAs)

5. include information on water current (and hence modify SSM accord-
ingly?)

6. fit the latest non linear state space model

7. other thoughts to come?
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1 Introduction

This document was built over a document produced within the realms of
DECAF. In the corresponding DECAF folder there might be additional useful
information to understand this document. However, we have tried to make
this document self contained. The idea is to use this material within LATTE.

In this document we present, illustrated with examples, the code used for
the simulation of vectors of click counts per minute. Note that despite this
being its key objective, this code could be easily generalized to simulate a
general population of whales through time and many of the details regarding
their dives. This would naturally require that the appropriate information
regarding the corresponding whale species was available.

The objective of the original DECAF simulation exercise was to produce
click count vectors as close as possible to observed click counts. A fundamen-
tal problem with this approach is that some of the information that would
be required to parameterize some of the functions used was either lacking or
potentially misleading (e.g. the click count data, especially while it is based
in the FFT detector, has large number of false positives and false negatives).

This work builds on the rationale previously described in the report “Ra-
tionale for the simulation of plausible vectors of detected click counts.pdf”
(Marques and Thomas, 2008c). In addition to this, some of the parameters
and assumptions used were obtained in the analysis described in the report
“Further analysis of the hydrophone+DTag data.pdf” (Marques and Thomas,
2008a).

The next section (section 2) presents the code, and a running example is
used throughout to illustrate it. Due to the extent of section 2, which makes
its reading difficult, this is followed by an overview of the code which might
be useful for reference (section 3), and we finish we some avenues for pending
work (section 4).

1.1 Additional reading

This document included originally extra material regarding sections 2.5.1
and 2.5.2, which was moved into separate documents as it was somewhat
peripheral to the key goal of this document, which is simply to describe the
simulation code. Hence for initial attempts, alternatives and further details
regarding section 2.5.1 the reader is referred to Marques and Thomas (2008d)
and regarding section 2.5.2 to Marques and Thomas (2008e).
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2 The code

2.1 Some preliminaries

As we are working over a specific area (the AUTEC range), we first need
some relevant information, namely the hydrophones location

> #reading the hydrophone data in

> hyd<-read.table(file="datfiles/HYDtable.txt")

> names(hyd)<-c("hydID","on","x","y","z","dunno")

> #adding the fact that some hydrophones were actually off

> #during the period for which we have data - this is

> #actually not used in the simulation

> hyd$off<-0;hyd$off[c(47,48,54,55,62,63,70,71,79,86,87)]<-1

as well as to define a working area. For simplicity we define said area here
as the convex hull around the recording hydrophones, extended by 4 km.

> #selecting a work area for simulating the animals in

> #setting the work area as the convex hull around the hydrophones

> work.area<-convexhull.xy(x=hyd$x[hyd$off==0],y=hyd$y[hyd$off==0])

> #and extend it 4000 m out of this convex hull

> work.area<-dilation.owin(w=work.area,r=4000)

> #plot(work.area)

> #points(hyd$x,hyd$y)

> #points(hyd$x[hyd$off==0],y=hyd$y[hyd$off==0],col="green",pch=21,bg="green")

We can now generate animals within said working area, as in figure 1.
Because it is more interesting to generate animals according to a model

that represents what is observed at AUTEC, we use here a density surface
model estimated in a previous analysis (see figure 5 in the report“Click Count
EDA Report with NUWC feedback.pdf”). In order to do this, we first need
to read in:

• data regarding the respective model;

• an adequately sized prediction grid over which the model results can
be evaluated.

4
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Figure 1: An example of a simulated location of animals within the chosen
work area. Red numbers are the locations of 15 animals, while the black
small numbers are the AUTEC hydrophones numbers and locations.
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> #read the data created in EDA click counts that can be used to create a surface of density

> fn<-"datfiles/allSets.cc.per.hydrophone.txt"

> allSets.cc.per.hydrophone<-read.table(file=fn,header=T)

> #reading a 100 by 100 prediction grid

> fn<-"datfiles/AUTEC100by100predictiongrid.txt"

> pred.grid<-read.table(file=fn,header=T)

> rm(fn)

The Poisson model used is shown in Figure 2, top panel. We have not
used what might be the best model for this data, which would be a gamma
model (rather than the Poisson model used here, see Marques and Thomas
(2008b), figure 1 + text for details), because the gamma model produces
unreasonable estimates just outside the areas for which data was available.
The bottom panel in Figure 2 is the Poisson model with predictions over the
entire working area (i.e. extending 4km outside the recording hydrophones).
This confirms that no wild results are produced by using the predictions
outside the range of the data. Because the estimated surface is quite tame,
everything seems to work well. This will likely be one of the least influent
aspects of this simulation exercise.

Because we want to use the above gam model as a basis for the density
surface, we will also need a wrapper function that allows its use within the
appropriate function rpoint (which creates points from a given spatial point
pattern, defined using a fitted model object), something like

> #Writen by Tiago Marques on 13th May 2008 and last updated on 13th May 2008

> #Purpose: creating a wrapper for predict.gam to use in rpoint

> pred.gam.for.rpoint<-function(x,y){

+ preds<-predict.gam(object=some.gam.object,newdata=data.frame(x=x,y=y),type="response")

+ return(preds)}

We are now ready to start simulating animals. Note that despite the
fact that we will base all subsequent work in the above model for animal
distribution at AUTEC, this could be easily generalized, or updated if a new
model becomes available, by changing pred.gam.for.rpoint accordingly.
In particular the user could define manually the positions of each of the
animals/groups to be considered.
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Figure 2: The density model used for generating animal positions, as esti-
mated from click count data (top panel). In the bottom panel the predictions
are extended to the entire working area, i.e. approximately 4000m outside
the range of the original data.
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2.2 Simulating groups of whales: location and size

The following function allows to generate the groups locations (as is, within
an area of 4000 m around the hydrophones, see previous section for details):

> generate.group.coordinates<-function(n,dens,dens.type="gam",within){

+ #Writen by: Tiago Marques on 10th March 2008 and last updated on 13th May 2008

+ #Purpose: this function returns the x,y coordinates for n simulated groups of animals,

+ #given a specific density surface in a given area

+ #Inputs:

+ # n a scalar, the number of groups in the area

+ # dens.type if "gam", then dens should be a gam object resulting from a lat,long fit;

+ # nothing else is currently implemented, except using dens=a constant which returns a random

+ # poisson (in space) model

+ # dens a model object or a number; if a number, generates a simple poisson distibution in space

+ # if a model object, model must be a function of x,y coordinates and groups are allocated

+ # proportionaly to the model value evaluated at x,y

+ # within an object of type window, as defined in library spatstat, which defines the area over

+ # which animal locations are to be generated within

+ #Returns:

+ # an object of class ppp (see spatstat) which most important attributes

+ # are x and y, the location of each group

+ #Warnings: spatstat needs to have been instaled

+ require(spatstat)

+ if(dens.type=="gam") {

+ pred.gam.for.rpoint<-function(x,y){

+ preds<-predict.gam(object=dens,newdata=data.frame(x=x,y=y),type="response")

+ return(preds)}

+ ggc<-rpoint(n=n,f=pred.gam.for.rpoint,win=within,giveup=1000)}

+ else {

+ print("Warning: Locations generated by Poisson process")

+ ggc<-rpoint(n=n,f=1,win=within,giveup=1000)}

+ return(ggc)}

Given the object created by this function, we can the following function
to add group sizes to each of the groups

> add.group.sizes<-function(pop,mean.cs=4.1){

+ #Writen by: Tiago Marques on 10th March 2008 and last updated on 13th May 2008

8
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+ #Purpose: this function adds group sizes to an object with the groups locations

+ #Details: given a population pop (currently a ppp class object)

+ # this function generates group sizes for each group in

+ # pop from a 1+Poisson(mean.cs-1) (see document "Adding

+ # variance to Moretti et al.doc" for further details)

+ #Inputs:

+ # pop - an object of class ppp containing the x,y group locations

+ # mean.cs - the mean group size

+ #Returns: a ppp class object with $marks = the group sizes

+ css<-1+rpois(pop$n,mean.cs-1) #get group sizes given number of groups

+ pop<-setmarks(pop,css) #add them to the pop object

+ return(pop)

+ }

Note the default mean group size used here is 4.1, as this was the mean
cluster size reported by Claridge (2006), and also used by Moretti et al.
(2006) to estimate beaked whale density at AUTEC.

We create here an example population with 4 groups, which location is
shown in figure 3. In the remainder of this section we continue to use this
4 group example for illustration, treating it as a running example from the
creation of the number of clusters till the last stage of the simulation process.

Up to this point we have assumed that all the animals in a given group are
at the same position in space, but that is not realistic. It is not clear how one
should model the individual animal’s locations in space. However, it seems
convenient to generate animal coordinates, because we need to associate each
simulated click with a given coordinate, and too much clumping in space
might be obtained if all animals are at exactly the same location.

Hence a new function that generates individual animal coordinates given
the group location is required. Here I have assumed that the individual
animal locations can be approximated by a bivariate normal distribution
(with 0 covariance). As a first approach, and purely arbitrary lacking data for
a better parameter value, a value of 150 (meters) for the standard deviation
of each normal random deviate was used. At the AUTEC scale, this puts
animals within a reasonable distance from each other so that they would
likely be a single group.

> generate.animal.coordinates<-function(animais,stdv=150){

+ #Writen by: Tiago Marques on 15th April 2008 and last updated on 13th May 2008
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Figure 3: An example of 4 simulated groups. The size of the group indicator,
used to represent the group initial location, is proportional to the group size.
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+ #Purpose: This function returns the initial animals locations

+ # assuming that animais is an object of class ppp created

+ # by "generate.group.coordinates", to which marks (i.e.

+ # group sizes) were added by function "add.group.sizes"

+ #Details: We assume a bivariate normal distribution in space given the center of the group

+ #Input:

+ # animais - the object of class ppp with group coordinates and group sizes

+ # stdv - the standard deviation of the multivariate normal used for generating

+ # the individual animal's coordinates

+ #Returns:

+ # a data.frame with individual animals coordinates and group index

+ if (animais$markformat=="none") Print("The group has no group size yet!")

+ #defining the variance covariance matrix

+ varcovar<-matrix(c(stdv^2, 0, 0, stdv^2),2,2)

+ #creating the object to hold individual animal coordinates

+ #by getting the first groups coordinates

+ coords<-with(animais,mvrnorm(marks[1],c(x[1],y[1]),Sigma=varcovar))

+ #and a group indicator

+ sindex<-with(animais,rep(1,marks[1]))

+ #then for the remaning groups

+ for(i in 2:animais$n) {

+ temp<-with(animais,mvrnorm(marks[i],c(x[i],y[i]),Sigma=varcovar))

+ coords<-rbind(coords,temp)

+ sindex<-c(sindex,with(animais,rep(i,marks[i])))

+ }

+ res<-data.frame(x=coords[,1],y=coords[,2],sindex=sindex)

+ return(res)}

An example of the implementation of said function over the previously
created groups is shown in figure 4. While on the top panel we put the
locations in perspective to the entire range, on the 4 bottom panels we zoom
in each of the groups, to gain a better feel for how far apart animals in a group
might be of each other. Again, note that we have no relevant information to
define this spacing in any better way than the arbitrary standard deviation
(=150) used above in generate.animal.coordinates.
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2.2.1 Simulating individual animal coordinates through time

Initially, we had not considered to simulate x,y coordinates over time, i.e. the
animal would be considered not to move much during the period analyzed.
This was justified because:

1. It is likely that, for the probability of detecting a click, the actual
distance is much less relevant than haa and vaa, hence changing x, y at
a local scale would have negligible influence in detection probabilities;

2. There is little or no information about the necessary parameters to
simulate such variables, especially given that x, y locations within a
group have a strong yet unknown correlation through time;

3. From a purely pragmatic point of view, it would keep simulations sim-
pler and faster.

However, it seems like this might not be the best approach because:

1. It is really implausible from a biological point of view and hence not
defensible and hard to explain to others.

2. At least from dive to dive the animals should change position, hence
we might as well change their position within a dive too.

However, as stated above, there is no information available providing
plausible parameter estimates to simulate the x,y positions of animals within
a group through time. Additionally, it is not simple to simulate these things
directly. Hence, a possible simplistic approach might be: For each group

1. Simulate a Brownian movement in space through the time interval con-
sidered, which will represent the position of the center of the group
over time, starting at the coordinate obtained with function gener-

ate.group.coordinates. This Brownian movement will have a“large”
dispersion parameter, say σg.

2. For each animal, create a Brownian motion in space, over the time in-
terval considered. This Brownian motion will have a “small” dispersion
parameter, say σa, such that σa << σg.

13
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3. The Brownian movement of each animal is now normalized such that its
geometric center is exactly at the animal’s original simulated position,
which was obtained as described above using generate.animal.coordinates,
but with such original position being updated at each time point ac-
cording to the previously simulated group’s Brownian movement.

This should mean that we simulate movement through time that is strongly
correlated across animals within a group (the larger the difference between
σa and σg the larger the correlation should be). This does impose implicit as-
sumptions on the animal’s movements that we have no data to either support
or refute.

It seems clear that, due to the way in which movement is simulated, it
should not be adequate to simulate over long time periods, as it is unlikely
that over such periods an animal’s movement pattern might be modelled by
purely random movement, as it must at the very least to interact with all
the surrounding environment (i.e. not into shore for example).

At this stage we have no information to say if the animals have different
average displacements over the x, y space while at the surface vs. while deep
diving1, and hence no differentiation is made between the two states. If at a
later stage this is shown to be the case, we might need to implement changes
to the simulation code. The reason being that now we can simulate x, y
displacement independently of knowing the state of the animal, which will
not be the case then.

At this point, it seems like it makes life easier if we simulate x, y positions
changing each minute, at the middle of an analyzed minute (i.e., all clicks
produced within the same minute have the same x, y coordinates). Refine-
ments are possible, for example (1) to keep this spacing in time and use a
finer scale for x, y values based on interpolation or (2) use a finer time scale
for x, y simulation from the start. However, given that some discretization
will be necessary, choosing 1 minute intervals makes life much easier and
likely has no (or negligible) impact in any relevant outcome.

The first function one needs is one that simulates Brownian motion through
time, as a building block for other functions. This is also a reasonable way to
do it because if a more complex way of simulation movement (and most im-
portantly one way for which parameters are data driven rather than obtained
by educated guessing) becomes available then one just needs to update this

1 Which is not unlikely, as these represent different overall animal activities, say feeding
vs. breathing/socializing.
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function and the remaining code should work on top of it. Such a function
is shown below:

> get.xy<-function(minutes,sd=20,xy.start=NA){

+ #Writen by: Tiago Marques on 20th April 2008 and last updated on 13th May 2008

+ #Purpose: this function returns a brownian motion over the a given number of minutes

+ #Inputs:

+ # minutes - the number of minutes over which positions are to be simulated

+ # sd - the standard deviation of the updates in x and y dimention (20 m by default)

+ # xy.start- a used defined initial x,y position (NA by default)

+ #Details: note that sd is in meters and represents the sd of change in meters per time unit

+ # in the x and y dimention (no differences across dimentions are expected, hence

+ # a common sd is used. Note that this is not the change in distance, but the change in

+ # each coordinate; need to check later what this sd should be, by modelling it from DTag data.

+ #Returns: an array with dimentions (minutes,2), with the x,y position by minute

+ ##########################################################################################

+ #if a start point is not provided use an arbitrary one

+ if(is.na(xy.start[1])) {

+ group.x<-10000;group.y<-10000

+ }

+ else { #use the one given

+ group.x<-xy.start[1];group.y<-xy.start[2]

+ }

+ #for each time period, update the x,y position

+ for(j in 2:minutes) {

+ group.x[j]<-group.x[j-1]+rnorm(1,sd=sd)

+ group.y[j]<-group.y[j-1]+rnorm(1,sd=sd)

+ }

+ #return the x,y positions in an array with as many lines as time intervals and 2 columns

+ res<-array(c(group.x,group.y),dim=c(minutes,2))

+ return(res)

+ }

We can now simulate the movement through time of the center of each
one of our groups. We just need an appropriate wrapper for get.xy, namely

> get.xy.per.group<-function(groups,minutes,sd){

+ #Writen by: Tiago Marques on 20th April 2008 and last updated on 13th May 2008
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+ #Purpose: create the x,y position for each whale over the time period considered

+ #Inputs:

+ # groups - an object of class ppp with the initial location of groups

+ # minutes - the number of minutes over which positions are to be simulated

+ # sd - the standard deviation of the updates in x and y dimention (20 m by default)

+ #Returns:

+ # an array with dimentions (minutes,2,n.s), with the x,y position by minute and animal

+ # (where n.s is the number of groups)

+ #Details: the actual generation of new x,y locations is done by function "get.xy"

+ ###################################################################################

+ #how many groups are there

+ n.s<-groups$n

+ #set up an appropriate object to hold the results: creates an array to keep the coordinates through time

+ xy.per.group<-array(0,dim=c(minutes,2,n.s))

+ #get the coordinates for each group

+ for(j in 1:n.s) {

+ #simulates x,y locations, given brownian motion, over minutes

+ xy.per.group[,,j]<-get.xy(minutes,sd,xy.start=c(groups$x[j],groups$y[j]))

+ }

+ return(xy.per.group)

+ }

For simplicity, we can plot (Figure 5) the outcome of updating the position
of the center of each one of our example groups over 5 minutes (note the
arbitrary use of 20 for the standard deviation of the Brownian motion).

> test4.xy.per.group<-get.xy.per.group(test4,5,sd=20)

Now, we can update the individual animals position through time accord-
ingly. We require a third function as

> get.xy.per.animal<-function(whales,xy.group,minutes,sd){

+ #Writen by: Tiago Marques on 21st April 2008 and last updated on 13th May 2008

+ #Purpose: creates the x,y position for each whale over the time period of minutes minutes

+ #Inputs:

+ # whales - the object containing the location of each animal

+ # xy.group - the location of the animal over the time period required

+ # minutes - REDUNDANT (this is nrow(xy.group))
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Figure 5: The position of the center of a group, in a five minute period (group
changes position once every minute). The symbol used for each minute’s
position is the actual minute number. The top left plot is the overall initial
position of the group within AUTEC.

17

Page 264 of 466Version with appendices



+ # sd - the standard deviation of x,y movement (to use in get.xy)

+ #Details: this adds some variability to individual animal's locations using

+ # the groups location over time and the relative position of the individual animals

+ # with respect to the center of the group

+ #Returns: an object of class array with dimensions (number of minutes,2, number of animals)

+ # first dimention is the corresponding minute, the second dimention is the

+ # correspoding coordinate (x or y) and the third is the animal indicator

+ ##########################################################################################

+ #the number of animals involved

+ n<-nrow(whales)

+ #creates an array to keep the coordinates through time

+ xy.per.animal<-array(0,dim=c(minutes,2,n))

+ #for each individual whale

+ for(j in 1:n) {

+ #update it's mean position through time using the group movement as reference

+ group<-whales$sindex[j]

+ diff.x<-xy.group[1,1,group]-xy.group[1:minutes,1,group]

+ diff.y<-xy.group[1,2,group]-xy.group[1:minutes,2,group]

+ xy.per.animal[,1,j]<-whales[j,1]-diff.x

+ xy.per.animal[,2,j]<-whales[j,2]-diff.y

+ #now jitter a bit arround said position using the individual animal movement

+ animal.movement<-get.xy(minutes,sd,xy.start=c(0,0))

+ xy.per.animal[,,j]<-xy.per.animal[,,j]+animal.movement

+ }

+ return(xy.per.animal)

+ }

> test4.xy.per.animal<-get.xy.per.animal(test4.animals,test4.xy.per.group,5,sd=2)

We can look at the outcome of this, for the first five minutes, say for
groups 1 and 3 (Figure 6).

As stated above, by changing σa and σg we can change the way that the
individual animals behave with respect to each other and with respect to the
mean position of the group.

Finally, to keep with our example, we create the positions through time
(over 140 minutes) for all the animals in every cluster using:

> test4.xy.per.group<-get.xy.per.group(test4,140,sd=20)

> test4.xy.per.animal<-get.xy.per.animal(test4.animals,test4.xy.per.group,140,sd=4)
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We can plot the mean position of the group through time, for each group
(Figure 7). For illustration, the complete track of the animals of group 2 is
shown in Figure 8.

2.3 Simulating the state of a group: vocalizing or not

Given the location of a group, we can then simulate its state during the
simulated period. In order to do so we need first to decide what said period
is. For consistency with what was done in Moretti et al. (2006) we consider
here that period to be 140 minutes.

Note that here we assume that the animals in a group are all in the same
state. This is likely unrealistic as even if they dive synchronously, some ani-
mals in a group will start clicking before than others, and similarly some will
stop before others. This is a point that we might want to further develop
later. However, given that we are working on a minute by minute scale,
it might be that most animals in a groups start and stop clicking in under
a minute from the first animal that respectively starts and stops clicking.
Again, there is no available information to develop any more complex behav-
ior, despite the fact that this is certainly an over-simplification, which might
actually lead to dive starts being better detected in the simulated dives than
in real life dives.

Hence, for each group, we need to know when it was vocalizing or not.
As described in the document “Rationale for the simulation of plausible vec-
tors of detected click counts.pdf”, a possible approach might be to simulate
periods of vocalization with mean 26.4 (standard deviation 4.1) and periods
of non-vocalization with mean 92+(46.5-26.4)=112.1 (standard deviation2

=
√

(462 + 7.62 + 4.12) = 46.8), which corresponds to adding the inter-deep-
dive interval (IDDI) to the difference between the deep dive (DD) length and
the vocalizing length (cf. values reported in Tyack et al. (2006)).

We have assumed here for simplicity that all these variables have lognor-
mal distributions (hence avoiding negative values for time). An example of
simulated values for IDDI is shown in figure 9.

The simplest way to achieve this is to generate a vector of states (V:vocalizing
or S:Silent) for each group (remember these animals dive synchronously),
along with the times of state change. That can be done using the following

2 This assumes that the 3 random variables are independent, which is unlikely true,
but might work from a purely pragmatic perspective for the purposes at hand.
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function:

> get.state.vector<-function(animais,Smean=112.8,Ssd=46.8,Vmean=26.4,Vsd=4.1,lim.time=140){

+ #Writen by: Tiago Marques on 20th April 2008 and last updated on 13th May 2008

+ #Purpose: simulate states (vocalizing or not) and respective end times

+ #Inputs:

+ # animais - a ppp object that contains the number of groups

+ # Smean - the mean length (in minutes) of the inter-deep-dive interval

+ # Ssd - the sd (in minutes) of the inter-deep-dive interval

+ # Vmean - the mean length (in minutes) of the deep-dives

+ # Vsd - the sd (in minutes) of the deep-dives

+ # lim.time - the interval of time, in minutes, for which we want the simulated states

+ #Returns:

+ # an object of class list which element j is the states and times at which those states ended for animal j

+ #Details: The input parameters all have default values obtained from Tyack et al. 2006

+ ##########################################################################################

+ #S parameters in terms of the lognormal

+ muS<-log(Smean)-(1/2)*log(1+Ssd^2/Smean^2)

+ sigmaS<-sqrt(log(1+Ssd^2/Smean^2))

+ #V parameters in terms of the lognormal

+ muV<-log(Vmean)-(1/2)*log(1+Vsd^2/Vmean^2)

+ sigmaV<-sqrt(log(1+Vsd^2/Vmean^2))

+ #getting the initial states

+ P.V<-Vmean/(Vmean+Smean)

+ init.state<-sample(c("V","S"),animais$n,prob=c(P.V,1-P.V),replace=T)

+ #and the initial (censored) corresponding time

+ Ds<-ifelse(init.state=="V",

+ rlnorm(n=animais$n,meanlog=muV,sdlog=sigmaV),

+ rlnorm(n=animais$n,meanlog=muS,sdlog=sigmaS))

+ Us<-runif(n=animais$n,0,Ds)

+ Dcens<-Ds-Us

+ #create an object to hold all relevant info

+ state.vector<-vector("list",animais$n)

+ #for each group

+ for(j in 1:animais$n) {

+ #record the initial state and time at which said state ends

+ states<-init.state[j]

+ times<-Dcens[j]
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+ #set auxiliary variables for the while loop

+ state.i<-init.state[j]

+ Time.i<-Dcens[j]

+ counter<-2

+ #while the time is smaller than the wanted interval

+ while (Time.i<lim.time) {

+ #get the time at which this state ends

+ new.Time<-ifelse(state.i=="V",

+ rlnorm(n=animais$n,meanlog=muS,sdlog=sigmaS),

+ rlnorm(n=animais$n,meanlog=muV,sdlog=sigmaV))

+ Time.i<-Time.i+new.Time

+ #and get the state

+ state.i<-ifelse(state.i=="V","S","V")

+ states[counter]<-state.i

+ times[counter]<-Time.i

+ #update counter

+ counter<-counter+1

+ }

+ #times[counter-1]<-lim.time

+ #The preceeding line would be used instead of the following line

+ #if I did not need to know when a dive has ended outside the

+ #recording period

+ times[counter-1]<-Time.i

+ #record all the info in the appropriate place

+ state.vector[[j]]<-data.frame(State=states,Time=times)

+ }

+ return(state.vector)

+ }

> state.vector.test4<-get.state.vector(test4)

One can see an example of the simulated states for each of the 4 groups
of our example in figure 10.

2.3.1 Creating objects with relevant information

Next we want to simulate clicks for each of the animals in each group, for
the periods in which the animals are vocalizing. The first thing to do is to
obtain an object containing the start and stop times of all vocalizing periods,
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as well as an indicator of which group those periods correspond to, which can
be done using

> get.Vstate<-function(state.vector){

+ #Writen by: Tiago Marques on 24th April 2008 and last updated on 19th May 2008

+ #Purpose: rearranges the information in an object created by get.state.vector

+ #Inputs:

+ # state.vector - a state.vector, created by function "get.state.vector"

+ #Returns: an object of class data.frame with a row for each vocalizing period of a group

+ # and respective start/end times of each state and a group indicator

+ #########################################################################

+ n<-length(state.vector)

+ dados<-unlist(state.vector[[1]])

+ #set appropriate objects

+ start.times<-end.times<-groups<-states<-c()

+ #for each group, get

+ for(i in 1:n) {

+ dados<-state.vector[[i]]

+ start.times<-c(start.times,c(0,dados$Time[-nrow(dados)]))

+ end.times<-c(end.times,c(dados$Time))

+ states<-c(states,dados$State)

+ groups<-c(groups,rep(i,nrow(dados)))}

+ #select the vocalizing states

+ #note a 2 means a vocalizing period as V is the second level of the factor with levels "S" and "V"

+ index<-states==2

+ times<-data.frame(group=groups[index],t.start=start.times[index],t.end=end.times[index])

+ return(times)

+ }

> Vstate.test4<-get.Vstate(state.vector.test4)

Note that we will need to generate click times for each animal (rather
than for each group), and hence it is convenient to modify the object that
contains the periods that each group is vocalizing, so that it has more than
a row for each group (depending on the number of animals and dives in each
group). In addition to that we also add an extra column that contains the
length of each vocalizing period. This can easily be done by

> get.Vstate.per.animal<-function(Vstate,animals){

+ #Writen by: Tiago Marques on 24th April 2008 and last updated on 13th May 2008
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+ #Purpose:

+ #Inputs:

+ # Vstate - the vocal times for each group, created by function "get.Vstate"

+ # animals - an object as created by "generate.animal.coordinates"

+ #Details:

+ #Returns: an object of class data.frame with with one row for each different vocalizing state and animal

+ #with a group and animal indicator , the respective start and end times and V duration

+ ##########################################################################################

+ #count how many animals are there

+ animals$animal<-1:nrow(animals)

+ #and get the appropriate information for each using the group indicator for merging

+ res<-merge(animals,Vstate,by.x="sindex",by.y="group")

+ res<-within(res,V<-t.end-t.start)

+ return(res)}

> V.per.animal.test4<-get.Vstate.per.animal(Vstate.test4,test4.animals)

The advantage of having created this object is that we can now easily
assign clicks to each row, with each row corresponding to a single dive, with
an indicator of which cluster and respective animal the dive corresponds
to. Therefore, if at some point the vocal phase is slightly different for each
animal, an object of the same structure can be created, hence all functions
that are built on top of it should still work.

On the other hand, if we want to introduce some heterogeneity in vocal
start and stop times within a group, modifying this object

> round(V.per.animal.test4,2)

sindex x y animal t.start t.end V

1 1 19659.42 18166.54 1 24.93 48.02 23.09

2 1 19659.42 18166.54 1 125.77 152.65 26.89

3 1 19639.22 18007.92 2 24.93 48.02 23.09

4 1 19639.22 18007.92 2 125.77 152.65 26.89

5 1 19546.84 18523.07 3 24.93 48.02 23.09

6 1 19546.84 18523.07 3 125.77 152.65 26.89

7 1 19510.23 18378.92 4 24.93 48.02 23.09

8 1 19510.23 18378.92 4 125.77 152.65 26.89

9 1 19499.06 18029.26 5 24.93 48.02 23.09

10 1 19499.06 18029.26 5 125.77 152.65 26.89
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11 1 19451.92 18137.29 6 24.93 48.02 23.09

12 1 19451.92 18137.29 6 125.77 152.65 26.89

13 2 12256.00 -9487.54 7 27.89 54.89 27.00

14 2 12443.00 -9726.69 8 27.89 54.89 27.00

15 2 12313.50 -9465.36 9 27.89 54.89 27.00

16 2 12364.00 -9925.14 10 27.89 54.89 27.00

17 2 12321.72 -9605.13 11 27.89 54.89 27.00

18 2 12319.57 -9674.25 12 27.89 54.89 27.00

19 3 959.07 26768.23 13 0.00 26.39 26.39

20 3 983.62 26974.53 14 0.00 26.39 26.39

21 3 851.33 26996.23 15 0.00 26.39 26.39

22 3 876.70 26936.95 16 0.00 26.39 26.39

23 3 773.89 27067.34 17 0.00 26.39 26.39

24 4 3511.61 -1445.75 18 109.82 143.39 33.57

25 4 3130.44 -1442.57 19 109.82 143.39 33.57

26 4 2857.72 -1185.53 20 109.82 143.39 33.57

27 4 3354.96 -1382.09 21 109.82 143.39 33.57

with some random noise might be the simplest way to do it 3.

2.4 Simulating click times

We can now generate times of click events for each of these periods, as well
as the relevant characteristics which might influence their detection function,
like whale pitch, heading and depth. Because we only require these different
variables (pitch, heading and depth) at click times we generate the click times
first and the variables afterwards (see next section).

The reported inter-click-interval in vocalizing periods is reported in Mad-
sen et al. (2005) as being between 200 to 500 ms, with mean 400 ms (see their
figure 3). A possible way to simulate similar ICI’s is using a beta random
variable with adequate parameter values, as shown in figure 11, e.g. using

> par(mfrow=c(1,1),mar=c(4.5,4.5,3,0.5))

> hist(0.2+0.3*rbeta(1000,3,1.5),main="Simulated ICI's",xlab="ICI")

For each vocalizing period, we want to obtain the times of the produced
clicks, which can be done using something like

3Actually, due to implementation issues it might be best to do it after the function
split.V is used - see section 2.5.2 below.
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Figure 11: Simulated ICI considering a beta distribution with parameters
(3,1.5), which has a mean value of 0.4 seconds. Note this corresponds to the
4 parameter beta distribution to avoid the usual (0,1) support of the beta.
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> get.click.times<-function(Vstate,ICIpars=c(0.2,0.3,3,1.5),rec.period=140){

+ #Writen by: Tiago Marques on 27th April 2008 and last updated on 19th May 2008

+ #Purpose: simulates the click times for each dive per animal combination

+ #Inputs: Vstate - an object produced by function "get.Vstate"

+ # or preferably by function "get.Vstate.per.animal".

+ # ICIpars - the 4 parameters of the beta defining the ICI distribution

+ # rec.period - the length of the simulation period

+ #Details:

+ #Returns: an object of class list with length = number of dives-animal combination (dv) + 3

+ # the last 3 components are the group, animal, and dive-per-animal indexes

+ # Element i (i=1,2,...,dv) contains the click times for the ith dive-animal

+ ##########################################################################################

+ #create an appropriate object to hold the click times

+ times<-vector("list",nrow(Vstate))

+ #for each dive-animal

+ for(j in 1:nrow(Vstate)) {

+ #get the vocalizing start time

+ all.times<-Vstate$t.start[j]

+ #start a counter

+ counter<-1

+ #and while the end time is not reached

+ while (all.times[counter]<Vstate$t.end[j]) {

+ #keep generating new ICI's

+ #note ICI's are in seconds while the times in minutes, so we need to divide by 60

+ new.ICI<-ICIpars[1]+ICIpars[2]*rbeta(1,ICIpars[3],ICIpars[4])

+ #and updating the object with click times

+ all.times[counter+1]<-all.times[counter]+new.ICI/60

+ counter<-counter+1}

+ #remove the first click (its just a pragmatic measure)

+ # and the last click as it was already ouside the vocalizing period

+ times[[j]]<-all.times[-c(1,counter)]}

+ #add the group index

+ times[[j+1]]<-Vstate$sindex

+ #add the animal index

+ times[[j+2]]<-Vstate$animal

+ #add the dive-animal index

+ times[[j+3]]<-1:nrow(Vstate)

+ return(times)
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+ }

> click.times.test4<-get.click.times(V.per.animal.test4)

In order to adequately model the detection probability of each click we
would need the animal position and at least the horizontal aspect angle haa
and vertical aspect angle vaa, which were found to be important predictors
of detection probability for beaked whale clicks, as described in “Further
analysis of the hydrophone+DTag data.pdf” (Marques and Thomas, 2008a).

Hence, what we need is to simulate values for haa and vaa for each click
produced. These haa and vaa need to be strongly correlated through time, as
was observed in Marques and Thomas (2008a). Note that, before obtaining
vaa and haa, we need depth, heading and pitch through time. Given these,
vaa and haa are obtained by simple trigonometry.

2.5 Simulating click characteristics

Given the click times, we can now generate the relevant variables which will
influence the detection probability of each click.

Before this we need to look at how one could simulate values around
a given mean, correlated through time. This is relevant for simulating for
example pitch around 0 or large negative pitch, and depth around a given
mean depth say.

2.5.1 Simulating correlated values through time around a given
mean

The function used here for simulating correlated values through time around
a given mean is shown below.

> satbucl<-function(st=0,target=0,period=1:(25*60),pars=c(10,0.8),simple="Y",bounds){

+ #This function Simulates values Around a given Target, starting at st

+ #over a period of length equal to length(period), using the parameters

+ #as defined in pars according to a given method

+ #pars is defined as: pars[1]: sd of the updating Gaussian distribution

+ # pars[2]: weight given to the previous variable value

+ # in the weigthed average

+ #If simple is not "Y", then one must provide the argument bounds, and the function

+ #only returns values within those bounds
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+ #Returns: a vector of length = length(period) with the simulated values

+ #Note: this was suggested by S. Buckland

+ #Note2: the code could be simpler, with the if statement inside the 4 look, but

+ #I do not want to evaluate the if statement at each iteration if no bounds are given

+ #Note3: presumably we could make the simulated values assimetric

+ #(once colapsed over time) by using

+ #an assimetric distribution instead of the Gaussian, but I have not looked into this.

+ p.n<-length(period)

+ if(simple=="Y") {

+ for(j in 2:p.n){

+ mean.j<-weighted.mean(x=c(st[j-1],target),w=c(pars[2],1-pars[2]))

+ st[j]<-rnorm(1,mean=mean.j,sd=pars[1])

+ }

+ }

+ else {

+ for(j in 2:p.n){

+ mean.j<-weighted.mean(x=c(st[j-1],target),w=c(pars[2],1-pars[2]))

+ st[j]<-rnorm(1,mean=mean.j,sd=pars[1])

+ while (st[j]<bounds[1] | st[j]>bounds[2]) {st[j]<-rnorm(1,mean=mean.j,sd=pars[1])}

+ }

+ }

+ return(st)}

where if the argument simple is not ”Y” then the argument bounds defines
the range of possible values, and values outside that range are discarded and
new candidate values obtained.

This is a modification of a previous function satbuc, which does not
include the possibility to define constraints in the values that it can simulate.
For further details about this function see Marques and Thomas (2008d).

2.5.2 Simulating depth

A separate document (Marques and Thomas, 2008e) describes in more detail
some of the intermidiate steps involved in the simulation of depth over time.
Said document also describes some previous attepts at it, less sucessful but
yet worth looking at if one is thinking about improving this code. That
document presents some overlap with this one.

There is some limited knowledge about beaked whale distribution with
depth, although some DTag data is available, some of it being from within
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AUTEC. Using DTag data from the Canary Islands, Tyack et al. (2006)
reported Mesoplodon buzzes recorded in the range 244-1244 m deep4, with a
mean of 724 m, while 95% of these buzzes occurred at depths between 463 and
1196 m. It seems therefore not unlikely that in some of the areas at AUTEC
beaked whales might dive almost all the way down close to the bottom, as
the minimum hydrophone depth is 1294m and the average hydrophone depth
is 1652m (see Figure 12).

However, for the single beaked whale dive for which we currently have
DTag data at AUTEC (Dive 1 on 23 Oct 06), the whale clicked between
depths of 582 and 1049m, while the bottom was around 1600m deep, which
means that for this dive the whale foraged quite far from the bottom.

The analysis described in Marques and Thomas (2008a) considers the
detection probability to be a function of the 2D distance as projected onto
the sea surface (rather than a 3D slant distance), hence one might be tempted
to ignore depth in the simulations. This (if possible, which is not - see below)
could actually have a small impact in the simulations for 2 reasons:

1. The whales seem to produce most of their clicks in a“relatively narrow”
depth band (i.e. clicks are only produced at the deep part of their
dives), which tends to be quite close to the bottom, hence the 2D and
3D distances are highly correlated;

2. As mentioned before, vaa and haa seem to be the major sources of het-
erogeneity in click detection probability, hence the 2D vs. 3D distance
might not be that relevant any way.

However, we need to know the actual depth in order to calculate vaa from
pitch (see below), and hence we need to simulate depth too. One would like
to simulate profiles like the one in figure 2 in Marques and Thomas (2008a),
which is rather complicated having only 1 dive. Additionally, note that depth
is related to pitch in several ways:

1. Depth decreases fast until the time that pitch stabilizes around 0, i.e.
once the animal is just swimming up and down, foraging, rather than
actively going down to reach a given depth;

4 Note that, given that sample size was 3 whales, these is most likely an underestimate
of the true maximum depth and an overestimate of true minimum depth for a buzz.
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Figure 12: The depths of the AUTEC hydrophones. The dashed line on the
top panel is at 1652m, the mean depth over all hydrophones.
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2. One should be able to calculate change in depth given pitch and speed
(although conceivably an animal might go up and down in the water
column while keeping its pitch equal to 0).

Additionally, and to complicate things further, depth is also related to the
state of the animal, and hence there’s a relation between the time that an
animal is silent or vocalizing and the corresponding changes in depth, which
in turn must have a correspondence to changes in pitch. All these interde-
pendencies across different variables turn this into a complicated problem to
solve.

A possible way forward would be to divide the vocalizing period in 3 sub-
periods. The first one would be designated as vocal descent period (V DP ),
and the second designated as vocal constant depth period (V CDP ), the third
as the vocal ascent period (V AP ) (might be absent, i.e. the whale goes silent
as it starts to go up). Under this conceptual setting, we could have the whale
going mostly down, steadily decreasing depth and with a large negative pitch
during the V DP , and the whale would be moving randomly around a given
depth (here referred to as the mean depth of the V CDP , V CDPz̄), with pitch
varying randomly around 0, during the V CDP , and finally moving up with
large positive pitches during the (if present) V AP . Depth will decrease from
a randomly generated depth for the start of the vocal phase till a randomly
generated V CDPz̄, and then if V AP is present it will increase till a randomly
generated depth for the end of the vocal phase. Further define V DPzs and
V APze respectively as the depth at which the V DP starts and the V AP
ends. Figure 13 illustrates all these for an hypothetical dive with a V AP .

Currently, there is no data from which to model the length of these sub-
periods or some of the corresponding depths, except that Tyack et al. (2006)
report (all depths in meters, standard deviations in brackets):

• average pitch is between 60◦ and 83◦ degrees during V DP ;

• mean maximum dive depth is 835 (143) (from which one can simulate
a mean maximum dive depth Zmax);

• vocal phase mean depth start is 426 (125) (from which one can simulate
V DPzs);

• vocal phase mean depth end is 738 (98) (from which one can simulate
V APze).
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Figure 13: An hypothetical dive with a vocal ascent period, with all the
acronyms used in the text. See text for further details.
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Hence we are missing the information required to generate V CDPz̄, as
well as to sub divide the vocalizing period. In the following (see Marques
and Thomas (2008e) for details) we decided to simplify the current approach
and consider simply two vocalizing sub-periods. Under this setting, whales
are assumed to:

1. start vocalizing at a depth of V DPzs and go down till a depth V DPze;
this is the V DP as above;

2. then move from V DPze (≡ V CDPzs) to a V CDPze, and at the end of
the vocalizing period move up; this is the V CDP as above.

A way to implement this (agai, see Marques and Thomas (2008e) for an
alternative) might be to first generate relevant depths, and then subdivide
V DP and V CDP according to the depth difference that the whale must
travel while going down and clicking. We must assume that the descent
speed in the non vocal phase is the same as in the vocal phase as Tyack
et al. (2006) state that “For deep dives, we considered the descent to extend
from the surface until the whale began to produce regular echolocation clicks.
Likewise, the ascent was considered to start at the last regular click and end
at the surface.”. The reported mean descent rate is 1.6 m/s (sd=0.21). We
actually used a descent rate of 1.5 m/s based on data from Baird et al. (2008).

Although this might be unrealistic and changed later if further informa-
tion is obtained, it seems unfeasible to simulate depth through time in any
more complicated way. Note in this case we assume that the animals dives
from V DPzs to V DPze, and we generate

• V DPzs from a N(426,125);

• and V DPze from a N(787,121)

Note that V DPze mean and standard deviation are the respective means
of the means and standard deviations of the mean maximum dive depth and
of vocal phase mean depth end ((835+738)/2 and (143+98)/2). There is no
justification for the use of these values, they just seem plausible values at
this point, and they allow us to move forward.

So now we have these we can simulate depth during V CDP using what
was described in section 2.5.1, and obtain a depth reading for the V DP for
any desired click time.

This can be done using a function like get.depth.per.click below,
which is applied to our running example for illustration.
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> get.depth.per.click<-function(Vstate,clicks,Vs,rec.period=140,smooth="No",spar=1/20){

+ #this function returns a list with the depth associate with each click

+ #for each vocalizing period

+ #Inputs: Vstate - an object produced by function "get.Vstate"

+ #or preferably by function "get.Vstate.per.animal".

+ # clicks - an object with the time of each click

+ # VS - an object with the length of each vocalizing sub-period (VDP and VCDP) and the depth at which said period started

+ # rec.period - the length in minutes of the recording period

+ # smooth - If yes, lowess smooths of the simulated depths are returned, using

+ # spar - the lowess smoother span (large spar, more smooth)

+ depths<-vector("list",nrow(Vstate))

+ for(j in 1:nrow(Vstate)) {

+ #select those clicks made in the VDP

+ inVDP<-clicks[[j]]<Vstate$t.start[j]+Vs[[j]][1]

+ inVCDP<-clicks[[j]]>Vstate$t.start[j]+Vs[[j]][1]

+ #for these, depth is given by initial depth + deltaT * descent speed (=1.5 m/s)

+ depths[[j]]<-Vs[[j]][3]+(clicks[[j]][inVDP]-Vstate$t.start[j])*(1.5*60)

+ depths[[j]]<-c(depths[[j]],satbucl(st=Vs[[j]][4],target=Vs[[j]][4],period=1:sum(inVCDP),pars=c(15,0.9)))

+ if (smooth=="Yes") {depths[[j]]<-lowess(depths[[j]],f=spar)$y}

+ depths[[j]]<-depths[[j]][clicks[[j]]<rec.period]

+ }

+ return(depths)

+ }

> #

> depths.test4<-get.depth.per.click(V.per.animal.test4,click.times.test4,split.V.test4,smooth="Yes")

We can take a look at the change in depth for the vocal period of some
of the animals from our example (Figure 15). The lack of reality is currently
evident, but this might be good enough for the purposes at hand.

A few points in the process remain unrealistic and could be addressed
later:

• There is no randomness in depth during V DP ;

• There is no variability across animals within group in the lenght of the
2 sub-periods (V DP and V CDP ) as well as the depth at which the
animal begun to click (V DPzs) and the mean depth at which it foraged
(V DPze);
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Figure 14: The simulated dive for the 1 animal in each group/dive combi-
nation (except the two bottom plots which are for 2 animals from group 4).
Note that only the end of the 1st dive was recorded for group 2. The lack
of reality is currently evident (cf. with say Figure 2 in Marques and Thomas
(2008a)), but this might be good enough for the purposes at hand.
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• For V CDP there is no relation between the elapsed time between clicks
and change in depth. At the time-space scale we are currently working
this is likely irrelevant, but change in depth might be made a function
of time between clicks. This would require changes in satbucl;

• The smoother was added just because things look better, but adds to
the arbitrariness involved;

• The variance in depth during V CDP is currently arbitrary and not
data based.

Before proceeding any further, we need to clean the object containing
the click times (click.times.test4). For dives which were not finished
before the end of the simulation period, this object still has those click times
happening after the end of the simulation period. The reason for these not
having been removed from the start was because we needed all the click times
of a dive to get the depths in get.depth.per.click. But for the rest of the
simulation exercise, these are actually not needed.

> clean.click.times<-function(times,minutes){

+ #this function just removes all click times which happened after

+ #the simulation period is over

+ n.dives<-length(times)-3

+ for(j in 1:n.dives) {

+ ind<-times[[j]]<minutes

+ times[[j]]<-times[[j]][ind]

+ }

+ return(times)

+ }

> click.times.test4<-clean.click.times(click.times.test4,140)

2.5.3 Simulating heading

We can simply use the models described in Marques and Thomas (2008a) to
generate heading for the time of each click produced in the previous section.

This can be done using the function get.headings below. This function
calls another function get.dive.headings5, which uses the geometric and

5 Which is not shown in this report for brevity, but is documented in the corresponding
sweave .Rnw file.
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weibull models as described in Marques and Thomas (2008a) to simulate
heading through time.

> get.headings<-function(Vstate.per.animal){

+ #this function returns the heading for all the clicks that are present

+ #in each of the dives recorded in the object "Vstate.per.animal"

+ #get the total number of dives

+ dives<-length(Vstate.per.animal)-3

+ #an object to store the headings

+ headings<-Vstate.per.animal

+ #for each dive

+ for(j in 1:dives) {

+ headings[[j]]<-get.dive.headings(Vstate.per.animal[[j]])

+ }

+ return(headings)}

> #by default there's eval=F as anchor

> #use eval = T to run again

> headings.test4<-get.headings(click.times.test4)

2.5.4 Simulating pitch

As above, we can use what was described in Marques and Thomas (2008a)
for pitch simulation. This can certainly be improved at a later stage, but
currently, it seems like proceeding further with some reasonable simulations
is more useful than to stop to look for an optimized process.

Hence, currently, the function get.pitchs calls function get.dive.pitchs6,
which is based on material found on Gillespie (2006). This was not based
on models like those for heading, but rather more ad hoc. The advantage of
setting it this way is that if a better way of simulating pitch through time
is obtained, then we can just update get.dive.pitchs and the rest of the
code should not have to be changed.

> get.pitchs<-function(Vstate.per.animal){

+ #this function returns the pitch for all the clicks that are present

+ #in each of the dives recorded in the object "Vstate.per.animal"

+ #get the total number of dives

6 Which is not shown in this report for brevity, but is documented in the corresponding
sweave .Rnw file.
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+ dives<-length(Vstate.per.animal)-3

+ #an object to store the headings

+ pitchs<-Vstate.per.animal

+ #for each dive

+ for(j in 1:dives) {

+ pitchs[[j]]<-get.dive.pitchs(Vstate.per.animal[[j]])

+ }

+ return(pitchs)}

> #

> #executing the code - commented for faster report production

> #uncomment to run again

> pitchs.test4<-get.pitchs(click.times.test4)

2.6 Obtaining relevant variables for each hydrophone-
click combination

Now that we have simulated the characteristics of each click, we want to
estimate the probability that a click is detected in a given hydrophone. From
the analysis presented in Marques and Thomas (2008a), there are at least 3
relevant variables influencing said detection probability:

1. Dh - whale to hydrophone horizontal (2D) distance;

2. vaa - vertical aspect angle;

3. haa - horizontal aspect angle.

Note that to obtain vaa and haa we need first to obtain, for each click-
hidrophone combination, the relevant hydrophone-whale angles,

1. hwvθ - hydrophone-whale vertical angle;

2. hwhθ - hydrophone-whale horizontal angle.

In figure ?? there is a representation of distances and angles considered.
For any given click, given the whale’s position (x, y, z) and its correspond-

ing heading and pitch, as obtained in the previous sections, one can calculate
Dh, vaa and haa for any hydrophone. In other words, while a given click has
a heading, pitch and depth (independent of hydrophone location), Dh, vaa
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Figure 15: The simulated dive for the 1 animal in each group/dive combi-
nation (except the two bottom plots which are for 2 animals from group 4).
Note that only the end of the 1st dive was recorded for group 2. The lack
of reality is currently evident (cf. with say Figure 2 in Marques and Thomas
(2008a)), but this might be good enough for the purposes at hand.
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and haa are a function of a combination of these click characteristics and the
hydrophone location relative to the whale location at the time of the click.

In the following we start by reducing the time that the code takes to
run by filtering out whale-hydrophone combinations which are too far apart,
and hence for which no detections are expected any way. Then we present
in turn some simple functions required to calculate vaa and haa, and we
finish by integrating all these to obtain the relevant click properties for all
whale-hydrophone combinations.

2.6.1 Filtering out whale-hydrophone combinations

It is likely simpler to define, for each simulated whale, which are the hy-
drophones at which clicks are potentially detected with non negligible prob-
abilities. All the other hydrophones can be ignored. At this point we assume
that no clicks will be heard at hydrophones more than 7km away from the
click (This is likely overly optimistic any way, as this distance is likely to be
smaller).

We create a matrix with as many rows as hydrophones and as many
columns as animals, in which each element is true if the corresponding animal
hydrophone are within some distance of each other (here we used 7km as a
default). This is done using the code below:

> get.relevant.hyds<-function(xy.anim.pos,hyds.pos,radius=7000){

+ #This function returns a matrix with as many columns as animals

+ #and as many rows as hydrophones, filled with 0's and 1's

+ #where a 1 corresponds to a hydrophone for which there is

+ #at least 1 click produced by the corresponding animal which

+ #is closer than the argument radius

+ #Inputs:

+ #xy.anim.pos the x,y positions of the animals

+ #hyds.pos the x,y positions of the hydrophones - defaults to AUTEC phones

+ #radius the distance at which a click is considered impossible to detect -

+ # defaults to 7 km

+ n.anim<-dim(xy.anim.pos)[3] #how many animals are they

+ n.hyd<-nrow(hyds.pos) #and how many hydrophones

+ rel.hyd<-matrix(NA,nrow=n.hyd,ncol=n.anim)

+ for(j in 1:n.anim) {

+ xy<-xy.anim.pos[,,j]
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+ #a distance matrix with as many rows as xy pos and as many columns as hyds

+ pair.dists<-crossdist(X=xy[,1],Y=xy[,2],x2=hyds.pos$x,y2=hyds.pos$y)

+ #the minimum distance per hydrophone

+ min.dist<-apply(pair.dists,2,min)

+ #now get an indicator of which are less than the radius

+ rel.hyd[,j]<-min.dist<radius

+ }

+ return(rel.hyd)

+ }

> test4.rel.hyds<-get.relevant.hyds(test4.xy.per.animal,hyd)

The object created will be useful later to skip loop cycles for hydrophone-
whale combinations that are not close enough in space (see section 2.6.5).

2.6.2 Obtaining haa

We begin by creating a function which returns hwhθ, the horizontal angle
between a whale and a hydrophone (see ?? for details).

We define here that, assuming a whale to be in the center of a compass
rose, a hwhθ of 0

◦ corresponds to a hydrophone to east of the whale, and 90◦ to
the north of the whale. Remember that whale heading varied between -180◦

and 180◦. For consistency with this definition, we add 180 to all headings
and assume that a heading of 90◦ is a whale moving north7.

To get haa we need two quantities, the heading of the whale and hwhθ, the
angle between the hydrophone and the whale. The heading of the whale was
obtained in section 2.5.3, and the whale-hydrophone angle can be obtained
by a function like

> get.angles<-function(whale,hyds){

+ #Given the x,y location of the whale and the hydrophones this function returns

+ #the angle from the whale to the hydrophone

+ #An angle of 0 corresponds to a hydrophone with the same y cordinate and a larger x coordinate

+ #i.e. exactly to the right of the whale

+ #Inputs:

+ # whale - x,y location of the whale

+ # hyds - x,y location of the hydrophones

7 This is a detail, but it assumes that if heading north at AUTEC a whale does not
change its x coordinate.
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+ #get the diference in x

+ whale<-as.numeric(whale)

+ xs<-whale[1]-hyds[,1]

+ #get the distances

+ rs<-sqrt((whale[1]-hyds[,1])^2+(whale[2]-hyds[,2])^2)

+ #get the angle in -90,90: with 0 being a vertical line going through the whale

+ teta<-asin(xs/rs)*180/pi

+ #get the quadrants

+ quad<-ifelse(whale[1]<=hyds[,1] & whale[2]<=hyds[,2],1,ifelse(whale[1]>hyds[,1] & whale[2]<hyds[,2],2,ifelse(whale[1]>hyds[,1] & whale[2]>hyds[,2],3,4)))

+ #given the quadrant, get the angle (0 is straight up)

+ angles<-ifelse(quad==1,90+teta,ifelse(quad==2,teta+90,270-teta))

+ return(angles)

+ }

Note that we have a different whale-hydrophone angle by hydrophone for
each whale position. As we have simulated one x, y position per minute, over
140 minutes, we have those many angles to calculate. This can be done using
the following function

> get.angle.per.animal.hyd.min<-function(minutes=140,anim.xy,hyd.xy){

+ #number of animals involved

+ nanim<-dim(anim.xy)[3]

+ #set up an object to hold angles

+ angle.per.animal.hyd.min<-array(0,dim=c(minutes,nanim,nrow(hyd.xy)))

+ for(an in 1:nanim) {

+ for(mi in 1:minutes) {

+ angle.per.animal.hyd.min[mi,an,]<-get.angles(anim.xy[mi,1:2,an],hyd.xy[,3:4])

+ }}

+ return(angle.per.animal.hyd.min)

+ }

> test4.angle.per.animal.hyd.min<-get.angle.per.animal.hyd.min(140,test4.xy.per.animal,hyd)

Note that while this was implemented over all hydrophones, in practice
we only care about those that are “close” to the animals. Also, although we
did it for all x, y positions over time, we only require those corresponding
to minutes in which the animal was vocally active. Implementing these re-
strictions should speed up things, but requires that one keeps track of the
valid combinations of relevant hydrophone/minutes per animal. And because
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there is only one x, y position per minute, this code is fast to run any way,
so we keep it as is for the time being.

Finally, the following function allows us to get haa from vectors of angles
and headings.

> get.haa<-function(angles,headings){

+ #This function returns the horizontal aspect angle (haa)

+ #of the whale with respect to the hydrophone

+ #Note it assumes that headings come in the -180,180 range

+ #Inputs:

+ # angles the angle between whale and hydrophone (0 means hyd east of whale)

+ # headings the heading of a whale (0 means facing east - after adding 180)

+ # hence if angle=heading then haa=0

+ #if angle > heading returns a positive haa, and a negative otherwise

+ #get the headings in the 0,360 range

+ headings<-headings+180

+ #now get the diference

+ haa<-angles-headings

+ haa<-ifelse(haa>180,haa-360,ifelse(haa<(-180),haa+360,haa))

+ return(haa)

+ }

2.6.3 Obtaining vaa

We just require two simple functions to obtain vaa.
The first function allow us to calculate hwvθ, the vertical angle from

hydrophone to the whale (see ?? for details; this was defined as a negative
angle, as long as the hydrophone is deeper than the whale, for consistency
with the fact that negative pitches correspond to a whale facing the bottom
and positive pitches to a whale faciing the surface). Said function is shown
below:

> get.vawh<-function(zw,zh,dwh){

+ #this function calculates the vertical angle from whale to hydrophone

+ #Inputs:

+ # zw the depth of the whale

+ # zh the depth of the hydrophone

+ # dwh the horizontal distance between the whale and hydrophone
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+ vawh<-atan((zw-zh)/dwh)#id depths are negative requires #vawh<--atan((zw-zh)/dwh)

+ return(vawh)

+ }

and, given hwvθ and pitch, the vaa is obtained by using a second function as

> get.vaa<-function(vawh,pitch){

+ #this function calculates the vaa

+ #Inputs:

+ # vawh the vertical angle from whale to hydrophone

+ # pitch the whale pitch

+ vaa<-pitch-vawh

+ return(vaa)

+ }

2.6.4 Detection function

In order to estimate a click detection probability we require a detection func-
tion. An example of said function was obtained in Marques and Thomas
(2008a). Note however that it is unlikely that this function is a good repre-
sentation of reality, as it was obtained using DTag data and such data is only
available for optimal weather (=low noise) conditions. Nonetheless, lacking
any better option, we use here the results obtained in Marques and Thomas
(2008a). If at a later stage we obtain more realistic detection functions one
can simply update this code.

For simplicity, we saved the glm model8 selected for the detection function
in Marques and Thomas (2008a) using

save(list="pooledmod3.logistic", file = "detfun.R")

in the workspace furtherDTagHyd.RData, and then copy-pasted the file
into the current working directory and red in to R using

> load("datfiles/detfun.R")

We can now predict detection probabilities for any click given the relevant
variables, using a simple call to predict.glm. The following function is a
wrapper for calculating the detection probability of each click and simulating
its detection:

8A gam model was originally used, but then for pragmatic reasons due to failure to
predict outside the range of the data with gam cc basis a standard logistic model was used.
See Marques and Thomas (2008a) and comments in the .Rnw file for further details.
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> simulate.detection<-function(new.data,model=pooledmod3.logistic){

+ #Inputs:

+ # new.data - a data frame with the relevant variables

+ # model - a glm/gam logistic type model

+ #create the data frame for predictions to be made for

+ ndat<-with(new.data,data.frame(poolednewdrange=dwh,pooledhaa=haa,pooledvaa=vaa))

+ #calculate the probability of detection

+ Pdet<-predict.glm(model,newdata=ndat,type="response")

+ #use rejection method to see which are detected

+ U<-runif(nrow(new.data),0,1)

+ detect<-ifelse(Pdet>U,1,0)

+ return(cbind(new.data,data.frame(Pdet=Pdet,det=detect)))

+ }

2.6.5 Obtaining all the relevant variables

Now, we use all the functions above to obtain click counts per hydrophone
per minute.

There are multiple ways in which this information could be gattered and
stored. Initially we organized this data in a data frame which included a row
for each click-hydrophone (at which said click could be detected) combina-
tion, and then all the relevant variables. This was then used to compute vaa,
haa, Dh (and later) detection probabilities) at once for all click events using
the vectorization capabilities in R.

However, said data frame was too large for even small simulation exer-
cises, and for that reason we opted by storing the information for all relevant
variables for each click-hydrophone combination in a separate file (addition-
ally, a separate file is created which indexes the larger file, i.e., lists at which
rows are the clicks for a given hydrophone and animal-dive combination),
but outputing in R directly a matrix with number of click counts detected by
minute and hydrophone. This is not as fast as the previous option, as we need
to perform some operations using for loops rather than using vectorization.

This is implemented in the function below

> get.cc<-function(xy.anim,angles,click.times,headings,depths,pitches,hyds,rel.hyds,fname){

+ #Writen by: Tiago Marques on 5th May 2008 and last updated on 19th May 2008

+ #Purpose: given all the relevant variables, simulate click count vectors (per minute per hydrophone)

+ #Inputs:
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+ # Per minute:

+ # xy.anim - the x,y position for each animal

+ # angles - the horizontal angles for each animal-hydrophone combination

+ # Per click:

+ # click.times - the click time

+ # headings - the heading

+ # depths - the depth

+ # pitches - the pitch

+ # hyds - the hydrophones

+ # rel.hyds - a true/false matrix (a true means that hydrophone-animal combination is relevant)

+ # fname - a prefix for the names of produced files

+ #Details:

+ #Returns: an object of class matrix with dimensions (number of minutes) * (number of hydrophones),

+ # containing the click counts per minute per hydrophone

+ # 2 files are produced: 1 with the relevant click properties for all clicks and

+ # 1 with an indexing sistem (start and end row of all

+ # active hydrophone-dive combinations)

+ ###############################################################################################

+ n.anim.dive<-dim(xy.anim)[3]

+ n.dives<-length(click.times)-3

+ n.hyds<-nrow(hyds)

+ group.ind<-unlist(click.times[n.dives+1])

+ anim.ind<-unlist(click.times[n.dives+2])

+ minutes<-dim(xy.anim)[1]

+ ########################################

+ #create an object to hold the click counts

+ res<-matrix(0,nrow=minutes,ncol=n.hyds)

+ #plus an object to index the text file created

+ file.index<-data.frame(index=1,dive=1,animal=1,group=1,hyd=1,start.row=1,end.row=1,clicks=1)

+ counter<-0

+ rows.counter<-1

+ ########################################

+ test.file<-file(description=fname,open="wb")

+ ###########################################

+ #for each animal-dive combination

+ for(j in 1:n.dives) {

+ #get click times for the j^th dive-animal combination

+ current.times<-unlist(click.times[j])
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+ #count how many they were

+ n.clicks<-length(current.times)

+ #get the headings

+ current.headings<-unlist(headings[j])

+ #get the depths

+ current.depths<-unlist(depths[j])

+ #get the pitches

+ current.pitches<-unlist(pitches[j])

+ for(k in 1:n.hyds) {

+ #check if said animal was detectable from said hydrophone, if not go to next combination

+ if (rel.hyds[k,anim.ind[j]]==F) next

+ #add the counter for valid hyd-dive combination

+ counter<-counter+1

+ #get the group indicator

+ current.gr<-rep(group.ind[j],n.clicks)

+ #get the animal indicator

+ current.an<-rep(anim.ind[j],n.clicks)

+ #(for this animal-hydrophone combination)

+ #get the hydrophones caracteristics

+ current.hyd<-rep(k,n.clicks)

+ current.hyd.x<-rep(hyds$x[k],n.clicks)

+ current.hyd.y<-rep(hyds$y[k],n.clicks)

+ current.hyd.z<-rep(-hyds$z[k],n.clicks)

+ #get the angle per minute, x per minute and y per minute, for the correct animal

+ angle.per.min<-angles[,current.an,k]

+ x.per.min<-xy.anim[,1,current.an]

+ y.per.min<-xy.anim[,2,current.an]

+ #which minutes were there clicks in

+ mins.for.rep<-ceiling(current.times)

+ #how many clicks in each minute

+ reps<-as.data.frame(table(mins.for.rep))

+ #create the angles, xs and ys

+ current.angles<-rep(angle.per.min[reps[,1]],times=reps[,2])

+ current.xs<-rep(x.per.min[reps[,1]],times=reps[,2])

+ current.ys<-rep(y.per.min[reps[,1]],times=reps[,2])

+ #put it all as a data frame

+ all.click.vars<-data.frame(ctime=current.times,gr=current.gr,an=current.an,

+ x=current.xs,y=current.ys,z=current.depths,heading=current.headings,pitch=current.pitches,
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+ angle=current.angles,hyd=current.hyd,hx=current.hyd.x,hy=current.hyd.y,hz=current.hyd.z)

+ #get the horizontal aspect angle

+ all.click.vars$haa<-get.haa(all.click.vars$angle,all.click.vars$heading)

+ #get the whale-hyd horizontal distance

+ all.click.vars$dwh<-sqrt((current.xs-current.hyd.x)^2+(current.ys-current.hyd.y)^2)

+ #get the vertical angle whale hyd

+ all.click.vars$vawh<-get.vawh(current.depths,current.hyd.z,all.click.vars$dwh)*180/pi

+ #get vaa

+ all.click.vars$vaa<-get.vaa(all.click.vars$vawh,current.pitches)

+ #now deal with the detection function

+ all.click.vars<-simulate.detection(all.click.vars,model=pooledmod3.logistic)

+ #now update the click count object with the corresponding click counts

+ cc.per.minute.per.hyd<-with(all.click.vars,xtabs(det~ceiling(ctime)))

+ c.row<-as.numeric(names(cc.per.minute.per.hyd))

+ res[c.row,k]<-res[c.row,k]+as.numeric(cc.per.minute.per.hyd)

+ #write text file

+ #TF<-ifelse(counter==1,T,F)

+ #write.table(x=all.click.vars,file = paste(fname,".txt",sep=""),append = !TF,col.names = TF,,row.names = F)

+ #create a binary file to store results

+ writeBin(as.numeric(as.matrix(all.click.vars)),test.file,size=4)

+ #update file.index object

+ file.index[counter,]<-c(counter,j,anim.ind[j],group.ind[j],k,rows.counter,rows.counter+n.clicks-1,n.clicks)

+ rows.counter<-rows.counter+n.clicks

+ }}

+ write.table(x=file.index,file=paste(fname,".file.index.txt",sep=""),col.names = T,row.names = F)

+ close(test.file)

+ return(res)

+ }

This function can be used over our running example9

> WD <- getwd()

> setwd("Rfiles")

> test4.cc.per.minute.per.hyd<-get.cc(test4.xy.per.animal,test4.angle.per.animal.hyd.min,click.times.test4,

+ headings.test4,depths.test4,pitchs.test4,hyd,test4.rel.hyds,"test4")

> setwd(WD);rm(WD)

9 In the code shown, the use of getwd and setwd is just for tidying up the folder were
the R workspace is stored.

53

Page 300 of 466Version with appendices



A good way to view a summary of a simulation exercise might be an image

plot of the click counts per hydrophone per minute. The corresponding plot
for the running example is shown in figure 16. Reassuringly, the individual
dives (5 in total) can be easily identified (cf. with figure 3 and figure 10).

However, in order to create an object with the same structure as the
original click counts, used for gam analysis and video production, one needs
to go through all the minutes and hydrophones in turn, as in

> get.cc.for.model<-function(cc.per.minute.per.hyd){

+ minutes<-nrow(cc.per.minute.per.hyd);hyds<-ncol(cc.per.minute.per.hyd)

+ res<-data.frame(TP=rep(1:minutes,each=hyds),HYD=rep(1:hyds,minutes),CC=0)

+ CC<-c()

+ for(m in 1:minutes) {

+ CC<-c(CC,cc.per.minute.per.hyd[m,])

+ }

+ res$CC<-CC

+ return(res)

+ }

> test4.cc<-get.cc.for.model(test4.cc.per.minute.per.hyd)

Note that the function get.cc has, as side effect, the production of a
binary file, and an auxiliary txt file that indexes the information in the binary
file. See section 2.8 for details about getting the information in the binary
file back into R.

2.7 Wrapper function for full simulation exercise

It is convenient to put all the relevant code inside a single function which pro-
duces as output the click count per minute per hydrophones. This function
would have as input parameters the characteristics defining a given simula-
tion scenario, like:

• Animal density

• Mean group size

• Number of hydrophones and respective location

• Number of minutes to simulate click counts over
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Figure 16: An image plot where the number of detected click counts per
minute and hydrophone for the running example is shown.
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• Any other variable that might be relevant

This function is shown below:

> simulate.cc<-function(grN=3,grS=4.1,dens=gam2.mean.cc.by.hyd,denstype="gam",

+ minutes=130,hyds=hyd,waR=4000,sA=150,sxyG=20,sxyA=4,

+ plot.type=3,relhyd.rad=7000,fname){

+ #Writen by: Tiago Marques on 12th May 2008 and last updated on 19th May 2008

+ #Purpose: wrapper to run at once all the code required to simulate

+ # click count vectors (per minute per hydrophone)

+ #INPUTS:

+ #grN: number of groups

+ #grS: mean group size (by default 4.1)

+ #dens: a gam model defining a density surface. By default the estimated desity surface at AUTEC

+ #denstype: if not "gam", uses a uniform density rather than the object in dens

+ #minutes: the number of minutes we want to simulate click counts for

+ #hyds: an object with as many rows as hydrophones and at leas a x and y column with the

+ # hydrophones coordinates

+ #waR: the radius around the hydrophones over which animals are generated

+ #sA: the standard deviation from the bivariate normal used to generate individual animal

+ # coordinates

+ #sxyG: the standard deviation for horizontal group displacement per minute

+ #sxyA: the standard deviation for horizontal animal displacement

+ # (around a mean animal coordinate) per minute

+ #plot.type: if 0, no plot is produced, if 1, just the cc image plot, if 2, the state plot also,

+ # if 3, also the group location and sizes plot

+ #relhyd.rad: the maximum distance at which clicks are considered to be detected by an hydrophone

+ #fname: the output file names

+ #Returns: an object of class matrix with dimensions (number of minutes) * (number of hydrophones),

+ # containing the click counts per minute per hydrophone

+ # 3 files are produced: 1 with the relevant click properties for all clicks and

+ # 1 with an indexing sistem (start and end row of all

+ # active hydrophone-dive combinations)

+ # 1 R workspace with the state vector and the groups locations

+ # (useful for later ploting without runing the code)

+ ##########################################################################################

+ #DETAILS:

+ # NOTE 1: currently, does not allow to change the default input parameters of several

56

Page 303 of 466Version with appendices



+ # fundamental functions related to dive details, namely:

+ # 1. get.state.vector

+ # 2. get.click.times

+ # 3. split.V

+ # 4. get.depth.per.click

+ # NOTE 2 : the detection function used cannot be costumized

+ ###########################################################

+ #defining the working area

+ wa<-convexhull.xy(x=hyds$x,y=hyds$y)

+ #and extend it 4000 m out of this convex hull

+ work.area<-dilation.owin(w=wa,r=waR)

+ #creating the groups x,y coordinates

+ sim<-generate.group.coordinates(n=grN,dens=dens,dens.type=denstype,within=wa)

+ #then assign group sizes to it

+ sim<-add.group.sizes(pop=sim,mean.cs=grS)

+ #generating the animals coordinates

+ sim.animals<-generate.animal.coordinates(sim,stdv=sA)

+ #get the xy coordinates, per group per minute

+ sim.xy.per.group<-get.xy.per.group(sim,minutes,sd=sxyG)

+ #get the xy coordinates, per animal per minute

+ sim.xy.per.animal<-get.xy.per.animal(sim.animals,sim.xy.per.group,minutes,sd=sxyA)

+ #obtain the state vector

+ state.vector.sim<-get.state.vector(sim,lim.time=minutes)

+ #rearrange state vector info

+ Vstate.sim<-get.Vstate(state.vector.sim)

+ #get state vector by animal

+ V.per.animal.sim<-get.Vstate.per.animal(Vstate.sim,sim.animals)

+ #get click times

+ click.times.sim<-get.click.times(V.per.animal.sim,rec.period=minutes)

+ #gets sub states within vocalizing state

+ split.V.sim<-split.V(V.per.animal.sim)

+ #gets depth per click

+ depths.sim<-get.depth.per.click(V.per.animal.sim,click.times.sim,split.V.sim,rec.period=minutes,smooth="Yes")

+ #this cleans click times for dives outside the recording period

+ click.times.sim<-clean.click.times(click.times.sim,minutes)

+ #gets headings per click

+ headings.sim<-get.headings(click.times.sim)

+ #gets pitch per click
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+ pitchs.sim<-get.pitchs(click.times.sim)

+ #get relevant hyds

+ sim.rel.hyds<-get.relevant.hyds(sim.xy.per.animal,hyds,radius=relhyd.rad)

+ #get horizontal angle per animal hyd and minute

+ sim.angle.per.animal.hyd.min<-get.angle.per.animal.hyd.min(minutes=minutes,anim.xy=sim.xy.per.animal,hyd.xy=hyds)

+ #get all relevant vars

+ #if folder for storage does not exixt, create it

+ dirb<-"Rfiles"

+ dir.create(dirb,showWarnings=F)

+ dir.name<-paste(dirb,"/",fname,sep="")

+ dir.create(dir.name,showWarnings=F)

+ WD <- getwd()

+ setwd(dir.name)

+ sim.cc.per.minute.per.hyd<-get.cc(sim.xy.per.animal,sim.angle.per.animal.hyd.min,click.times.sim,

+ headings.sim,depths.sim,pitchs.sim,hyds,sim.rel.hyds,fname)

+ setwd(WD)

+ #plot the output

+ #if required, plot the state vector

+ if(plot.type>0) {

+ par(mfrow=c(plot.type,1),mar=c(4.5,4.5,1,1))

+ plot.cc(sim.cc.per.minute.per.hyd,breaks=c(0,5,10,20,50,max(sim.cc.per.minute.per.hyd)))

+ }

+ if(plot.type>1) plot.state.vector(state.vector.sim,minutes)

+ if(plot.type>2) plot.groups(sim,hyds)

+ #saving some relevant information

+

+ obj.names<-paste(c("groups.","states."),fname,sep="")

+ assign(eval(obj.names[1]),sim)

+ assign(eval(obj.names[2]),state.vector.sim)

+ save(list=obj.names,file=paste(dir.name,"/",fname,".Rdata",sep=""))

+ #####

+ return(sim.cc.per.minute.per.hyd)

+ }

Which can be run as an example

> #

> set.seed(123)
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> test.sim.123<-simulate.cc(plot.type=3,fname="seed123")

> #set.seed(123)

> #test.sim.123.grN6.min80<-simulate.cc(grN=6,plot.type=3,minutes=80,fname="seed123.grN6.min80")

> #set.seed(123)

> #test.sim.123.grN7.min180<-simulate.cc(grN=7,plot.type=3,minutes=180,fname="seed123.grN7.min180")

> #set.seed(123)

> #test.sim.123.grN12.min140<-simulate.cc(plot.type=3,grN=12,minutes=140,fname="seed123.grN12.min140")

The click count per minute per hydrophone for this example is shown
in figure 18 (this object, as produces by simulate.cc, can be ploted using
plot.cc.

Note that the information in the groups and the state.vector from test.sim.123

is available as a separate workspace, which can be loaded simply by using e.g.
load("Rfiles/seed123.Rdata"). These objects can then be ploted easily
using functions plot.groups and plot.state.vector.

2.8 Reading binary files back in

Function get.cc produces a binary file with all the click-hydrophone events,
and all the corresponding relevant variables, in case one needs to check the
original raw simulated data.

The following function allows one to read back into R the created file, or
subsets of it matching some selection criteria

> read.res.file<-function(fname,index.file,hyd=0,an=0,gr=0,dv=0){

+ #Writen by: Tiago Marques on 20th May 2008 and last updated on 20th May 2008

+ #Purpose: To read a file (or part of a file) created by function get.cc

+ #Inputs:

+ # fname - the name of the file to read from

+ # index.file - the text file that contains a description of which information is

+ # which rows of file fname

+ # hyd,an,gr,dv - the indexes of which hydrophone, animal, group and dive should be read in

+ # (by default hyd=an=gr=dv=0 - the entire file is read)

+ # Currently one can select only 1 of each (hydrophone, animal, group and dive)

+ # and omiting some of these but not all uses the non omited criteria

+ #Details: Function get.cc creates a binary file with all the hydrophone-click combinations

+ #of a given simulation scenario, and the index.file describes which lines have which information.

+ #This function allows to retrieve that information
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Figure 17: An image plot where the number of detected click counts per
minute and hydrophone, for the example of running simulate.cc stored in
test.sim.123.
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+ #Returns: an object of class data.frame with variable dimensions, depending on the selection criteria used

+ ##########################################################################################

+ #Read the indexing information in

+ index<-read.table(index.file,header=T)

+ #opening the file to read

+ test.file<-file(description=fname,open="rb")

+ #creating the object to hold the data

+ alldata<-matrix(NA,nrow=1,ncol=19)

+ #if too many selection arguments are given

+ if(max(c(length(hyd),length(an),length(gr),length(dv)))>1) {

+ print("Warning: At most, only 1 hyd, 1 animal, 1 dive and 1 group can be selected")

+ stop()}

+ #get selection indexes

+ #(i.e. T if row in index.file matches selection criteria or if criteria is not used at all)

+ indhyd<-(index$hyd==hyd | hyd==0)

+ indan<-(index$animal==an | an==0)

+ indgr<-(index$group==gr | gr==0)

+ inddv<-(index$dive==dv | dv==0)

+ index<-index[indhyd & indan & indgr & inddv,]

+ if(nrow(index)==0) {

+ print("Warning: Selection criteria used returns no data")

+ stop()}

+ for(j in 1:nrow(index)) {#for each row in the indexing file

+ #position the reading position

+ seek(test.file,where=(4*(index$start.row[j]-1)*19))

+ #read the corresponding data

+ temp<-matrix(readBin(test.file,"numeric",n=index$clicks[j]*19,size=4),index$clicks[j],19)

+ #rbind it to previous data

+ alldata<-rbind(alldata,temp)}

+ close(test.file)

+ alldata<-as.data.frame(alldata[-1,])

+ name<-c("ctime","gr","an","x","y","z","heading","pitch","angle","hyd","hx","hy","hz","haa","dwh","vawh","vaa","Pdet","det")

+ names(alldata)<-name

+ return(alldata)

+ }

The following command would read back in all the information from the
file “seed123” (using ”seed123.file.index.txt” as a guide for what to read back
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in)
read.res.file("seed123","seed123.file.index.txt")

As an additional example, the following command would read only click-
hydrophone events involving hydrophone 82 and animal 2.

read.res.file("seed123","seed123.file.index.txt",hyd=82,an=2)

3 Overview

Due to the large number of functions used and objects created, in this section
we review (see also figure refoverview), through the running example, the
key functions used and the objects created by them, object details, and brief
explanations about the information contained in each object:

• function generate.group.coordinates was used to create test4, which
was then modified by add.group.sizes. test4 is an object of class
ppp which contains the number of groups (n), the x (x) and y (y) co-
ordinates of the center of the group (at minute 0) and the group sizes
(marks).

• function generate.animal.coordinates was used to create test4.animals,
which is an object of class data.frame. It contains the the x (x) and
y (y) coordinates of the position of each animal (at minute 0) and a
group indicator (sindex).

• function get.xy.per.group was used to create test4.xy.per.group,
which is an object of class array. The subset test4.xy.per.group[j,1:2,k]
contains the x, y coordinates for the center of group k in minute j (in
the running example, j=1,2,...,140 and k=1,2,3,4).

• function get.xy.per.animal was used to create test4.xy.per.animal,
which is an object of class array. The subset test4.xy.per.animal[j,1:2,i]
contains the x, y coordinates for the center of animal i in minute j (in
the running example, j=1,2,...,140 and i=1,2,...,14).

• function get.state.vector was used to create state.vector.test4,
which is an object of class list. Its element k contains the vocal states
and start times of each vocal state (V: vocalizing or S: silent). The
function plot.state.vector is useful to plot this type of object.
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Figure 18: An overview of the simulation process.
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• function get.Vstate was used to create Vstate.test4, using the in-
formation stored in state.vector.test4. This Vstate.test4 is an
object of class data.frame, which contains start (t.start) and end
(t.end) times (in minutes since start) of the vocal states of each group
(group).

• function get.Vstate.per.animal was used to create an object of class
data.frame named V.per.animal.test4. It contains start (t.start)
and end (t.end) times (in minutes since start) of the vocal states of each
animal (group), the length of the vocalizing period (V), plus a number
of relevant columns (sindex,x,y,animal) with self explanatory names.

• function get.click.times was used to create click.times.test4,
which is an object of class list. It has length L1 = L2 +3 (i.e. L1 the
number of dives and animals combinations plus 3; these last 3 elements
are used for storage of indicator values, namely the group, animal and
animal/dive indicator). Hence, element z (z = 1, 2, ..., L1 − 3) con-
tains the click times for the animal-dive combination z. In the running
example L1 = L2 + 3 = 17 + 3 = 20.

• function split.V was used to create split.V.test4, which is an object
of class list. It has length L2 equal to the number of dives and animals
combinations. Element z (z = 1, 2, ..., L2) is a vector of size 4, which
contains respectively (in position 1) the start and (in position 2) end
time of the vocal period and (in position 3) the start depth of the vocal
period, as well as (in position 4) the mean foraging depth, for the zth

dive-animal combination.

• function get.depth.per.click was used to create depths.test4, which
is an object of class list. It has length L2 equal to the number of dives
and animals combinations (here, 17). Element z (z = 1, 2, ..., L2) is a
vector of variable size, which contains the depth at which each click
was produced for the zth dive-animal combination.

• function get.headings was used to create headings.test4, which is
an object of class list. It has length L1. Hence, element z (z =
1, 2, ..., L2) contains the headings for each click for the animal-dive
combination z. As before the last 3 elements are used for storage of
indicator values, namely the group, animal and animal/dive indicator.
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• function get.pitchs was used to create pitchs.test4, which is an
object of class list. It has length L1. Hence, element z (z = 1, 2, ..., L2)
contains the pitches for each click for the animal-dive combination z.
As before the last 3 elements are used for storage of indicator values,
namely the group, animal and animal/dive indicator.

• function get.relevant.hyds was used to create test4.rel.hyds, which
is an object of class matrix. It has as many columns as there are an-
imals and as many rows as there are hydrophones, filled with T’s and
F’s, where a T corresponds to a hydrophone for which there was at
least 1 click produced by the corresponding animal which is closer than
some radius (in the running example, 7km).

• function get.angle.per.animal.hyd.min was used to create an object
of class array named test4.angle.per.animal.hyd.min. The subset
test4.angle.per.animal.hyd.min[j,i,h] contains the hydrophone-
animal angle for the animal i in minute j and hydrophone h (in the
running example , j=1,2,...,140; i=1,2,...,14 and h=1,2,...,93).

• function get.cc was used to create an object of class matrix named
test4.cc.per.minute.per.hyd. It contains the (detected) click counts
per hydrophone per minute. This function also creates a file which con-
tains all the relevant variables for all relevant click-hydrophone combi-
nations (i.e. within a pre-defined radius, here 7km), as well as a second
file which indexes the information in the previous file.

Finally, simulate.cc is wrapper function for all the above functions,
executing a full simulation exercise given relevant input parameters. The
output of this function is the same as from function get.cc: a matrix with
click counts per hydrophone per minute, as well as the 2 previously mentioned
files. Relevant plots can also be produced.

4 Known issues, shortcomings, work to do,

etc.

There are a number of potential issues worth looking at. A non-exhaustive
list is here for reference, so that we can work on it as time gets available (this
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list is a living beast, that gets things added and removed (once done) as we
go along):

• Code improvements

– Properly comment all functions;

– Run code checks;

– The way the gam object that contains the detection function is
added to the workspace is cumbersome;

– Function get.dive.pitchs always generates pitches as if a full
dive is being simulated, but this is not the case for dives which
had already started when the simulation starts.

• Making it closer to reality

– Function get.dive.pitchs is still based on the material found on
Gillespie (2006), and the use of satbucl might be desirable;

– The simulation of ICI dos not allow for silent periods, which
sometimes happened for brief periods in the DTag data during V ;

– In general, the information in the DTag sent by Tyack has not
been incorporated, and this could be done at multiple places; In
particular, a better way to simulate dives, as well as movement in
the horizontal dimension, would be desirable;

– Try to add randomness in vocal periods of animals within groups
and relevant depth limits, which are constant at the moment;

– Further thinking about simulation of correlated values through
time might be useful;

– Need a detection function based on more data (more dives, wider
range of predictors, etc).

– The capacity to include other study areas (rather than sticking
with AUTEC) would be a plus.

• Data visualization

– In terms of data visualization, both for simulated data but also
for analysis of real data, it would be helpful to have a tool that
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would allow screening of click counts per hydrophone over time and
space. In figure 19 we present an eventual way of visualizing such
information, with the top panel focussing on the temporal compo-
nent, and having a slider that determines which spatial component
is shown in the bottom panel. This has not been implemented.
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Figure 19: An hypothetical visualization tool. When the top panel (focussing
on the time dimension) ruler is moved, the bottom panel shows the corre-
sponding information in a spatially explicit way.
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1 Introduction

Autogrouper is a routine which works over timings of beaked whale click
detection reports to associate clicks within hydrophones into click trains,
and subsequently associates click trains across hydrophones to define vocal
groups. Each vocal group detected corresponds to a beaked whale deep
foraging dive. Associated with each of these automatically derived vocal
groups a number of summary statistics can be readily obtained, as the total
number of clicks or the total number of hydrophones. A full description of
those statistics available here is in the next section.

The autogrouper is an automated way to implement the routine described
in Moretti et al. (2010) to identify dives, and these dives have already been
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used as the units of analysis in a number of reasearch efforts (e.g. McCarthy
et al., 2011). More details about autogrouper and its evaluation can be
found in a couple of documents circulated by JS, namely “Autogrouper Eval-
uation LATTE rev1.docx” and “Correlation of Group Size to Click Counts
at AUTEC.doc”.

Group size is an important factor in density estimation studies, and char-
acterizing the group size distribution over space and time at AUTEC might
bring additional insights into the effect of sonar use on these animals. It
seems natural that the acoustical footprint of a group is dependent of its
group size, and this has in fact been shown for a reduced number of groups
of known size (DiMarzio et al., 2008).

In this report we analyze a data set of dives associated with groups for
which group size was assessed by visual observers, allowing one to model
group size as a function of the acoustical footprint of the groups on the
surrounding AUTEC hydrophones.

This might be used as a basis for parameterizing the simulation engine
required for LATTE, by modeling the estimated group sizes over space and
time. Additionally, if this modelling exercise is successful it might be used
to estimate density at AUTEC by exhaustive counting of animals present
on the range over time. As groups diving on the range are assumed to be
detected with certainty, this allows one to know, in a probabilistic sense at
least, in almost but not quite real time, how many animals are echolocating
and present within the range at any moment in time.

2 Modeling approach

The data was imported into R directly from the .xls file “LATTEgroupclick-
count version2.xls”. A number of potential covariates to model group size
are available:

1. the number of hydrophones at which group i was detected, Ki (Ki =
1, 2, ...,)

2. the number of clicks from group i detected at hydrophone k, ci,k, from
which the total number of clicks detected for group i (Ni) can be ob-
tained summing over the Ki hydrophones, i.e. Ni =

∑Ki

i=1 ci,k

3. the mean number of clicks detected per hydrophone for animal i, Ni

Ki

2
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4. the duration of the clicking period per hydrophone, from which the
total clicking duration, di can also be obtained

5. the maximum click count per hydrophone for group i = max(ci,1, ci,2, ..., ci,Ki
)

6. a pooled click rate, ri = Ni

di

The cluster size data available, as well as its relationship with potential
covariates, is shown in figure 1. This is a small data set, with only 43 groups
visually confirmed. Note in particular that for of these groups (tagged an-
imals) were not necessarily independent, but correspond to successive dives
of the same group, but we ignore that issue here for the moment. The inde-
pendence assumption might actually not be unrealistic, as each group’s deep
dive is likely independent from the previous one in terms of its acoustical
footprint, conditional on the group size.

The distribution of group sizes is, by definition of what is a group, discrete.
Therefore a count model should be used, like the Poisson or negative bino-
mial. However, with such a low mean as observed here (mean=2.7, sd=0.98)
these models should have a considerable number of 0’s, yet a group of zero
is not a group! This might be addressed in at least one of two ways:

• consider a zero-truncated model. http://www.ats.ucla.edu/stat/r/
dae/ztp.htm describes the use of a zero-truncated glm function using
package VGAM, but apparently no significance values for terms, AIC’s
or other simple model selection tools seem to be available. On top of
things, loading this packages causes unpredictable behaviour in mgcv;

• consider modeling Y = X − 1, where X is the actual group size, as a
poisson or negative binomial.

Simply for pragmatic reasons, we opt for the latter here, but note that
the former might be interesting to explore further. Using a manual stepwise
backward approach with AIC and GVC as guidance we trim the model using
all available covariates until only significant terms remain.

> library(mgcv)

> model1=gam(cs0~s(meancount)+s(cdur)+s(nhyd)+s(nclicks,k=4)+s(crate),

+ data=d4reg,family=poisson)

> #drop least important covariate
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Figure 1: Cluster size distribution and scatter plots of group size as a function
of 5 available explanatory covariates. Groups without maximum certainty in
visual to acoustic matching are highlighted in red.
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> model2=gam(cs0~s(meancount)+s(cdur)+s(nhyd)+s(crate),data=d4reg,family=poisson)

> #drop 2nd least important covariate

> model3=gam(cs0~s(cdur)+s(nhyd)+s(crate),data=d4reg,family=poisson)

> #drop 3rd least important covariate

> model4=gam(cs0~s(nhyd)+s(crate),data=d4reg,family=poisson)

> #if you redo the same procedure, without crate in the initial model,

> #you end up with a different best model, namely model5

> model5=gam(cs0~s(meancount),data=d4reg,family=poisson)

> #I tried to see what a GLM model can do

> #but the AIC is terrible here...

> model5g=gam(cs0~s(meancount),data=d4reg)

> model5g.glm=glm(cs0~meancount,data=d4reg)

> #humm, curious, this is the same model as the gam model now

> #but this was not the case at all with a Gaussian response

> #where the gam was clearly favoured

> #I wonder why the big difference

> model5.glm=glm(cs0~meancount,family=poisson,data=d4reg)

> #and by lowering the degrees of freedom associated with the smoother

> #the AIC also becomes considerably worse

> model5.k4=gam(cs0~s(meancount,k=4),data=d4reg,family=poisson)

> #just to check a really bad model

> model6=gam(cs0~s(maxcount),data=d4reg,family=poisson)

> #nonsense model just for comparison

> model7=gam(cs0~s(rnorm(43)),data=d4reg,family=poisson)

> #

> #model8=gam(cs0~s(cdur)+s(crate),data=d4reg,family=poisson)

We can compare the AIC of all models (Table 1). Note in particular that
the gam and glm provide exactly the same fit, i.e. the gam is not required1

The best model of those tried according to AIC is model5 the one where
group size is predicted as a function of a single variable, the mean number

1It is interesting to note that a previous run of this same model but with the response
erroneously defined as Gaussian meant that the gam smooth term was deemed required.
It is unclear why this would be the case, depending on the family used the gam being more
or less likely to require the smooth terms. On the other hand, does it make any sense to
use a measure as AIC to choose the distribution to use? Seems not sensible here (in fact
the Gaussian would be selected, and yet we do that all the time when say choosing across
candidate models for a detection function. Comes to justify once more the advice that one
should not try models which are a priori known to be false... but still.

5
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df AIC UBRE dev R2
model1 6.00 124.86 -0.37 0.42 0.49
model2 5.00 122.90 -0.42 0.42 0.51
model3 4.00 121.46 -0.45 0.40 0.48
model4 3.00 122.39 -0.43 0.29 0.37
model5 2.00 120.62 -0.47 0.28 0.32

model5.k4 2.00 120.62 -0.47 0.28 0.32
model5.glm 2.00 120.62 0.28

model5g 7.13 100.94 0.60 0.31 0.48
model6 2.00 124.00 -0.39 0.15 0.14
model7 2.43 127.42 -0.31 0.05 0.02

Table 1: AIC comparison for considered models.

of clicks per hydrophone. The model is shown in figure 2. We proceed
inferences with this model, but note that the second best model was model3,
which surprisingly does not include the single variable in model5. This model
considers as explanatory variables the number of hydrophones, the click rate
and the total click duration. The variables included in this model actually
make some sense from an explanatory point of view, and it has a larger
adjusted R2 and a higher percentage of the deviance explained. However,
the negative trend in group size associated with the increase in the number
of hydrophones was unexpected.

> summary(model3)

Family: poisson

Link function: log

Formula:

cs0 ~ s(cdur) + s(nhyd) + s(crate)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.4595 0.1248 3.682 0.000231 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

6
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Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(cdur) 1 1 2.898 0.08868 .

s(nhyd) 1 1 3.916 0.04784 *

s(crate) 1 1 7.537 0.00604 **

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

R-sq.(adj) = 0.484 Deviance explained = 40%

UBRE score = -0.44885 Scale est. = 1 n = 43

> summary(model5)

Family: poisson

Link function: log

Formula:

cs0 ~ s(meancount)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.4799 0.1226 3.913 9.11e-05 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(meancount) 1 1 7.404 0.00651 **

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

R-sq.(adj) = 0.324 Deviance explained = 28%

UBRE score = -0.46847 Scale est. = 1 n = 43

The model explains of 27.99 % of the deviance. We can compare the
predicted group sizes2 with the observed group sizes (Figure 3). We can get

2Because group sizes have to be integers, we are using as ‘predicted” the rounded value
of the group size, rather than the real (positive) value obtained when predicting from the
model

7
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Figure 2: Cluster size as a function of the mean number of clicks per hy-
drophone. Top row is a model with a poisson response, bottom a gaussian
response, for comparison.
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drophone. Top row is a model with a poisson response, bottom a gaussian
response, for comparison.
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the right group size for 23 groups, i.e. 53.49 % of the groups, while only 4.65
% are more than 1 individual off. Note for comparison that using model3

we obtain the same group size predictions to be more than 1 individual off (
4.65 %) as well as the same number of exact group size matches (23).

The residuals of model5 are shown in figure. There are no major reasons
to worry, although large group sizes tend to be underestimated and small
group sizes overestimated. This is not unusual with Poisson glms.

We investigated also if a dummy covariate for whether the detection oc-
curred over the whiskey hydrophones, and in particular an interaction of this
dummy with the number of hydrophones, help in any way. This could be ex-
pected as the number of hydrophones might be related with group size if all
hydrophones are equally separated, but this relation might be masked if for
animals detected around the whiskey phones that number doubles because
hydrophones are more densely distributed3. One can see that, as expected,
the number of hydrophones at which a clicks are detected is somewhat higher
if whiskey hydrophones are involved (Figure 5). However, the interaction
term was not significant and the model not favoured by AIC.

3 Discussion

The best model was model5, a gam (note this is essentially a glm, only 1
df used for the smooth) Poisson with mean number of detected clicks as
explanatory variables. While even this model can only explain 27.99 % of
the deviance, only 4.65 % of the groups have been incorrectly estimated by
more than 1 animal. The mean predicted group size using the model was
2.69767441860465, not surpisingly exactly the same as the observed group
size. The results of this model might be used as inputs for a number of
additional analysis:

• spatio-temporal modelling of group sizes at AUTEC; this can then be
used an an input on LATTE’s simulation engine;

3An aside regarding modelling: the notion that one should not use interactions without
the main effects being present in the model is often reported. Is this an example where
it makes sense to have just the interaction term and the number of hydrophones, but not
the dummy, as we do not expect that groups on whiskey hydrophones are by themselves
any larger or smaller than those elsewhere?
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Figure 4: Residuals for the best model (includes only the mean number of
clicks detected).
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Figure 5: Number of hydrophones as a function of whether whiskey hy-
drophones were involved (1) or not (0) in the detection.

• automatic density estimation by counting groups on the range at each
moment in time. The only multiplier required is the proportion of
time a group is vocally active, which we do not have yet. Identifying
“quiet” instances on the AUTEC range, when groups can be tracked
over multiple dives, to start addressing this multiplier, seems a useful
way forward. Tracking groups across dives might be useful regardless
as it helps in operations, eg. where to direct a boat to find the group
given the acoustical footprint of a dive.

A number of open questions:

• perhaps unexpectedly the number of hydrophones or the total duration
of the dive were not strongly related to group size (at least using the
best model)

• how much of (1) the unexplained variance or (2) some variables not
being considered significant in explaining group size might be related
to erroneous visual group size estimation and/or vocal group to visual
group incorrect matching?
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• are there any more similar data to increase the robustness of this anal-
ysis? in particular, what about more groups of single animals? this
might also help with model selection.
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1 Introduction

In this document we describe an exploratory data analysis performed over a
data set containing Mesoplodon densirostris group sizes sent to us by Diane
Claridge via e-mail on the 10th June 2013. While there are a number of
reports of cluster size estimates in the literature (e.g. Claridge, 2006; Moretti
et al., 2010), these all use portions of this larger data set, so it was decided
that a first hand look at the data set would be useful.

The data were in an excel worksheet, along with a second excel worksheet
with some description about each of the columns. For each group detected a
number of variables are available:

• Date, recoded to date: the date the sighting occurred

• Sequence, recoded to seq: a categorical variable, ”S” means sighting;
”E” means encounter or when we made close enough approach on group
to get ID photos

• Group size, recoded to cs: the observed cluster (i.e. group i.e. pod)
size

• Project, recoded to project: the project under which data was col-
lected. Categorical variable: BBES & SERDP = large vessel platform;
all others = small vessel platform

• Elapsed time, recoded to time: encounter duration, in minutes; the
longer we spend with a group, the more confident we are of group size.
Sightings don’t have elapsed times.

• Latitude, recoded to lat

• Longitude, recoded to long

2 Exploratory data analysis

We begin by reading the cluster size data in. We also read in the data
regarding hydrophone locations and depths 1.

1Heavily based on code and data being used in folder ABM, which contains LATTE’s
AUTEC simulation exercise.
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> #----------------------------------------------------------------------------------------------------------

> # GROUP SIZE DATA

> #----------------------------------------------------------------------------------------------------------

> csdata=read.table(file="datfiles/Bahamas_MdGroups_Tiago2.txt",sep="\t",header=T,,na.strings = "NA")

> #recoding date field to read in properly as date

> csdata$date=strptime(csdata$date,"%d-%b-%y")

> #adding fields with year and month, for temporal analysis

> csdata$mon=csdata$date$mon+1

> csdata$year=csdata$date$year+1900

> #----------------------------------------------------------------------------------------------------------

>

> #----------------------------------------------------------------------------------------------------------

> # HYDROPHONE DATA

> #----------------------------------------------------------------------------------------------------------

> #reading the hydrophone data in

> hyd<-read.table(file="datfiles/HYDtable.txt")

> names(hyd)<-c("hydID","on","x","y","z","dunno")

> #adding the fact that some hydrophones were actually off

> #during the period for which we have data - this is

> #actually not used in the simulation

> hyd$off<-0;hyd$off[c(47,48,54,55,62,63,70,71,79,86,87)]<-1

> #reading the hydrophone data in

> seamap678<-read.csv("datfiles/seamap678.csv")

> seamap678<-seamap678[,c(3,5,6)]

> names(seamap678)=c("hyd","long","lat")

> #note we only have info for the active hyds

> # so, proving this will work

> #cor(unique(hyd$hydID[hyd$off==0]),as.numeric(names(with(seamap678,tapply(lat,INDEX=hyd,FUN=mean)))))

> #adding lat and long

> hyd$lat[hyd$off==0]=with(seamap678,tapply(lat,INDEX=hyd,FUN=mean))

> hyd$long[hyd$off==0]=with(seamap678,tapply(long,INDEX=hyd,FUN=mean))

> #----------------------------------------------------------------------------------------------------------

>

> #----------------------------------------------------------------------------------------------------------

> # DEPTH DATA

> #----------------------------------------------------------------------------------------------------------

> etopo1 <- read.table("datfiles/etopo1.xyz", quote="\"")

> #summary(etopo1)

3
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> #adding adequate names

> names(etopo1)=c("X","Y","Z")

> #creating a sequence of bins such that all places on land

> # i.e such that depth is between 0 and max(Z)=93

> # are in the initial bin

> depths=seq(max(etopo1$Z),min(etopo1$Z),by=-max(etopo1$Z))

> #note the minor tweak such that the last class is a bit bigger

> #to include all depths

> depths[length(depths)]=min(etopo1$Z)-0.01

> # coding up the depth class that each point belongs to

> #note this becomes a number, from 1 to 53=max(etopo1$colZ)

> #(53 levels of depth, where the 1 corresponds to above 0)

> etopo1$colZ=cut(x=etopo1$Z,breaks=depths,labels=F)

> #a pallete to color water in blue tones

> blues = shade.col(max(etopo1$colZ), acol=as.vector(col2rgb("darkblue")/255), bcol= as.vector(col2rgb("paleturquoise")/255))

> #making sure that land is black

> blues[max(etopo1$colZ)]="black"

> #creating a matrix which can be ploted using say image or contours

> Zforplot=matrix(etopo1$Z,ncol=sqrt(length(etopo1$Y)),nrow=sqrt(length(etopo1$Y)),byrow=T)

> Zforplot=Zforplot[180:1,]

> Zforplot=t(Zforplot)

> #----------------------------------------------------------------------------------------------------------

There are 413 records, for which 412 actually have a record for cluster
size. A first step is to visualize the data, by plotting group size locations in
space with respect to the AUTEC range (Figure 1). We can see that there
are many sightings near Abaco and at AUTEC, which might correspond
to different projects. Given the sparsity of records south of 25.5N outside
AUTEC, and given that we were thinking about using that as the northern
limit for our simulations, it might be simpler to use a simple model to draw
samples from, rather than a complex spatial-temporal model of group sizes.

We can see that typical cluster sizes are below 5, with the largest observed
cluster size being 11 (figure 2). South of 25.5N the largest cluster size was 5
animals, which is clearly reflected on the south (2.82) vs. north (3.64) mean
cluster size. The confidence intervals for mean group size south (2.5,3.14)
and north (3.46,3.83) of 25.5N do not overlap, which indicates clearly that
higher groups seem to avoid (or maybe “dissolve”?) in the south.
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Figure 1: Group locations within the AUTEC range location and the wider
Bahamas region.
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Figure 2: Histogram of cluster sizes.

We can also take a look at cluster sizes per project (figure 3), which
show that groups above 5 members were only encountered in BBES, NEA
Feacal and mostly BMMR0. There seems to be a slight increase in group
size as a function of the time spent with a group (Figure 4), but likely the
causal relation happens in the opposite direction, i.e. larger groups lead
investigators to spend more time with them, and vice versa.

Finally, we can check whether there are interesting patterns in cluster
size with respect to time (figure 5), both over the years and within the years
(i.e. a season effect say). While over the years group sizes seem relatively
constant, with maybe a slight decreasing trend (or more likely I may just be
over-interpreting the data!) in the last decade or so, over the year it seems
like the lower group sizes are found over spring months. I wonder why this is
and whether it adds up with Diane’s feelings / knowledge about their biology.

To finish, we just looked at a gam model of cluster size as a function of
month and latitude and longitude (Figure 6). At the scale considered it is
difficult to distinguish latitude from longitude, as these are correlated due to
the shape of the study area and where most of the data lies.

Family: gaussian

Link function: identity
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Figure 5: Group size as a function of year and month
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Formula:

cs ~ s(mon, bs = "cc") + s(lat) + s(long)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.50971 0.08017 43.78 <2e-16 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(mon) 4.561 5.649 5.532 2.92e-05 ***

s(lat) 2.556 3.149 2.585 0.0502 .

s(long) 1.117 1.217 3.311 0.0605 .

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

R-sq.(adj) = 0.0937 Deviance explained = 11.2%

GCV score = 2.709 Scale est. = 2.6483 n = 412

3 Important output for simulating groups at

AUTEC

Given all the above, and at the spatio-temporal scale our simulations are
likely to occur, the best option to simulate cluster sizes from might be to
sample from a multinomial distribution with parameters estimated empiri-
cally from the left panel in figure 2, reproduced in figure 7 left panel. These
probabilities are shown in table 1. This seems more adequate than say to
draw random deviates from a Poisson distribution 2, which would be far over-
dispersed and presenting way too often group sizes larger than 5. An example
of 1000 simulated values from the later is presented in figure 7, right panel.

2with a tweak to avoid cluster sizes of zero, e.g. Y=1+X, where X is Poisson with
mean equal to the observed cluster size - 1
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Figure 6: A quick gam model of cluster size as a function of month, latitude
and longitude.
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1 2 3 4 5
Probability 0.179 0.269 0.269 0.119 0.164

Table 1: Empirical probabilities associated with each group size.
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1 Introduction

In this document we present an analysis of DTag data for 4 beaked whales,
with multiple dives for each whale. The data was sent as txt files. The data
was compiled by Walter Zimmer and sent by Peter Tyack to us on the 28th
of April 2008. These data were previously analyised in a separate report ”A
closer look at click rates as reported in the 2009 JASA paper for DWH”.

Each of the received files contains 4 columns, with time, depth, pitch,
and heading.

The DTag information for each whale is separated in two files:

• A file with the variables by second (time indexing variable starts at
second 1);

• A file with the variables at each click time (starts at time of first click).

1.1 Data details

The data files were read into R:

#note this code chunk is not evaluated to speed up report generation

#reading the data in

cli227a<-read.table("datfiles/md07_227a_click_data.txt")

sec227a<-read.table("datfiles/md07_227a_sec_data.txt")

cli245a<-read.table("datfiles/md07_245a_click_data.txt")

sec245a<-read.table("datfiles/md07_245a_sec_data.txt")

cli248a<-read.table("datfiles/md07_248a_click_data.txt")

sec248a<-read.table("datfiles/md07_248a_sec_data.txt")

cli248b<-read.table("datfiles/md07_248b_click_data.txt")

sec248b<-read.table("datfiles/md07_248b_sec_data.txt")

We can check what they look like (after appropriate headers were added:
sec - second; cli - click; z - depth; h - heading; p - pitch). These are the first
few lines of a data set by second

head(sec227a)

## sec z h p

## 1 0 11.77 1.551 -0.1319

2
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## 2 1 12.08 1.524 -0.1358

## 3 2 12.49 1.536 -0.1504

## 4 3 12.76 1.564 -0.1388

## 5 4 13.06 1.595 -0.1281

## 6 5 13.36 1.612 -0.1179

and this is the first few lines of a data set by click

head(cli227a)

## cli z h p

## 1 1458 474.8 -0.4150 -1.193

## 2 1458 474.8 -0.4111 -1.192

## 3 1458 474.9 -0.4076 -1.191

## 4 1458 474.9 -0.4044 -1.191

## 5 1459 476.5 -0.3622 -1.188

## 6 1459 476.6 -0.3627 -1.188

2 Exploratory Data analysis

2.1 Dive data

To get a first feel for the data we ploted the dive profiles (with click events),
the heading and pitch through time, for each of the 4 whales (Figures ?? to
??).

The first thing that worth noting is that the sound data is not as long
as the positional data 2, which covers more dives (for all whales) than the
sound data. This is clear from the presence of deep dives for which click
events are not available (see figures ?? to ??). While we have click data for
respectively 6, 4, 4, and 4 dives for whales 227a, 245a, 248a and 248b, there
are respectively 8, 5, 7, 5 dives with Dtag data.

2.2 Click times

We can look closer at the data for click times, because here we hope to obtain
a way to simuate clicks over time, and we propose to do so as a function of

2 Presumably due to lack of memory on the Tag

3

Page 345 of 466Version with appendices



F
ig

u
re

1:
T

h
e

d
iv

e
p
ro

fi
le

(t
op

),
h
ea

d
in

g
p

er
se

co
n
d

(c
en

te
r)

an
d

p
it

ch
p

er
se

co
n
d

(b
ot

to
m

)
fo

r
w

h
al

e
22

7a
.

O
n

th
e

to
p

p
an

el
b
lu

e
in

d
ic

at
es

d
ep

th
at

cl
ic

k
ev

en
t.

N
ot

e
th

at
so

u
n
d

re
co

rd
in

g
is

on
ly

av
ai

la
b
le

fo
r

p
ar

t
of

th
e

to
ta

l
D

T
ag

p
er

io
d
.

4

Page 346 of 466Version with appendices



F
ig

u
re

2:
T

h
e

d
iv

e
p
ro

fi
le

(t
op

),
h
ea

d
in

g
p

er
se

co
n
d

(c
en

te
r)

an
d

p
it

ch
p

er
se

co
n
d

(b
ot

to
m

)
fo

r
w

h
al

e
24

5a
.

O
n

th
e

to
p

p
an

el
b
lu

e
in

d
ic

at
es

d
ep

th
at

cl
ic

k
ev

en
t.

N
ot

e
th

at
so

u
n
d

re
co

rd
in

g
is

on
ly

av
ai

la
b
le

fo
r

p
ar

t
of

th
e

to
ta

l
D

T
ag

p
er

io
d
.

5

Page 347 of 466Version with appendices



F
ig

u
re

3:
T

h
e

d
iv

e
p
ro

fi
le

(t
op

),
h
ea

d
in

g
p

er
se

co
n
d

(c
en

te
r)

an
d

p
it

ch
p

er
se

co
n
d

(b
ot

to
m

)
fo

r
w

h
al

e
24

8a
.

O
n

th
e

to
p

p
an

el
b
lu

e
in

d
ic

at
es

d
ep

th
at

cl
ic

k
ev

en
t.

N
ot

e
th

at
so

u
n
d

re
co

rd
in

g
is

on
ly

av
ai

la
b
le

fo
r

p
ar

t
of

th
e

to
ta

l
D

T
ag

p
er

io
d
.

6

Page 348 of 466Version with appendices



F
ig

u
re

4:
T

h
e

d
iv

e
p
ro

fi
le

(t
op

),
h
ea

d
in

g
p

er
se

co
n
d

(c
en

te
r)

an
d

p
it

ch
p

er
se

co
n
d

(b
ot

to
m

)
fo

r
w

h
al

e
24

8b
.

O
n

th
e

to
p

p
an

el
b
lu

e
in

d
ic

at
es

d
ep

th
at

cl
ic

k
ev

en
t.

N
ot

e
th

at
so

u
n
d

re
co

rd
in

g
is

on
ly

av
ai

la
b
le

fo
r

p
ar

t
of

th
e

to
ta

l
D

T
ag

p
er

io
d
.

7

Page 349 of 466Version with appendices



Figure 5: The number of clicks per dive (the dashed lines represent separation
between whales), and an histogram of the same data, pooled across whales
and dives.

depth.
For simplicity, we build a single data frame which contains the information

per click from the 4 whales, named calldata.

CT<-rbind(cli227a,cli245a,cli248a,cli248b)

W<-rep(c(1,2,3,4),times=c(length(cli227a[,1]),length(cli245a[,1]),length(cli248a[,1]),length(cli248b[,1])))

calldata<-data.frame(CT=CT,W=W);names(calldata)<-c("CT","z","h","p","W")

rm(CT,W)

In total we have 79405 clicks, respectively 24318, 15854, 16364 and 22869
for each whale.

One can now look at the time differences between successive clicks, adding
a code to uniquely identify each dive. The number of clicks per dive is shown
in Figure ??, top panel.

The mean number of clicks per dive is 4411, which is almost at the center
of the 4000-5000 range reported for the number of clicks per deep dive in ?.
An histogram of the number of clicks per dive is shown in Figure ??, bottom
panel.

These numbers reflect the fact that these data sets only contain regular
clicks, while buzz clicks are not included (P. Tyack has already confirmed
this).

2.3 Inter-click-interval

The shortest time between the last click in a dive and the first click in the
next dive was 3070 seconds.

The maximum inter-click-interval (ICI) within a deep dive was 46.4 sec-
onds, while the mean ICI was 0.39 seconds. Note that if the mean is cal-
culated over those ICI under a second, it is only 0.328. Of the 79401 ICI,
97.937% were under a second, and 98.966% under 3 seconds. We can take a
look at the ICIs distribution (Figure ??). It seems like the ICI are a mixture

8
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Figure 6: Distribution of ICI, focusing on different ICI ranges in each panel.

of two distributions, namely a prevalent one with a mean under a second and
a second one, far less common, with a mean around 3 seconds.

2.4 Vocal and silent period duration

The mean duration of the vocalization period3 (V, sample size 18) and silent
period (S, sample size 5+3+3+3=14) was respectively 28.8 (se=1.8) and
137.9 (se=21.1) minutes, which corresponds to about 17.266 % of the time
vocally active. Remember that the values reported in (and derived based on)
? were respectively 26.4 and 112.1, which is remarkably consistent.

2.5 Estimating a mean using observations repeated over
individuals

All the numbers reported above assume that each event is independent. How-
ever, this might not be the case, as we expect measures from a single animal
to be less variable than measures across animals.

Consider the estimation of the mean duration of the vocalizing period as
an example. The previous sentence means it was considered that we had a
sample of 18 vocalizing periods, but arguably what we have is a sample of 4
individuals, each providing repeated measures about vocalizing periods.

Note that if one fits a model with whale as a (fixed) factor, there seem to
be differences across whales in the length of the vocalizing period

in particular whale 4 seems to present longer vocalizing periods.
Hence, instead of using a simple mean to estimate the mean vocalizing

period, essentially the intercept parameter estimate of a linear model like
we could fit a random effect model (essentially because whale is not a fixed

factor, but a random sample of a much larger number of possible whales) that
accounts for this fact.

3 We consider here said period to be from the first to the last click within a deep dive.

9
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Although the point estimate might not be too different4, changing from
28.8 to 29.1, the uncertainty (here the standard error) around that estimate
increases from 1.81 to 2.97 (reflecting the fact that we do not have 18 inde-
pendent observations, but 4 sets of independent observations).

Note we could formally test for the need of the random effects as

lm.model3.null<-lm(Vmin~1,data=V.dat)

#Likelihood ratio test statistic

LRTS<-as.numeric(2*(logLik(lm.model3)-logLik(lm.model3.null)))

LRTS;pchisq(LRTS,1,lower=F)

## [1] 5.972

## [1] 0.01453

Hence, at the 5% significance level the model including the random effect
seems to be required. However, it is argued that the approximation to the
chi-square is not adequate, and a parametric bootstrap procedure described
in ?, p. 160 might provide more reliable results. This is implemented below

y <- simulate(lm.model3.null)

lrstat <- numeric(1000)

for(i in 1:1000){
y <- unlist(simulate(lm.model3.null))

bnull <- lm(y ~ 1)

balt <- lme(y~1,random=~1|V.whale,data=V.dat,method="ML")

lrstat[i] <- as.numeric(2*(logLik(balt)-logLik(bnull)))

}
rm(balt,bnull,y)

We can see that the actual distribution for the test statistic is far from
what would be expected for a chi-square (e.g. we observe a large proportion
of very small values (say < 0.0001), here 0.721). The p-value of this test is
given by5

4 But note this is not necessarily the case in general, especially if there were differences
across whales in length of vocalizing period and markedly different number of repeated
measurements for each whale.

5 The second line of code is the standard error for this estimate of the p-value assuming
a binomial distribution.
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mean(lrstat > LRTS)

## [1] 0.003

sqrt(mean(lrstat > LRTS)*(1-mean(lrstat > LRTS))/1000)

## [1] 0.001729

which just reinforces the above result that the random effect is required
for adequately modelling this data. Note we could estimate predicted random
effects for each whale using the command (see ?, p. 161 for details)

ranef(lm.model3)

## (Intercept)

## 1 -3.101

## 2 -3.359

## 3 0.214

## 4 6.246

(note how as expected the sum of the random effects is ≈ 0). Note that
these are smaller than the corresponding fixed effects

cc[[1]]$V.whale

## V.whale

## 1 2 3 4

## -3.505 -4.231 0.636 8.853

and if we wanted to predict a new value for a given whale, instead of
using the fixed effect model, i.e.

as.numeric(mean(V.dat$Vmin)+cc[[1]]$V.whale)

## [1] 25.27 24.55 29.41 37.63

we should use the random effect model

11
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fixef(lm.model3)+ranef(lm.model3)[[1]]

## [1] 26.02 25.76 29.33 35.37

3 Data and estimates required for density es-

timate

In this section we look into two data components required in the process of
estimating beaked whale abundance at AUTEC for the 6 day trial data set.
These components are:

1. the estimated click rate

2. a distribution for the relevant variables needed (as depth, pitch, head-
ing) to calculate the required distributions (say distance, vaa and haa)
of the variables to integrate out in the model of detection probability.

3.1 Estimating click rate

To estimate abundance using cue (click) count based methods we require a
click rate (and the corresponding variance). We want an unbiased estimate
for this rate, averaged over a long time period. This is because we do not
want either to obtain the click rate corresponding the vocalizing period of a
deep dive (very high click rate) nor the click rate of a non vocal period (click
rate = 0), but a representative average of the two periods, so that we can
scale up the number of clicks detected over a long time period (in this case,
6 days).

As described in the previous subsection, we need to account for the hier-
archical nature of the data available (namely dives within whales).

There are multiple alternatives to estimate said click rate. Here we con-
sider counting the number of clicks per some time interval (say a second),
and compute the appropriate average.

3.1.1 Using clicks per second

From figure ?? it is obvious that we need to remove the data for which sound
was not available. We assume that an animal’s time can be subdivided in

12
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dive cycles, and a dive cycle lasts from the moment a deep dive starts till the
moment the next deep dive starts. Therefore, considering full dive cycles for
which sound data was available seems a straightforward way to be unbiased.
In figure ?? the periods considered are between the dashed lines 6.

We begin by obtaining the number of clicks for each second (code omitted
for brevity).

## [1] 199911 2

## 101 102 103 104 105 106 201 202 203 204 301 302 303 304

## 4007 4337 3933 3515 4052 4474 6392 2847 2432 4183 3809 3907 4364 4284

## 401 402 403 404

## 4540 6279 5746 6304

##

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14

## 4007 4337 3933 3515 4052 4474 6392 2847 2432 4183 3809 3907 4364 4284

## 15 16 17 18

## 4540 6279 5746 6304

Given this, we can build a model for the number of clicks per second as:

m.cps<-lme(n~1,random=~1|W,data=clicks.per.second,method="ML")

sum.m.cps<-summary(m.cps)

We therefore estimate the mean number of clicks per second as 0.41 with
a corresponding standard error of 0.04.

Naturally, some sort of ZIP or “hurdle” model, with a distribution apro-
priate to counts, like a negative binomial, might be better given the large
number of seconds ( ≈ 86 %) with zero clicks.

Another relevant issue is the fact that this model does not account for the
autocorrelation in click numbers with time, so we might be underestimating
the true variance.

This model uses data from 4 whales tagged in 2007, yet we could add
a fifth whale which was tagged in 2006. The data for this comes from the
workspace “gxestimate”, as described in ?.

6 Although this is not ideal, we manually selected the seconds that correspond to the
start of each dive cycle. Details about how this was done can be found in file ”obtaining
dive cicles.R”.
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Figure 8: The click rate per deep-dive cycle, separated by whale. Data points
are represented by actual dive number.

load(file="datfiles/Md296.cliks.per.second.Rdata")

clicks.per.second2<-rbind(clicks.per.second,clicks.per.secondMd296)

m.cps2<-lme(n~1,random=~1|W,data=clicks.per.second2,method="ML")

sum.m.cps2<-summary(m.cps2)

We now estimate the mean number of clicks per second as 0.422 with a
corresponding standard error of 0.04.

Note that, as expected, this corresponds to an average of the click rates
per whale, 0.422.

3.1.2 Using a weighted mean

It was felt that it might be more adequate to use a weighted mean to estimate
the mean click rate. To do so, we calculate a weighted mean of click rate per
deep-dive cycle, weighted per deep-dive cycle time length.

The deep-dive cycles click rates present a considerable variation per whale,
as can be seen in figure ??. It can be seen that there are no clear differences
in clicks per dives across whales, so maybe the use of dives as independent
sampling units (rather than nested within whales) is not unrealistic.

Obtaining the variance of a weighted mean is done using 7

var.wtd.mean.cochran <- function(x,w)

# Computes the variance of a weighted mean following Cochran 1977 definition

{
n = length(w)

xWbar = weighted.mean(x,w)

wbar = mean(w)

out = n/((n-1)*sum(w)^2)*(sum((w*x-wbar*xWbar)^2)-2*xWbar*sum((w-

wbar)*(w*x-wbar*xWbar))+xWbar^2*sum((w-wbar)^2))

return(out)}

The estimated click rate is 0.407 with a CV of 0.098 %.
7 see Problem with Weighted Variance in Hmisc.pdf for this formula.
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1 Introduction

In this document we present an exploratory analysis of the satellite tag sent to
us by John Durban via e-mail on 21/04/2014 at 12:13. The objective of this
analysis would be to try to parametrize some movement models which would
convey the notion of home range to our LATTE simulations, i.e., instead of
animals wandering off as simulations extend over time, animals would tend
to return to their home range.

1 This document was created using Sweave, using on a platform.
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John Durban (JD), jointly with Devin Johnson, is making progress with
hierarchical models linking movement and diving changes to received sonar
levels based also on these data sets (see e-mail 09/05/2014 16:50). JD also
said that PTT’s 93232 (May 2009), 111664, 111670 (May 2012), 129715 (Nov
2013) are close to mini wars (from D. Moretti = 14-17 May 2009; 14-16 May
2012; 16-19 November 2012). PTT’s 93232, 52627, 111675, 111682, (112032
not much data) correspond to adult males, others are adult females.

The initial file provided had some problems due to ARGOS reusing PTT
numbers, but the file “Md data for Tiago 2.csv” should be ready to use.

1.1 Data details

The data file was read into R:

path1="C:/Users/Tiago Marques/Dropbox/"

path2="LATTE/stuff from others/John Durban/datfiles/"

file="Md data for Tiago_2.csv"

data <- read.csv(paste0(path1,path2,file))

In total we have 1488 locations for 12 whales, ranging from just 2 to 397
positions per whale.

We can check what the data looks like

head(data)

## PTT Date Lat Lon Error Semi.major.axis

## 1 93222 5/6/2009 22:17 25.95403 -77.33416 3404 24985

## 2 93222 5/7/2009 7:29 25.93503 -77.34785 1662 51770

## 3 93222 5/7/2009 10:11 25.81120 -77.34227 6877 43800

## 4 93222 5/7/2009 11:43 25.78868 -77.33188 10836 29273

## 5 93222 5/7/2009 14:20 25.78831 -77.27233 3073 12577

## 6 93222 5/7/2009 15:07 25.86723 -77.19825 2419 25492

## Semi.minor.axis Ellipse.orientation

## 1 463 82

## 2 53 128

## 3 1079 118

## 4 4011 118

## 5 751 27

## 6 229 113

2
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The columns represent:

• PTT : a unique tag identifier

• Date : the time/date of each location measurement

• Lat : latitude

• Lon : longitude

• Error : a quantification of the measurement error; errors are not isotropic,
leading to the next 3 quantities

• Semi.major.axis : major axis of the error ellipse

• Semi.minor.axis : minor axis of the error ellipse

• Ellipse.orientation : direction of the error ellipse major axis

We can see the last 4 columns refer to measurement error quantification.
ARGOS satellite tag localizations are known to be affected by errors. It
seems like here these are represented as error ellipsis.

Some of the locations have large errors in them. As an example, 59 have
errors of more than 10000 (assuming these are meters?). An exploratory
analysis of the errors is shown in figure 1.

Trying to understand what the error numbers actually mean we also
ploted how the actual error relates to the product of the axis of the er-
ror, and as expected there is a relationship between these. The relationship
is so evident that is is likely that the error value is actually a value derived
deterministically from the error axis (Figure 1, bottom left).

It seems like the errors tend to be higher in some directions that others,
with a mean around 89 2, a possible consequence of the typical satellites
available for this area (Figure 1, bottom right).

The large majority of observations has errors below 5 km. At the scale we
are interested in making inferences here (the beaked whales home range scale)
these seem potentially negligible. Hence, for the purpose of this analysis
we will essentially ignore this, concentrating on obtaining some statistics
assuming these positions were error free. Later we could repeat any analysis
presented here with positions obtained from processing the current data with
methods which account for location errors.

2We are not sure about what the units are, probably a heading but not sure what 0
might represent.

3

Page 361 of 466Version with appendices



Error

F
re

qu
en

cy

0 2000 4000 6000 8000 10000

0
50

10
0

15
0

0e+00 2e+05 4e+05
0

20
00

40
00

60
00

80
00

Error major axis

E
rr

or
 m

in
or

 a
xi

s

0 10000 20000 30000 40000

0.
0e

+
00

5.
0e

+
08

1.
0e

+
09

1.
5e

+
09

Error

ax
is

 p
ro

du
ct

Error Ellipse Orientation

F
re

qu
en

cy

0 50 100 150

0
10

0
20

0
30

0
40

0

Figure 1: Measurement errors associated with the satellite tag localizations.
Top left: measurement error (error ¡ 10000). Top right: relation between
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2 Location data

We begin by plotting the location data in space (Figure 2). This is actually
not an easy figure to interpret because of the spatial scale, but some obvious
measurement error problems are evident for some whales.

We can zoom in each of the whales (Figure 3). Clearly some whales
provide reasonable information (e.g. PTT 108419) while others provide very
little information (e.g. PTT 112032). It might be useful to see all these plots
with a common spatial scale. This is shown in figure 4.

It is also fundamental to understand the duration of the time periods
considered, as we are interested in movements at a coarse scale. To do so we
need to convert the field ”Date” to dates that R can actually process.

PTT sex cmw posits smonth syear dur
1 93222 F 0 35 5 2009 5.15
2 93232 M 1 171 5 2009 25.96
3 52627 M 0 62 10 2010 14.31
4 108419 F 0 397 6 2011 45.64
5 111664 F 1 144 5 2012 16.74
6 111670 F 1 227 5 2012 26.84
7 111682 M 0 194 6 2012 23.90
8 111680 F 0 74 6 2012 5.19
9 112032 M 0 2 6 2012 0.01
10 111676 F 0 55 6 2012 7.35
11 111675 M 0 84 7 2012 8.60
12 129715 F 1 43 11 2013 17.24

Table 1: Summary statistics per whale, including sex, whether the tag
was close to an SCC exercise (cmw), number of positions (posits), month
(smonth) and year (syear) of first position and duration in days (dur).

As expected, the number of positions available per animal increases lin-
early with the deployment duration (Figure 5).

We want to parametrize the displacement of animals at the home range
scale. Conceivably, we can only do this based on data which would allow
us to reasonably estimate an animal’s home range. Therefore we begin by
investigation whether estimates of home range sizes using this data set seem
to be sensitive to the amount of data available.
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Figure 3: Locations of 12 satellite tagged whales in space, with one panel
per whale
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Figure 4: Locations of 12 satellite tagged whales in space, with one panel
per whale, at the same spatial scale.
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Figure 5: The number of available positions as a function of deployment
duration.

3 Estimating home ranges

This is implemented using bespoke functions from package adehabitatHR.
We begin by noting that, for the time being, this package assumes that

the units are projected units (m, km, ha) but we have the animal’s locations
in latitude and longitude. We considered the input units to be km and the
output units to be ha, but in order for the areas to make sense one would
have to project the latitude and longitude first. Because here we are only
interested in the relative size of the home range we ignore it for now.

3.1 Minimum convex polygon

We begin by using the minimum convex polygon approach, removing 5 % of
the most extreme observations.

As we can see in figure 6, all the deployments under 2 weeks have con-
siderably small home ranges. After two weeks, the home range estimated
from deployments tends to be much larger (even if the variance associated
with these is also much larger). One can only postulate that said variance
might be reflective of true differences in home range sizes, despite the fact
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Figure 6: Relationship between the estimated area of the home range size
as a function of the deployment duration, with an arbitrary line separating
“low” duration deployments from “reasonable” (more than 2 weeks) duration
deployments.
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Figure 7: Relationship between the estimated area of the home range size as
a function of the amount of data discarded, per animal.

that there is no strong evidence to do so.
Figure 7 displays the relationship between the percentage of points in-

cluded in the calculation of the minimum convex polygon and the home
range size. Idealy one would hope to observe an asymptote and a jump from
say 95% to 100%, hence justifying the 5% cut off, but while that is observed
for some animals (e.g. 52627 or 108419) it certainly does not happen even for
some animals with longer durations (e.g. 93232 and 111670), which render
this analysis somewhat inconclusive.

3.2 Kernel estimator

Another approach to estimate the home range size of animals is to consider
an utilization distribution (a measure of how the animal uses space). The
use of kernels to estimate this distribution was a natural development. Here
we use such kernel methods to compare with the results obtained for the mcp
approach.

In figure 8 we present such estimated utilization function for each of
the animals, while in figure 9 we represent the values of the estimated home
ranges using this kernel approach compared to those from the mcp approach.
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Figure 8: Estimated area utilization function using the kernel estimator.

As we can see the kernel approach tends to estimate a larger home range,
but since we are only interested in the relative size of the home ranges this
should not be a major problem for us.

3.3 Tags to consider further

We need to use the satellite tag data to parametrize the strength of attraction
towards an hypothetical home range centre.

We will assume that the 7 animals with deployment durations above 15
days correspond to animals for which the home range can be adequately
characterized, while inferences based on information available for animals
with shorter deployment durations probably would be underestimating their
true home range size. If we used these in the next step of the analysis
would therefore overestimate the strength of attraction towards an home
range centre.

We note however this was a very simple analysis with a pragmatic ob-
jective: decide which data to use at a the later stage of estimating such
strength of attraction towards an home range centre. Because this will be
implemented assuming that the localizations available provide a representa-
tive sample of how the animals explore typically its home range , excluding

12
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short deployments leading to small estimate home ranges makes sense, as
these will likely correspond to animals that were not allowed to fully explore
their home range (during the small temporal observation window available).

If there was a clear ecological question being asked about the home range
size of these animals one would probably require considerably more data to
answer the question adequately.

4 Further analysis of selected tags

Based on the previous section, we selected a number of tags for further pro-
cessing. These will be used as a basis to estimate parameters of movement
models via an Approximate Baysian Computation (ABC). The rationale of
ABC is to simulate according to a model and a set of distributions for the
parameters of interest. Then for each simulation keep the parameter values
used in said simulation if some measure of “distance” between the observed
tracks is lower than a treshold. As an example, keep all the tracks such
that the distance to the home range center is never larger than k kilometers
(where k is obtained from the available data). Reading about ABC is a must.

Here we begin by creating a list such that each component of said list will
contain the locations for each animal, such that we can the apply functions
over these array elements to get the statistics of interest.

A current problem is that we need to have all these measurements in
compatible units. While we have the coordinates in Latitude and Longitude,
we want distances in km and bottom depths (which will also be required
as we want the movement at the home range scale to be such that shallow
depths are avoided, as this is a clear feature of the data) are available in a
grid of different units.

We can project these data into km using the function latlong2km in
package dsm; only after after that we can calculate the geometric centroid
associated with each tag.

#converting the Lat Long coordinates to unit system

#being used for the overall simulation exercise

#-------------------------------------------------------------------

#reference point used for the coordinate system in meters

#from "simulation.R"

library(dsm)

14
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ref=c(-78.4133,23.1383)

for (i in 1:ntags){
coordtemp=latlong2km(tags[[i]]$Lon,tags[[i]]$Lat,ref[1],ref[2])

tags[[i]]$x=coordtemp$km.e

tags[[i]]$y=coordtemp$km.n

}
rm(coordtemp)

#an example of an animal just to see all seems OK

#par(mfrow=c(1,2))

#plot(tags[[2]]£Lon,tags[[2]]£Lat)

#plot(tags[[2]]£x,tags[[2]]£y)

#exporting the information on the tags

#to read in the simulation folder

#to be able to plot these in that context

save(tags,file="tags.Rdata")

#looking at the data

#for (i in 1:ntags){
#points(tags[[i]]£x,tags[[i]]£y,type="l",col=i)

#}

One of the key features we want our movement model to reproduce is the
home range property, i.e. animals will present some site fidelity instead of
wandering off to infinity.

It is sensible to assume that for these tags, the geographic centroid of
the available positions is an estimate of the center of such home range (here
loosely defined as the position around which one could typically find the
animals). Therefore we calculated the centroid for each animal’s positions.
Figure 10 presents the location data for these 5 animals as well as the corre-
sponding centroids. While as mentioned above, for the sake of pragmatism,
we are ignoring location measurement errors at this stage, it seems clear
that for animal PTT=129715 there are at least a couple locations which are
impossible (as these happen to be on land). We remove these from further
analysis.

We can now evaluate, for each animal, how far away it typically is from its
centroid. Also, a measure of the maximum distance one is likely to observe
might be useful. These are both features that our movement model should
be able to reproduce. In figure 11 we present the mean, 90th percentile and
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Figure 11: The maximum, 90th percentile and mean distance in kilometers
between locations and the centroid for each of the animals with longer de-
ployments.

maximum distance of animal’s position for their respective centroids.
We can look at the distance from the centroid for for all positions pooled

across animals (Figure 12). While there is a lack of distances in the first 5
km, the remainder of the distribution seems a decreasing function of distance.
The abcense of locations at the center is actually likely an artifact due to the
area available (there is a clear analogy with point transect data). This seems
to hint for a ”home range” mechanism of attraction which starts to occur at
around 20 km and is really strong beyhond say 40-60 km.

We can summarize the information in these distributions in order to try
to get a feeling for what kind of statistics one might hope to aim for within
an ABC context.
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1 Introduction

In this document we present an analysis of a DTag data set in which 3 sperm
whales were simultaneously tagged.

2 Data details

Data was sent as a .csv file by Mark Johnson on the 11th October 2010. The
.csv file has columns (identified by a header line):

1. time in seconds (referred to tag B);

1 This document was created using Sweave, using R version 2.12.0 (2010-10-15) on a
i386-pc-mingw32 platform.
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2. depth of whale A, B, C in meters, adjusted to the same time clock;

3. distance between pairs of whales A-B, A-C and B-C in meters

Depth accuracy is better than 1 m and distance accuracy is better than
10 m. Empty cells indicate times when the distance could not be measured.

The header of this file was manually edited and the blank fields manually
changed to ”NA”. This file was then read into R.

3 Exploratory Data analysis

A summary of the data is presented in table 1. A data point is provided
every 3 seconds. The data spans a 11.46 hours period. We can see that
there are a considerable number of seconds points for which the inter-animal
distances are not available. These essentially correspond to times when the
corresponding pair of animals was not at depth producing clicks (distance
between whales is presumably obtained by considering that you know when
a click was produced by whale A, you know when it was received by whale B,
and you know the speed of sound in the water, so you can get the distance
by the difference in those times).

If we plot the 3 whales depth over time the synchronicity of the animals
is remarkable (Figure 1). While at the start of the data one of the whales is
coming up while the others are going down, they sort of get in sync at around
second 6000, and then for most of the time the whales dive synchronously (6
deep dives non-stop), then just A and C do the 7th deep dive, then just A
does the 8th deep dive. They then spend a while at the surface, and resume
deep diving at about the same time (37000 seconds in), performing two (and
a half, when the tag data stops) additionally almost perfectly synchronized
dives.

We can plot the average distance between whales i(i = A,B,C) as a
function of whale’s i depth (Figure 2). While we were expecting to see some
pattern, like say whales being closer at the surface and more spread out
while deep diving, the plots display an otherwise apparent lack of discernible
pattern. Would this make more sense if one would look at it within dives?
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Figure 1: Depth profiles for the 3 sperm whales simultaneously tagged (top panel). The synchrony is
remarkable. Distances between animals (bottom panel)
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Figure 2: Mean distance of whale i(i = A,B,C) to the remaining two whales
as a function of whale depth (A - top, B - middle, C - bottom).
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1 Introduction

In this document we present the steps required to model a spatial density
surface of beaked whales in the Bahamas.

The visual line transect survey data itself was from Diane Claridge. Cur-
rently in this report we use 2011 and 2012 data, but 2013 data in a similar
format is available and designed line transect surveys from previous years is
also available, but requires additional formatting before use. There is also
some additional acoustic line transect data which is not being accounted for
at this point.

Bathymetry data was provided by Diane Claridge and Jessica Shaffer.

2 Region of inference

The region we want to make inferences over corresponds to the Tongue of the
Ocean and the NE and NW Providence Channel (Figure 1), in the Bahamas.
This is the area in broad vicinity of the AUTEC range. We begin by reading
in the information about the AUTEC hydrophone location and bathymetry.

2.1 Hydrophone location

We begin by reading in the hydrophone data from a file that has been around
since DECAF. Note that in this file the coordinates are in an arbitrary co-
ordinate system, and here it might be better to have them in latitude and
longitude, despite these having been shifted and jittered for security rea-
sons. For that reason, we considered using the information archived on OBIS
Seamap (available within the DECAF case studies data sets), as that has al-
ready been approved for public release. We consider here the data in file
“seamap678.csv”, which had to be tweaked to filter the adequate informa-
tion. Details are given in the .Rnw file. We see the hydrophones range
between 1200 to 2000 meters deep, with a mean depth of -1652 m. Note that
we corrected the hydrophone locations using depth information as described
in Marques et al. (2012).
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Figure 1: The AUTEC range location within the Bahamas region, with key
islands and regions.
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2.2 Bottom depth

The data set containing depths for the TOTO and Cul de Sac areas was pro-
vided by Jessica Shaffer via the file“Autec Weapons Range 0.2min bathy.txt”.
The resolution of depths available in this file is 0.0033 decimal degrees. As-
suming roughly that 1 degree corresponds to 111km, this means that each
grid cell corresponds to an area of 0.36632 km2. Note that this bathymetry
data is actually hosted in another document’s folder. See Marques et al.
(2012) for details. The bathymetry and hydrophone locations is shown in
figure 2.

Additional bathymetry data was provided by Diane Claridge covering the
NE and NW Providence channel. The full bathymetry coverage is presented
in figure 4, which also includes the survey effort (see next section). Note that
the bathymetry for the providence Channel has a resolution approximately
32 times higher than that for the TOTO, and for this reason we actually only
use one out of every 3 values in each direction when creating a consolidated
depth file (section 4.2).

Naturally we will only predict over a region which makes sense. In par-
ticular, that means that we should make sure that we do not predict into
shallow waters not surveyed. It is expected that beaked whale density in
these areas is negligible any way. For the time being we conservatively re-
strict ourselves to areas deeper than 50 meters, but arguably even at depths
considerably deeper than this (say 200m or so) density might be negligible.

It might be more convenient to work with projected coordinates into an
appropriate x, y system. We do so by leveraging on a funtion from package
dsm (latlong2km).

3 The line transect survey data

3.1 Reading and formatting data

The visual line transect survey data was contained in Access databases pro-
vided by Diane Claridge. These consisted of the following self-explanary
named files:

• Bahamas June 2011 editted.mdb

• Bahamas June 2012 editted.mdb

4
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Figure 2: The AUTEC range within the Tongue of the Ocean. Green dots
represent best available hydrophone locations. Yellow is deep and red is shal-
low, while white represents land. Note projected coordinates into a arbitrary
x,y system with 1 km side units.
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The relevant information for each database was present in 4 tables (note
many more are present in the original Access files):

1. GpsData - the spatial location information. Allows spatial indexing of
information in the other tables via the field index, which has a corre-
sponding field GPSindex in those tables.

2. effort - effort description; links to GpsData’s index field via GPSindex.
We assumed the GPSindex in an effort table row represents the first
waypoint of that transect leg, and all the subsequent GPS records in
GpsData up till the next GPSindex in the next effort row correspond
to waypoints in the previous leg1.

3. Primarysighting - detection data; links to GpsData index field via
GPSindex.

4. LookUp - descriptions for the abbreviations/terms used

We can take a first look at the actual survey data, effort and sightings,
as that will be helpful in defining the width and length of the segments to
be used for the spatial model. The first step was to combine the information
between the different tables, takingcare to exclude the off effort periods. This
actually proved much harder than expected, because there were a number of
issues creating artifacts in the data (extra long transects, ghost transects,
etc). In particular there were also a number of problems in associating effort
legs with GPS records. These were solved in a pragmatic way to allow imple-
mentation of the analysis. A full description of the problems and how they
were dealt with is provided in a separate document (”problems and proposed
solutions.docx”). These problems were solved in close collaboration with Di-
ane Claridge. Additional problems relating mostly to coordinates recorded as
0 leading to extremely long transects or ghost transects were also addressed
in “problemchecks”.

The detection distances and length of on effort transect legs are shown in
figure 3. The survey effort is shown in figure 4. To make sure that nothing felt
out of place, the detections and on-effort transect legs from which detections
were made are presented in figure 6.

1As it will become apparent later, this created problems, because sometimes the boat
would go off effort, logging data in the GPS table, but not logging that as off effort in the
effort table, creating ghost transects.

6

Page 388 of 466Version with appendices



Detection distances

Distance (m)

Fre
qu

en
cy

0 500 1500 2500

0
2

4
6

8
10

Leg length

Distance (km)

Fre
qu

en
cy

0 5 10 15 20 25 30

0
50

10
0

15
0

Leg length (leg < 500 m)

Distance (km)

Fre
qu

en
cy

0.0 0.1 0.2 0.3 0.4 0.5

0
10

20
30

40
50

60

Figure 3: The detection distances to Mesoplodon sightings (left panel) and
the effort legs (right panel zooms in the first bar of midle panel).
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Figure 4: The entire area for which predictions are required, with the survey
effort overlaid.
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3.2 Data preparation for spatial modelling

The data adequately formatted to implement the distance sampling analysis
is included in 3 separate objects:

1. data4p: includes just the distance data, used for the modelling of the
detection function

2. dataDlike: includes just the effort data as usually formatted in dis-
tance

3. data4sdm: obtained by merging the above two objects, includes the
observations associated with the adequate effort leg. Note that merg-
ing only worked adequately because there was at most 1 sighting per
leg. Otherwise, merging would have to be replaced by a procedure that
actually counted the number of sightings per transect length, as other-
wise legs with k sightings would appear repeated k times in this object,
rather than a single line with an associated count of k.

We have 24 detections for beaked whale groups, of which 22 are Blainville’s
beaked whales and 2 are Gervais’ beaked whales. We have distances for 21 of
these sightings. An histogram of the distance data is present in figure 3. It
seems clear that we currently do not have a reasonable large enough sample
to model a detection function.

3.3 A note regarding off effort sightings

We have 24 detections, but only 16 actually correspond to available distances
on effort, as 7 were off effort and 1 on effort sighting distance was unavailable.
It seems like it could be possible to use these observations in the analysis:

1. for those recorded as off effort, if the standard survey protocol was
being implemented these can be actually used both for the detection
function modelling and the sdm (unlike what happens for design based
approaches, as here we do not rely on design but on a model for pre-
dicting density outside the covered areas). This requires however that
all line length which was associated with these off effort periods is ac-
counted for, which is not the case at the moment (at the moment we
just have here transect legs in which the data was deemed fit for de-
tection function (but not encounter rate) estimation in a design based
approach).

9
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Figure 5: Leg distance depending on the measuring algorithm. Top leftpanel
represents all legs, while remaining panels represent the 3 highlighted legs in
the top left plot. For the detailed legs, the red and green dots representing
the first and last point in the leg, respectively.
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2. we can use in the sdm alone those recorded as on effort, but without a
distance (i.e. these correspond to a segment with an animal on it, even
if we do not have the corresponding distance).

3.4 Unit definition for the spatial model

For building the count model (sensu Hedley and Buckland (2004)) a prelimi-
nary segment definition of squared units of 3000 m side might seem appropri-
ate. If we look at figure 3 it also seems like the actual legs themselves might
be used as individual segments. However, actually zooming in the smaller
legs reveals a potential problem (figure 3). There are many very small legs,
say less than 100 meters long. It makes sense to concatenate these, as a
boat transect of 100 meters is meaningless and it will lead to too many zeros
for modelling (due to the small number of detections). A somewhat halfway
house is to break down larger transects and concatenating smaller ones. This
is however not easy to do automatically, because by now it is not
certain whether there are off effort legs between these on effort
small legs.

To obtain the length for each transect leg we assume that the sum of
the distances between waypoints (L1) might be the easiest and more sensible
implementation. Another option would be to calculate the distance between
the start and end location of each transect (L2). While the later might
be more adequate if the transects followed straight lines, with the former
leading to overestimation of transect length being proportional to the number
of GPS points between the extremes and the magnitude of GPS errors, we
opted by the former because many legs were not linear, which would lead to
underestimation of transect leg length if the distance between endpoints was
then used. In figure 5 we explore the impact of using each of the approaches
on survey effort. The top left plot presents the two ways of calculating the
distances for all available legs. We zoom in 3 transect legs (highlighted in
red in figure 5 top left panel) for further discussion:

• top right panel - the use of L1 seems reasonable, while L2 underesti-
mates the line length.

• bottom left - a (perceived) transect leg which in fact corresponds to
2 different legs, with a gap of 15 hours between 2012-06-08 21:52:24
and 2012-06-09 10:12:42. We do not know if the second leg, here

11
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corresponding to the large sub-leg, is on or off effort. But the
key problem is that this actually means that many of the legs
away from the 1:1 line in figure 5, left panel, corresponding to
legs for which the distances are very different depending on
how they get calculated, will require some dedicated human
attention.

• bottom right - a leg which is essentially spaghetti; while L1 is the most
reasonable line length, there are problems in terms of defining an offset
area in the spatial model because we will tend to grossly overestimate
the area covered.

Therefore, figure 5 reveals additional problems, which means
that we are going to stop and think before moving forward. To-
gether with the issues already detected before, this makes us think that
it might be more productive to have someone cleaning up the orig-
inal databases before this data is used any further.

3.5 A summary of the issues needing sorting

There are a number of data issues which require sorting:

• Issues described in word file “”problems and proposed solutions.docx”;

• Issues described in the file “problemchecks.R”;

• Additional unidentified issues stemming from similar reasons as those
above, namely due to incorrect GPS index associations, latitudes and
or longitudes recording as 0’s and effort not logged in the effort tables
but present in the GPS tables;

• Issues due to very small transects recorded which need to be glued
together in a reasonable way (which can not be automated) - cf figure
3.

One should be careful because it is possible that some problems present
were not identified above, and hence a general sanity check seems required at
this point. Note inparticular that these problems were only identified using
the on effort legs. If we do decide to use off effort data as suggested in section,
then making sure the off effort data is also adequate is fundamental.

12

Page 394 of 466Version with appendices



4 Density modelling and prediction grid

In this section we describe the variables used for modelling density and the
procedure of associating these to the transect legs (section 4.1) and how we
obtained these in the prediction grid (section 4.2).

4.1 Density modelling covariates

We will create a density model based on the data frame data4sdm. For
that reason we need to associate to each row of this object the corresponding
variables potentially useful to model density. The available covariates include:

• x and y; these are already included in data4sdm

• bottom depth

• distance to the edge

• distance to AUTEC

• bottom slope

• bottom aspect orientation

4.2 Relevant covariates for prediction

For the implementation of a density estimate over the wider area of inference
we require an appropriate prediction grid. Details of how we obtain such
a grid are in the .Rnw, but it involves consolidating the 3 bathymetry files
into a single matrix, with resolution equaling the lower resolution available
(i.e. TOTO/Cul de Sac data). The outcome, along with the survey effort
and Mesoplodon detections, is presented in figure 7. We also need to obtain
the value of each of the relevant variables mentioned in section 4.1 at the
locations in the prediction grid.

4.3 Obtaining Additional covariates

We can obtain the distance to the boundary of the prediction area, as that
corresponds to a potentially relevant ecological variable explaining density, as
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Figure 6: The locations of detected beaked whales (black dots, white dots
are off effort detections), as well as the legs of on effort transects from which
detections were made.
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the animals might have preferences to areas close to this (which corresponds
to the 50m isodepth line). This is presented in figure 8.

We can also obtain a number of depth derived relevant variables like slope,
aspect orientation, roughness. We leverage on package raster to do so, and
the results are shown in figure 9. Note that slope and roughness seem highly
collinear variables, so only one of these should be used in any given model.
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1 Introduction

The current formulation for georeferencing the DTAG data considers a state
space model with four states (speed, depth, x and y) and three observations
(depth, x and y). Observations on x, y are only present when independent
acoustic localizations are available.

Here we build directly on previous work where the SSM was fitted to
DTAG data from Md248b. This is described in detail by Marques and Tho-
mas (2012a). The reader is also referred to Marques et al. (2012) for details
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about the process originating the localization data and to Marques and Tho-
mas (2012b) for the description of the SSM considered, as well as a description
of the rationale and previous steps leading to that.

This document contains the analysis of the data from the whale md07 248b.
To set the scene, in section 2 we present the results obtained so far with the
R implementation of Mark Johnson’s MATLAB code.

Following this, in section 3.1 we try to reproduce these results using MARSS

Holmes et al. (2012b,a), and in section 3.2 using KFAS Helske (2012).

2 Previously fitted model

As stated above, these results are taken from Marques and Thomas (2012a).
In said report the state space model fitted to the data included 4 states


st
zt
xt
yt

 =


1 0 0 0

− sin(φt)∆T 1 0 0
∆T cos(φt) sin(ψt) 0 1 0
∆T cos(φt) cos(ψt) 0 0 1




st−1

zt−1

xt−1

yt−1

 +


ωst

ωzt

ωxt

ωyt

 (1)

and we assume that at every time step there is a depth observation, but
also that every so often, when the animals are deep diving, we might actu-
ally observe some x, y coordinates from acoustic localizations leading to the
following observation equation:

 ozt
oxt

oyt

 =

 0 1 0 0
0 0 1 0
0 0 0 1




st
zt
xt
yt

 +

 vzt
vxt

vyt

 (2)

where we often have missing values in oxt and oyt .
To reproduce the results here we first need to read in a number of R

objects. This is done silently in the pdf, but the .Rnw document contains all
the required codo to do so.

Figure 1 represents the track prediction both ignoring (left plot) and
using (right plot) the acoustic localizations. In figure 2 we zoom in the right
plot. Although virtually indistinguishable at the scale being plotted, note as
expected there is not a complete overlap between the estimated georeferenced
track and the acoustic localizations used. The extent to which these two

2
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Figura 1: Track prediction before using x, y observations (left) and after using
x, y observations. Note the predicted smoothed track is for the right plot very
close to the acoustic localizations considered (virtually indistinguishable at
the scale being plotted).

overlap depends on how much credit we give to the acoustic localizations
themselves compared to the process model. These are influenced by the
relative weights of measurement error on (x, y) and the state process itself.

We can take a look at predictions from this latest formulation (Figure
3). As expected, we see that the variance in x, y vanishes every time we
actually have x, y observations, because we assume there to be little obser-
vation/measurement error in (x, y). The extent over which this is reasonable
still requires additional thinking.

The next step is to bring in the angles φ and ψ as states, hence leading
to a 6 states and 5 observations SMM.

3 Fitting the SMM in KF specialized R pac-

kages

We now turn into trying to estimate the SSM described in the previous section
using specialized R packages for Kalman Filter estimation. A description of
possible packages to do so is available in Tusell (2011). This option seems

3
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Figura 2: Zooming in on the 3rd dive of Md248b.

desirable for at least two reasons:

• it is reassuring if we obtain the same results, given that we coded our
KF implementation ourselves, and these has been tested by others;

• it might be easier to generalize code to other models. In particular, Hol-
mes et al. (2012b) mention that MARSS “... development will include
Bayesian estimation and constructing non-linear time-series models.

In this section we attempt to fit the previously fitted model using speci-
alized R packages. We consider two options

• MARSS (Holmes et al., 2012b,a).

• KFAS (Helske, 2012)

The first required step is to build the time varying transition matrix. Note
that this is varying over time not because there is any change in the way the
state is updated, but because the transitions are dependent on time varying
covariates. We do that below:

4
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> #This is based heavily on code sent by Elizabeth Holmes via

> #e-mail on the 31/08/2012 19:45

> #the time between samples

> delT=0.2

> #T is the number of time steps

> nT=nrow(new.georef)

> #set up the base structure for Bt

> Bt=array(diag(4),dim=c(4,4,nT))

> #set the time dependent bits

> for(i in 1:nT){

+ Bt[2,1,i]= -sin(new.georef$pitch[i])*delT

+ Bt[3,1,i]= delT*cos(new.georef$pitch[i])*sin(new.georef$head[i])

+ Bt[4,1,i]= delT*cos(new.georef$pitch[i])*cos(new.georef$head[i])

+ }

Now, let’s move on to fitting in the actual packages.

3.1 Fitting the SMM in MARSS

Despite contact with Elizabeth Holmes, the package lead author, we have not
yet managed to get MARSS to work over our data. We are waiting for addi-
tional feedback from Elizabeth regarding a bunch of current error messages
when we try to fit to our data set in MARSS.

> #Next, we use this object within the fitting. We also set up a model object that might be useful later:

>

> #set the model list

> model.list=list()

> model.list$B=Bt

> model.list$Z=cbind(matrix(0,3,1),diag(3))

> model.list$Q="diagonal and equal" #or something like that

> model.list$R="diagonal and equal" #or something like that

> model.list$U="zero" #because U doesn't appear in your eqn on slide 10

> model.list$A="zero" #because A doesn't appear in your eqn on slide 10

> #model.list$x0=c(0.1,0.1,new.georef$x[1],new.georef$y[1])

>

> data=t(new.georef[1:nT,5:7])

> ##construct the MLEobj; set fit=FALSE since you don't actually need to estimate parameters

6
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> #MLEobj=MARSS(data,

> #inits=list(x0=matrix(c(0.1,0.1,new.georef$x[1],new.georef$y[1]),ncol=1,nrow=4)),

> #model=model.list,fit=FALSE,control=list(trace=-1))

>

> #construct the MLEobj; set fit=FALSE since you don't actually need to estimate parameters

> MLEobj=MARSS(data,inits=list(x0=matrix(c(0.1,0.1,TAGONx,TAGONy),ncol=1,nrow=4)),

+ model=model.list,fit=FALSE)

> #get states from MARSSkf

> kf=MARSSkf(MLEobj)

> names(MLEobj)

> summary(MLEobj)

Elizabeth did said that “ MARSS is meant for estimation of parameters.
It does have a time-varying Kalman filter, but it’s rather slow. I’d try the
KFAS package which also has a time-varying Kalman filter and is much faster
than that used in MARSS.”and continued with “MARSS is not optimized for
speed and it’ll take a long time to work with a big dataset. I think KFAS uses
basically the same sort of model specification as MARSS, so if you build your
Z and B as above, you’ll be well on your way to model specification for KFAS
also.”

Therefore, for the time being, we move on to KFAS.

3.2 Fitting the SMM in KFAS

We begin by loading up library KFAS.

> library(KFAS)

As a first attempt at fitting, we fit the model to the first 15000 time
points. Observations and state estimates are presented in figure 4. Depth is
about OK, but the x, y are totally nonsense. I wonder why? I believe that
this is not really working because KFAS did not use the start values provided
by argument a1=c(0.1,0.1,TAGONx,TAGONy) in SSModel.

> nT=15000

> data=new.georef[1:nT,5:7]

> a1s=c(0.1,0.1,TAGONx,TAGONy)

> ISECm=SSModel(y=data,Z=cbind(matrix(0,3,1),diag(3)),T=Bt[,,1:nT],a1=)

> teste1=KFS(ISECm)

> rm(a1s)

7
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In fact, if one looks at the first few state estimates, inside object ISECm$a,
one sees that these are 0 at step 1, and that they are only non zero at step
2 for depth, which is the state that had a direct observation

> teste1$a[,1:4]

[,1] [,2] [,3] [,4]

state1 0 0.00000 1.6382609 1.6382609

state2 0 4.46553 4.4302805 4.4128382

state3 0 0.00000 -0.3650823 -0.5447008

state4 0 0.00000 0.5430388 0.8165144

We can now repeat this same procedure by actually explicitly using the
TAG on position as the first data point (Figure 5), still considering only
the first 15000 data points. The output is now closer to what one might
expect, but unlike what we had before for our own R code (cf. Figure 1),
the predicted track still goes quite far from the actual x, y observations, and
there seem to be some drifting with depth, that becomes “above the water
surface”for the later period.

> nT=15000

> data=new.georef[1:nT,5:7]

> data[1,2:3]=c(TAGONx,TAGONy)

> ISECm2=SSModel(y=data,Z=cbind(matrix(0,3,1),diag(3)),T=Bt[,,1:nT])

> teste2=KFS(ISECm2)

Considering the same procedure for the entire track (Figure 6), we can
see that:

• the depth estimates suffer from some drifting phenomena, and becomes
implausible before the end of the first deep dive;

• the x, y are not nearly as close to the observations as we had before (cf.
Figure 1).

> nT=nrow(new.georef)

> data=new.georef[1:nT,5:7]

> data[1,2:3]=c(TAGONx,TAGONy)

> ISECm3=SSModel(y=data,Z=cbind(matrix(0,3,1),diag(3)),T=Bt[,,1:nT])

> teste3=KFS(ISECm3)

> save(teste3,file="Routputs/teste3.Rdata")

> rm(teste3,ISECm3)

9

Page 410 of 466Version with appendices



0 200 600

0
200

400
600

800
100

0

Index

Dep
th (

m)

6000 6500 7000 7500

−76
00

−74
00

−72
00

−70
00

−68
00

−66
00

x (m)
y (m

)

●●

●

Observations
State estimates
Tag on position

Figura 5: Observations and state estimates, for depth (left panel) and x, y
locations (Right panel), for first 15000 time steps, using the Tag-on position
as data

0 2000 6000 10000

−25
00

−20
00

−15
00

−10
00

−50
0

0
500

100
0

Index

Dep
th (

m)

6000 10000 14000

−70
00

−60
00

−50
00

−40
00

−30
00

−20
00

x (m)

y (m
)

●●

●

Observations
State estimates
Tag on position

Figura 6: Observations and state estimates, for depth (left panel) and x, y
locations (Right panel), for the full track, using the Tag-on position as data

10

Page 411 of 466Version with appendices



This suggests (at least) one of 3 explanations, listed below from the a
priori least to more plausible:

1. There is a problem with KFAS itself;

2. There is a problem with our implementation in KFAS (e.g. a bug in the
code when defining the model);

3. There are some different settings in KFAS and in my native R implemen-
tation of the Kalman filter which explain the diferences. In particular,
it seems like the observations do not have a strong enough impact on
the predictions. This might be the most parsimonious explanation. In
particular, there were a number of values for the observation and state
variances which were user defined in my R implementation but which
are not being defined in KFAS.

Note however what I am outputting are filtered estimates, in object $a,
while the smoothed estimates are in object $alphahat, but these two objects
contain the exact same values (except for the first 2 and last two values).

Why would that be?
It is not clear what might be the default values used for the state and

observation covariances in KFAS, but it seems clear that changing these might
lead to an improvement. Therefore, we considered user-defined Q and H ma-
trices (this is KFAS parlance) in the SSModel arguments.

> nT=nrow(new.georef)

> data=new.georef[1:nT,5:7]

> data[1,2:3]=c(TAGONx,TAGONy)

> #observation covariance matrix

> H=matrix(c(0.001,0,0,0,5,0,0,0,5),3,3,byrow=T)

> #state covariance matrix

> #state error in speed

> sf=5

> q1p=0.02;q2p=0.08;q3p=1.6e-05

> q1 = (q1p/sf)^2

> #state error in depth

> q2 = (q2p/sf)^2

> #state error in x

> #q3 = (q1p/sf)^2

11
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Figura 7: Observations and state estimates, for depth (left panel) and x, y
locations (Right panel), for the full track, using the Tag-on position as data

> q3=q3p

> Q=matrix(c(q1,0,0,0,0,q2,0,0,0,0,q3,0,0,0,0,q3),4,4,byrow=T)

> #build up model

> ISECm4=SSModel(y=data,Z=cbind(matrix(0,3,1),diag(3)),T=Bt[,,1:nT],H=H,Q=Q)

> teste4=KFS(ISECm4)

> save(teste4,file="Routputs/teste4.Rdata")

> rm(teste4,ISECm4)

This leads to the results shown in figure 7 (here we show both filtered
and smoothed estimates). The results now look much more like what we had
obtained before. Note that the black lines (data) are masked by smoothed
predictions. However, there are two questions that get raised:

• Why is it that the smoothed estimates do not reach the tag on posi-
tion1?

• Clearly the default values in KFAS lead to state estimates way too far
off the observations (and even inadmissible estimates for depth), but
to what extent are we being over confident in the data when using

1This is not easy to see from the plot itself, because the pdf looses resolution, but in
the R plot that was clear
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the values that lead to the results in Marques and Thomas (2012b)
(essentially those reproduced here by the right plot of figure 1, and
figure 7). Given that we can obtain such different results when using
the default values for the state and observation covariance matrices and
when using the values originally considered, what is the “right”thing to
do?
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1 Introduction

In this report we briefly investigate the modelling of 2D horizontal movement
based on the available DTag data.

An often used conceptual approach to the modelling of movement in con-
tinuous space and discrete time is the use of a step length (S) and turning
angle (θ) formulation. This was the approach taken by say Morales et al.
(2004) using mixtures of random walks conditional on behavioral states, fur-
ther built on say by Langrock et al. (2012) or McClintock et al. (2012).

In all the above references, and several others for that matter (e.g. Codling
et al., 2008), the emphasis is on the turning angle component, for which
persistence (through a correlated random walk CRW), bias (through a biased
random walk BRW) or both persistence and bias (through a biased and
correlated random walk BCRW) has been investigated.

In this report we look in closer detail at the turning angles and step
lengths observed for DTag data and investigate their correlation structure,
noting implications for simulation.

We conclude by focusing on the second component of movement, i.e. at
the modelling of step lengths, because we observed that for our data set of
beaked whale movement persistence was in fact far more pervasive in step
length that in turning angle, something which is quite sensible given an
animal inertia.

2 Data Reading

This report builds directly over an .Rdata workspace that is populated by
the .Rnw of a different LATTE internal report, “Modeling beaked whale
DTag data and simulating 3D movement via a latent-variable approach with
feedback and semi-Markovian components” Marques et al. (2013). Therefore
the usual raw data reading component is lacking and replaced by a load
workspace statement1. This uses the DTAG data of Blainville’s beaked whale
Md248b used in the above mentioned report.

1To keep this report fully working a copy of the required workspace is present in the
local folder.

2
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3 Required functions

A couple of functions are required a priori, to obtain turning angles from the
sequence of x, y locations. Here we actually leveraged on a very useful post
on a Quantitative Ecology blog which happened to include relevant code to
do so. The functions were tested and they are working well.

4 Obtaining turning angles and step lengths

We computed turning angles and step lengths at two different temporal
scales, one considering data every second (the simulation time scale), the
other considering data every ten seconds (the time step scale at which states
were estimated/generated).

5 Exploratory data analysis

We start by describing the observed distribution of turning angles and step
lengths, as well as it correlation structure, at each one of the temporal scales
considered. These are represented in figures 1 and 2.

The observed distributions are consistent with typical distributions used
in these cases, namely Gamma or Weibull distributions for step length and
Wrapped Cauchy or von Mises for the turning angle.

We can also explore the potential autocorrelation between turning angles
and step lengths (Figure 3). Only the 1 second time scale is shown, but the
10 second time scale patterns are very similar.

A few interesting remarks are possible regarding the observed the tempo-
ral autocorrelation patterns:

• There is a much stronger temporal auto-correlation in step length when
compared to turning angle, clear in figure 1. This should not be mis-
taken with what happens at the heading level, where correlation is
much stronger (cf. figure 9).

• The auto-correlation pattern in turning angles is reversed when we
move from the 1s to the 10 second time scale, changing from a negative
correlation to a positive correlation at lag 1 (cf. top right panels in
figs 1 and 2). This is an unexpected feature and is quite interesting in
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Figure 1: The distribution of step length and turning angles (top panels),
with the corresponding correlograms below (bottom panels), at a 1 second
temporal scale.
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Figure 4: The distribution of step lengths with multiple distributions fit to
the data. The Weibull seems the best fit of those tried.

general as it implies that some inferences might be conditional on the
time scale used for observing the process.

• The lack of correlation between step lengths and turning angles (cf.
figure 3) implies that we can simulate these independently, which is
good news.

5.1 Step length

We now look in more detail at the distribution of step lengths observed for
Md248b. We consider here only the analysis at the 1 second scale, since this
is what we will be interested in simulating at.

We can fit a number of reasonable distributions (i.e. for strictly positive
values) to the observed step length data, ignoring the temporal autocorrela-
tion structure of the data (Figure 4). Of those tried, the Weibull seems to
be by far the best option. Note this was the same model found to best fit
step length data by Langrock et al. (2012).

7
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Despite an obvious place to start given its simplicity, the clear autocorre-
lation shown in figure 1 implies that if realistic tracks are required we might
not be able simply model step length as a heavy tailed distribution like the
Weibull (e.g. McClintock et al., 2012) or the gamma (e.g. Langrock et al.,
2012), i.e. as e.g.

St _ Ga(α, β) (1)

where St represents the time length at time step t(t = 1, 2, ..., T ).
We need instead to consider some persistence for step length, such that

this correlation structure is preserved. A typical autocorrelation structure
can be defined as

St = θSt−1 + εt (2)

where εt represents a error with mean zero and some variance. The problem
here is that under this context εt cannot be a gamma since the mean value
of a gamma is strictly > 0.

We could consider a model respecting the relation

E(St) = E(St−1) (3)

where we use a different mean and variance parametrization for the gamma
2.

To implement this kind of model we need some bespoke likelihood func-
tions, because now the mean value of step length depends on the previous
time step length. We consider here 3 additional scenarios:

1. St+1 is a gamma random variable with mean value equal to St (and
some variance, which actually also depends on St);

2. St+1 is a Gaussian random variable with mean value equal to St and a
constant variance;

2Note this uses a non-standard parametrization of the gamma distribution as a function
of the mean and variance. This is actually harder to implement for the Weibull as it is not
simple to algebraically express the shape and scale parameters of a Weibull as a function
of its mean and variance. Also, unlike what the notation suggests, the variance is now a
function of the mean value, so this formulation implies a clear restriction on the subjacent
distribution.
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3. St+1 is a Gaussian random variable with mean value equal to St and
variance proportional to St.

Note in particular that the Gaussian-based models are simpler (as the
Gaussian has the property of independence between the mean and the vari-
ance) but can lead to negative step lengths, hence the Gamma-based model
is more realistic.

When we implement this we see that the AIC for the gamma model is
2.94742 × 104, which means that this model is more parsimonious than any
of the models shown in figure 4 which ignored the temporal autocorrelation.
Somewhat surprisingly the Gaussian models AIC’s are −7.28582 × 104 and
−1.94208 × 104, respectively 3.

The Gaussian model fit overlaid on the data actually looks considerably
off, and this seems to be caused by the extremely heavy tails associated with
the differences in step length, which tend to be small (99.79 % of the values
are smaller than 1) (Figure 5).

However, when we tried to simulate from the gamma model model, a
perhaps obvious after the fact consequence of the model used became clear.
If one successively simulates from a Gamma with the mean value being the
same as the previous observation the simulated step length values quickly
tends to 0 (Figure 6). While this is a natural consequence of most of the
mass being below the mean in a gamma distribution, it does mean that we
need to find an alternative way of simulating correlated step lengths.

However, as noted above, simulation from the Gaussian model would
potentially lead to negative step lengths, which is not a possible outcome.
Irrespectively, when we simulate from the estimated model we end up with
a distribution for step lengths that is inconsistent with the observed data
(Figure 7, cf. figure 4). This happens as a natural consequence of modeling
differences rather than step lengths themselves: by doing so we loose the
distributional properties of the original observations.

5.1.1 A gamma conditional on state

While in the previous section we modeled the step length irrespective of the
behavioral state, we can actually consider a model conditional on state.

3This does not add up, why would the AIC values change from negative to positive.
This is being ignored for the time being as these models are inadequate any way since
they can lead to negative step lengths.

9
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Figure 6: Nine examples of simulated step lengths such that the current step
length is a gamma with the same mean value as the previous step length.
Arbitrary (yet realistic given our scale) variance and starting step lengths
were used.
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We tried to fit such a model but did not manage to make it converge. We
have not pursued this further because the same problem remains regarding
the simulation from this model.

As for the unconditional-on-state model from the previous section it will
lead to step lengths that quickly tend to zero.

5.2 Turning angle

We are focusing on step lengths here, but this section could be populated
with turning angle results analogous to those for step length from the previous
section.

A distinct feature worth noting is the fact that there is an excess of turning
angles around -180 and 180 degrees, which was visible at the tail of turning
angle at the 1 second time scale (cf. figure 1). These seem to correspond to
times when the animals suddenly change direction almost 180 degrees. An
example is presented in figure 8, where the net outcome for the animal of
3 quick succession U-turns leading to a 180 degree U-turn back on its own
track.

This type of behavior is not possible to capture with a single distribution.
To do so one would probably require a mixture of two distributions, one with
most of the mass and average around 0, the other with average around 180.

We note that while correlation in step length is stronger that in turning
angle, the autocorrelation in heading (Figure 9) is much stronger than that
in any of these two quantities. The subtleties of modeling turning angles
(mean 0, negligible autocorrelation) or headings (mean = previous heading,
strong autocorrelation) might deserve further investigation.

6 Open questions

From a purely pragmatic point of view we will carry on simulating step
length considering gammas with mean values and variances conditional on
state, i.e. ignoring the correlation structure in step lengths in the movement
(i.e. persistence in the amount of 2D displacement).

Nonetheless, we identified a number of issues that would deserve further
investigation. In particular:

• How can one implement a correlated Weibull model similar to the
gamma CRW, given that the Weibull was much preferred (when the
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closely spaced 180 U-turns occur. The highlighted points correspond to time
steps in which an almost 180 degree turn occurs.

13

Page 427 of 466Version with appendices



0 10000 30000 50000

−1
50

−5
0

0
50

15
0

Index

tu
rn

ing
 a

ng
le

0 10 20 30 40

−0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

turning angle

0 10000 30000 50000

0
20

00
40

00
60

00

Index

he
ad

ing

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

heading

Figure 9: Comparison of autocorrelation in heading and turning angle.

autocorrelation was ignored)? This requires being able to express scale
and shape parameters as a function of means and variances, but is per-
haps not really useful unless we solve the gamma-tends-to-zero issue
mentioned above, as this will be the case with the Weibull too.

• Intuitively it seems odd that a model that is actually implausible like
the Gaussian (and hence which has areas of support which never get
any data) or the tend-to-0 gamma is preferred by AIC?

• Preliminary analysis of step length conditional on state revealed there
seemed to be differences in mean step length by state. If one considers
the gamma CRW this cannot be imposed (is this right?), as we only
control the variance, not the mean in each state (as the mean is con-
ditional on the previous time step). This is again perhaps a non issue
if this gamma formulation cannot be used given the the gamma-tends-
to-zero issue mentioned above.

• Simulating gamma correlated random variables seems to be a non-
trivial task. How can we simulate correlated gamma variables without
these tending to 0 as shown in figure 6?

14

Page 428 of 466Version with appendices



References

Codling, E. A., Plank, M. J., and Benhamou, S. (2008). Random walk models
in biology. Journal of The Royal Society Interface, 5, 813–834.

Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., and
Morales, J. M. (2012). Flexible and practical modeling of animal telemetry
data: hidden Markov models and extensions. Ecology , 93, 2336–2342.

Marques, T. A., Langrock, R., and Thomas, L. (2013). Modeling beaked
whale dtag data and simulating 3d movement via a latent-variable ap-
proach with feedback and semi-markovian components. Technical report,
LATTE WORKING DOCUMENT.

McClintock, B. T., King, R., Thomas, L., Matthiopoulos, J., McConnell,
B. J., and Morales, J. M. (2012). A general modeling framework for ani-
mal movement and migration using multi-state random walks. Ecological
Monographs , 82, 335–349.

Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., and Fryxell, J. M.
(2004). Extracting more out of relocation data: building movement models
as mixtures of random walks. Ecology , 85, 2436–2445.

15

Page 429 of 466Version with appendices



A tutorial on simulated annealing

Tiago A. Marques

Centre for Research into Ecological and Environmental Modelling
The Observatory, University of St Andrews, St Andrews, KY16 9LZ, Scotland

Version’s date: September 21, 20111

Contents

1 Introduction 1

2 Optimization routines 2
2.1 Newton-Raphson approximation . . . . . . . . . . . . . . . . . 2
2.2 Stochastic gradient method . . . . . . . . . . . . . . . . . . . 6

3 Simulated Annealing 7
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Extensions and modifications . . . . . . . . . . . . . . . . . . 11

4 Conclusion 15

References 15

1 Introduction

Charlie White used Simulated Annealing (SA) to implement the process
of “geo-referencing” the DTAG data, by finding a vector of optimal whale
speeds while “forcing” pseudo-tracks to go through the positions obtained by

1 This document was created using Sweave, using R version 2.13.1 (2011-07-08) on a
i386-pc-mingw32 platform.
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localizing clicks 2 on the AUTEC range hydrophones. Here we start by de-
scribing simple forms of numerical optimization all the way up to simulated
annealing. We build heavily on material and code presented by Robert and
Casella (2010).

Simulated annealing is a popular way to solve an optimization problem.
Here we focus specifically on estimating the minimum or the maximum of
a function f , with most examples relating to maximization (as maximizing
f is equivalent to minimizing −f of 1/f). If one has a function f(x), and
needs to estimate its maximum say, the fool proof way to do it is to evaluate
that function at all possible values3 of the argument x. The solution is then
xmax, for which the function takes the value ymax, i.e.

max(f(x)) = f(xmax) = ymax. (1)

However, for many but the most simple problems, in particular for con-
tinuous multi-dimensional problems, it quickly becomes virtually impossible
to cover adequately the entire space of the arguments of f , and hence some
other, cleverer, approach is required.

In section 2 we present some general results regarding optimization pro-
cedures, leading naturally to simulated annealing in section 3.

2 Optimization routines

2.1 Newton-Raphson approximation

One of the simplest numerical optimization methods for minimizing or max-
imizing a function is the Newton-Raphson approximation. This procedure
can be used to find the root of a function. Starting from an initial guess x0,
the root is iteratively approximated by

xk+1 = xk −
f(xk)

f ′(xk)

until the algorithm converges (hence a tolerance parameter to define conver-
gence is also necessary). Note that xk+1 corresponds to the intersection with

2The localized positions of the clicks are assumed to be known without error. This is
unrealistic an likely a step of the process which can also be improved.

3Note naturally this is only valid for functions with discrete arguments.
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the x-axis of a line tangent to f at f(xk). One can easily derive this consid-
ering the equation for a straight line that passes on point (x0, f(x0)). Since
the slope of that line is by definition the first derivative of f(x), i.e. f ′(x),
xk+1 corresponds to solving the line equation to find its root, i.e. where the
tangent line intersects the x axis.

In figure 1 an example of the algorithm is presented, based on function
newton.method from package animation.

Note that Newton-Raphson can be easily extended to find maxima or
minima, as that corresponds to finding roots for the first derivative of the
function one hopes to minimize or maximize, now considering

xk+1 = xk −
f ′(xk)

f ′′(xk)
= xk −

∂f(Xi)
∂X

∂2f(Xi)
∂X∂XT

where ∂f(Xi)
∂X

and ∂2f(Xi)
∂X∂XT are often referred to as the gradient and the Hessian,

respectively. Sometimes the gradient is also represented by ∇f .
If the surface of the function to be maximized is complex, say multi-

modal, then the result of the maximization will depend on the starting
point. An illustrative example of the implementation of nlm (which is based
on Newton-Raphson) is shown in Figure 2, from where it is clear that the
outcome depends on the starting values. Note that the we consider here a
function which is the -(log-likelihood), as nlm, by default, minimizes a func-
tion rather than maximizing it. In this case, 4 out of 9 starting value sets
ended in the wrong mode. In scenario 4, the procedure failed to converge
because the starting point was in a region where the gradient is very steep.
Curiously, there were two other possible outcomes starting from quite close
to that region, leading to either the right (scenario 3) or the wrong (scenario
2) mode being selected. This should warn us to the influence of starting
values in this type of numerical maximization algorithms.

An improvement over a conventional Newton-Raphson approach is to use
the (deterministic) gradient method, which in essence uses the gradient of
the function near the current point Xt to obtain the next point at which f is
evaluated, Xt+1, using a recurrence expression like

Xt+1 = Xt+1 + αt∇f(Xt), αt > 0

in which αt is a decreasing sequence of t, and ∇f(Xt) is (the vector of) first
derivative(s) or gradient. Accounting for the gradient is standard using R’s

3
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Figure 1: Example of finding a root of a function using the Newton-Raphson
algorithm.
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Figure 2: Nine examples of Newton-Rhapson algorithm attempting to find
the maximum likelihood estimate of the location parameters of a Gaussian
mixture, based on a sample of size 101. Contour lines represent the - log-
likelihood. The green dot is at the true parameter values, the smaller yellow
dot is at the maximum of the likelihood surface, the red dot is at the starting
point and the blue dot is at the minimum estimate (the function used in nlm
is - log-likelihood, hence the minimum corresponds to the maximum of the
log-likelihood).
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nlm, by explicitly providing the arguments gradient and hessian associated
with the function that the optimization is being applied to. Otherwise nlm

uses numerical derivatives to approximate the gradient.

2.2 Stochastic gradient method

Instead of using numerical optimization methods, one might try to evaluate
f at a set of points drawn from a distribution which support is the same
as the possible values the function argument can take, let’s say X. In such
case, a simple, yet non-efficient, way to sample from the parameter space to
evaluate the function at is to use a Uniform distribution, e.g. if the function
argument can only take values in the interval (0,1), one might sample form
the standard Uniform.

However, under this setting, ideally one would choose points from X
using information about f itself, using more points near the maximum value
of f . This is not easy, as we do not know f , if we did, we would not need an
optimization routine to begin with! A possible approach is to use a stochastic
gradient method, in which the new proposal is obtained by choosing a random
direction and a decreasing step (depending on the gradient) from the current
one. Hence, we could consider something like

∇f(Xt) ≈
f(X + βtεt)− f(X − βtεt)

2βt
εt (2)

in which βt represents a second decreasing sequence (which should converge
slower than αt), and εt is uniformly distributed in the unit sphere ||εt||=1.
(Note that for equation 2 to make sense, in terms of it being an approxima-
tion to the gradient, the denominator should be 2βtεt.) In this way, rather
than the update moving in the direction of maximum change in f (steepest
gradient), the update moves in a random direction, which is actually useful
if one is trying to move away from relative maxima or minima.

In figure 3 there is a (highly contrived and yet useful for illustration)
function of two arguments, (x, y). The extreme multimodal surface would be
extremely hard to minimize (and even harder to maximize!) using a stan-
dard numerical optimization routine. Here we consider a stochastic gradient
method to find the minimum of this function, which we know is 0, obtained
when evaluating the function at (0,0). An example is shown in figure 4, in
which αt = (1/(t+ 1)) and βt = (1/(t+ 1)0.5). We can see that a reasonable

6
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Figure 3: A highly complex function of two arguments, (x,y).

estimate of the minimum is easily obtained, but as before, the success of this
approach depended closely on the αt and βt (decreasing) sequences chosen.

3 Simulated Annealing

3.1 Introduction

Simulated annealing (SA) was introduced by Kirkpatrick et al. (1983), and
apparently essentially independently reinvented by Cerny (1985) (though this
later author did not re-coined the term). The idea behind simulated anneal-
ing relates to the stochastic gradient method. The difference is that in SA the
new candidate point Xt at which f is evaluated is chosen from a sequence of
densities πt. As the algorithm progresses, these densities tend to be more and
more concentrated around the maximum of f(X) which we want to estimate.

3.2 The basics

A first fundamental step in SA is to obtain an efficient sequence of densities
πt. A standard choice are the Boltzman-Gibbs transforms of f

7
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Figure 4: Function maximization using a stochastic gradient method. Top
left represents the function and the “path” taken by the algorithm, starting at
the yellow dot at (.65,.8); top right represents the stoping threshold; bottom
left the αj (solid line) and βj (dashed line) sequences; and bottom right the
gradient.
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πt(X) = exp

{
f(X)

Tt

}
(3)

where Tt is a decreasing sequence of “temperatures”. If limt→∞ Tt = 0, Tt is
said to be a cooling schedule. The choice of Tt is the second fundamental part
of the implementation of SA. Here we consider for illustration a sequence of
the form

Tt =
1

(1 + t)p
(4)

where p is a power parameter that controls the rate at which Tt decreases
to 0. From equation 3 it is clear that as Tt tends to 0, the density πt(X)
becomes more and more concentrated around the maximum of f .

For SA, a usual way to update Xt is based on the Metropolis-Hastings
algorithm. ε is generated from a distribution with symmetric density g, and
the new value Xt+1 = Xt + ε is accepted with probability ρ, where

ρ = exp

{
h(Xt + ε)− h(Xt)

Tt

}
= exp

{
∆h

Tt

}
.

If the proposed value is not accepted, which happens with probability
(1− ρ), then the proposed value is rejected, i.e. Xt+1 = Xt.

Note that there might be a scale parameter associated with g, which
controls how far from the current position the candidate position might be.
Rather than a scalar, the scale could also be a sequence of values, changing as
the algorithm progresses. In particular, the scale could also be a function of
the temperature. Carefully choosing the function used for the perturbation
g becomes quite important.

So, in essence, instead of following a stochastic or deterministic gradient,
the algorithm tries a random perturbation of the previous position at which
the function was evaluated. If the perturbation increases f , it is accepted
(as then ρ=1, as given Tt > 0, ∆h

Tt
> 0,). If the perturbation decreases f , it

can still be accepted with probability ρ > 0. Hence, the random moves make
it so that one can get away from relative maximum or minima with some
non-null probability. Because of the exponential term, the odd movement
when temperature is already considerably cold is still possible, despite being
associated with a low probability.

9
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Figure 5: Simulated annealing with 4 different random starting point to max-
imize a function of a single argument (taking possible values in the interval
(0,1)). Black dot represents the function evaluated at the starting point, red
dot represents the function evaluated at the estimated maximum, black line
represents the path taken.
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An example of SA over a function with a single argument taking values
in the interval (0,1) is shown in figure 5. It can be seen that the result is
clearly dependent of the starting point used. In figure 6 we display another
example of the maximization, considering different powers in the expression
that defines the sequence Tt (cf. equation 4). Considering starting points
systematically spaced in the (0,1) interval, we can see that with very low
values of p, and hence a slow decrease in temperature over time, the algorithm
is inefficient, because too many iterations are required. At the other extreme,
for large p, temperature decreases abruptly at the start of the algorithm, and
hence avoiding local maxima near the starting point is difficult. Intermediate
values of p provide the best results, but even then finding the maximum is
not guaranteed. This hints towards potential problems in complex and highly
dimensional problems, where choice of p might be difficult.

A second example of SA based on code from Robert and Casella (2010) 4

is presented in figure 7. Here, we consider a Gaussian perturbation with scale
dependent on the temperature, and we considered temperature sequences of
the form 1/{K × log(1 + t)}. We can see that the best results seem to be
found for intermediate/large values of K.

A third SA example from Robert and Casella (2010), regarding mini-
mization of a function, is obtained using similar settings but for the function
introduced in figure 3. The results are presented in figure 8, but we failed to
obtain the best combination possible of temperature and scale to mimic the
results presented obtained in figure 5.10 of Robert and Casella (2010). We
note there were multiple typos in the code provided.

3.3 Extensions and modifications

As described here, and strictly speaking in a pure SA approach, the algorithm
reports as the outcome the state of the system in its last iteration. However,
it might be possible that this is actually not the maximum value at which
the function was evaluated. A simple addition to an SA procedure is to keep
a track of what the maximum (in a maximization problem) value for the
function being maximized was, and keep moving forward until at least that

4There is something strange regarding the code provided, as the results in their figure
5.9 suggest much better performance than those reported here (although they also mention
the use of a function named SA, while they provided only SAmix. Note that in SAmix there
is a typo in the code provided, where the temperature sequence is being defined, which
causes the problems.)
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Figure 6: Simulated annealing with 4 different rates of decreasing temper-
ature, considering systematically placed starting points. Left column plots
correspond to the the value of the function evaluated at the algorithm’s start
and end points (respectively in black and red), and the path taken by the
algorith as black lines, and the right column plots represent the temperature
sequences.
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Figure 7: Simulated annealing with 4 different rates of decreasing temper-
ature, considering 6 arbitrary starting points in each, for the example of
estimating the localization parameters of a two point gaussian mixture.
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Figure 8: Simulated annealing with 4 different rates of decreasing tempera-
ture, considering 1 arbitrary starting point in each, for the example of esti-
mating the minimum of an highly complex function.
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same value is obtained again; if that takes long, one might “restart” the SA
algorithm at that position.

We note that extensions to conventional SA exist in which adaptive pro-
cedures are used regarding the choice of temperature and scale. For these,
after a few (hundreds or thousands maybe!) iterations of an adaptive pe-
riod, the initial values of temperature and scale are updated, depending on
the acceptance rates and changes in evaluated values of f given the initial
argument values considered.

“Simulated Tempering” (ST) is a variant of SA which considers a sequence
of temperatures which are not deterministic, but random, and hence, the al-
gorithm can move away from local minima or maxima even when the “aver-
age” temperature has cooled considerably5. ST was introduced by Marinari
and Parisi (1992). The idea is that while the convergence might actually be
(slightly) slower when using SA, it might potentially be exponentially faster,
hence for complicated problems, the gamble might be worth it.

4 Conclusion

Simulated annealing can be used to maximize or minimize a function, but
there is no way to guarantee that the result is a reasonable approximation
to the real maximum or minimum, as the algorithm might be trapped in
local extremes, in particular if the function at hand is complex and multi-
dimensional. Controlling the procedure by changing the function to sample
updates from, as well considering different scale and temperature sequences,
can lead to considerably different results, and therefore one should be careful
in checking the results and evaluating their sensitivity to these parameters.
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1 Introduction

In this document we describe a localization algorithm based on maximum
likelihood. We assume that we have been able to associate some sound across
a number of hydrophones, and given the times of arrival (TOA) of the sound,
we estimate the most likely position of the sound source.

Consider the following notation. We have a source at p = (x, y, z), and we
wish to estimate its position based on the arrival times at K sensors, located
at pk = (xk, yk, zk), k = 1, 2, ..., K.

The Euclidian distance between sensor k and the source, dk, is given by

dk =
√
{(x− xk)2 + (y − yk)2 + (z − zk)2}. (1)

1
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On the other hand, the distance dk can also be expressed as a function of
the speed of sound (c), the time-of-emission (TOE) of the sound t and the
time-of-arrival (TOA) at sensor k, tk as

dk = c(tk − t). (2)

Equating these two expressions leads to

c(tk − t) =
√
{(x− xk)2 + (y − yk)2 + (z − zk)2}. (3)

This represents an equation with 4 unknowns (x, y, z and t), which intu-
itively tells us that if we have 4 arrival times, we can solve the system of 4
equations with respect to the 4 unknowns.

But what happens if we have 5 TOA’s? We say the solution is over-
parameterized. In the absence of measurement error any 4 TOA’s should
provide the same solution (i.e. same estimate) for p. However, this is never
the case in practice due to a variety of reasons. This means that it might be
more sensible to move to a method that explicitly incorporates the measure-
ment error.

1.1 TOA based likelihood

If one assumes that the observed TOA have a Gaussian distribution, with
mean value equal to the true TOA and a standard deviation driven by the
(essentially unknown and random) measurement error, we can build a max-
imum likelihood estimation procedure.

Under such a setting, we have that TOAk is a Gaussian with mean given
by rearranging equation 3, namely

tk =

√
{(x− xk)2 + (y − yk)2 + (z − zk)2}

c
− t (4)

which leads to the following likelihood

L(x, y, z, t, σ|TOAs) =
K∏
k=1

1

σ
√

2π
exp{−(tk − tk,p)2

2σ2
} (5)

where tk,p and tk (given by equation 4) represent, respectively, the observed
TOA at hydrophone k, and the expected TOA at hydrophone k, given the

2
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animal is at p, and where σ represents the standard deviation of the mea-
surement error in TOA’s. Note that we have a likelihood for 5 parameters,
and hence we need at least 5 TOA’s to maximize it.

1.2 TDOA based likelihood

Another possible approach is to consider the data to be time-difference-of-
arrival (TDOAki) at pairs of hydrophones k and i. This means that when we
look at the TDOA’s, the TOE actually cancels out and can not be estimated,
as

dk−di = c(tk− t)−c(ti− t) = ctk−ct−cti +ct = c(tk− ti) = cTDOAki (6)

which rearranged leads to equations like

TDOAki =

√
{(x− xk)2 + (y − yk)2 + (z − zk)2} −

√
{(x− xi)2 + (y − yi)2 + (z − zi)2}

c
(7)

So now, considering the observed TDOA data to have a Gaussian distri-
bution, we have a likelihood of the form

L(x, y, z, σ|TDOAs) =
K∏
k=1

1

σ
√

2π
exp{−(TDOAki − TDOAki,p)

2

2σ2
} (8)

where the TDOAki are the observed TDOA’s and TDOAki,p, the expected
TDOA’s, are given by equation 7.

1.3 Some random questions/remarks

Note that if one has say detections at 4 sensors, one can get 4 TOA’s, and
hence estimate location and TOE for the set of equations, but one really
needs 5 sensors if is to use the likelihood approach (as there is an additional
parameter to be estimated, corresponding to the variance on the TOA mea-
surements). On the other hand, with only 4 sensors one gets 6 TDOA’s,
and hence can easily get the localization (and the variance on the TDOA
measurements), but not the TOE.

Here are some questions that arose from this, divided in two groups,
including:

3

Page 448 of 466Version with appendices



1. questions to someone who knows about localization

• This seems relatively simple, but I wonder if I am doing something
wrong?

• Why haven’t I found these likelihood equations in the literature
(maybe didn’t look hard enough?)

• Is there anywhere at all where this is described more or less like
this?

– If so, where?

– If not, why not?

2. questions about further implementation within LATTE

• For multiple clicks, the variance in the measurement of the TOA’s
would be a common parameter across all clicks, where individual
click likelihoods would multiply up (I wonder if one gains much
though?)

• Does it make sense to think about a procedure in which a likeli-
hood like this could be used, assuming independent detection of
clicks, such that in one go one would estimate the animal track,
based jointly on

– the likelihood from the Kalman filter used for the georefer-
encing

– and this type of localization likelihood?

I’m a bit lost here, as the data would be then x, y, z (pitch and
heading as covariates) for the first likelihood, and the TOA′s for
the second, which makes no sense, as x, y are data in the first bit
and parameters in the second... Needs more thinking... clearly...

2 The localization algorithm, assuming TOE

known to be 0

NOTE: (this is currently deprecated, and only kept here for historical rea-
sons)

4

Page 449 of 466Version with appendices



Only in hindsight it became obvious that in real life situation we do
not really have the fundamental piece of information used below, which is
the time of emission (TOE), required to calculate the expected TOA given
the corresponding object-hydrophone distance. Hence, this is not useful in
general. Assuming a given sound is received at K hydrophones, and that the
observed TOA is a Gaussian random variable, with mean value equal with
the expected TOA (which is approximately the true time of emission plus the
distance between source and receiver divided the sound speed), and standard
deviation σ (unknown, which we also estimate within the procedure), we can
write down the likelihood of a position pi = (xi, yi, zi) as a function of the
data (K TOAs)

L(p, σ|TOAs) =
K∏
k=1

1

σ
√

2π
exp{−(TOAk − TOAk,p)

2

2σ2
} (9)

where TOAk and TOAk,p represent, respectively, the observed TOA at hy-
drophone k, and the expected TOA at hydrophone k, given the animal is at
p. This likelihood can be easily coded in R as:

> LOCATION.LIK=function(par.vect,obsTOAs){

+ #this function computes the likelihood associated with a given location,

+ #given the observed TOAs

+ x=par.vect[1]

+ y=par.vect[2]

+ z=par.vect[3]

+ sigma=par.vect[4]

+ n.hyds=length(obsTOAs)

+ estimatedTOAs=numeric(n.hyds)

+ #estimate the TOAs, given current location

+ for (i in 1:n.hyds) {

+ estimatedTOAs[i]=get3Ddist(xsyszs[i,],c(x,y,z))/ss}

+ #calculate the likelihood of that location

+ LIK=sum(dnorm(obsTOAs-estimatedTOAs,0,sd=sigma,log=T))

+ #cat("dnorm log:",dnorm(obsTOAs-estimatedTOAs,0,sd=sigma,log=T),"\n")

+ #cat("dnorm:",dnorm(obsTOAs-estimatedTOAs,0,sd=sigma),"\n")

+ #cat("deltaTOA:",obsTOAs-estimatedTOAs,"\n")

+ #cat("estimatedTOAs:",estimatedTOAs,"\n")

+ #cat("obsTOAs:",obsTOAs,"\n")

5
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+ return(LIK)

+ }

2.1 A simple application

We consider here we have 9 hydrophones, placed in a 3 by 3 regular grid, 100
meters apart, and at depths around 1000 m. The hydrophone coordinates
are listed in table 1 and are represented in 2D in figure 1. We are further
assuming a whale at (50,50,600) m.

x y z
1 0.00 0.00 900.00
2 100.00 0.00 912.50
3 200.00 0.00 925.00
4 0.00 100.00 937.50
5 100.00 100.00 950.00
6 200.00 100.00 962.50
7 0.00 200.00 975.00
8 100.00 200.00 987.50
9 200.00 200.00 1000.00

Table 1: Hydrophone x,y,z coordinates.

Given the whale and hydrophone locations, we can calculate the exact
TOA (assume sound emitted at time 0) as each of the K hydrophones:

> #object to hold the true TOA given hyds and whale location and sound speed ss

> TOA=numeric(nhyds)

> for (i in 1:nhyds) {

+ TOA[i]=get3Ddist(xsyszs[i,],whale)/ss}

> #assuming that the TOA is a Gaussian random variable with expected value

> #given by get3Ddist/ss, and given some observed TOA values, we can estimate

> #the location of the sound source

> TOA

[1] 0.2054805 0.2136001 0.2409472 0.2298852 0.2380476 0.2636549

[7] 0.2713137 0.2790112 0.3018462
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Figure 1: Hydrophone 2D location.

> #fabricate some obseved TOA by adding some error to the true TOA

> obsTOA=TOA+rnorm(nhyds,0,sd=0.01)

We can also add some measurement error to the TOAs,

> obsTOA

[1] 0.2081731 0.2039143 0.2428538 0.2112255 0.2351362 0.2747080

[7] 0.2672302 0.2857076 0.3224991

and estimate the location from said data:

> start.par=c(75,25,500,0.02)

> est.pars=optim(par=start.par,fn=LOCATION.LIK,method="BFGS",obsTOAs=obsTOA,control = list(fnscale=-1))

> round(est.pars$par,3)

We can repeat this process 100 time, to see if we get unbiased answers,
leading to estimates of x= 54.27,y= 47.25, z= 600.81,σ= 0.01. This is not
too bad...
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2.1.1 Do not forget though...

Nonetheless, it was not reassuring to see that (cf. Figure 2):

• optim fails to get the right maximum even when starting from not-so-
weird values

• the maximum likelihood estimate of the position can be quite far off
even with what was supposed to be relatively good data

• optim seems sensitive to the starting values used

• optim was going crazy with the default method

• this does not even make sense as in the true procedure we do not really
have the TOE, that has to be estimated as part of the process too!
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Figure 2: Hydrophone 2D location (black circles), whale location (black dot),
and MLE estimates (squares) given 5 corresponding different starting value
vectors (see text and code for details).
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1 Introduction

Within LATTE we have developed a way to simulate beaked whale move-
ments under baseline scenarios preserving a few characteristics, namely:

• movements are similar to what we know from DTag data

• animals avoid shallow areas and hence do not strand
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• animals have embedded the notion of home range size that keeps them
from drifting away towards infinity

The details of such a model are the subject of other internal LATTE
reports (e.g. Marques and Thomas, 2012). Here we concentrate on the sim-
ulation of beaked whale movement in the presence of sonar operations and
hence potentially disturbing the animals.

To simulate the behaviour of beaked whales in the presence of sonar we
need to find a reasonable way to model such behaviour. This is a difficult task
because despite all the effort that has been put into this problem, there is
still not much data - i.e. satellite tag data with corresponding sonar context
data - allowing to robustly formalize and parametrize such a model.

Our rationale is to separate such a model into 2 different components.
In the first component an animal either enters or not a disturbed state as a
function of the received sound level. In the second component, given that
the animal is disturbed, we need to model its behaviour, and in particular,
how long it takes for the animal to resume its normal behaviour, assuming
that changes are temporary. There is, to some extent, considerably more
information available to implement the first component than the second.

In Moretti et al. (2014) we have been able to characterize a dose-response
curve describing beaked whale reaction to sonar, measured by the amount of
detected deep dives on AUTEC hydrophones, as a function of the received
sound level. To use this information we need to be able to either (1) convert
it into reaction as a function of distance, or equivalently, (2) to be able
to simulate and propagate over space the sonar emission. Given that the
remaining simulation components themselves involve considerably complex
processes, it seems desirable to approximate the problem using the former
option. Then, given that source position is known, we can predict sound
levels everywhere around it as a function of distance alone. Of course this
makes a number of assumptions which might not be realistic, like that the
attenuation process is isotropic and constant over space, so this component
might be updated at a later development stage. However such simplifying
assumptions are common in similar settings (e.g. Von Benda-Beckmann et al.,
2014).

The lower number of detected dives as a function of sonar noise level
reported in Moretti et al. (2014) could be explained both by either, or a
combination of, (1) animals stop producing sound or (2) animals flee away
(irrespectively of their sound production patterns). This represents a funda-
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mental distinction in this context, since what we want is to simulate animal
movement given sonar use, and that is necessarily very different depending
on which of these responses occurs (or is stronger, in the case both occur to
some extent).

In this document, focussing on beaked whales, we begin by reviewing ex-
isting references and data sets which might contain information about sonar
reactions and then propose a mathematical way of describing such reaction
behaviour. The underlying objective is not necessarily to create a behavioural
model that represents the way animals effectively act upon in reality but sim-
ply to conceptualize a model which leads to movements with characteristics
that might approximate well enough the existing data. Hopefully such a
model will be robust and versatile, meaning that as more data is collected
and becomes available it can be updated by changing parameters.

2 Reaction to sonar

The papers listed below contain information relevant about marine mammal
reactions to sonar:

• Tyack et al. (2011) demonstrated a clear reaction of beaked whales to
sonar during operations, with significantly less detections during oper-
ations compared to before and after control periods. From this data
alone it was not clear whether animals remain in the area but silent or
whether animals flee away, although the return of sound detections in
the after operations period started at the south west of the AUTEC
range, perhaps indicating that temporarily displaced animals were re-
turning.

• Miller et al. (2012) described reactions of different species, namely
killer (Orcinus orca), long-finned pilot (Globicephala melas), and sperm
(Physeter macrocephalus) whales to sonar ank killer whale experimental
playbacks. A key conclusion was that different species seem to present
different reactions to sonar and that the reaction was unrelated to tax-
onomic distance, explicitly stating that this could represent a problem
when trying to extrapolate results across species even for closely related
species.
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• Von Benda-Beckmann et al. (2014) used simulations to see the effect
of ramp up procedures as a mitigation tool within Navy sonar opera-
tions, and for that matter they considered a model of behaviour such
that whales would, after responding to the sonar use, move away per-
pendicularly with respect to the ship’s track. This was based on prior
knowledge based mostly on pilot whales (Paul Wensveen, pers. comm.,
as described by Miller et al. (2012). Note that these authors mention
that other reactions might be possible, like moving directly away from
the source, and noted a reference to Kvadsheim et al. (2011), but we
could not find explicit descriptions of this behaviour in said report.

• DeRuiter et al. (2013) identify disturbance in behaviour of Cuvier’s
beaked whales as a function of simulated sonar exposures. They use
the Mahalanobis distance to identify changes in behaviour in a multi-
variate space. Interestingly, a quite similar (in terms of received level
at the whale position) coincidental real sonar did not produce the same
reaction as the simulated sonar. This calls for the notion of considering
context when disturbance is being assessed. The sonar response inten-
sity 1 was modelled as a function of accumulated sonar levels. There
was also a decay component such that the longer the time since the
disturbance the smaller its effect seems to be on the whale’s behaviour.

• Stimpert et al. (2014) describe the reaction of a Baird’s beaked whale to
simulated sonar. The simulated sonar exposure started at about 2.7 km
from the last whale sighting, but the movement of whale with respect
to the source was not described. Some changes are shown to occur
after the exposure, but these are mostly interpreted in a depth context
and associated with Mahalanobis distance point change analysis (as in
DeRuiter et al., 2013), which is to some extent uninformative in terms
of parametrizing animal behaviour post exposure, especially given the
most important component of such behaviour for LATTE is at the x, y
rather than z displacement.

• Miller et al. (2015) looked at the movement of a northern bottlenose
whale after exposure to sonar. Taken verbatim from their abstract:
“At a received sound pressure level (SPL) of 98 dB re 1 µPa, the whale

1Described as the expected Mahalanobis distance between a given dive and dives in a
control period.
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turned to approach the sound source, but at a received SPL of 107 dB re
1 µPa, the whale began moving in an unusually straight course and then
made a near 180◦ turn away from the source, and performed the longest
and deepest dive (94 min, 2339 m) recorded for this species. Animal
movement parameters differed significantly from baseline for more than
7 h until the tag fell off 33–36 km away. No clicks were emitted during
the response period, indicating cessation of normal echolocation-based
foraging. A sharp decline in both acoustic and visual detections of con-
specifics after exposure suggests other whales in the area responded sim-
ilarly.”. Kvadsheim et al. (2014) report additional information about
the collection of this data set.

• Wensveen et al. (2015) present information about how the observed
movement in long-finned pilot whales might reduce sound exposure
from naval sonar. Being simulation based it contains some interesting
ideas about how to simulate whale movement in reaction to sonar.

• Ellison et al. (tted), although in a context of oil development / seismic
surveys, presented a simulation to look at the effect of the cumulative
exposure to multiple sound sources. As part of that work the authors
looked at the consequences of whales averting the sound sources, and
to do so a model to simulate aversion was put forward. The authors
mention that ”The values of aversion parameters for bowhead whales
that we selected were speculative, but plausible. They were intended
to represent a possible behavioral response to sound exposure, not to
predict response behavior explicitly.”. Not surprisingly the authors con-
clude that ”Altering the aversion parameters would result in substantial
changes in the results, which emphasizes the need for sensitivity anal-
ysis and more extensive empirical data on avoidance behaviors.”

3 Proposed model

The model proposed here, as mentioned above, is separated into 2 compo-
nents:

1. an avoidance reaction is initiated (or not)

2. conditional on that reaction being initiated, what that reaction is and
how long it lasts.
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We address these in separate subsections below.

3.1 Reaction initiation

This will be a stochastic process. The reaction will be triggered as a func-
tion of the distance to the source and source level. This seems a reasonable
intuitive approximation and is akin to DeRuiter et al. (2013) who consid-
ered “two possible metrics for exposure intensity or ”dose”: sound level and
distance between the whale and the sound source.”

Many other factors might actually influence whether a reaction is trig-
gered or not (e.g Ellison et al., 2012), like context (e.g. source moving away
or towards the animal), behavioural state (e.g. resting versus migrating, say),
or reproductive status of the animals (e.g. mother with calves might be more
sensitive than lone males). These will be ignored since we are not including
them as part of the simulation of animal movement in the absence of sonar,
so there is no real way one could easily include them in the process, even if
reliable data were available (which there are not).

To be able to determine whether a reaction is initiated one can consider ei-
ther, or both, (1) instantaneous disturbance or (2) accumulated disturbance.
For the former the animal reacts because the sound level has such an inten-
sity that it triggers an immediate response, while for the latter the sound
itself might be not enough to trigger a reaction if it were of a short duration,
but when accumulated over time enough energy reaches the animal such that
such a behaviour is triggered. While if only one is implemented the latter
would be preferable, it seems like ideally one would need to have both: it does
not seem sensible to have a really loud sound and the animal only reacting
to it up to half hour later say, once it has accumulated over time. Further,
Moretti et al. (2014) only modelled the probability of observing a dive as a
function to the maximum received sound level during the half hour period
before, so we do not have solid information to parametrize the accumulation
component. This means that actually maybe we can only implement this
using maximum RL in a given interval rather than accumulated RLs over
said interval.

Note that the accumulation component requires necessarily either (1)
some discretization of the process or (2) to embed a notion of hazard (using
survival analysis jargon, an animal would be considered to be at risk of
reacting) and integrating over said hazard. The former will be used as is
much simpler to implement.
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From a pragmatic point of view the easiest way to implement this within
a simulation context is to trigger a behaviour as a function of maximum or
accumulated received levels in the half hour period prior to the start of a deep
dive (an approximation shared with say Moretti et al., 2014). For simplicity
this could coincide to the period prior to the start of a deep dive, and then
the animal either initiates said deep dive or aborts it and starts an avoidance
behavior, leading us to the next section. A number of simplifications to
consider include:

• the animal position during the half hour previous to the deep dive
initiation could be considered to be fixed; this could be e.g. (1) the
geometric centroid of its positions during that period or, an even courser
approximation, (2) the point of the start of the deep dive itself; this
greatly reduces the computational burden as otherwise one would have
to consider the received sound level at each position the animal has
been through during that half hour period.

• the animal “decides” whether it gets disturbed or not at the moment
it is about to initiate a deep dive. This again saves the intensive com-
putational resources required to otherwise evaluate at each time point
whether the animal has or not reached a threshold level. Not doing so
would further mean that a tab of the received sound level would have
to be kept at each time point, and then this would become inconsistent
with the previous approximation if we were adding the presumably
received level over time but at a fixed location that the animal was
assumed to be at.

3.2 Avoidance reaction

This is a key component in the process for which unfortunately we have
almost no information available to parametrize. Therefore, we propose a
model that can be used for pragmatic reasons but which might be updated
as more information becomes available. We consider as for other components
movement to be conceptualized as a mixture of random walks with specific
distributions for step length and turning angles conditional on behavioural
states (as in e.g. Morales et al., 2004; McClintock et al., 2012).

Conceptually, one could imagine that once a disturbance avoidance be-
havior starts the animal (or group) will initiate a movement away from the

7

Page 461 of 466Version with appendices



disturbing sound source. This could be achieved via a biased random walk
towards a position that will represent a temporary home range center away
from the original home range center. A key aspect would be therefore to
determine where such new home range center would be. Note this is cer-
tainly not how the animal will truly behave, but it might approximate well
the behaviour in a way that we can parametrize it using a small number of
parameters, e.g. a distance and a direction (each with distributions rather
than fixed values). The strength of attraction to such new and temporary
home range center would be stronger at first, and then potentially start to
become fainter and fainter until the animal gets back to undisturbed move-
ment patterns and, we assume, drifts back to its original movement around
its original home range center.

Therefore, to implement this behaviour one might conceptualize three
different components: first (1) obtain the location of the new temporary
home range center, then (2) define how the animal approaches this location,
and finally (3) how the animal returns to its original home range center. We
consider these in turn below

1. For the location of the temporary displacement home range center one
might define

• a distribution for the direction the animal new home range centre
is with respect to its current position. This could be a distribution
which mean is the direction to increase the fastest its distance with
respect to the source, and variance proportional to the sound level,
making the animal more and more likely to flee away in a direction
moving away from the source as the sound increases;

• a distribution for the distance the animal will be displaced, this
could again have a mean of X km, but a variance dependent on
the original sound level, such that the animal could potentially
move much further out as the sound increases.

2. Regarding the movement towards the new location, this could be more
and more directed as the original sound was more intense. This could
be incorporated via the strength of the bias in a biased random walk,
in other words, on the variance of the turning angles involved.

3. Regarding the movement towards the original home range center, it
could actually be similar to what is the usual movement of the animals
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on the undisturbed state, or “faster” in the sense that once the ani-
mals “feel happy” to return they do it faster than they would normally
approach their home range center, since by definition of their original
home range center they tend to “like” that area.

The movement in the depth dimension while around the displaced home
range center might be ignored at first, assuming that deep dives are tempo-
rary halted once the fleeing away movement is triggered, as described for a
northern bottlenose whale, a species of beaked whale, in Miller et al. (2015).
Deep dive occurrence would only resume after some time period. The length
of that period would correspond to a component controlled by an additional
distribution.

3.3 In short

Therefore, to simulate from such a model we need to define:

• a model for the initial reaction being initiated, and conditional on that
initiation

• where the avoidance movement goes to, and conditional on that location

• what are the characteristics of that movement

• how long it lasts

• when deep dives are resumed

• if different than simply undisturbed movement, how animal returns to
original home range center and when it restarts an undisturbed move-
ment pattern

4 Final notes

This conceptual movement model assumes that animal disturbance occurs
at the group level, and that animals do not change their group structure as
a function of this disturbance. For the duration of the disturbed period we
assume that only the group center (or a “leading” animal) is tracked.
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Oudejans, M., Kleivane, L., Curé, C., Ensor, P., van Ijsselmuide, S., and
Dekeling, R. (2014). Behavioural responses of cetaceans to naval sonar
signals – the 3s-2013 cruise report. Technical report, Forsvarets Forskn-
ingsinstitutt.

Marques, T. A. and Thomas, L. (2012). Modeling beaked whales movement,
sound production and detection at AUTEC. Technical report, LATTE
WORKING DOCUMENT.

McClintock, B. T., King, R., Thomas, L., Matthiopoulos, J., McConnell,
B. J., and Morales, J. M. (2012). A general modeling framework for ani-
mal movement and migration using multi-state random walks. Ecological
Monographs, 82, 335–349.

10

Page 464 of 466Version with appendices



Miller, P., Kvadsheim, P., Lam, F.-P., Wensveen, P., Antunes, R., Alves, A.,
Visser, F., L., K., Tyack, P. L., and Sivle., L. D. (2012). The severity of
behavioral changes observed during experimental exposures of killer (Or-
cinus orca), long-finned pilot (Globicephala melas), and sperm (Physeter
macrocephalus) whales to naval sonar. Aquatic Mammals , 38, 362–401.

Miller, P. J. O., Kvadsheim, P. H., Lam, F. P. A., Tyack, P. L., Curé, C.,
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Narazaki, T., and Hooker, S. K. (2015). First indications that northern
bottlenose whales are sensitive to behavioural disturbance from anthro-
pogenic noise. Royal Society Open Science, 2(6).

Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., and Fryxell, J. M.
(2004). Extracting more out of relocation data: building movement models
as mixtures of random walks. Ecology , 85, 2436–2445.

Moretti, D., Thomas, L., Marques, T. A., Harwood, J., Dilley, A., Neales,
B., Shaeffer, J., Mccarthy, E., L, N., Jarvis, S., and Morrissey, R. (2014).
A risk function for behavioral disruption of Blainville’s beaked whales
(Mesoplodon densirostris) from mid-frequency active sonar. PLOS One,
9, e85064.

Stimpert, A. K., DeRuiter, S. L., Southall, B. L., Moretti, D. J., Falcone,
E. A., Goldbogen, J. A., Friedlaender, A., Schorr, G. S., and Calambokidis,
J. (2014). Acoustic and foraging behavior of a Baird’s beaked whale, Be-
rardius bairdii, exposed to simulated sonar. Scientific Reports , 4, 7031.

Tyack, P. L., Zimmer, W. M. X., Moretti, D., Southall, B. L., Claridge,
D. E., Durban, J. W., Clark, C. W., D’Amico, A., DiMarzio, N., Jarvis,
S., McCarthy, E., Morrissey, R., Ward, J., and Boyd, I. L. (2011). Beaked
whales respond to simulated and actual navy sonar. PLoS ONE , 6, e17009.

Von Benda-Beckmann, A. M., Wensveen, P. J., Kvadsheim, P. H., Lam, F.-
p. A., Miller, P. J. O., Tyack, P. L., and Ainslie, M. A. (2014). Modeling
effectiveness of gradual increases in source level to mitigate effects of sonar
on marine mammals. Conservation Biology , 28(1), 119–128.

Wensveen, P. J., von Benda-Beckmann, A. M., Ainslie, M. A., Lam, F.-P. A.,
Kvadsheim, P. H., Tyack, P. L., and Miller, P. J. (2015). How effectively

11

Page 465 of 466Version with appendices



do horizontal and vertical response strategies of long-finned pilot whales
reduce sound exposure from naval sonar? Marine Environmental Research,
106, 68 – 81.

12

Page 466 of 466Version with appendices


