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Abstract 

 

Sr3Ru2O7 is a quasi-two-dimensional metal and has a paramagnetic ground state that 

is heavily renormalised by electron-electron correlations and magnetic exchange 

interactions. Inextricably linked to this renormalisation is the metamagnetism of 

Sr3Ru2O7 – a rapid rise in uniform magnetisation over a narrow range of applied 

magnetic field. Knowledge of the zero-field physics is essential to any description of 

the metamagnetism. Light may be shed on the enigmatic ground state of Sr3Ru2O7 by 

doping the crystal lattice with foreign cations: this is the primary purpose of the 

original research referred to this thesis, in which studies of some of the electronic 

properties of crystals of cation-doped Sr3Ru2O7 are reported. Single crystals of 

Sr3(Ru1-xTix)2O7 and Sr3(Ru1-xCrx)2O7 have been synthesised in an image furnace and 

some of the properties of these crystals have been measured. Evidence that indicates 

the emergence of a spin density wave as a function of Ti-doping in Sr3(Ru1-xTix)2O7 is 

presented. Time-dependent magnetic irreversibility has been observed in samples of 

Sr3(Ru1-xCrx)2O7, thus hinting at the involvement of the RKKY mechanism in these 

materials. Regarding cation doping out of the conducting RuO2 planes, samples of 

(Sr1-yLay)3Ru2O7 have been grown and investigated. Both the Sommerfeld coefficient 

and the Fermi liquid A coefficient of (Sr1-yLay)3Ru2O7 are found to decrease as a 

function of y (0 ≤ y ≤ 0.02); these observations point towards a reduction in the 

thermodynamic mass of the Landau quasiparticles. Results from magnetoresistance 

and magnetisation measurements indicate that the metamagnetism of the (Sr1-

yLay)3Ru2O7 series probably cannot be explained by a rigid band-shift model. Also, 

some aspects of these data imply that the metamagnetism cannot be fully accounted 

for by a spin fluctuation extension to the Ginzburg-Landau theory of uniform 

magnetisation. 
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1. Introduction 

 

1.1 Background and Motivation 

 

Condensed matter physics is concerned with the macroscopic properties of systems in 

which the number of constituents is large. A reductionist approach to condensed 

matter physics tries to reconcile the macroscopic behaviour of a system with the 

microscopic behaviour of its constituent particles. A cornerstone of this reductionist 

point of view is the many-body Schrödinger equation,
dt

d
iH

Ψ
=Ψ hˆ , where the 

Hamiltonian of the system is Ĥ and Ψ is the many-particle wavefunction. The 

Hamiltonian of a system of electrons and ion cores is 
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where R and r refer to the spatial position of ions and electrons, respectively; the ionic 

and electronic masses are denoted by M and m; Z represents the ionic charges. The 

first two terms in Equation 1.1 refer to the kinetic energy of the electrons and ions, 

respectively. The electron-ion and ion-ion Coulomb interactions are accounted for by 

the third and fourth terms. The final term corresponds to Coulomb interactions 

between different electrons [1]. The motion of any individual electron is inextricably 

linked to the motion of every other electron in the system: the electrons are correlated 

with each other and are, therefore, a ‘liquid’ rather than a non-interacting ‘gas’ [2].  

 

The Schrödinger equation becomes more difficult to solve as the number of particles 

in the system becomes large; the ground state of multi-electron atoms, for instance, 

cannot be deduced unless some approximations (such as screening) are considered 

[3]. Solving the Schrödinger equation for a macroscopic number of particles is, from a 
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technical point of view, a near-impossible task. However, it is often possible for 

condensed matter to arrange into macroscopic states which cannot be predicted from a 

reductionist approach: such self-organisation is known as emergence [1]. Dagotto [4] 

states that the hallmark of emergent physics is the “generation of properties that do 

not preexist in a system’s constituents”. 

 

A playground for the exploration of the physics associated with emergence has been 

provided by transition metal oxides (TMOs). Multiple degrees of electronic freedom 

are known to be simultaneously active in many of these oxides. The electronic 

properties of these materials are determined by a combination of spin-, charge- and 

orbital-effects and the electronic degrees of freedom are often coupled strongly to the 

crystal lattice [5]. Due to the competition between multiple interactions, TMOs may 

be susceptible (or ‘soft’) to the emergence of ordered phases of electronic matter. 

Some of the electronic degrees of freedom of these TMOs may be tuned by external 

parameters such as magnetic field, pressure or chemical doping and, consequently, 

many different electronic states may be realised in these materials. Well-known 

TMOs with complicated phase diagrams are the cuprates and manganites [4]. The 

colossal magnetoresistance (CMR) effect observed in some manganites is an 

emergent property believed to arise from competition between ferromagnetic-metallic 

and antiferromagnetic-insulating electronic phases. Regarding the high-temperature 

superconductivity observed in some cuprates, the microscopic origin of the pairing 

mechanism is still unclear; the pseudogap region of the phase diagram and the T-

linear resistivity in the ‘normal’ metallic state are also not fully understood. 

 

Since the discovery of superconductivity in Sr2RuO4 in the mid-1990’s [6] the 

ruthenate series (Sr,Ca)n+1RunO3n+1 (n = 1, 2, 3, ∞) has been studied extensively [7, 8, 

9]. The n = 2 member of the strontium ruthenate series, Sr3Ru2O7, has fascinating 

electronic properties. The metallic ground state of Sr3Ru2O7 is not magnetically 

ordered, although the paramagnetic susceptibility is heavily renormalised by electron-

electron correlations and magnetic exchange interactions [10]. As a consequence of 

very large renormalisation Sr3Ru2O7 is thought to be close to a ferromagnetic 

instability. It is likely that the metamagnetism – empirically defined as a super-linear 

rise in uniform magnetisation as a function of external magnetic field – of Sr3Ru2O7 

[11] is associated with the heavy renormalisation of the electronic ground state. The 
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critical end point of this metamagnetism can be depressed towards T = 0 and, hence, 

become a quantum critical point (QCP) [12]. The discovery of a QCP in Sr3Ru2O7 

generated attention throughout the wider condensed matter physics community. 

Physics associated with QCPs had been studied extensively in the context of heavy-

fermion (HF) materials, intermetallics of certain rare earths and actinides that contain 

4f or 5f moments [13]. A second order magnetic phase transition in these HF materials 

can sometimes be depressed towards T = 0 by the application of external pressure or 

by selective chemical doping. However, the QCP in many of these materials was, 

quite remarkably, ‘protected’ by an emergent phase of electronic order in its vicinity. 

Figure 1.1 shows the (pressure, temperature) plane of the phase diagram of a single 

crystal of CePd2Si2. The antiferromagnetic Néel temperature, TN, of this material is 

lowered by the application of an external pressure, P. When P ~ 25 kbar a dome of 

superconducting order emerges as TN → 0. Although the quantum critical behaviour 

of Sr3Ru2O7 is not associated with a 2
nd

 order phase transition, common physics is 

likely to be found in the vicinity of QCPs in all correlated electron systems. It was, 

therefore, desirable to search for emergent electronic order in the vicinity of the 

Sr3Ru2O7 QCP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The (pressure, temperature) plane of the phase diagram of a high-

purity single crystal of CePd2Si2. From [14]. 
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Grigera et al. [15] utilised a number of experimental probes in their investigation of 

the vicinity of the QCP in ultrapure crystals of Sr3Ru2O7. Surrounding the temperature 

and field at which the QCP had been proposed in more disordered samples in ref. 12 

is a region in the (field, temperature) plane enclosed by distinctive phase boundaries, 

shown in Figure 1.2. These observations indicated that the QCP of Sr3Ru2O7 was, like 

the QCPs of many HF metals, masked by an emergent state of ordered electronic 

matter. In work which I made a minor contribution to (and some of which is described 

in the appendix) Borzi et al. [16] discovered a remarkable in-plane magnetoresistive 

anisotropy associated with this novel state. This anisotropy is not related to an in-

plane lattice anisotropy or to any demagnetisation effects and is, therefore, a 

consequence of spontaneous breaking of the symmetry of the fluid of correlated 

electrons, such that rotational invariance is lost. This state has been labelled as a 

correlated electron nematic, in contrast to the electron liquid from which it emerges 

(which retains the four-fold in-plane symmetry of the crystal lattice).   

 

 

 

 

Figure 1.2. The (field, temperature) plane of the phase diagram of a high-purity 

single crystal of Sr3Ru2O7 in the vicinity of the quantum critical endpoint of the 

metamagnetism. The different symbols correspond to separate measurements of 

AC susceptibility, thermal expansion, magnetostriction, magnetoresistance and 

magnetisation. From [15]. 
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It may be possible to shed further light on the ground state of Sr3Ru2O7 by doping the 

crystal lattice with foreign cations: this is the primary purpose of the original research 

reported in this thesis. It is desirable to investigate if cation doping can trigger 

magnetic ordering in this ‘almost magnetic’ metal; research on how doping influences 

the signatures of metamagnetism in some of the electronic properties is also sought.  

Reported in this thesis is the growth in an image furnace of crystals of cation-doped 

Sr3Ru2O7 and measurements of some of the electronic properties of these crystals, 

namely DC magnetisation, molar heat capacity and electrical transport. Prior to the 

beginning of this research no work on image furnace-grown single crystals of cation-

doped Sr3Ru2O7 had been reported; a small number of articles have since been 

published (see section 1.4.5.1). 

 

The measurements reported in this thesis shed much light on the physics associated 

with Sr3Ru2O7. However, it was also anticipated that crystals grown in St Andrews 

during the execution of this work would be provided to other research groups 

involved with experimental techniques such as resonant X-ray scattering (RXS), 

neutron scattering, angle resolved photoemission spectroscopy (ARPES) and scanning 

tunnelling microscopy (STM). Regarding the research of ruthenates in recent years, 

these techniques, especially the first three, have complemented measurements of 

transport, heat capacity and magnetisation. STM measurements of ruthenates have 

been limited so far but, as discussed in section 3.7, such measurements have been 

made on some of the as-grown crystals referred to in this work.  

 

Three experimental chapters are reported in this thesis, each concerned with 

substitution of different cations into Sr3Ru2O7. Although some aspects of these 

chapters interlink with each other, each chapter stands alone to a great extent. The 

purpose of each of these chapters is to provide a comprehensive survey of the DC 

magnetisation, heat capacity and electrical transport of the series of crystals referred 

to. The results from these experiments have led to certain conclusions being made; 

these conclusions are discussed towards the end of each chapter. Another purpose of 

the three experimental chapters is to provide a basis from which future experiments 

on crystals grown during this work can be planned, either by the St Andrews group or 

by collaborating researchers. 
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Discussed in the remainder of this chapter are some aspects of the interacting electron 

problem in solids and some general properties of TMOs; a survey of the existing 

research of ruthenates, Sr3Ru2O7 in particular, is also provided. The experimental 

techniques relevant to this work are described in Chapter 2. Measurements of the 

electronic properties of crystals in which some of the ruthenium ions have been 

replaced by TM cations, namely titanium and chromium in Sr3(Ru1-xTix)2O7 and 

Sr3(Ru1-xCrx)2O7, are reported in chapters 3 and 4, respectively. It is shown in these 

chapters that magnetic ordering/irreversibility can be induced in Sr3Ru2O7 by in-plane 

cation doping. Evidence for the suppression of metamagnetism and the formation a 

spin density wave as a function of Ti-doping is seen in the Sr3(Ru1-xTix)2O7 series. 

Data in Chapter 4 indicate ‘giant moment’ magnetism and time-dependent magnetic 

irreversibility in samples of Sr3(Ru1-xCrx)2O7; these observations hint that the RKKY 

mechanism may be important in this series of materials. Reported in Chapter 5 is 

measurements of crystals with out-of-plane cation doping, namely (Sr1-yLay)3Ru2O7. 

Measurements reported in this chapter seem to rule out the possibility that the 

metamagnetism of Sr3Ru2O7 can be attributed to a rigid shift of an electronic band 

through a peak in the density of states near the Fermi level. It is also clear that the 

metamagnetism of (Sr1-yLay)3Ru2O7 cannot be explained in full by a spin fluctuation 

extension to the Ginzburg-Landau theory of uniform magnetisation. Finally, work 

relating to the magnetoresistance of undoped Sr3Ru2O7 is included as an appendix to 

this thesis.  Although this final piece of work is not concerned with controlled cation 

doping it does, however, describe an investigation of the sensitivity of some of the 

properties of Sr3Ru2O7 to quenched crystalline disorder. 

 

1.2 Some Aspects of the Interacting Electron Problem in 

Solids 

 

1.2.1 Fermi Liquid Theory 

 

Landau [17] postulated that electron-electron interactions may be adiabatically 

‘switched-on’ with respect to the ground state of a Fermi gas, so that there is a one-to-

one correspondence between the eigenstates of the electron gas and those of the fluid 

of correlated electrons – the Fermi liquid.  A Fermi liquid, like a Fermi gas, has a 
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Fermi surface separating empty and occupied states in k-space at the Fermi energy, 

EF. The quantum numbers of the excitations of the Fermi liquid are not independent 

electrons but are Fermionic quasiparticles with well-defined charge and momentum. 

Unlike the eigenstates of a Fermi gas, Landau quasiparticles are not stationary. The 

rate of decay, τ-1, of a quasiparticle of energy E is proportional to (E-EF)
2
: although a 

quasiparticle is never an eigenstate of a Fermi liquid, those quasiparticles with E ~ EF 

are long-lived and are an approximation to the true eigenstates of the electron liquid. 

 

The Sommerfeld theory relevant to a Fermi gas predicts (in the first order of energy) 

that the electronic component of the heat capacity is proportional to temperature and 

that the paramagnetic spin susceptibility is independent of temperature [18]. These 

temperature dependences are also valid for an ideal Fermi liquid. The electronic 

component of the specific heat capacity, vc , and the paramagnetic susceptibility, χ, of 

a Fermi liquid (single band, with an isotropic Fermi surface) are predicted to be 

                                                 Tk
km

c 2

B2

F

v
3

*

h
=  and                                        (1.2) 

                                                ,
1

1* 2

Ba

0

2

F µ
π

χ
F

km

+
=                               (1.3) 

where m* is the thermodynamic quasiparticle mass, a

0F (-1 > a

0F  > 0) is one of the 

phenomenological Landau parameters in the theory, kF is the Fermi wave vector and 

kB and µB are Boltzmann constant and the Bohr magneton, respectively. The 

electronic heat capacity and the magnetic susceptibility of a Fermi liquid are, 

therefore, renormalised by factors of m*/m and (1 + a

0F )
-1m*/m with respect to cv and 

χ of a Fermi gas. The 1

0 )1( −+ aF  factor is related to the Wilson ratio, RW, of a 

paramagnetic Fermi liquid, 

                                            1

0
P4 )1(103.7 −+=×= a

W FR
γ
χ

,                (1.4) 

where the Sommerfeld coefficient, γ, is the value of cv/T extrapolated to T = 0 (in 

units of mJ/mol K
2
) and χP is the Pauli susceptibility (in units of emu/mol) [19]. A 

Wilson ratio much greater than one may imply that a paramagnetic susceptibility is 

enhanced by magnetic exchange interactions, above the enhancement associated with 

m*.  
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The electrical resistance of a Fermi liquid is concomitant with the aforementioned 

decay rate. Because (E-EF) ~ kBT [20] the electrical resistivity of a Fermi liquid is 

therefore proportional to 2T , such that 

                                                            2AT=ρ ,               (1.5) 

where FB EnekmA h
22 /*= . It is straightforward to show that A —generally known as 

the Fermi liquid A coefficient— is proportional to (m*)
2
. In any real metal this 2T  

resistivity term will act in addition to the residual resistivity, so that 

2

0)( ATT += ρρ at sufficiently low temperatures.  

 

Fermi liquid theory is valid in a restricted region of phase space near a Fermi surface: 

if additional phase space can somehow be made available to a system (still in the 

context of a ‘normal’ metallic state) it is possible that the Landau quasiparticle picture 

may breakdown altogether, in which case a non-Fermi liquid description of the 

system may be appropriate. Schofield [21] provides a detailed discussion of non-

Fermi liquids. 

 

1.2.2 The Stoner Model 

 

Equation 1.3 indicates that the spin susceptibility of a Fermi liquid is renormalised by 

the phenomenological ( ) 1

01
−

+ aF  factor in addition to the quasiparticle mass 

renormalisation. Blundell [22] describes how a Pauli susceptibility may be enhanced 

by extra splitting of spin-up and spin-down Fermi surfaces. In the presence of an 

applied magnetic field, H, the exchange-enhanced susceptibility is   

                                                     
)(1 F

P

EUgH

M

−
==

χ
χ ,                                    (1.6) 

where U is some mean-field Coulomb interaction and g is the one-electron density of 

states. Equation (1.6) is valid for a magnetically-homogeneous system, for q = 0. 

Metals for which the renormalised χ(q) peaks close to q = 0 are often said to be on the 

verge of a ferromagnetic instability. If spin-up and spin-down bands are 

spontaneously split, ferromagnetism may occur if Ug(EF) > 1, such that the 

renormalised χ diverges: this is the Stoner criterion. 

 



 9 

1.2.3 Itinerant Electron Metamagnetism 

 

1.2.3.1 A Metamagnetic Crossover from a Peak in g(E) 

 

The uniform magnetisation, M, of a paramagnetic metal may be expressed in terms of 

the one-electron density of states in the vicinity of the Fermi energy. At T = 0 the 

magnetisation is: 

                                                       EEgM
BE

BE

BF

BF

d)(∫
−

+

∝
µ

µ

.                                            (1.7) 

M will vary linearly with field if g(E) varies smoothly near EF. If, on the other hand, 

g(E) is peaked in the vicinity of EF, a super-linear rise in magnetisation as a function 

of external magnetic field B will occur – this is known as metamagnetism [23]. The 

field value at which the super-linear rise in M(B) is centred upon is known as the 

metamagnetic field, BM. A metamagnetic crossover from a state of low-polarisation 

(at low field) to a state of higher polarisation (at high field) can be explained by a 

peak in g(E) at E ≈ EF. By contrast, a phase transition between the states of low- and 

higher-polarisation cannot be accounted for by a peak in g(E) because M is expected 

to jump (rather than just rise super-linearly) at B = BM when a phase transition occurs. 

A jump in M(B) cannot be accounted for by Equation 1.7. 

 

1.2.3.2 Ginzburg-Landau Theory 

 

An external magnetic field breaks the rotational symmetry of a paramagnetic state: 

metamagnetism does not involve any spontaneous symmetry breaking and cannot 

incorporate a 2
nd

 order phase transition. Metamagnetism must, therefore, occur via a 

crossover or a 1
st
 order phase transition from the low-field state into a more highly 

polarised state at fields above BM.  

 

If the thermodynamic order parameter of a given system is small in a certain region of 

its global phase diagram the free energy of the system may be related to an expansion 

of this order parameter – this is the basis of Ginzburg-Landau theory [24]. The 

uniform magnetisation is a relevant order parameter for itinerant electron 
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metamagnetism and an appropriate expression for the singular part of the Gibbs free 

energy (at T = 0) is 

                                        HMM
c

M
b

M
a

G −++= 642

642
,                                  (1.8) 

where a, b and c are known as the Landau coefficients [25]. This expansion is valid if 

M is small compared to the saturation magnetisation of the system. The final term in 

Equation 1.8 is associated with an applied magnetic field. In the absence of an 

external field the magnetic behaviour of the system should be invariant under a 

change in the sign of the magnetisation and, consequently, the first three terms 

contain only even powers of M. It has been shown that, at T = 0, a metamagnetic 

phase transition can occur if a >0, b <0, c > 0 and 3/16 < ac/b2
 < 9/20 [25]. 

 

1.2.3.3 The Influence of Finite Temperatures 

 

Ginzburg-Landau theory provides a framework in which a first order metamagnetic 

phase transition may be considered but it does not provide any clue to the microscopic 

origin of such a transition. Binz and Sigrist [26] suggest that a first order 

metamagnetic phase transition can arise in an itinerant system with a large density of 

states near EF due to a van Hove singularity in g(E), along with electrons interacting 

via an on-site repulsion. These authors also show that the macroscopic susceptibility 

of such a system peaks at a finite temperature, Tmax. A peak in χ(T) of an itinerant 

metamagnet was also predicted by Millis et al. [27]. It is also known that the finite 

temperature properties of itinerant electron metamagnets are influenced by thermal 

fluctuations of the magnetisation. Yamada [25] has shown that such fluctuations can 

be responsible for a peak in χ(T) of itinerant metamagnets at T = Tmax, with Tmax 

proportional to a|b|/c, where the Landau a coefficient is the inverse of the Pauli 

susceptibility. This model additionally predicts that BM should increase as a function 

of temperature, an observation which is qualitatively consistent with the temperature 

dependence of BM of various cobalt compounds (see discussion in ref. 25). Regarding 

the original work described in this thesis, the importance of the variation with 

temperature of the metamagnetic field is emphasised in Chapter 5. 

 

In the limiting case of ac/b2
 = 3/16 in the model of Yamada and Goto [28], a 
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relationship between the metamagnetic field and the absolute value of the 

susceptibility at T = Tmax has been deduced: 

                                             ( )aTMB indM λχ −= − )(
2

1
max

1 ,                                     (1.9) 

where λ is a dimensionless factor representing the anisotropy of the spin fluctuations 

and 

                                                       
2

1

4

3











=

c

b
M ind                                                  (1.10) 

is the induced magnetisation at the critical point for the ferromagnetic (BM = 0) state. 

It is not certain that this model is applicable to all itinerant metamagnets: 

metamagnetism may not always be adjacent in phase space to a ferromagnetic state. 

Nonetheless, a relationship between BM and χ(Tmax) is explored for the (Sr1-

yLay)3Ru2O7 series of materials in Chapter 5 of this thesis. 

 

1.2.4 Quantum Criticality 

 

The previous section introduced the concept of itinerant electron metamagnetism. As 

discussed in section 1.1, much of the recent excitement associated with Sr3Ru2O7 has 

arisen from the discovery of an ordered phase of electronic matter in the vicinity of 

the quantum critical point of the metamagnetism of this material. This section 

introduces some of the basic concepts associated with quantum critical behaviour. 

 

1.2.4.1 2
nd
 Order Quantum Criticality 

 

There are no thermal fluctuations of a thermodynamic order parameter at T = 0 but 

there are quantum fluctuations (in both space and time) arising from zero point 

motion. These quantum fluctuations can compete with internal ‘ordering’ interactions 

and give rise to a quantum phase transition (QPT). A QPT between two ordered 

phases at T = 0 is driven by the application of some non-thermal control variable, p, 

such as pressure, chemical doping or magnetic field [29,30]. The critical value, pc, of 

the external variable at which the QPT occurs is known as the quantum critical point 

(QCP).  
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Figure 1.3. An illustration of how the 2
nd
 order Tc of a classical phase transition 

may be depressed towards a quantum critical point by an external variable, p. 

From [31]. 

 

QCPs can sometimes be approached by depressing towards T = 0 the transition 

temperature, Tc, of a 2
nd

 order classical phase transition by the application of a non-

thermal control parameter; a sketch of this scenario is provided in Figure 1.3. The 

classical critical portion of the phase diagram is suppressed as p → pc. Thermal 

population of the modes of the quantum fluctuations occur at finite temperatures 

above the QCP, leading to a quantum critical ‘fan’ region of the phase diagram.  

 

Two ordered phases are degenerate at a QCP and the internal energy scales of the 

system are renormalised to zero as the QCP is approached. In this situation the system 

can, in principle, be deformed without an energy penalty being incurred and, 

consequently, high susceptibility to the formation of phases of novel quantum order 

(such as the superconductivity of CePd2Si2, section 1.1) may be expected. 

 

1.2.4.2 Quantum Critical Endpoints 

 

Signatures of quantum criticality are not limited to systems with 2
nd

 order classical 

transitions. An illustration of how a critical end-point (pc1, T*) of a line of 1
st
 order 

 
p 

0 

T 

QCP 

pC 

Quantum Critical 

Classical                       
Critical 

Ordered 
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transitions may be depressed towards T = 0 by the application of another external 

variable, u, is given in Figure 1.4. A 1
st
 order transition (as a function of p) when T < 

T* becomes a crossover (as a function of p) at temperatures above T*. The value of 

both T* and pc1 may depend on u: a quantum critical endpoint (QCEP) at (pc2, T* = 0) 

may occur at some critical value of u. It is expected that the free energy landscape of 

such a system would be flattened on approach to the QCEP, making the system 

susceptible to novel phase formation, with quantum fluctuations also playing a crucial 

role in the physics.  

 

 

 

Figure 1.4. A line of 1
st
 order phase transitions may terminate at a critical end 

point in the (p, T) plane. This critical end point may be depressed towards T = 0 

and, hence, become a quantum critical end point, by a variable u. From [32]. 

 

1.3 Transition Metal Perovskites 

 

A wide variety of phases of ordered electronic matter have been discovered in the 

aforementioned cuprates and manganites, both of which are examples of transition 

metal oxides. Goodenough [33] and Tsuda et al. [34] provide comprehensive 

descriptions of some of the electronic physics associated with TMOs; Rao and Raveau 

[35] also explore the chemistry of these oxides. Contained in this section is a survey 

u 

 

p 
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1   
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of the physics associated with the perovskite building block, the foundation of many 

TMOs including the cuprates and manganites.  

 

1.3.1 Perovskite Crystal Structure 

 

Compared to broadband conductors such as copper or the alkali metals the electronic 

bandwidth of metals with d- or f-shell valence electrons is expected to be rather 

narrow. The kinetic energy of electronic carriers in these materials will be relatively 

low and it is more likely that electron-electron interactions will play a significant role 

in the low-energy electronic physics. 

 

 

Figure 1.5. The ideal AMO3 perovskite structure. 
 

Transition metal oxides are a class of materials in which the valence electrons arise 

from atomic d shells. Transition metal cations can be incorporated into oxides in 

many crystal structures – the AMO3 perovskite crystal structure (A = alkali metal, 

alkaline earth or lanthanide cation; M = transition metal cation; O = O
2-
) is common. 

Illustrated in Figure 1.5 is the ideal perovskite structure. An A cation is located at the 

body-centre of an array of corner shared MO6 octahedra. The M-O-M bond angle is 

180° and each M-O bond is of equal length. Structural mismatches between A-O and 

M-O bonds lead to internal stresses which distort the structure of most real 

a 
b 

c 

A 

M 

O2-
 

M 
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perovskites. The tolerance factor, t, of an AMO3 perovskite is defined in terms of the 

radii [36] of the ions in the crystal: 

                                                        
( )
( )OM

OA

rr

rr
t

+

+
=

2
,                             (1.11) 

where the different r refer to the ionic radii of the A-site, M-site and oxygen cations. 

An ideal perovskite has t = 1 but most perovskites are not ideal and, hence, have a 

distorted structure. Such distortions can be cooperative rotations and/or tilting of the 

MO6 octahedra. 

 

1.3.2 Electronic Structure 

 

Although TMOs are nominally ionic materials their electronic structure is not similar 

to that of textbook ionic solids such as NaCl: hybridisation of electronic orbitals from 

different ions is important in most TMOs. By treating the oxygen anions as point-like 

charges Khomskii [37] shows that, in the first order of energy, these O
2-
 ions produce 

a crystalline electric field which lifts the degeneracy of the five (= 2l + 1) d-electron 

valence orbitals of the TM cation. Such crystal field splitting separates these 5 levels 

into lower and upper manifolds: t2g and eg respectively; ∆CF is the magnitude of the 

crystal field splitting between the t2g and eg levels.  

 

Goodenough [33] points out that the electronic band-structure at the Fermi energy of 

AMO3 perovskites can often be attributed to hybridisation between orbitals from the 

TM and the O ions: the electronic states from the A-site cations are well-removed 

from EF and can often be neglected when considering low-energy electronic 

properties. Overlap between the wavefunctions of the TM d electrons and the oxygen 

2p electrons is known as p-d hybridisation. The electronic structure of AMO3 

perovskites is also sensitive to substitution of isovalent cations onto the A-sites. 

Although such substitution does not add or remove any electronic states at EF the 

crystal structure is modified and the bond angles and, hence, the p-d hybridisation 

integrals are affected. Non-isovalent substitution on the A-site can also add or remove 

electrons from the band(s) at EF. Holes can be introduced into the band(s) at the Fermi 

level if a trivalent cation is replaced by a divalent cation (electrons are introduced if 

the substitution is vice versa).  
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1.4 Ruddlesden-Popper Ruthenates 

 

The previous section introduced the perovskite crystal structure, the basis of many 

TMOs. Ruthenium ions can be incorporated into the perovskite structure: the 

Ruddlesden-Popper series of layered ruthenates, (Sr,Ca)n+1RunO3n+1 (n = 1, 2,…., ∞), 

has attracted much attention in recent years, especially since the discovery of 

superconductivity in  Sr2RuO4 (n = 1) [6]. Towards the large-n end of the strontium 

ruthenate series are situated SrRuO3 and Sr4Ru3O10, both of which display 

ferromagnetic ordering. It is unsurprising that Sr3Ru2O7, with an n-value between that 

of paramagnetic Sr2RuO4 and these ferromagnetic ruthenates, may be described as 

‘nearly magnetic’ or ‘on the verge of ferromagnetism’.  

 

A detailed discussion of the existing research of Sr3Ru2O7 is provided in section 1.4.5: 

evidence of the heavily renormalised ground state is referred to and the metamagnetic 

features in some of the electronic properties are discussed in detail. Reference is also 

made to the novel ordered phase in the vicinity of the quantum critical endpoint of the 

metamagnetism. The electronic band structure of Sr3Ru2O7 is related to that of 

Sr2RuO4 – a discussion of the origins of these band structures is provided; reference is 

also made to the importance of electron-electron and electron-lattice interactions in 

ruthenates. Finally, previous studies of cation-doped Sr3Ru2O7 are described. 

 

1.4.1 Overview 

 

The ideal crystal structures of some of the Ruddlesden-Popper ruthenates are shown 

in Figure 1.6. The number of layers of corner-shared RuO6 octahedra is n; the 

effective dimensionality of the electronic structure changes from 2D (n = 1) to 3D (n 

= ∞): Sr3Ru2O7 (n = 2) has a bilayer crystal structure and the electronic structure is 

often described as “quasi-2D”. The ruthenium ions are nominally in the tetravalent 

state, with the four 4d valence electrons of each Ru
4+ 

ion contained within the t2g 

manifold (the ruthenium eg orbitals are unoccupied). Ru
4+

 t2g states are hybridised 

with oxygen 2p states to form π-type bands at the Fermi level. 
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The electronic states arising from Sr
2+

 or Ca
2+

 ions are believed to be well-removed 

from the Fermi level yet, for any given n, the electronic properties of the Sr and Ca 

end-members of the series are remarkably different. Ca2RuO4, for example, is an 

antiferromagnetic insulator while Sr2RuO4 is a paramagnetic metal. The primary 

effect of Ca/Sr alloying on the A-site is believed to be the modification of the 

electronic structure near the Fermi level due to structural distortions. Ca
2+

 has a 

smaller ionic radius than Sr
2+

 and, hence, structural distortions (relative to the ideal 

structure) are more severe in calcium ruthenates than in strontium ruthenates. These 

structural distortions are thought to be responsible for further splitting of the t2g levels 

and modification of the low-energy electronic properties.  

 

 

Figure 1.6. The ideal structures of some of the (Sr,Ca)n+1RunO3n+1 Ruddlesden-

Popper layered perovskite ruthenates. The large circles represent Sr
2+
 or Ca

2+
 

cations; each Ru
4+
 cation (smaller circles) is surrounded by 6 O

2-
 ions. From [38]. 

 

1.4.2 Sr2RuO4 

 

Maeno et al. [6] synthesised Sr2RuO4 because this single-layer ruthenate is 

isostructural to La2-xSrxCuO4, the first high-Tc cuprate superconductor to be 

c 
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discovered. A superconducting Tc of ~ 1 K in polycrystalline Sr2RuO4 was reported in 

this study; a later study showed that the optimum Tc of 1.5 K in ultrapure single 

crystals was depressed towards T = 0 by greater amounts of quenched crystalline 

disorder [39]. This sensitivity to disorder indicated that the superconducting 

condensate is anisotropic in k-space and the superconductivity of Sr2RuO4 is, 

therefore, referred to as unconventional (i.e. not s-wave) [40]. 

 

The superconducting condensate of Sr2RuO4 emerges from a two-dimensional Fermi 

liquid normal state [41]; the electrical resistivity in-plane (current || ab) and out-of-

plane (current || c) is proportional to T2 at low temperatures. However, as is expected 

for an exemplary quasi-2D metal, the hybridisation of electronic orbitals between the 

conducting planes is much weaker than the hybridisation within these planes. 

Consequently, the in-plane resistivity of Sr2RuO4 is always much lower than the out-

of-plane resistivity. The residual resistivity of a Sr2RuO4 crystal referred to in ref. 40 

is 1 µΩcm in-plane and approximately 2 mΩcm along the c-axis; the values when T = 

300 K are ρab = 120 µΩcm and ρc = 15 mΩcm. 

 

The Fermi surface of Sr2RuO4 is composed of three quasi-cylindrical bands: two of 

these bands, β and γ, are electron-like and a (hole-like) band, α, has its sheets centred 

about Brillouin zone corners. The main features of the Sr2RuO4 valence band-

structure can be explained quite straightforwardly by considering nearest-neighbour 

hybridisation between Ru 4d and O 2p orbitals; Bergemann et al. provide an excellent 

discussion of this. A more comprehensive discussion of the band structure of quasi-

2D ruthenates —Sr2RuO4 and Sr3Ru2O7— is provided in section 1.4.5.1. 

 

1.4.3 SrRuO3 and Sr4Ru3O10 

 

The n = ∞ strontium ruthenate, SrRuO3, is an itinerant ferromagnet with a Curie 

temperature of approximately 160 K and a saturation magnetic moment of  ~ 1.6 

µB/Ru. Mackenzie et al. [42] measured a resistivity proportional to 2T  at temperatures 

below approximately 10 K in high-quality thin films of SrRuO3 and Shubnikov-de 

Haas (SdH) measurements revealed 2 Fermi surface sheets with quasiparticle masses 

of 4.5 and 6.1 me. It was therefore concluded that the ground state of SrRuO3 is a 
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Fermi liquid.  Alexander et al. [43] reported de Haas-van Alphen (dHvA) oscillations 

in a single crystal of SrRuO3; this study indicated at least six fundamental frequencies 

of oscillation, with effective masses ranging from 4 to 7 me. 

 

It is unsurprising that the magnetic character of Sr4Ru3O10 (n = 3) is intermediate 

between that of a ferromagnet (SrRuO3) and a paramagnet with metamagnetism 

(Sr3Ru2O7). Zhou et al. [44] synthesised crystals of Sr4Ru3O10 in an image furnace 

with a residual in-plane resistivity of approximately 6 µΩcm; a resistivity proportional 

to 2T  at low temperatures pointed towards a Fermi liquid ground state. Magnetisation 

measurements have indicated field-induced metamagnetic behaviour when B || ab and 

ferromagnetic behaviour when B || c. The coexistence of interlayer ferromagnetism 

and intralayer metamagnetism has been confirmed by a number of studies [45, 46].  

 

1.4.4 Calcium Ruthenates 

 

Ca2RuO4 is a Mott-Hubbard insulator which undergoes a transition from an 

antiferromagnetic ground state to a paramagnetic state at TN = 113 K [47]. A 

transition from the insulating state into a metallic state also occurs at T = 357 K [48]. 

The ground state of Ca2RuO4 has also been shown to be orbitally-ordered and to have 

strong magneto-structural coupling [49, 50]. 

 

Some initial reports [51, 52] claimed that the ground state of Ca3Ru2O7 was insulating 

but a metallic ground state with approximately 0.001 free carriers per ruthenium was 

observed in high-quality single crystals [53, 54]. A 2nd order transition from the low 

temperature antiferromagnetic state into a paramagnetic state occurs at TN = 56 K; a 

1st order structural phase transition also occurs at T = 48 K. 

 

CaRuO3 is a paramagnetic metal with a low temperature resistivity proportional to 

2/3T : a non-Fermi liquid ground state has been suggested for CaRuO3 [55]. Schultz et 

al. [56] suggest that spin fluctuations arising from a quantum critical point may be 

important to the ground state physics of CaRuO3.  
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1.4.5 Sr3Ru2O7 

 

Polycrystalline Sr3Ru2O7 was synthesised by Williams and colleagues in 1991 [57] 

but Cava et al. [58] were first to report the electronic properties of powdered 

Sr3Ru2O7. A maximum in χ(T) at approximately 20 K was observed and the 

susceptibility was proportional to 1/T at high temperatures. Ikeda et al. [10] reported a 

resistivity proportional to 2T  at low temperatures in single crystals of Sr3Ru2O7 

grown in an image furnace; no evidence of magnetic ordering of the electronic ground 

state was found in this study. The in-plane resistivity of these crystals varied between 

3 µΩcm (T = 0) and 230 µΩcm (T = 300 K). The out-of-plane resistivity of Sr3Ru2O7 

was found to be much larger, as expected for a quasi-2D metal: ρc varied between 1 

mΩcm and 8 mΩcm over the same range of temperatures. 

 

 

Figure 1.8. The magnetisation of Sr3Ru2O7 as a function of magnetic field. From 

[11]. 

 

The Sommerfeld coefficient of the crystals in ref. 10 was 110 mJ/(Ru mol K2), that is, 

significantly larger than the same quantity in single crystals of other metallic 

ruthenates, namely Sr2RuO4, SrRuO3 and CaRuO3. A zero-field Wilson Ratio of 

approximately 10 was deduced from a combination of C/T and χ(T) at low 

temperatures. It was therefore concluded that Sr3Ru2O7 is a Fermi liquid on the verge 
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of ferromagnetism: the electronic ground state is heavily renormalised by electron-

electron correlations and also by magnetic exchange interactions.  

 

Perry et al. [11] discovered metamagnetism in Sr3Ru2O7, shown in Figure 1.8. When 

T = 2.8 K a super-linear rise in the magnetisation as a function of field was observed 

for fields of BM = 5.5 (|| ab) and 7.7 Tesla (|| c). Ohmichi and co-workers [59] found 

that the primary metamagnetic field (the field at which the largest change in magnetic 

moment occurs) evolved smoothly with field angle, θ, from 5.1 Tesla for B || ab to 7.7 

T when B || c. A secondary metamagnetic feature also varied smoothly with θ, from 

Bab2 = 5.8 T to Bc2 = 13.2 T. 

 

 

Figure 1.9. The empirically-defined phase diagram of the metamagnetism of 

Sr3Ru2O7, inferred from measurements of AC susceptibility. The solid line and 

the sheet arise from measurements of the real and imaginary parts of the 

susceptibility, respectively. From [12]. 

 

Grigera et al. [12] studied the differential magnetic susceptibility of Sr3Ru2O7 as a 

function of temperature, magnetic field and field angle. The variation with θ of the 

critical endpoint, (BM, T*), of the primary metamagnetism is shown in Figure 1.9. 

When B || ab BM = 5.1 Tesla and T* = 1.25 K. When the external magnetic field was 

aligned within a few degrees of the crystalline c-axis the metamagnetic critical 

endpoint was (BM = 7.8 T, T* ≤ 50 mK), with the upper limit of T* equal to the base 
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temperature of the dilution refrigerator used in this experiment. Grigera and co-

workers noted that a T* of zero corresponds to a quantum critical endpoint of the 

metamagnetism. Figure 1.9 can be compared directly with Figure 1.4, with the 

magnitude and the angle of the external magnetic field playing the role of p and u, 

respectively. 

 

The possibility of quantum critical metamagnetic behaviour was indicated by Perry 

and co-workers [11] in their study of the temperature-dependent component of the 

resistivity (ρ = ρ0 + A αT ). For B || ab they showed that Fermi liquid behaviour (α = 2) 

was observed at temperatures below approximately 10 K at high and low fields. When 

B ~ BM the Fermi liquid region was suppressed below their 2.5 K base temperature of 

measurement.  

 

 

 

Figure 1.10. The magnetoresistance (B || c) of Sr3Ru2O7. SdH oscillations are seen 

at low- and high-fields. The steep sidewalls in ρ(B) are coincident in field with the 

1
st
 order phase boundaries of the electronic state indicated in Figure 1.2. From 

[62]. 

 

It was suggested that non-Fermi liquid behaviour (α < 2) was due to proximity to a 

quantum critical point. Measurement of the molar heat capacity, C, provided 

experimental support for the existence of critical fluctuations. When B = 7.7 T || c-
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axis, close to the metamagnetic field, the electronic component of C/T was found to 

diverge logarithmically as a function of T at low temperatures. In a further study at 

temperatures down to 100 mK Grigera et al. [60] measured the temperature 

dependence of the resistivity at different magnetic field values. In addition to 

confirming the suppression of the Fermi liquid behaviour in the vicinity of BM they 

also deduced that the Fermi liquid A coefficient increased sevenfold as the field (|| c-

axis) was increased from zero towards BM = 7.85 Tesla. These observations pointed 

towards a divergence of the masses of some (or possibly all) of the Landau 

quasiparticles upon approach to a quantum critical endpoint of the metamagnetism.  

 

The crystals studied in ref. 60 had a residual in-plane resistivity of approximately 3 

µΩcm, a value that is quite low compared to ρ0 of many other metallic TMOs. Perry 

and Maeno [61] reported the growth of Sr3Ru2O7 crystals with an even lower residual 

resistivity, less than 0.5 µΩcm. The electronic mean free path of these ultraclean 

single crystals was sufficiently large for Perry et al. [62] to measure SdH oscillations 

and for Borzi and colleagues [63] to detect dHvA oscillations. These measurements 

indicated a clear difference in the frequency of quantum oscillations at high and low 

fields, thus hinting at a topographical change of the Fermi surface when B = BM. It 

was also shown in ref. 62 that, for fields close to BM, a well-defined region of 

magnetic field bounded by 1st order phase transitions is evident at low temperatures. 

Steep ‘sidewalls’ in ρ(B), shown in Figure 1.10, enclose this region at temperatures 

below approximately 1 K. Further measurements of AC susceptibility, magnetisation, 

magnetostriction, thermal expansion and resistivity [15] showed that, surrounding the 

temperature and field at which a QCP had been proposed in more disordered samples 

in ref. 12 is a region in the (field, temperature) plane enclosed by phase boundaries, 

discussed in section 1.1. 

 

The discovery of a new phase of electronic matter in the vicinity of QCP was a 

significant breakthrough. Evidence of this phase was not seen in dirtier Sr3Ru2O7 

crystals: sensitivity to crystalline disorder was evidence that this emergent electronic 

state was anisotropic in k-space. Measurements of electrical and thermal conductivity 

[64] indicated that the Wiedemann-Franz law was not violated within this phase, 

despite the suppression of Fermi liquid behaviour. Borzi et al. [16] discovered an in-

plane magnetoresistive anisotropy associated with this phase. Elastic neutron 



 24 

scattering measurements showed that the four-fold symmetry of the crystal structure 

in the ab-plane is unchanged in the region of phase space in which the resistive 

anisotropy was observed. AC susceptibility measurements on a variety of sample 

shapes also ruled out field-alignable magnetic domains due to shape-dependent 

demagnetisation effects as a source of this anisotropy. It was therefore concluded that 

the in-plane magnetoresistive anisotropy is intrinsic to the emergent state of 

correlated electron matter. An in-plane anisotropy in ref. 16 was also observed away 

from the QCP, when the external magnetic field was aligned parallel to the ab-planes 

of the crystal. Heat capacity data taken cooling down at the central field of this feature 

[65] show a logarithmic divergence of C/T down to 1 K, giving good evidence that 

this feature, like that for B || c, is related to quantum criticality. 

 

It has also been desirable to investigate how the metamagnetism of Sr3Ru2O7 is linked 

to the heavily renormalised electronic ground state. Capogna et al. [66] probed the 

magnetic fluctuations of Sr3Ru2O7 (ρab0 ≈ 3 µΩcm) with inelastic neutron scattering 

(INS) measurements at zero-field. At low temperatures these fluctuations are 

incommensurate but cross over to ferromagnetic fluctuations at temperatures above 

approximately 20 K, a similar temperature to Tmax. By studying the nuclear magnetic 

resonance of Sr3Ru2O7 Kitagawa et al. [67] showed that the quantum critical 

fluctuations associated with the metamagnetism are antiferromagnetic in their nature 

which, in some respects, is at odds with the idea of metamagnetism being adjacent in 

phase space to a ferromagnetic state. Ramos and colleagues [68] performed INS 

measurements on high-quality crystals at large fields and found ferromagnetic and 

incommensurate fluctuations associated with the metamagnetism. Iwaya et al. [69] 

used scanning tunnelling microscopy (STM) to study the spectroscopic features of the 

metamagnetic criticality. At zero-field two sharp peaks in the quasiparticle DOS were 

seen on a meV scale near EF. A qualitative change in these features was observed as 

an external magnetic field was varied across BM. In addition, the spectral weight 

transfer on the meV scale as a function of magnetic field could not be reconciled with 

a Stoner-type scenario in which the chemical potential of a one-electron band is 

Zeeman-shifted by a magnetic field. This study indicated that the metamagnetism of 

Sr3Ru2O7 cannot be explained in a rigid band-shift theory; the authors of ref. 69 

speculate that spin fluctuations may be important to the metamagnetism of Sr3Ru2O7. 
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1.4.5.1 The Band Structure of Quasi-2D Ruthenates 

 

The electronic band structure at the Fermi level of both Sr2RuO4 and Sr3Ru2O7 is due 

to hybridisation between ruthenium and oxygen orbitals. The band structure of the 

bilayer ruthenate can be related to that of Sr2RuO4, the main features of which can be 

explained quite straightforwardly. This section contains a discussion of how the Fermi 

surface of Sr2RuO4 arises and, in addition, a scheme for predicting the band structure 

of Sr3Ru2O7 is also described. The influence of electron-electron correlations on some 

of the electronic properties of these materials is also discussed in this section. 

 

Figure 1.11. (a) A sketch of a ‘toy’ Sr2RuO4 Fermi surface in first Brillouin zone 

in the (kx, ky) plane. The circle, the solid lines and the dashed lines arise from 

hybridisation between Oxygen 2p orbitals and Ruthenium 4dxy, 4dzx and 4dyz 

orbitals, respectively. (b) The Fermi surface of Sr2RuO4 revealed by an ARPES 

experiment [70]. 

 

Sr2RuO4 has an ideal body-centred-tetragonal (K2NiF4) structure – each in-plane Ru-

O-Ru bond angle is 180° and the electronic structure at the Fermi level is entirely due 

to π-type hybridisation between Ru 4d t2g and O 2p orbitals. Each Ru 4dxy orbital 

hybridises with 4 nearest-neighbour O 2p orbitals to produce a two-dimensional band 

– a circle in the (kx, ky) plane of the Brillouin zone. Each Ru 4dzx and 4dyz orbital 

hybridises with only two nearest-neighbour O 2p orbitals to produce bands which 

disperse in one dimension only – straight lines in the (kx, ky) plane. So that the 

underlying fourfold symmetry is respected, four of these lines must be incorporated 

into each Brillouin zone. The sketch in Figure 1.11(a) shows how these features may 

kx 

ky 

(a) (b) 
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be arranged in the first Brillouin zone. The lines arising from the dxz/dzy-O 

hybridisation form 4 pockets which enclose the zone corners. In any real electronic 

structure such pockets would correspond to hole-like Fermi surfaces. By contrast, any 

sheet which is centred about the zone centre would be an electron-like Fermi surface. 

Hybridisation gaps would be expected to appear near the sharp corners and, in 

addition, the remainder of the one-dimensional lines would be reconstructed into a 

sheet around the centre of the zone.  Overall, measurements of the ‘toy’ Fermi surface 

in Figure 1.11 (a) would be expected to indicate two electron-like bands and one hole-

like band. Figure 1.11(b) shows the Fermi surface of Sr2RuO4 deduced from 

photoemission experiments. 2 bands (gamma and beta) are centred about the centre of 

the Brillouin zone; pockets (alpha) enclose each corner of the Brillouin zone. The true 

Sr2RuO4 band structure is therefore qualitatively consistent with the predictions of a 

simple model involving nearest-neighbour hybridisation between Ru 4d t2g and O 2p 

orbitals.  

 

Figure 1.12. (a) A sketch of a ‘toy’ Sr3Ru2O7 Fermi surface; ABCD is the new 

Brillouin zone which arises because of structural distortions. (b) The Fermi 

surface of Sr3Ru2O7 predicted by Singh and Mazin; from [72]. 

 

The shape of each sheet of the Fermi surface of Sr2RuO4 predicted by calculations 

involving the local density approximation (LDA) [71] is in good agreement with 

experimental measurements. However, such calculations did not fully account for the 

effects of electron-electron correlations. Quasiparticle masses of 3.4, 7 and 16 me for 
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the α, β and γ sheets have been measured in quantum oscillation experiments; these 

values are enhanced above the band masses by factors of 3, 3.5 and 5.5, respectively. 

The renormalisation of the quasiparticle masses is one of the main effects of electron-

electron interactions. Such renormalisation occurs because electron-electron 

interactions cause the slope of a band (in an E(k) picture) near the Fermi energy to be 

changed from its bare (or ‘band-only’) value.  

 

Sr3Ru2O7 is also a quasi-2D metal and, to a first approximation, its band structure can 

be assumed to be like that of Sr2RuO4 but with double the electron count per unit cell 

(because of the two ruthenium ions). Hence, a ‘toy’ Sr3Ru2O7 Fermi surface should 

look like Figure 1.11 (a) but with twice the number of lines. A sketch of this Fermi 

surface is given in Figure 1.12(a). 

 

The crystal structure of Sr3Ru2O7 is not ideally tetragonal: the in-plane Ru-O-Ru bond 

angle is approximately 164° and the a and b lattice parameters are slightly different 

—5.498 and 5.501 angstroms, respectively— such that the crystal structure is 

orthorhombic [72, 73]. The unit cell in real space is doubled and, therefore, the area of 

first Brillouin zone in k-space is half the area of the Sr2RuO4 Brillouin zone. The 

Sr3Ru2O7 Brillouin zone is also rotated by 45°; this new zone corresponds to ABCD 

in Figure 1.12 (a). All Fermi surface sections must be folded into this new Brillouin 

zone. Singh and Mazin calculated the Fermi surface of Sr3Ru2O7; a diagram of this is 

shown in Figure 1.12(b). Some of the ‘double line’ features are clear in this diagram; 

some small electron and hole pockets are also evident – the presence of these is 

beyond the scope of the simple Sr2RuO4-like model of the band structure. Overall, the 

approximation of Sr3Ru2O7 as a quasi-2D metal in which large parts of the Fermi 

surface arise from π-type hybridisation between ruthenium and oxygen orbitals is not 

unreasonable. 

 

1.4.5.2 Electron-Electron and Electron-Lattice Coupling 

 

One challenge in the physics of correlated electron metals is to distinguish between 

different contributions to the quasiparticle mass enhancement. Renormalisation can 

occur because of electron-electron correlations and/or coupling of the electrons to 

collective modes, such as modes of the lattice. An investigation with ARPES [74] 
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shed light on the nature of the many-body renormalisation in Sr2RuO4. The entire 

bandwidth of the gamma band, rather than simply the dispersion near the Fermi level, 

was found to be renormalised by electron-electron correlations. This observation 

indicated that these correlations are highly localised in real space (renormalisation 

over a large range of k implies a small range in real space). In addition, effects of 

electron-phonon coupling on the low-energy electronic properties were found to be 

much less significant than the electron-electron interactions. 

 

Many studies of the Ca2-xSrxRuO4 system have indicated a strong magnetostructural 

coupling in this series of ruthenates. The electronic structure near EF of both the 

calcium and strontium ruthenates is believed to be due only to Ru-O hybridisation. On 

the other hand, calcium substitution is known to cause severe distortions of the ideal 

tetragonal crystal structure. The relative extent of electron-lattice and electron-

electron coupling in ruthenates is a matter of interest. It is known that the p-d 

hybridisation paths in ruthenates are inextricable with the crystal lattice: in a study of 

the optical conductivity of many ruthenates Lee et al. showed how p-d charge transfer 

excitations are related to phonon modes [75]. Regarding Sr3Ru2O7, a large 

renormalisation of quasiparticle masses due to e-e interactions is implied by the large 

Sommerfeld coefficient; it is also postulated in ref. 16 that the nematic phase of 

Sr3Ru2O7 may arise because of weakly-screened Coulomb interactions between 

electrons. By contrast, entry into this nematic phase has associated with it strong 

signatures in the magnetostriction, a clear signal of strong electron-lattice coupling. 

Overall, it is probable that e-e and e-latt interactions in ruthenates can have 

comparable effects. Consequently, how these two effects compete or cooperate with 

each other is not always clear. It is unsurprising that, in a similar manner to 

manganites and cuprates —in both of which multiple interactions are believed to be 

simultaneously active— many electronic phases can be realised in ruthenates. 

 

1.4.5.3 Cation Doping Studies 

 

Only a few studies have reported cation-doping of single crystals of Sr3Ru2O7. 

Mathieu et al. [76] studied some of the properties of single crystals of Sr3(Ru1-

xMnx)2O7 (x < 0.2). The paramagnetic metallic ground state of Sr3Ru2O7 was turned 

into an antiferromagnetic insulating state by doping with a small concentration of Mn 
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ions. Furthermore, the wavevector of the magnetic ordering was found to be Q ~ 

(0.25 0.25 0) in the (h k l) notation. 

 

The manganese ions in Sr3(Ru1-xMnx)2O7 may exist as Mn3+ or Mn4+, both of which 

have a nonzero effective magnetic moment. Hooper et al. [77] investigated single 

crystals of Sr3(Ru1-xTix)2O7 (x < 0.1) in which the titanium cations are thought to be in 

the nonmagnetic Ti4+ (3d0) state. Sharp features in the magnetoresistance of Sr3Ru2O7 

in the vicinity of BM were smeared out by a small amount (x = 0.005) of Ti-doping. 

The peak in the DC susceptibility of Sr3Ru2O7 at Tmax ~ 16 K was also shifted to 

lower temperatures as a function of Ti-doping. It was also shown that a small amount 

of Ti-doping induced an upturn in C/T at temperatures below approximately 6 K. 
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2. Experimental Techniques 

 

The aforementioned novel electronic phase in Sr3Ru2O7 was observed in ultrapure 

single crystals. Single crystals are desirable in many condensed matter experiments 

because grain boundaries can obscure intrinsic anisotropies in the elastic and 

electronic properties of materials. Furthermore, the requirement for very clean single 

crystals is not limited to ruthenates – magnetic field-induced superconductivity in 

URhGe [1] and quantum oscillations in YBCO [2] are two examples of discoveries 

made possible by having very clean single crystals. Crystal growth procedures are, 

therefore, worthy of discussion alongside the experimental results reported in this 

thesis.  

 

Two categories of crystal growth are solution growth —the growth of a solute from a 

melt of a different composition to that of the desired crystal— and melt growth, which 

involves a liquid-solid phase transition at some melting temperature, TM. Regarding 

solution growth, single crystals of ruthenates have previously been grown using the 

flux method, in which components of the desired material are reacted in a solvent. 

Strontium ruthenates, for example, have been synthesised from RuO2, SrCO3 and a 

SrCl2 flux contained within a platinum crucible [3,4]. The major advantage of the flux 

method is that the desired material can be grown at a temperature which is much less 

than its melting point; the flux method is particularly useful for materials which melt 

incongruently. However, impurities from both the flux and the crucible may 

contaminate the as-grown single crystals. To minimise crystalline contamination it is 

desirable to grow strontium ruthenate single crystals directly from a melt containing 

only atoms of strontium, ruthenium and oxygen. 

 

Growth directly from the melt occurs in the floating zone (FZ) method of crystal 

growth, in which infra-red radiation generated within an image furnace melts a 

ceramic rod of the desired material, so that a single crystal can be extracted from the 

melt. The major advantage of this method is that no crucible or solvent are required 

and the probability of impurity contamination is therefore low. The most challenging 
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factor associated with the FZ method is that many interdependent experimental 

control variables must be optimised simultaneously. 

 

This chapter provides a description of how an image furnace works and how single 

crystals of Sr3Ru2O7 have been grown. The structural properties of as-grown crystals 

have been measured with X-ray diffraction; the content of dopant ions in crystals of 

cation-doped Sr3Ru2O7 has been ascertained with energy dispersive X-ray analysis; 

both of these experimental techniques are described in this chapter. Also described is 

the cryogenic equipment used to measure the electronic properties of as-grown 

crystals. 

 

2.1 Crystal Growth 

 

2.1.1 The Phase Diagram of a Reactive, Incongruent System 

 

The purpose of this section is to consider some of the issues associated with the 

chemical phase diagram of a reactive, incongruently melting system, such as 

Sr3Ru2O7. Atkins [5] provides an excellent discussion of the phase diagrams of multi-

component systems; Perry [6] also provides a description similar to that which is 

given here. 

 

The Gibbs phase rule relates the number of intensive variables of a system, F, to the 

number of components, C, and the number of phases, P, of the system: 

  

                                                         F = C - P + 2                                                    (2.1) 

 

Sr3Ru2O7 is known to melt incongruently – it melts into its components but cannot 

itself form a liquid; P is therefore equal to 1. Sr3Ru2O7 is a binary (C = 2) system 

because its components are SrO and RuO2. Accordingly, the number of intensive 

variables for Sr3Ru2O7 is three: temperature, pressure and the composition of the 

SrO/RuO2 mixture. During image furnace growth pressure is usually chosen to be 

kept constant. Figure 2.1 shows a sketch of the phase diagram of a two-component, 

reactive, incongruently melting system. The two starting components are A and B; C 
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is the desired component. At the peritectic point a liquid, L, is in equilibrium with two 

solid phases. It is clear that simply melting together a stoichiometric mixture of A and 

B and then cooling this mixture will not result in C being produced: C must be 

extracted directly from the C + L region of the phase diagram. Extracting C will 

change the composition of this region and, hence, there is a possibility that removing 

C will cause a shift away from this area of the phase diagram. Furthermore, it is 

essential that a non-stoichiometric ratio of A and B is mixed together; account must 

also be taken of possible evaporation of either A or B. For Sr3Ru2O7 these factors 

were explored in much detail by Perry and Maeno [7]. 

 

Figure 2.1. The phase diagram of a reactive, incongruent system. Copied from 

[6]. 

 

 

2.1.2 Material Preparation 

 

A cylindrical rod of ceramic material, known as a feed rod, is required in the FZ 

method. Described here is a procedure for synthesising a strontium ruthenate feed rod 

from SrCO3 and RuO2 powders. Aside from a change in the starting materials the 

same procedure has been used to prepare feed rods of cation-doped Sr3Ru2O7, referred 

to in chapters 3-5. SrCO3 is hygroscopic so, prior to its use alongside RuO2, must be 
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dried; drying in air in a box furnace at T = 400°C for approximately 5 hours is 

suitable. RuO2 and dried SrCO3 powders were ground together in air with an agate 

mortar and pestle. The solid state reaction between strontium carbonate and ruthenium 

oxide is 

 

                                     a·SrCO3 + b·RuO2 = SraRubOa+2b + a·CO2 .                        (2.2) 

 

At the high temperatures (2000 – 2500°C) typical within an image furnace RuO2 has a 

high vapour pressure and is susceptible to evaporation. To compensate for this 

evaporation an excess of RuO2 must be incorporated into the initial mixture of 

powders. A growth parameter, n = 2b/a, may be defined: empirical values are n = 

1.15, 1.68 and 1.9 for Sr2RuO4 [8], Sr3Ru2O7 [7] and Sr4Ru3O10 [9], respectively. The 

total mass of powders used in each synthesis was approximately 10 grams. After 

being ground for approximately 20 minutes the mixed powder was compressed into a 

cylindrical pellet of 2cm diameter, 1cm depth. This pellet was placed on a pre-

prepared strontium ruthenate ‘bedding pellet’ inside an alumina crucible and baked in 

air in a box furnace at T = 1200° C for 16 hours. The purpose of the bedding pellet is 

to ensure that no aluminium from the crucible diffuses into the main pellet during the 

heating period. 

 

The baked pellet was cooled in air to room temperature and then ground into a fine 

powder; this powder was then placed inside a Latex balloon. The manufactured Latex 

balloons were covered with a fine, powdered coating so, in order to minimise 

contamination, this coating was scrubbed off with an ethanol-soaked fine tissue. The 

clean balloon was then coated with a layer of the ruthenate powder and was then filled 

with the remaining powder. The balloon was then tied at both ends, placed inside a 

water-filled pressure cell and subjected to a hydrostatic pressure of 40 MPa. This 

pressure was then reduced to zero and the balloon was removed from the pressure 

cell. The balloon was then cut open and the rod-shaped compacted powder was 

removed.  

 

The ruthenate rods were found to be very fragile and could break when being 

removed from the pressure cell. Figure 2.2 shows three ways of mounting a powder-

filled balloon prior to it being placed in the water-filled pressure cell. In the initial 
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period of research the balloon (~ 8cm length) was fixed with string within a hollow 

metal cylinder. On removal from the pressure cell the balloon was gently dragged out 

of this cylinder, cut open and the rod was then removed. Approximately 40 % of the 

rods made with this method remained intact after removal from the balloon: the rod 

often broke when the balloon was dragged out of the cylinder or when the rod was 

pushed out of the balloon. In an attempt to overcome this problem a different 

mounting technique was used: the balloon was tied down to a flat metal surface (a 

15cm steel rule) before being placed in the pressure cell. The probability of successful 

rod manufacture was ~ 50%, a slight improvement on the previous method, but still 

unacceptable. A major breakthrough was made when a stretched filled balloon was 

mounted on the outside of a narrow metal cylinder: approximately 90% of the oxide 

rods made by this method have remained intact after compression and removal from 

the balloon. This method is a reliable way of manufacturing ruthenate rods; rods of 

other oxides such as Dy2Ti2O7 and YTiO3 (which must be prepared from unreacted 

constituents) have also been manufactured by other researchers with a similar rate of 

success. The stretched balloon retracts very rapidly when cut at one end and the oxide 

rod has been found to sometimes break, but rarely. It has been possible to produce 

very long rods (15 - 20 cm) on a regular basis.  

 

Figure 2.2. Three ways of mounting a powder-filled balloon prior to its 

immersion in a hydrostatic pressure cell. (a) shows a balloon within the cross-

section of a thin-walled metal cylinder; (b) shows the balloon tied to a flat metal 

surface; (c) shows a stretched balloon tied to the outside of a metal cylinder.  

                        (a)                                (b)                                  (c)  
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In preparation for use in the image furnace each feed rod was placed on a pre-

prepared strontium ruthenate bedding powder (on top of an alumina plate) and then 

sintered at T = 1420°C for 2 hours, in air. 

 

2.1.3 Image Furnace Growth 

 

A photograph of the St Andrews image furnace is shown in Figure 2.3. The feed rod 

was suspended from a metal hook on the upper spindle; a seed (which may be a 

previously grown single crystal or another sintered rod) was mounted coaxially with 

respect to the feed rod in an alumina holder on the lower spindle. The metal hook was 

made from a platinum wire; Chromel wire was used to fix in place both the feed rod 

and the seed. Each of the spindles was connected to motors which permit vertical 

translation and also rotation around the vertical axis. The spindles, feed rod and seed 

crystal were contained within a transparent quartz tube in which an atmosphere (from 

a gas cylinder) could be established. The purpose of the metallic cold-trap is to 

provide a surface onto which evaporated oxide material can condense. The cold-trap 

is especially useful in crystal growths during which significant evaporation of 

constituent material occurs; some evaporated material will condense onto the inner 

surface of the quartz tube during such growth runs. The cold trap prolongs the period 

of time over which the quartz tube remains reasonably transparent to IR radiation. 

 

The quartz tube is located within an ellipsoidal mirrored cavity: infra-red radiation 

from 2 halogen bulbs (placed at the foci of this cavity) was focused from the gold-

plated mirrors towards a ~ 1 cm3 region at the centre of the cavity at which a ‘hot 

zone’ was established. This hot-zone was monitored by a CCD camera linked to a 

computer.  

 

The experimental variables in the FZ method may be classified as primary (which are 

chosen to be fixed prior to crystal growth) or secondary (which may be altered during 

the growth process). The primary variables are the atmospheric content and pressure, 

P, and the speed at which the lower spindle moves downwards – the growth speed, V1. 

The secondary variables are the lamp power, W, the rotational speed of the rods, ω 
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(the upper and lower rotational speeds need not be equal), and the speed at which the 

upper spindle moves downwards – the feed speed, V2. Varying the feed speed is a 

helpful way of promoting stability in the molten zone: if the zone looks to be too wide 

(relative to the seed) V2 can be reduced; V2 may be increased if the molten zone is at 

the threshold of collapse. Angular thermal gradients are suppressed by counter-

rotating the upper and lower spindles during a growth run.  

 

 

 

Figure 2.3. A photograph of the St Andrews image furnace. The two elliptic 

mirrors are closed together when the furnace is operating. A halogen bulb (not 

clear in the photograph) is located at the focal point of the each of the elliptic 

mirrors. 

 

A stable molten zone occurs when the rate of material entering the zone is equal to the 

rate of material being deposited onto the seed plus the rate of evaporation. In growth 

runs involving non-volatile materials the secondary growth variables do not need to 

be changed often. By contrast, it is necessary to alter the secondary growth parameters 

many times during ruthenate growth runs. Varying the lamp power leads to a 

concomitant variation in temperature. If the temperature is too high the molten zone 

Quartz tube 

CCD camera 
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will have a low viscosity and the grown crystal will be rather wide – material may 

actually leak out of the molten zone and down the sides of the seed crystal. On the 

other hand, the intermediate zone will not be wholly molten if the temperature is too 

low. Temperature is not monitored directly in the image furnace so the user must 

judge the stability of the molten zone. As a ruthenate growth proceeds RuO2 

evaporates onto the quartz tube which, consequently, becomes less transparent: the 

lamp power must be gradually increased during a growth run. 

Figure 2.4. An image of the ‘hot region’ established within an image furnace.  

 

The image furnace used for the growth of all crystals referred to in this thesis was 

supplied by NEC Machinery Corporation (SCI-MDH-11020). The hot-zone was 

observed via a CCD camera; this camera was linked to software which also allowed 

the lamp power and the various spindle speeds to be controlled. To initiate crystal 

growth the tip of the feed rod was lowered into the hot zone; the lamp power was then 

increased until this tip melted. The tip of the seed crystal was then raised upwards and 

connected with the liquid zone: this molten zone was observed to ‘float’ between the 

feed rod and the seed; crystal growth could then proceed. The liquid zone will not 

collapse if its surface tension is sufficient; an example of a molten zone is shown in 

Figure 2.4.  The seed was lowered with velocity V1 so that molten material was pulled 

out of the hot zone; the feed rod was simultaneously moved downwards with velocity 

V2 so that the molten zone was continually replenished. 

Feed Rod 

Molten Zone 

Seed Crystal 
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To become familiar with the image furnace and the floating zone method, the first few 

months of research involved the growth of crystals of Sr2RuO4. RuO2 is evaporated 

onto the quartz tube during a Sr2RuO4 growth run but it was not necessary to use a 

cold trap: n = 1.15 for Sr2RuO4 corresponds to approximately 5% of the mass of feed 

rod being evaporated. Although RuO2 could be seen on the inner surface of the quartz 

tube at the end of a Sr2RuO4 growth run, the tube was still transparent to IR radiation. 

The growth conditions for Sr2RuO4 were V1 = 45 mm/hr, V2 ~ 32 mm/hr, ω ~ 30 rpm, 

P ~ 3 bars. Single crystals of Sr2RuO4 were grown quite straightforwardly and 

repeatedly and could be cleaved easily with a scalpel blade parallel to the ab-planes. 

These planes can be identified by the unaided eye because they are highly reflective 

of background light.  

 

2.1.4  Growth of Sr3Ru2O7 Crystals 

 

Crystals of Sr3Ru2O7 are more difficult to grow than Sr2RuO4 because a greater 

percentage of RuO2 is evaporated during the growth process (due to the higher 

melting temperature of Sr3Ru2O7) and, therefore, a stable molten zone is difficult to 

establish. n = 1.33 for Sr3Ru2O7 corresponds to approximately 10% of the mass of the 

feed rod being evaporated during the growth process. It is therefore essential to use a 

cold-trap during a Sr3Ru2O7 growth run. Furthermore, multi-layer ruthenates such as 

Sr3Ru2O7 and Sr4Ru3O10 are more susceptible than Sr2RuO4 to stacking faults and the 

probability of ‘intergrowth’ phases (i.e. different n in section 1.4.1) in these ruthenates 

is significant. 

 

Attempts were made to grow crystals of Sr3Ru2O7 in an image furnace, following the 

procedures described in the previous two sections and using the same primary growth 

parameters given by Perry and Maeno [7]: n = 1.68, V1 = 15 mm/hr and P = 10 bars of 

a 90% Ar/10 % O2 atmosphere. However, the growth of Sr3Ru2O7 was problematic. 

Like the as-grown crystals of Sr2RuO4, the as-grown crystals of Sr3Ru2O7 had four 

faces and could be cleaved with a scalpel blade parallel to the ab-planes quite easily. 

However, unlike the smooth, uninterrupted ab-planes of their Sr2RuO4 counterparts, 

the ab-planes of these as-grown Sr3Ru2O7 crystals appeared heavily distorted to the 



 43 

unaided eye. In particular, many striations – defect-lines at an angle of approximately 

60° to the direction of crystal growth – were seen on the ab-planes. Additionally, the 

cleaving with a scalpel blade of these crystals was not as clean as the cleaving of 

Sr2RuO4 – small chunks of the crystal were observed to crumble away from the 

scalpel blade. Figure 2.5 shows the X-ray diffraction pattern obtained from a crushed 

sample of one of these as-grown crystals. The (0 0 2), (0 0 4) and (1 0 1) diffraction 

peaks of the bilayer phase are visible at 2θ ~ 8, 17 and 23°, respectively, but foreign, 

intergrowth peaks at 2θ ~ 6, 12, 18 and 22° are also evident. These peaks can be 

attributed to the (0 0 2), (0 0 4), (0 0 6) reflections of Sr4Ru3O10 and the (1 0 1) 

reflection of SrRuO3, respectively.  

 

Figure 2.5. The X-ray diffraction pattern of a crystal of nominally-Sr3Ru2O7, 

grown with V1 = 15 mm/hr. 

 

It was clear that these intergrowths arose because, in terms of the Sr-Ru-O phase 

diagram, the molten zone within the image furnace was not adjacent to the Sr3Ru2O7 

solid phase. Six attempts were made to grow Sr3Ru2O7 using the original conditions. 

It was suspected that an unstable molten zone arose because radiation was not being 

distributed evenly throughout the hot-zone of the furnace. Growth attempts were 

made with pristine quartz tubes and also with tubes which had been used a number of 

times (and in which some recrystallisation of the quartz could be seen). Changing the 
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quartz tube did not have a noticeable effect on the as-grown crystals. An investigation 

of the crystal growth parameters was then initiated. 

 

 

Figure 2.6. The X-ray diffraction pattern of a nominally-Sr3Ru2O7 crystal, grown 

with V1 = 25 mm/hr. 

 

 

No attempt was made to change the content or pressure of the atmosphere. In 

particular, a large pressure is necessary to suppress RuO2 evaporation. The initial 

RuO2 excess was varied: various n values between 1.6 and 1.8 were tried, but no 

major changes to the as-grown crystals were evident. RuO2 powder supplied by a 

different manufacturer was also used in the starting mixture, but no significant visual 

change of the as-grown crystals was apparent and Sr2RuO4 and Sr4Ru3O10 

intergrowths were also evident in X-ray diffraction patterns of these crystals. 

 

A major breakthrough was made when the growth speed was changed from its 

original value of 15 mm/hr. The n parameter was changed back to 1.68 and growth 

runs with V1 = 5 and 10 mm/hr were attempted. The product of these growth-runs 

was, in terms of crystalline quality, worse than the 15 mm/hr attempts: no faces could 

be seen on the outside of the deposited material which, furthermore, could not be 
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cleaved easily with a scalpel blade. A growth run with V1 = 25 mm/hr was then tried. 

The crystals yielded from this run were of a much higher crystalline quality than any 

of the other as-grown crystals. The ab-planes of these crystals were very smooth, 

although a low density of minor interruptions were clear to the unaided eye. 

Relatively large pieces of single crystal were obtained from this growth run, with the 

high-quality ab-planes uninterrupted for a few centimetres along the direction of 

growth. Figure 2.6 shows the X-ray diffraction pattern of a crushed single crystal 

obtained from this growth run. No Sr2RuO4 or Sr4Ru3O10 diffraction peaks are 

evident, hence confirming the relatively high crystalline quality. 

 

Increasing the growth speed tends to narrow the molten zone and, hence, reduce the 

rate at which RuO2 is evaporated. However, the previous batches of as-grown crystals 

did appear to be particularly Ru-deficient: the RuO2 evaporation (deduced by 

measuring the masses of the feed- and seed-rods before and after growth) was always 

found to be approximately 10% of the mass of the initial feed rod, consistent with 

work in ref. 7. However, growth parameters are interdependent: varying any one of 

these parameters impinges on the others. All crystals of Sr3Ru2O7 and cation-doped 

Sr3Ru2O7 referred to in this thesis were obtained with a growth speed of 25 mm/hr. 

High-quality crystals have not always been obtained when growing at this speed – 

some of the as-grown crystals contained a significant intergrowth content. All of the 

Ti- and La-doped Sr3Ru2O7 crystals (referred to in chapters 3 and 5, respectively) 

were found to contain an appreciable content (~ 1 - 10 molar percent) of SrRuO3 and 

Sr4Ru3O10 intergrowths. Also, the residual in-plane resistivity of the best Sr3Ru2O7 

crystals referred to in this thesis is 1.1 µΩcm, significantly larger than the 0.4 µΩcm 

measured in ultraclean crystals [7], thus hinting at some structural defects due to 

intergrowths. No further attempts were made to alter the growth speed (by small 

amounts, say 1mm/hr); the Sr3Ru2O7 crystals yielded from some of the 25 mm/hr 

growth runs were judged to be worthy of further study and are referred to in the 

appendix. Furthermore, it was expected that the cation-doping levels proposed for the 

work described in this thesis would enhance significantly the residual resistivity, 

because of additional elastic scattering. Overall, the 1.1 µΩcm Sr3Ru2O7 resistivity 

baseline was deemed to be acceptable. 
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2.2 Chemical Characterisation 

 

2.2.1 X-ray Diffraction 

 

The X-ray diffraction patterns shown in Figures 2.5 and 2.6 were obtained with a 

Philips X-ray diffractometer in the School of Chemistry at the University of St 

Andrews. The bilayer Sr3Ru2O7 crystal structure has a series of characteristic X-ray 

lines related to its lattice parameters by the Bragg condition, nλ = 2dsinθ. If 

intergrowth ruthenate phases such as Sr2RuO4, SrRuO3 or Sr4Ru3O10 are present in 

appreciable amounts in nominally-Sr3Ru2O7 crystals, some of the characteristic X-ray 

lines of these structures should be evident in an X-ray diffraction pattern. 

 

X-ray diffraction patterns of all crystals referred to in this thesis were obtained from a 

small mass (~ 20 mg) of crushed as-grown crystal, fixed with ethanol onto an 

aluminium plate. This plate was subsequently placed into a slot in the chamber of the 

diffractometer and irradiated with Cu Kα X-rays (λ = 0.154 nm). The X-ray detector 

could be scanned through the scattering angle, 2θ, between 5 and 90° by controlling 

with a software package.  

 

 

2.2.2 Energy Dispersive X-ray Analysis 

 

There is no a priori reason why the concentration of dopant ions in crystals of cation-

doped Sr3Ru2O7 should be equal to the nominal concentration of these ions (i.e. in the 

starting mixture of powders). It was, therefore, necessary to measure the doping level 

of each as-grown crystal. One way of making such a measurement is to use Electron 

Probe Microanalysis, in which a focused beam of high energy electrons is bombarded 

into the sample under investigation. Some of these electrons cause inner-shell 

ionisation of the constituent atoms of the sample. As a result of such ionisation an X-

ray photon is emitted each time an inner shell vacancy is created. Each atom in the 

Periodic Table has a characteristic set of X-ray lines: identification of the constituent 

atoms is made possible by detecting the X-rays emitted from the sample. Furthermore, 
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quantitative analysis of sample composition is possible if the intensities of the X-ray 

lines from the sample are compared to the intensities of X-ray lines from materials of 

a known composition. 

 

 

Figure 2.7. A schematic of an electron microprobe with an energy dispersive X-

ray detector. Adapted from diagrams in [11] and [12]. 

 

The emitted X-rays can be detected as a function of their wavelength or their energy. 

The latter type of detection, known as Energy Dispersive X-ray Analysis (EDX), has 

been used to quantify the content of dopant ions in the cation-doped Sr3Ru2O7 crystals 

referred to in this thesis. EDX measurements were made in the School of Chemistry at 

the University of St Andrews with a JEOL JSM 5600 Scanning Electron Microscope 

(SEM) in conjunction with an X-ray detector and INCA analysis software from 

Oxford Instruments. 

 

Reed [10] describes in much detail how a typical electron probe system works; Figure 

2.7 shows a schematic of an electron probe system. The electron gun is a tungsten 

filament heated to ~ 2700 K by passing a current through it; a high voltage (typically 

10 - 30 kV) applied to his filament causes thermionic emission. Electrons are then 
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accelerated towards the sample to be investigated; the electron beam is focussed by 

magnetic lenses onto a plane at which the sample is located. Penetration of the 

electron beam into the sample leads to the generation of characteristic X-rays in 

addition to a Bremsstrahlung background. The X-rays emitted from a sample are 

incident upon a solid state detector, the central component of which is a 

semiconductor crystal, immersed in a Dewar of liquid nitrogen (to reduce thermal 

noise).  

 

For quantitative microanalysis the X-ray spectra of samples of a known composition, 

known as standards, must be measured in addition to the spectra of the unknown 

samples; the electron beam current must also be known. Crystals of Sr3Ru2O7 doped 

with lanthanum, chromium or titanium cations are referred to in this thesis: BaTiO3 

(for Ti-doped Sr3Ru2O7) and LaCrO3 (for La- and Cr-doped Sr3Ru2O7) were used as 

standards, both of which were highly-polished and mounted in metallic epoxy. A 

high-purity crystal of Sr2RuO4 (with a measured superconducting Tc of approximately 

1.4 K, similar to the optimum value) was used as the standard for ruthenium and 

strontium ions. 

 

For each batch of cation-doped Sr3Ru2O7 a crystal was mounted on the same surface 

as the appropriate standard. Care was taken to ensure that the exposed ab-plane of the 

crystal was horizontal and, hence, normal to the direction of the electron beam. 

Furthermore, a fine copper mesh was mounted alongside the unknown sample; the 

sample and mesh were then mounted on conductive carbon double-sided adhesive 

discs and placed onto the metallic standard block. This block was then placed into the 

microscope chamber, which was subsequently evacuated. The accelerating voltage 

across the tungsten filament was then set to 30 kV. Smooth surface areas were located 

with the SEM secondary-electron imaging software. The working distance, the 

distance between the pole piece of the magnetic condenser lens and the plane onto 

which the electron beam is focussed, was always set to 20 mm, the distance for which 

microanalysis is optimised in this system. Prior to the measurement of an unknown 

sample or a standard, an X-ray spectrum of the copper mesh was recorded and the 

INCA software subsequently reported the beam current as “100 %”. The X-ray 

spectrum of the standard was then acquired over a four-minute period; the X-ray 

spectrum of the unknown sample was subsequently measured, also over a four minute 
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period. Finally, the spectrum of the copper mesh was recorded again and the INCA 

software reported the beam current as a percentage of the previous measurement. The 

beam current was typically found to vary by up to ± 5% over the ~ 15 minute period 

in which grid-standard-sample-grid measurements were made. For each unknown 

sample, at least five X-ray spectra were recorded, from different regions of the 

surface. EDX measurements have been made on at least three crystals from each 

batch. 

 

Figure 2.8. The X-ray spectrum of a crystal of Sr3(Ru1-xTix)2O7. The inset shows 

the titanium Kα peak in more detail; a solid line has been placed through the X-

ray background, taken to be independent of E in this range of energies. 

 

The X-ray spectrum of a Sr3(Ru1-xTix)2O7 crystal is shown in Figure 2.8. 

Characteristic peaks are clearly seen above the Bremsstrahlung background. The inset 

to Figure 2.8 shows the titanium Kα peak in more detail. For quantitative analysis a 

background must be subtracted – in the example shown a constant background of 480 

± 20 counts has been assumed. Regarding (Sr1-yLay)3Ru2O7 spectra it is also 

reasonable to subtract an energy-independent background from the lanthanum Lα peak 

at E = 4.6 keV. The Kα peak of chromium is located at 5.4 keV, in an energy range 

over which the number of background counts decreases slowly as a function of E: it 
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has been found for Sr3(Ru1-xCrx)2O7 X-ray spectra that the background is proportional 

to -E in the region of the Cr Kα peak. 

 

Characteristic X-ray intensities are, to a first approximation, proportional to the mass 

concentration of the particular element in the unknown material [10]. This 

approximation arises because incident electrons lose their kinetic energy mainly 

through interactions with orbital electrons of atoms in the material, the number of 

which is approximately proportional to atomic mass. Incident electrons therefore 

penetrate an approximately constant mass in different materials. The intensity, I, of a 

given characteristic peak has been taken as the sum of counts over the FWHM of the 

peak. For Sr3(Ru1-xTix)2O7 the concentration, x, of titanium cations was deduced from 

the following equation: 
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Ti= ,                             (2.3) 

 

where the intensity of the Ti Kα peak from the sample and the BaTiO3 standard is 

SampleI and StandardI , respectively. Molar masses are denoted by M; the molar mass of 

BaTiO3 and Sr3(Ru1-xTix)2O7 is 233.21 and (577 - 106.34x) grams, respectively. An 

equation with similar form has also been used for samples of Sr3(Ru1-xCrx)2O7 and 

(Sr1-yLay)3Ru2O7, in conjunction with the LaCrO3 standard. 

 

Measured X-ray intensities should be corrected to take account of processes 

associated with absorption, fluorescence and the X-ray ‘stopping power’ of a 

specimen, which depends on atomic number, Z. Reed [10] describes how these ‘ZAF’ 

matrix corrections can be made; an iterative procedure must be followed because 

these corrections depend on sample composition. The INCA analysis software makes 

these ZAF corrections; on the other hand, Equation 2.3 refers to uncorrected 

intensities. However, the concentration of dopant cations in the samples referred to in 

this work have always been in good agreement (within 10%) of the concentrations 

reported by the INCA software. This observation confirms that the ZAF corrections 

are relatively small and, hence, justifies the omission of these corrections from the 

quantitative analysis. 
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2.3 Cryogenic Apparatus 

 

Measurements of the DC magnetisation, heat capacity, resistivity as a function of 

temperature and magnetoresistance of cation-doped Sr3Ru2O7 crystals are reported in 

chapters 3-5. The DC magnetisation, resistivity and magnetoresistance of samples 

have been measured in St Andrews; heat capacity measurements were made at the 

Centre for Science at Extreme Conditions at the University of Edinburgh. The 

apparatus with which these measurements have been made are based upon well-

known physical processes; Pobell [13], for example, provides a comprehensive 

description of cryogenic equipment and the relevant physics. 

 

2.3.1 Resistivity Measurements in a Continuous Flow Cryostat 

 

Temperature may be controlled between 300 and 4 K by balancing with a heater the 

cooling power of the gas evaporating from liquid helium: this is the basis of a 

continuous flow cryostat. A sample probe is contained within a volume (known as the 

sample space) flushed with helium exchange gas and surrounded by a heat exchanger. 

Liquid helium from a storage Dewar is supplied to the cryostat via an insulated 

transfer tube; this liquid flows through the heat exchanger and is then returned to a 

recovery system via an exhaust. A thermometer and a heater coil are mounted on the 

heat exchanger; when used in conjunction with an external temperature controller the 

temperature of the heat exchanger can be controlled. 

 

Measurements of electrical resistivity of samples between 300 and 4K have been 

made with the samples mounted within a continuous flow cryostat supplied by Oxford 

Instruments; the external temperature controller was also an Oxford Instruments 

model (ITC 502). In each measurement run two crystals were mounted on the sample 

probe and, so that the voltage from both sides of each of these bar-shaped crystals 

could be measured, four lock-in amplifiers (LIA’s) were used. Each crystal was 

mounted onto a quartz substrate which was attached with double-sided tape onto the 

sample probe. 
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Figure 2.9 shows how quasi-2D materials such as Sr3Ru2O7 may be mounted such that 

their in-plane electrical resistivity can be measured. Current connections are made at 

each end of the crystal (the ideal shape of which is a long, narrow and thin bar); 

voltage contacts are made on opposite sides of the crystal. Four voltage wires are 

shown in Figure 2.9 because it has been desirable to measure voltage across both of 

the longest sides, to confirm macroscopic homogeneity.  The electrical connections 

were made with gold wires (50 µm diameter) attached onto the crystal with a high-

temperature silver paint (Dupont 6838, cured for 5 minutes in air at T = 450 °C).  The 

gold wires are then fixed onto a quartz substrate, above which the crystal is mounted. 

 

 

Figure 2.9. An illustration of how crystals have been mounted for resistivity 

measurements. The exposed ab-planes (top and bottom surfaces) of the crystal 

are parallel to the top surface of the substrate. 

 

The interplane chemical bonding in Sr3Ru2O7 is relatively weak – Sr3Ru2O7 crystals 

can be cleaved rather easily parallel to the ab-planes with a with a scalpel blade. It has 

been quite straightforward to cut Sr3Ru2O7 into wafer-like pieces ~ 100 µm thickness 

for resistivity measurements. The resistivity of a bar-shaped sample is 

                                       
l

tw
Rab =ρ ,                              (2.4) 

where R is the resistance of the sample (= V/I for Ohmic conduction), t and w are the 

thickness and width of the sample, respectively and l is the distance between the two 
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voltage wires. Equation 2.4 is applicable to quasi-2D metals such as Sr3Ru2O7 if it 

assumed that the individual ab-planes of a crystal are in parallel with each other. 

 

Values of w and l of most crystals were O(1mm) and could be deduced from visual 

inspection through a high-powered optical microscope. The uncertainty of each these 

quantities was approximately ±10 %; for the shortest (small l) crystals studied, ∆l ~ ± 

20 %. The thickness of most crystals was O(0.1mm), with ∆t ~ ± 20 %. So that the 

total uncertainty of each ρab could be reduced at least five crystals from each as-grown 

batch of cation-doped Sr3Ru2O7 have been measured. Care was taken to ensure that 

the top and bottom faces of each crystal were parallel to each other: trapezoidal-

shaped crystals are undesirable because of the high-resistance c-axis current paths in 

them; equation 2.4 would not be valid for such crystals. All resistivity measurements 

were made with a Stanford SR380 LIA in the differential mode; a time constant of 1 

second and a reference frequency of 90 Hz were consistently used.  

 

2.3.2 Adiabatic Demagnetisation Refrigerator 

 

Temperatures much lower than 4 K can be attained by magnetic cooling [14, 15, 16]; 

the apparatus in which magnetic cooling can be utilised is known as an adiabatic 

demagnetisation refrigerator (ADR). A schematic diagram of the essential parts of an 

ADR is shown in Figure 2.10. The sample stage is in good thermal contact to a 

refrigerant pill, a paramagnetic salt with a large moment on each magnetic ion. This 

pill is located within the bore of a demagnetisation magnet and is also connected to a 

thermal bath via a heat-switch: if this heat-switch is opened, thermal contact between 

the pill and the thermal bath is suppressed.  

 

To initiate the cooling process the heat-switch must be closed, allowing good thermal 

contact between the pill and the thermal bath to be made.  The demagnetisation 

magnet is then ramped up to its maximum field value and the refrigerant pill is 

subsequently isolated from the bath by opening the heat-switch. The demagnetisation 

magnet is then ramped down to zero field: this demagnetisation process is adiabatic 

because the pill/sample system does not, in principle, exchange any heat with the 

surroundings. As the demagnetisation magnet is ramped down the magnetisation of 
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the pill decreases. The demagnetisation process is reversible: because there is no 

change in entropy of the combined pill-sample system, entropy must be exchanged 

between the pill and the sample stage. If the entropy of the pill increases by ∆S the 

entropy of the sample stage must decrease by ∆S, resulting in a decrease in the 

temperature of the sample stage. 

 

 

Figure 2.10. A schematic diagram of an ADR. Copied from [16]. 

 

 

An ADR supplied by Cambridge Magnetic Refrigeration has been used to measure 

resistivity of samples as a function of temperature at temperatures below 5 K and also 

resistivity as a function of magnetic field (magnetoresistance) at fixed temperatures. 

This system incorporates an 8 Tesla superconducting magnet around the sample space 

in addition to a 6.5 Tesla demagnetisation magnet. The heat-switch is mechanical, 

operated by a rotary mechanism at room temperature. The system can be cooled to 

4.2K by placing a small amount of helium exchange gas is into the inner vacuum 

chamber (IVC); further cooling to approximately 1.45 K is made possible by a 1 K 

pot, the foundation of which is evaporative cooling of liquid helium. A base 

temperature of approximately 95 mK after demagnetisation can be achieved with this 

system.  

 

Refrigerant Pill 

Sample Magnet 

Demagnetisation 
Magnet 

Heat-switch R 

Thermal Bath 

Sample Stage 
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2.3.3 Dilution Refrigerator 

 

The cooling power of an adiabatic demagnetisation refrigerator is not continuous and 

the base temperature can only be held for a short time. By contrast, continuous 

cooling can be achieved with a dilution refrigerator [17]. When a mixture of 3He and 
4He isotopes is cooled below 0.87 K it separates into two distinctive phases: a lighter 

“concentrated” 3He-rich phase and a heavier “dilute” phase, rich in 4He. The 4He is 

superfluid and does not interact with the 3He atoms in this dilute phase. The enthalpy 

of a 3He atom is larger in the dilute phase than in the concentrated phase: cooling can 

occur if some of the 3He from the concentrated phase is evaporated into the dilute 

phase. Such evaporation corresponds to “dilution” of the 3He-rich phase. Even as T → 

0 a finite amount of 3He remains in the dilute phase and very low temperatures can be 

attained by the dilution process. 

 

The physical processes involved in dilution refrigeration are described in detail by 

Pobell [13] and also in literature from Oxford Instruments [17, 18]. The boundary 

between the two phases of the 3He/4He mixture occurs at the mixing chamber and 

cooling occurs by evaporation of 3He from the concentrated phase into the dilute 

phase. 3He must be continually removed from the dilute phase and then returned to 

the concentrated phase via the still (to which an osmotic pressure gradient is 

established) and then the condenser.  

 

The dilution refrigerator in St Andrews, supplied by Oxford Instruments, incorporates 

a 15 Tesla sample magnet. The 3He/4He closed system and the 1K pot are contained 

inside an IVC, within a Dewar of liquid helium; initial cooling of the system to 4.2 K 

is achieved with exchange gas in the IVC. The dilution refrigerator was used for some 

of the magnetoresistance measurements referred to in this thesis; the sample probe 

used for these measurements could accommodate up to six samples in four-probe 

configurations. This sample probe was bolted to the mixing chamber, on which a 

ruthenium oxide thermometer and a heater coil were located.  The polar angle of the 

sample stage was varied by a rotary mechanism operated at room temperature. 
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2.3.4 MPMS SQUID Magnetometer 

 

The DC magnetisation of samples has been measured with a Magnetic Properties 

Measurement System (MPMS) supplied by Quantum Design. The cornerstone of the 

MPMS is a Superconducting Quantum Interference Device (SQUID) magnetometer. 

A SQUID utilises the properties of electron-pair wave coherence and Josephson 

junctions to measure magnetic flux [20, 21]. The sample to be investigated was 

mounted in a plastic straw and fixed onto one end of a metal rod. Quasi-2D materials 

such as Sr3Ru2O7 can be mounted so that either the ab-planes or the c-axis are parallel 

to the external magnetic field. For B || ab the sample can be sandwiched within a 

second plastic straw placed inside the main straw. For B || c a second straw is also 

used, and the sample is fixed in place with a very small amount of grease. The straws, 

recommended by Quantum Design, are made from clear (rather than coloured) plastic 

and have a very small magnetic susceptibility.  

 

The end of the metal rod to which the sample straw is attached is made from 

quantalloy; the other end of this rod is made from stainless steel and is connected to a 

stepper motor. The sample may be moved up and down through a set of pickup coils, 

which are connected to the SQUID with superconducting wires. Voltages are read as a 

function of the sample’s position in the pickup coils; the MPMS computes the 

magnetic moment of the sample with a measurement algorithm. The external 

magnetic field may be varied up to a maximum of 5 Tesla and the temperature range 

of the system is 1.8 - 400 K. 

 

2.3.5 PPMS Heat Capacity Option 

 

The heat capacity of as-grown crystals has been measured with a relaxation method in 

a Physical Properties Measurement System (PPMS) supplied by Quantum Design 

[22]. Figure 2.11 shows a schematic diagram of how heat capacity may be measured 

by a relaxation method. The sample to be investigated is situated on a platform and 

thermal contact between this platform and the sample is made via a thin layer of 

grease. The platform is also in contact to a thermal bath, the puck in which the setup 

is contained. Thermal contact between the platform and the puck is made with wires 
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of a known conductance, Kw. A thermometer and a heater are also fixed to the sample 

platform and the entire setup is located within an evacuated chamber. 

 

Figure 2.11. A schematic diagram of the setup used for measuring the heat 

capacity of a sample with a relaxation method. From [22]. 

 

A constant power, P0, is applied from the heater for a known amount of time and this 

heating period is followed by a cooling period of the same duration. If the sample and 

the platform are in thermal equilibrium and at the same temperature, T, the total heat 

capacity, C, of the sample and the platform is  

                                               )()( tPTTK
dt

dT
C pw +−−= ,                            (2.5) 

where Tp is the temperature of the puck, measured by a thermometer buried within its 

body. P(t) = P0 during heating and is zero during cooling. The temperature of the 

platform rises or falls to an equilibrium value in a time τ, 

 

                                               ( ))/exp(1)0()( τtTTtT −∆+= ,            (2.6) 

where ∆T = P0/Kw. It is clear from Equation 2.5 that during this cooling period C = 

Kwτ = P0τ/∆T. C can therefore be deduced by observing the relaxation of the sample 

temperature [23].  

 

Heat capacity measurements have been made between temperatures of 30 and 0.4 K. 

Cooling to such low temperatures is achieved by utilising the properties of 3He. The 

liquid of this isotope evaporates at 3.2 K at atmospheric pressure but, with the use of 
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evaporative cooling, temperatures as low as 0.3 K can be attained in 3He refrigerators 

[131]. The sample platform is covered by a radiation shield and the puck is then 

placed at the end of a long experimental insert. A 3He pot is also located near the 

same end of this insert, and is in thermal contact with the puck. The insert is lowered 

into a chamber within a Dewar of liquid helium. At the other end of the insert is 

situated a turbo pump which promotes evaporative cooling of the 3He from its pot. 

The heat capacity of the grease-covered platform, Caddenda(T), must be measured as a 

function of temperature before the heat capacity of a sample plus platform, Ctotal(T). 

The heat capacity of the sample is the difference of these two measurements: 

Csample(T) = Ctotal(T) - Caddenda(T). 
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3. Sr3(Ru1-xTix)2O7 

 

3.1 Motivation 

 

As discussed in section 1.4.5, some of the electronic properties of Sr3Ru2O7 are 

sensitive to crystalline disorder. Such disorder can be structural defects, crystalline 

vacancies or impurity ions; these features can arise during the preparation and growth 

of Sr3Ru2O7 crystals. It is, however, desirable to investigate the influence of disorder 

on the properties of Sr3Ru2O7 in a controlled manner. Deliberately substituting 

foreign cations into the lattice of Sr3Ru2O7 is one way of making a controlled study of 

the influence of disorder on the electronic properties of this metallic ruthenate.  

 

Titanium cations have previously been substituted onto the ruthenium lattice sites in 

Sr2RuO4 [1-3], SrRuO3 [4,5], Ca3Ru2O7 [6] and CaRuO3 [7] and titanium was, 

therefore, judged to be a suitable candidate for doping onto the Ru sites in Sr3Ru2O7. 

It is believed that titanium cations are in the tetravalent state (3d0) when substituted 

onto Ru4+ sites in Ruddlesden-Popper ruthenates. When in a 6-coordinate octahedral 

environment Ti4+ and Ru4+ cations have very similar ionic radii, 60.5 and 62 pm, 

respectively [8]: Ti-doping into Ruddlesden-Popper ruthenates is not expected to 

induce any major changes to the crystal structure. Furthermore, theoretical studies of 

the electronic structures of Sr2Ru1-xTixO4 [9] and SrRu1-xTixO3 [10] indicated that Ti4+ 

orbitals do not hybridise with the conducting Ru-O network: Ti-doping was found to 

disrupt the Ru-O current paths and cause an increase in electrical resistivity. Although 

Ti4+ is a nonmagnetic cation Ti-doping has been shown to trigger magnetic ordering 

in CaRuO3 and Sr2RuO4, both of which are paramagnetic metals. Minakata and 

Maeno [1] reported local-moment magnetism when x ≥ 0.025 in single crystals of 

Sr2Ru1-xTixO4; He and Cava [7] discovered ferromagnetic ordering in powdered 

samples of CaRu1-xTixO3 when x ≥ 0.02. 

 

Prior to the beginning of this research no work on Sr3(Ru1-xTix)2O7 had been reported 

but, during its execution, a parallel study by an American group was published: 

Hooper et al. [11] reported measurements of the transport, magnetisation and heat 
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capacity of single crystals of Sr3(Ru1-xTix)2O7 ( 08.0≤x ). Although some of the 

results reported in this chapter are in qualitative agreement with the work in ref. 11 

the primary conclusions of the experimental work reported in this chapter extend far 

beyond those of Hooper and colleagues. Furthermore, some of the results reported 

here have been complemented by neutron scattering measurements made by 

collaborating researchers [12]. The combination of these works has allowed an 

unambiguous conclusion to be reached: a spin density wave emerges as a function of 

Ti-doping in the Sr3(Ru1-xTix)2O7 series. This fact was not picked up by the study in 

ref. 11. 

 

Although most of the recent attention paid to Sr3Ru2O7 is because of studies of 

ultrapure single crystals, the crystalline disorder due to titanium substitution reported 

in this chapter has been an essential component of experiments in which an 

unparalleled study of the electronic physics of Sr3Ru2O7 has been made. These 

experiments, made by collaborating researchers on crystals provided from this work, 

involved scanning tunnelling microscopy and are referred to in the discussion of this 

chapter. Similar experiments have previously shed much light on the physics of the 

high-Tc cuprates [13,14], most of which are heavily disordered. Ongoing STM 

experiments on crystals of Sr3(Ru1-xTix)2O7 from the work reported here are unique 

because they offer an insight into a clean (aside from the relatively small, controlled 

concentration of titanium cations) narrow-band metal and, therefore, provide a helpful 

contrast to STM experiments on cuprates, materials in which disorder cannot be easily 

controlled. 

 

3.2 Crystal Growth and Chemical Characterisation 

 

Batches of Sr3(Ru1-xTix)2O7 were prepared by mixing RuO2, TiO2 and dried SrCO3 

powders in the ratio (1-x)2.52: 2x: 3. The mixed powder was then reacted and formed 

into a feed-rod using the methods described in section 2.1.2. Attempts were then made 

to grow crystals in an image furnace. The primary growth parameters for all of the 

cation doped crystals referred to in this thesis were the same as those of undoped 

Sr3Ru2O7, referred to in section 2.1.4. Approximately 25 growth runs were attempted. 
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3.2.1 X-Ray Diffraction 

 

Some of the as-grown Sr3(Ru1-xTix)2O7 crystals were judged to be unsuitable for 

further study: the texture of these crystals was similar to that of the poor quality 

Sr3Ru2O7 crystals referred to in section 2.1.3; many striations on the ab-planes of 

these crystals were clear to the unaided eye. X-ray diffraction also indicated that the 

(Ti-doped) trilayer phase was a major constituent of these crystals. However, the ab-

planes of sections of some of the as-grown crystals did not appear to have such a high 

concentration of striations and were considered for further measurements. X-ray 

diffraction patterns from these sections were obtained; Sr2RuO4, SrRuO3 and 

Sr4Ru3O10 diffraction peaks were seen in all of these patterns, although to a much 

lesser extent than in Figure 2.5. The quantitative extent of the ferromagnetic 

intergrowth phases in these crystals is determined in terms of their magnetisation in 

section 3.3.1. 

 

3.2.2 Energy Dispersive X-ray Analysis 

 

The concentration of titanium cations in each batch of Sr3(Ru1-xTix)2O7 was deduced 

by considering the Ti Kα X-ray line centred at E = 4.51 keV. The Ti x values were 

calculated using the analysis described in section 2.2.2. The nominal and measured x 

values of each batch, xn and xa, respectively, are given in Table 3.1. For each batch 

these two quantities are equal, within errors.  

 

Batch and Nominal x xa 

Ti23, xn = 0.005 0.0046 ± 0.0013 

Ti15, xn = 0.01 0.0098 ± 0.0010 

Ti8, xn = 0.025 0.023 ± 0.004 

Ti21, xn = 0.05 0.051 ± 0.005 

Ti9, xn = 0.075 0.0072 ± 0.008 

Ti7, xn = 0.1 0.095 ± 0.007 

Table 3.1. The nominal and actual titanium concentration of each batch of 

Sr3(Ru1-xTix)2O7. 

 



 63 

3.3 Magnetisation 

 

3.3.1 Intergrowth Contributions 

 

SrRuO3 and Sr4Ru3O10 intergrowth phases in each batch of Sr3(Ru1-xTix)2O7 are 

expected to make a significant contribution to the DC magnetisation of these 

materials. Shown in Figure 3.1 is the field-cooled DC susceptibility of Sr3(Ru1-

xTix)2O7, x = 0, 0.01 and 0.025, obtained with an applied field of 0.3 Tesla (the same 

field used in ref. 11). The peak in χ(T) of each sample is associated with the majority 

Sr3(Ru1-xTix)2O7 phase. The low temperature susceptibility of x = 0.01 and 0.025 is, 

however, many times larger than the low temperature susceptibility of Sr3Ru2O7 and 

is therefore inconsistent with data in ref. 11. Kinks in χ(T) of the Ti-doped samples 

are also seen at T ~ 100 and 160 K but such kinks are absent from the susceptibility of 

Sr3Ru2O7. The kinks in χ(T) and the very large low temperature susceptibilities can be 

attributed to (Ti-doped) SrRuO3 and Sr4Ru3O10 intergrowth phases. It is therefore 

desirable to estimate the molar percentages of each of these phases in as-grown 

crystals of Sr3(Ru1-xTix)2O7.  

 

Figure 3.1. The field-cooled DC susceptibility of x = 0, 0.01 and 0.025 as a 

function of temperature, with B = 0.3 T. 
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It is clear that, compared to either of the Ti-doped crystals, the Sr3Ru2O7 crystal 

indicated in Figure 3.1 contains a much smaller percentage of ferromagnetic 

intergrowths. SrRuO3 and Sr4Ru3O10 intergrowths can, however, occur in crystals of 

undoped Sr3Ru2O7. Described here is a procedure for estimating the molar 

percentages of SrRuO3 and Sr4Ru3O10 in a nominally-Sr3Ru2O7 crystal; the same 

analysis has been used for all cation-doped Sr3Ru2O7 crystals referred to in this thesis. 

Shown in Figure 3.2 is the field-cooled magnetisation of a nominally-Sr3Ru2O7 

crystal, obtained with an external field of 0.01 T applied parallel to the crystalline c-

axis. The Curie temperature of the SrRuO3 and Sr4Ru3O10 intergrowths is T = 165 and 

100 K, respectively; the magnetic contribution from the Sr3Ru2O7 phase at low 

temperatures is also clear. Throughout this thesis it is assumed that any intergrowth 

phases are laminar, with their c-axis parallel to the c-axis of the majority bilayer phase 

of the crystal. The molar fractions of SrRuO3 and Sr4Ru3O10 have been deduced from 

the following procedure:  

 

1. At T = 200 K apply an external magnetic field of 0.01 T to the sample. Cool 

down to T = 5 K and then measure the magnetisation on warming between 5 

and 200 K. 

2. Extrapolate to T = 0 the field-cooled M(T) curve between 160 and 105 K; M1 

is the extrapolated value of M at T = 0 and corresponds to the magnetisation 

arising from SrRuO3 intergrowths. 

3. Extrapolate to T = 0 the same M(T) curve between 100 and 50 K; M2 is the 

value of this extrapolated curve at T = 0. The magnetisation associated with 

Sr4Ru3O10 intergrowths is, therefore, M3 = M2 – M1. 

 

M1 and M3 have been compared to the published magnetisation of SrRuO3 and 

Sr4Ru3O10. Cao et al. [15] report the field cooled M(T) of single crystals of Sr4Ru3O10 

with an applied field of 0.01 T: the magnetisation at T = 1.7 K is 0.115 µB/Ru. The 

field-cooled M(T) of SrRuO3 has been reported [16], also with an applied field of 0.01 

T; the magnetisation at T = 2 K is 0.175 µB/Ru. It is assumed that the molar fraction of 

SrRuO3 and Sr4Ru3O10 in each crystal is M1/0.175 and M3/0.115, respectively, with 

the M values in units of µB/Ru. For the Sr3Ru2O7 data in Figure 3.2 M1 = (2.25 ± 0.25) 

×10-4 µB/Ru and M3 = (0.95 ± 0.39)×10-4 µB/Ru. It can therefore be concluded that the 
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molar percentage of SrRuO3 and Sr4Ru3O10 intergrowths in this crystal is 0.13 ± 0.01 

% and 0.08 ± 0.03 %, respectively. 

 

Figure 3.2. The field-cooled magnetisation of a nominally-Sr3Ru2O7 crystal. The 

applied magnetic field is 0.01 T parallel to the crystalline c-axis. The dotted lines 

are the extrapolations to T = 0 referred to in the text. The arrow points to the 

peak in M(T) associated with the Sr3Ru2O7 phase. In this example M1 = (2.25 ± 

0.25)×10
-4
 µB/Ru and M2 = (3.2 ± 0.3)×10

-4
 µB/Ru. 

 

There are uncertainties associated with this method of estimating the SrRuO3 and 

Sr4Ru3O10 molar fractions. Refs. 15 and 16 refer to the bulk magnetisation of 

Sr4Ru3O10 and SrRuO3 but it is not certain that these bulk magnetisation data are 

applicable to intergrowth regions because interface effects with the majority Sr3Ru2O7 

phase may be important. It is also unclear if cation doping of the majority Sr3Ru2O7 

phase extends into these intergrowth phases or if these phases remain undoped. A 

very limited amount of magnetisation data relating to Cr-, La- and Ti-doped SrRuO3 

and Sr4Ru3O10 has been published [17-20] and, furthermore, the cation doping levels 

are typically much greater than the largest doping levels considered in this thesis, 

namely x ≤ 0.1 for Sr3(Ru1-xTix)2O7, x ≤ 0.02 for Sr3(Ru1-xCrx)2O7 and y ≤ 0.02 for 

(Sr1-yLay)3Ru2O7. It is therefore reasonable to compare the measured ‘impurity’ 

M1 

M2 
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magnetisation of the cation-doped crystals to the magnetisation of undoped SrRuO3 

and Sr4Ru3O10. 

 

Listed in Table 3.2 is the molar percentage of SrRuO3 and Sr4Ru3O10 in each batch of 

Sr3(Ru1-xTix)2O7. The intergrowth percentages in these Ti-doped crystals is, as 

expected, much greater than in the undoped Sr3Ru2O7 crystal indicated in Figure 3.2. 

Molar percentages of SrRuO3 and Sr4Ru3O10 of a similar order of magnitude have 

been measured in crystals of (Sr1-yLay)3Ru2O7 (Chapter 5). By contrast, much smaller 

intergrowth fractions are evident in crystals of Sr3(Ru1-xCrx)2O7 (Chapter 4). 

 

Crystal Batch Molar Percentage of 

Sr4Ru3O10 

Molar Percentage of 

SrRuO3 

Ti23, x = 0.005 5.2 0.5 

Ti15, x = 0.01 3.4 0.8 

Ti8, x = 0.025 4.1 2.3 

Ti21, x = 0.05 6.0 3.7 

Ti9, x = 0.075 6.3 2.9 

Ti7, x = 0.1 7.1 1.2 

Table 3.2. The molar percentage of Sr4Ru3O10 and SrRuO3 in each batch of 

Sr3(Ru1-xTix)2O7. 

 

It is clear that any magnetisation data from crystals of Sr3(Ru1-xTix)2O7 must be 

treated with caution: although SrRuO3 and Sr4Ru3O10 are present in these crystals 

with molar fractions below 10 % the contribution to the magnetisation made by these 

intergrowth phases is significant. The intrinsic contribution to M(B) or χ(T) from the 

majority Sr3(Ru1-xTix)2O7 phase can, nonetheless, be estimated. SrRuO3 and 

Sr4Ru3O10 have coercive fields of approximately 0.2 T (at T = 2 K) so that, in a 

measurement of M(B), any contribution from the Sr3(Ru1-xTix)2O7 phase at fields 

below this will be masked by the magnetic hysteresis loop of each of these phases. 

The magnetisation of SrRuO3 or Sr4Ru3O10 does not saturate at higher fields; dM/dB 

of these materials at high fields can be estimated from published data. Therefore, 

measurements of M(B) of most of the Sr3(Ru1-xTix)2O7 samples are reported relative to 

an arbitrary field value which is greater than the coercive field of either of the 
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intergrowth phases. The arbitrary field chosen is 1 Tesla and the change in 

magnetisation is defined as 

 

                                                   ∆M ≡ M(B) - M(B = 1 T).                                      (3.1) 

 

The Pauli susceptibility of a paramagnetic metal is dM/dB and can therefore be 

estimated from a plot of ∆M(B) at a low temperature (T = 2 K is considered in this 

thesis). 

 

Regarding χ(T), the magnetisation of the Sr3(Ru1-xTix)2O7 phase can be enhanced 

(relative to the magnetisation of the intergrowth phases) by applying a larger magnetic 

field. However, it remains desirable to measure χ(T) of the ‘low-field’ magnetic 

regime, away from the metamagnetic features. The applied magnetic field must 

therefore be much smaller than BM; the field chosen here for Sr3(Ru1-xTix)2O7 is 1.5 T. 

Because the intrinsic component of χ(T) of the Ti-doped samples cannot be deduced 

easily from Figure 3.1, the susceptibility is also defined relative to a fixed value, 

namely χ(T = 2 K): 

 

                                                         ∆χ ≡ χ(T) - χ(T = 2 K).                                     (3.2) 

 

∆χ and ∆M are reported for crystals of Sr3(Ru1-xTix)2O7 in this chapter and for (Sr1-

yLay)3Ru2O7 in Chapter 5. Uncorrected M(B) and χ(T) are reported for Sr3(Ru1-

xCrx)2O7 in Chapter 4 because these Cr-doped crystals have a much smaller 

percentage of ferromagnetic intergrowths. 

 

3.3.2 Low-Doping (x ≤ 0.05) 

 

3.3.2.1 B || ab 

 

The samples of Sr3(Ru1-xTix)2O7 have been classified as those with ‘low-doping’ (x ≤ 

0.05) and ‘heavy-doping’ (x ≥ 0.075); the magnetisation of these two classes is 

reported separately. Shown in Figure 3.3 is ∆χ(T) of x = 0, 0.01, 0,025 and 0.05, with 

B || ab. A peak in ∆χ(T) of x = 0, 0.01 and 0.025 is seen at T = 16, 13 and 8 K, 
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respectively. ∆χ(T) of x = 0.05 is not peaked at any temperature above 2 K. The 

magnetisation of these samples is shown as a function of magnetic field in the inset to 

Figure 3.3. ∆M is proportional to B at low fields, with a constant of proportionality of 

0.025, 0.033, 0.035 and 0.038 (µB/Ru)T-1 for x = 0, 0.01, 0.025 and 0.05, respectively. 

A sharp rise in the magnetisation of Sr3Ru2O7 is seen in the field range between 4 and 

5 Tesla, with a metamagnetic field of 4.4 ± 0.1 T.  A super-linear rise in ∆M(B) of x = 

0.01 and 0.025 is observed across approximately the same field range as the 

metamagnetic rise of Sr3Ru2O7. These rises in ∆M are much less distinctive than the 

metamagnetism of Sr3Ru2O7. No super-linear rise in ∆M of x = 0.05 is seen in the 

field range up to 5 Tesla. 

 

Figure 3.3. ∆χ(T) of x = 0, 0.01, 0.025 and 0.05. The peak in ∆χ of x = 0.025 is not 

clear in the main plot and is, therefore, shown in the top-right inset. The top-left 

inset displays ∆M(B) of each sample between 1 and 5 Tesla, measured at T = 2 K.  

 

3.3.2.2 B || c 

 

Displayed in Figure 3.4 for B || c is ∆χ(T) of Sr3Ru2O7 and the three Ti-doped 

materials. ∆χ of Sr3Ru2O7 peaks at T = 17 K; a peak in ∆χ of x = 0.01 and 0.025 is 

evident at T = 10 and 8 K, respectively. ∆χ(T) of x = 0.05 is not peaked. It is therefore 
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clear that, for B || ab and for B || c, a trend exists between x and Tmax, the temperature 

at which ∆χ peaks. For both field orientations Tmax decreases as a function of x up to x 

= 0.025; ∆χ(T) of x = 0.05 is not peaked. 

 

Figure 3.4. ∆χ(T) of x = 0, 0.01, 0.025, 0.05. Shown in the inset is each ∆M(B) 

measured at T = 2 K. 

 

The inset to Figure 3.4 displays ∆M(B) of the four materials. The low-field slope of 

∆M(B) of x = 0, 0.01 and 0.025 is 0.025, 0.031 and 0.034 (µB/Ru)T-1, respectively. For 

Sr3Ru2O7 this slope is identical to the slope of ∆M(B || ab). The susceptibilities of x = 

0.01 and 0.025 extracted from ∆M(B) are lower than the equivalent ab-plane values 

by 6 % and 3%, respectively. Overall, the change in field direction considered here 

does not cause a large change in d∆M/dB of each of these materials. These 

observations imply that the low-T susceptibility of each material is likely to be 

isotropic and, hence, Pauli-like. 

 

3.3.2.3 The Influence of Intergrowths on ∆χ(T) 

 

Figures 3.3 and 3.4 show that the characteristic peak in χ(T) of Sr3Ru2O7 is shifted to 

lower temperatures as a function of Ti-doping. For B || ab these observations are in 
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qualitative agreement with the measurements of Hooper and co-workers [11]. By 

contrast, for B || c Hooper et al. observe that the characteristic peak in χ(T) is 

suppressed by a very small Ti content – when x = 0.03, they observe no peak in χ(T). 

The authors of ref. 11 suggest that the peak in χ(T) is suppressed because the 

electronic ground sate of their Ti-doped samples is dominated by ferromagnetic 

fluctuations. The discrepancy between the data in ref. 11 and that reported in the main 

part of Figure 3.4 may arise from a number of possible sources. Hooper and 

colleagues measured χ(T) of their samples with an applied magnetic field of 0.3 Tesla; 

a 1.5 Tesla field has been used for the work described in this thesis. However, the 

peak in χ(T) is expected to be depressed towards lower temperatures if the external 

magnetic field is increased and, therefore, the susceptibility peaks in Figure 3.4 

cannot be attributed to the relatively large magnetic field used in the study described 

here. 

 

Another possible source of disagreement with the data of Hooper et al. is the 

significant content of ruthenate intergrowths in the crystals referred to in this chapter; 

the authors of ref. 11 claim that their crystals contain no intergrowths. Two quantities 

that can be extracted from the plots of ∆χ(T) in Figures 3.3 and 3.4 are Tmax and 

)( maxTχ∆ . The magnetisation of the (Ti-doped) SrRuO3 and Sr4Ru3O10 phases is 

known to decrease monotonically as a function of increasing temperature: any peak in 

∆χ(T) cannot, therefore, be attributed to either of these intergrowth phases. 

Furthermore, regarding the presence of monolayer intergrowths, namely Sr2(Ru1-

xTix)O4, Minakata and Maeno [1] show that the transition temperature of the density 

wave magnetic ordering in this series increases as a function of increasing x: this 

observation cannot be reconciled with the decrease in Tmax as a function of x in 

Figures 3.3 and 3.4. Therefore, by a process of elimination, it is certain that peaks in 

∆χ(T) at T = Tmax in Figures 3.3 and 3.4 are intrinsic, rather than intergrowth-related. 

Overall, it is unlikely that the discrepancy between the susceptibility measurements in 

ref. 11 and those described here can be attributed to ruthenate intergrowth phases. 

 

The electrical resistivity of the Sr3(Ru1-xTix)2O7 crystals grown during the execution 

of this work is reported in section 3.5; ρab(T) (in zero field) of each of the Ti-doped 

materials is reported for temperatures between 0.1 and 300 K and, in addition, the 
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residual in-plane resistivity, ρab0, of each material in units of µΩcm is made clear. 

Hooper and colleagues also report ρab(T) of their crystals at temperatures below 10 K 

but report the residual resistivity of only one of their seven Ti-doped materials: ρab0 of 

their x = 0.03 material is reported to be approximately 60 µΩcm. The material with 

the most similar titanium concentration in this chapter is x = 0.025, which has a 

residual resistivity of 25 ± 2 µΩcm. Therefore, the x = 0.03 material in ref. 11 seems 

to be much more disordered than the x = 0.025 material reported here, with a residual 

resistivity approximately double the expected value (on the basis of the work in 

section 3.5). There is a possibility that the disappearance of peaks in χ(T) in ref. 11 

may be due to significant crystalline disorder. However, because Hooper et al. report 

only one value of ρab0, a clear link between the disorder of their samples and the 

suppression of the susceptibility peak cannot be proved. 

 

 

Figure 3.5 ∆χ(Tmax) as a function of the total molar percentage of SrRuO3 and 

Sr4Ru3O10 intergrowths.  

 

It also seems likely that the absolute value of Tmax in Figures 3.3 and 3.4 is not 

influenced by the presence of intergrowths, simply because a (measured) peaked χ(T) 

can be the sum of a (intrinsic) peaked χ(T) and a second (intergrowth) χ(T) which 
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decreases smoothly with temperature. Regarding absolute values of ∆χ(T), it may be 

expected that the ferromagnetic intergrowths would ‘drag down’ in value the intrinsic 

magnetisation as a function of increasing temperature (if it is assumed that the 

intrinsic and intergrowth magnetisations can be added together in series). Therefore, a 

relatively large fraction of ferromagnetic intergrowths may be expected to yield a 

relatively small value of )( maxTχ∆ . Shown in Figure 3.5 is, for x = 0, 0.01 and 0.025, 

)( maxTχ∆  as a function of the total molar percentage of SrRuO3 and Sr4Ru3O10 

intergrowths. For B || ab and B || c, )( maxTχ∆  decreases as a function of increasing 

intergrowth percentage. This trend could indicate that the ferromagnetic intergrowths 

do indeed ‘drag down’ in value the intrinsic magnetic susceptibility. On the other 

hand, it is also clear from Table 3.2 that x = 0 contains a smaller intergrowth 

percentage than x = 0.01 which, furthermore, contains a smaller intergrowth 

percentage than x = 0.025. In other words, it is impossible to de-convolute the 

intrinsic- and intergrowth-related effects on the absolute value of )( maxTχ∆ . 

 

3.3.2.4 Connection to a Spin Fluctuation Theory of Metamagnetism 

 

Hooper et al. discuss some of their observations in terms of spin fluctuations. In 

particular they refer to the observation by Capogna et al. [21] that ferromagnetic 

fluctuations found in Sr3Ru2O7 at high temperatures cross-over to incommensurate 

fluctuations at a temperature similar to Tmax. The depression to lower temperatures of 

Tmax as a function of x in ref. 11 is given as an indicator that antiferromagnetic 

fluctuations are suppressed by Ti-doping. Yamada [22] shows that a 1st order 

metamagnetic phase transition may occur in an itinerant system if ac/b2 < 9/20. It can 

be shown that this ratio is related to the macroscopic susceptibility by the following 

expression: 
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where a, b and c are the first three coefficients of the Landau expansion referred to in 

section 1.2.3.2. The Pauli susceptibility, χP, of these samples can be deduced from the 

∆M(B) data in the insets to Figures 3.3 and 3.4. It is assumed here that each ∆M(B) 
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also includes M(B) contributions from the SrRuO3 and Sr4Ru3O10 intergrowths. 

Although these are ferromagnetic materials their magnetisation does not saturate at 

fields up to 5 T. The slope of M(B) of SrRuO3 and Sr4Ru3O10 at fields above 1 T, at T 

= 2 K, is estimated to be 0.075 and 0.013 (µB/Ru)T-1, respectively [15,16]. Therefore, 

the intrinsic Pauli susceptibility of the Ti-doped samples described here is assumed to 

be: 

                         11310_43P 075.0013.0
d

)(d
FF

B

M
−−

∆
=χ ,                         (3.4) 

where 10_43F  and 113F  are the molar fractions of Sr4Ru3O10 and SrRuO3 in each 

crystal; susceptibilities are in units of (µB/Ru)T-1. )( maxTχ can be extracted from 

Figures 3.3 and 3.4:  if it is assumed that ∆χ(T) at low temperatures is dominated by 

the intrinsic contribution then )()( maxPmax TT χχχ ∆+= . Table 3.3 lists, for x = 0, 0.01 

and 0.025, ac/b2 for both field orientations. The Pauli susceptibility of each material 

has been deduced from Equation 3.4, with d(∆M)/dB taken from the insets to Figures 

3.3 and 3.4; 10_43F  and 113F  (expressed as percentages) are listed in Table 3.2. It has 

been assumed that )( maxTχ  is the sum of χP (the estimated Pauli susceptibility) and the 

uncorrected ∆χ(Tmax), displayed in the main part of Figures 3.3 and 3.4.    

 

x Field  Uncorrected 

d(∆M)/dB 

(10-2 µB/Ru)T-1 

Estimated Pχ  

(10-2 emu/Ru 

mol) 

Uncorrected 

∆χ(Tmax) 

(10-3 emu/Ru 

mol) 

Estimated 

ac/b2 

0 B || ab 2.5 1.5 21.6 0.3 

0 B || c 2.5 1.5 7.0 0.6 

0.01 B || ab 3.3 1.91 6.6 0.7 

0.01 B || c 3.1 1.72 0.9 3.6 

0.025 B || ab 3.5 2.03 0.1 36.6 

0.025 B || c 3.4 1.90 0.1 34.1 

Table 3.3. The uncorrected d(∆M)/dB,  the estimated Pauli susceptibility, the 

uncorrected ∆χ(Tmax) and the estimated value of ac/b
2
 for x = 0, 0.01 and 0.025. 

 



 74 

For Sr3Ru2O7 the condition of ac/b2 < 9/20 is not satisfied when B || c. Table 3.3 also 

indicates that ac/b2 increases as a function of Ti-doping. With B = 0.3 T || ab, Hooper 

et al. deduced ac/b2 values of 0.42, 0.80 and 6.13 for samples with x = 0, 0.005 and 

0.03, respectively. The ac/b2 values listed in Table 3.3 are in qualitative agreement 

with those in ref. 11: Ti-doping causes an increase in ac/b2 and, in the context of the 

theory of Yamada, shifts the system away from a 1st order metamagnetic phase 

transition.  

 

3.3.3 High-Doping (x  ≥ 0.075) 

 

Shown in Figure 3.6 is ∆χ(T) of x = 0.075 and 0.1, for B || c. A peak in susceptibility 

is clear at Tmax = 18 and 29 K for x = 0.075 and 0.1, respectively. When T < Tmax the 

zero-field-cooled (ZFC) susceptibility of each material falls below the field-cooled 

(FC) susceptibility. The differences in these ZFC and FC measurements imply that the 

ground state of these materials may be magnetically ordered, with a transition 

temperature of approximately 18 and 29 K for x = 0.075 and 0.l, respectively. 

 

Figure 3.6. ∆χ(T) of x = 0.075 and 0.1, with B || c. The two data have, for 

purposes of clarity, been offset from each other. The inset displays ∆χ(T) of each 

sample measured with B || ab. 



 75 

 

The inset to Figure 3.6 shows ∆χ of x = 0.075 and 0.1 with B || ab. ∆χ of both samples 

is clearly peaked, with the same Tmax seen as for B || c. No difference was observed in 

the field-cooled and the zero-field-cooled susceptibilities when B || ab: it is therefore 

clear that the ordered magnetic moment in these samples is aligned along (or very 

close to) the crystalline c-axis because, if the magnetic moment was aligned along an 

intermediate direction (i.e. some direction between ab and c), a difference in the ZFC 

and FC measurements in the c-axis and the ab-plane would be expected. Also, no 

time-dependence of the remanent moment of the low-temperature state (B || c) has 

been detected, implying that the differences in ∆χFC and ∆χZFC in Figure 3.6 are 

associated with static magnetism, rather than glassy irreversibility. 

 

The magnetic ordering in these samples could, in principle, be related to intergrowth 

phases. However, if Figure 3.6 is considered alongside heat capacity and resistivity 

data in Figures 3.8 and 3.9, respectively, it is clear that the magnetic ordering is 

associated with the majority Sr3(Ru1-xTix)2O7 phase. Moreover, neutron scattering 

measurements (referred to in section 3.7) have indicated that the wave-vector of the 

magnetic ordering in these samples has a well-defined dependence on the reciprocal 

lattice of the bilayer ruthenate phase. This is further evidence that this magnetic 

ordering is intrinsic, rather than intergrowth-related. 

 

3.4 Heat Capacity 

 

Hooper et al. observed an upturn in C/T of samples of Sr3(Ru1-xTix)2O7 (x ≠ 0) at low 

temperatures. A low-temperature upturn in C/T has also been observed in small-x 

samples of the Sr2Ru1-xTixO4 series [2]. Shown in Figure 3.7 is C/T of Sr3Ru2O7 and 

each of the Ti-doped samples as a function of temperature squared; these heat 

capacity measurements extend down to T = 400 mK, much lower than the 2 K base 

temperature in ref. 11. At temperatures above approximately 15 K C/T of each 

material is proportional to 2T . The inset to Figure 3.7 displays the constant of 

proportionality, β, in this regime; no obvious correlation between β and x is evident. 
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The electronic component of the heat capacity, Cel, is assumed to be the difference in 

the total heat capacity and the phonon contribution, such that Cel/T = C/T – β 2T . This 

quantity is displayed in Figure 3.8 for all of the samples. Cel/T of Sr3Ru2O7 rises from 

110 mJ/Ru mol K2 at 400 mK to a peak of ~ 120 mJ/Ru mol K2 at T = 7.5 K. Cel/T of 

x = 0.005 also peaks at T = 7.5 K but, in contrast to Cel/T of Sr3Ru2O7, does not settle 

to a temperature-independent value at the lowest temperatures: Cel/T of this sample 

displays a broad minimum of 110 mJ/Ru mol K2 at T = 2 K and increases to 115 

mJ/Ru mol K2 at T = 400 mK. An upturn in Cel/T of x =0.01 is also clear: a minimum 

of 110 mJ/Ru mol K2 at T = 3 K is accompanied by a rise to 120 mJ/Ru mol K2 at T = 

400 mK. Cel/T of x = 0.025 and 0.05 decrease as a function of T across the entire 

range of temperatures shown in Figure 3.8. 

 

Figure 3.7. C/T of Sr3(Ru1-xTix)2O7 as a function of temperature squared. The β 

coefficient of each sample in shown in the inset. 

 

In their study of Sr2(Ru1-xTix)O4 Kikugawa and Maeno reported a logarithmic 

divergence with temperature of Cel/T of x = 0.025. This logarithmic dependence was 

attributed to critical magnetic fluctuations. Shown in the inset to Figure 3.8 is Cel/T of 

the x = 0.025 and 0.05 samples as a function of ln(T). At temperatures between 0.4 

and 4.5 K Cel/T of both materials is proportional to ln(T) with a constant of 
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proportionality of 8.27 and 4.72 mJ/Ru mol K3 for x = 0.025 and 0.05, respectively. 

These observations clearly indicate the presence of critical magnetic fluctuations in 

the x = 0.025 and 0.05 materials. 

 

The electronic component of C/T of x = 0.075 and 0.1 is significantly smaller than 

Cel/T of the other samples; the temperature dependence of Cel/T of these two samples 

is also relatively weak. Measurements in section 3.3.3 suggested that the ground state 

of these materials may be magnetically ordered; the relatively small Cel/T of these 

materials is likely to be concomitant with any magnetic ordering. A smaller Cel/T 

implies that parts of the original Sr3Ru2O7 Fermi surface have been gapped and, 

therefore, the data in Figure 3.8 hint at the presence of a spin density wave (SDW) in 

the x = 0.075 and 0.1 materials. 

 

Figure 3.8. Cel/T of Sr3(Ru1-xTix)2O7 as a function of temperature. The inset 

shows Cel/T of x = 0.025 and 0.05 at low temperatures on a ln(T) scale. 

 

SrRuO3 and Sr4Ru3O10 both have a Sommerfeld coefficient of approximately 30 

mJ/Ru mol K2 [23, 24]: a suppression of Cel/T of the x = 0.075 and 0.1 samples may, 

in principle, arise from ferromagnetic intergrowth phases within these materials. For 

instance, 6.3 and 2.9 molar percent of Sr4Ru3O10 and SrRuO3 intergrowths, 
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respectively, have been estimated in samples of x = 0.1 (Table 3.2). If it is assumed 

that the heat capacity of these intergrowths can be added in series to the heat capacity 

of the majority phase, an approximation to Cel/T of x = 0.1 is ((91.8% × 110 mJ/Ru 

mol K2) + (9.2% × 30 mJ/Ru mol K2)) = 102 mJ/Ru mol K2. This value is only 

slightly smaller than Cel/T of undoped Sr3Ru2O7 at low temperatures. If this 

assumption of adding the heat capacities in series is maintained it is obvious that, with 

O(10%) total molar content of intergrowths, the relatively small values of Cel/T of the 

x = 0.075 and 0.1 samples cannot be accounted for by the intergrowth phases, even if 

Cel/T of these was zero. It is therefore certain that a relatively small electronic heat 

capacity is an intrinsic feature of these samples. 

 

The logarithmic divergence of Cel/T of x = 0.025 and 0.05 is qualitatively similar to 

the divergence of Cel/T of Sr2Ru1-xTixO4 (x = 0.025) measured by Kikugawa and 

Maeno. Cel/T of Sr2RuO4 at T = 400 mK is enhanced by 8 mJ/Ru mol K2 by x = 0.025 

Ti-doping [2]. For the same x value an enhancement of more than 30 mJ/Ru mol K2 

can be seen in Figure 3.8. It is therefore clear that the logarithmic divergence of Cel/T 

of some of the samples of Sr3(Ru1-xTix)2O7 cannot be attributed to Sr2Ru1-xTixO4 

intergrowths and is, therefore, intrinsic to these materials.  

 

An SDW in Sr2Ru1-xTixO4 (x = 0.09) has been detected in neutron scattering 

experiments [3] at temperatures below approximately 25 K. Cel/T of this material 

extrapolated to T = 0 K is 35 mJ/Ru mol K2; this value is slightly smaller than the 

Sommerfeld coefficient of Sr2RuO4, 40 mJ/Ru mol K2. Therefore, the suppression of 

Cel/T of x = 0.075 and 0.1 (relative to Cel/T of x = 0) displayed in Figure 3.8 is much 

larger than the suppression of Cel/T due to heavy Ti-doping into Sr2RuO4. 

 

3.5 Resistivity as a Function of Temperature 

 

Shown in Figure 3.9 is the in-plane electrical resistivity of Sr3(Ru1-xTix)2O7 as a 

function of temperature. Measurements between 4 K and 300 K were made in a 

continuous flow cryostat; temperatures below 4 K were achieved with an ADR. ρab of 

each sample varies linearly with T at high temperatures; the constant of 

proportionality is 0.77, 0.78, 0.74, 0.77, 0.76, 0.77 and 0.76 µΩcmK-1 for x = 0, 0.01, 
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0.025, 0.05, 0.075 and 0.1, respectively. A minimum in ρab(T) of x = 0.075 and 0.1 is 

evident at T = 19 K and 35 K, respectively. These temperatures are quite similar to the 

Tmax values of 18 and 29 K pertinent to the DC magnetisation of these samples 

(section 3.3.3). An inset to Figure 3.9 displays the resistivity of x = 0.05 at low 

temperatures; a minimum in ρab(T) is seen at T = 1.5 K. For those samples with x < 

0.05, dρab/dT is positive across the entire range of temperatures. The second inset to 

Figure 3.8 shows (ρab - ρab0)/T
2 (≡ A) of x = 0, 0.01 and 0.025. Although the noise 

associated with each measurement dominates at the lowest temperatures it seems 

likely that (ρab - ρab0)/T
2
 of each sample remains constant as T → 0. A increases from 

0.08 µΩcmK-2 for Sr3Ru2O7 to 0.091 and 0.099 µΩcmK-2 for x = 0.01 and 0.025, 

respectively. TFL, the maximum temperature to which the 2T  resistivity extends, is 

depressed from 8.3 K for Sr3Ru2O7 to 6.5 and 6.0 K for x = 0.01 and 0.025, 

respectively.  

 

Figure 3.9. ρab(T) of Sr3(Ru1-xTix)2O7. The left-hand inset shows ρab(T) of x = 0.05 

at low temperatures; the right-hand inset displays (ρab - ρab0)/T
2
 of x = 0, 0.01 and 

0.025 at temperatures below 20 K. 

 

It is highly probable that the upturn in ρab(T) of x = 0.075 and 0.1 is associated with 

the magnetic ordering postulated in section 3.3.3. A large resistivity at low 
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temperature is consistent with the suggestion that some parts of the Fermi surface, and 

hence some of the free carriers, of Sr3Ru2O7 have vanished. An upturn in ρab(T) of 

Sr2Ru0.91Ti0.09O4 [1] has also been observed, with the resistivity minimum of this 

material at T = 25 K, a temperature almost identical to the temperature below which 

signatures of a SDW were seen in neutron scattering experiments. Overall, the 

minimum in ρab(T) of both x = 0.075 and 0.1 in Figure 3.8 is likely to be associated 

with the onset of a SDW in these materials 

 

The minimum in ρab(T) of x = 0.05 occurs at T = 1.5 K, a temperature lower than can 

be attained with the cryogenic setup of the MPMS magnetometer. If 1.5 K is assumed 

to be approximately coincident with a magnetic ordering temperature, it is 

unsurprising that no signatures of magnetic ordering were observed in the 

magnetisation of x = 0.05 (section 3.3.2). However, the electronic component of the 

heat capacity of x = 0.05 is qualitatively different to Cel/T of x = 0.075 and 0.1. The 

upturn in ρab(T) is not, therefore, an unambiguous  indicator of magnetic ordering of 

the ground state of x = 0.05. 

 

 

3.6 Magnetoresistance 

 

3.6.1 x = 0, 0.01 and 0.025 

 

The inset to Figure 3.3 indicates that, across approximately the same region of field at 

which M(B) of Sr3Ru2O7 rises, ∆M(B) of x = 0.01 and 0.025 also rise super-linearly.  

It is desirable to look for signatures of this metamagnetism in the magnetoresistance 

of these Ti-doped samples. Shown in Figure 3.10 is the magnetoresistance 

(normalised with respect to the zero-field resistivity) of x = 0, 0.01 and 0.025 at T = 

300 mK. The magnetic field was applied parallel to the ab-planes of each crystal and 

was also parallel to the electrical current. These measurements were made in an ADR 

with the external magnetic field swept at 0.1 T/min. 

 

The lower-field peaks in ρab(B) of Sr3Ru2O7 are associated with the primary and 

secondary metamagnetic fields at 5.0 and 5.8 T, respectively; the feature centred 
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about 6.2 T is sensitive to residual in-plane resistivity and has associated with it an in-

plane magnetoresistive anisotropy (discussed in the appendix).  No sharp peaks are 

seen in the magnetoresistance of x = 0.01 or 0.025 at T = 300 mK. The data in the 

main part of Figure 3.10 are in qualitative agreement with the magnetoresistance 

measurements of Hooper and colleagues [11], who report that a small amount of Ti-

doping ‘smears-out’ the sharp features in ρab(B) of Sr3Ru2O7. Furthermore, the 

absence of any sharp features in ρab(B) of x = 0.01 and 0.025 probably indicates that 

the 1st order metamagnetic features of Sr3Ru2O7 have been suppressed.  

 

The insets to Figure 3.10 show ρab(B) of x = 0.01 and 0.025 at T = 300, 600 and 1200 

mK. Features in ρab(B) of x = 0.01 are clear at fields of 5.0 and 5.8 T but, by contrast, 

only one feature, a broad maximum, is seen in ρab(B) of x = 0.025. Increasing 

temperature from 300 to 1200 mK does not cause any major qualitative changes to 

ρab(B) of either of these materials. 

 

Figure 3.10. The magnetoresistance (B || I || ab) of x = 0, 0.01 and 0.025 at T = 300 

mK. ρab(B) of x = 0.01 and 0.025 at T = 300, 600 and 1200 mK is displayed in the 

insets. 

 

 

x = 0.01 x = 0.025 
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3.6.2 Thermal- and Disorder-Related Effects on ρab(B) 

 

If it is assumed that Ti4+ orbitals do not hybridise with the conducting Ru-O planes of 

Sr3Ru2O7, the major consequence of Ti-doping may be the reduction of the electronic 

mean free path within these planes, due to elastic scattering. A reduction of the 

electronic mean free path can also be achieved by ‘thermally broadening’ the Fermi 

surface by increasing temperature.  

 

Figure 3.11. ρab(B) of Sr3Ru2O7 at T = 6.5 K and ρab(B) of x = 0.005 at T = 400 

mK. 

 

It is desirable to compare the influence on ρab(B) of Sr3Ru2O7 of thermal- and 

disorder-related effects. Shown in Figure 3.l1 is the magnetoresistance at T = 6.5 K of 

a Sr3Ru2O7 crystal alongside ρab(B) of x = 0.005 measured at T  = 400 mK; B || I || ab 

in each case. The residual resistivity of the Sr3Ru2O7 crystal is 1.25 µΩcm and the A 

coefficient is 0.075 µΩcmK-2: at T = 6.5 K the zero-field resistivity of this crystal is 

4.4 ± 0.2 µΩcm. This resistivity is, within errors, identical to the 4.5 ± 0.2 µΩcm 

residual resistivity of the x = 0.005 crystal. In spite of the two crystals having very 

similar resistivities at zero field, the two ρab(B) are remarkably different. A peak is 

seen in both data at approximately 5.5 Tesla but, across the field range between zero 

and seven Tesla, the magnetoresistance of the x = 0.005 sample is always smaller than 
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ρab(B) of Sr3Ru2O7. It is therefore apparent that the effects of temperature and gentle 

Ti-doping on the in-plane magnetoresistance of Sr3Ru2O7 are not equivalent. 

 

3.7 Discussion 

 

The main observations reported in this chapter are: 

• A small amount of titanium doping into Sr3Ru2O7 enhances the electronic 

component of the heat capacity at low temperatures. For certain doping levels 

—x = 0.025 and 0.05— this enhancement has a ln(T) form at temperatures 

below approximately 4 K. 

• Heavier titanium doping —x = 0.075 and 0.1— causes a significant decrease 

in the electronic heat capacity at low temperatures (Figure 3.8). 

• In those samples for which x ≤ 0.05 the characteristic peak in χ(T) is shifted to 

lower temperatures as a function of x (Figures 3.3 and 3.4). 

• Magnetic irreversibility is observed in the x = 0.075 and 0.1 materials (Figure 

3.6). The temperature below which this irreversibility occurs is very similar to 

the temperature at which an upturn in the electrical resistivity has been 

measured (Figure 3.9). 

 

Much of the low-energy electronic physics of these members of the Sr3(Ru1-xTix)2O7 

series is captured remarkably well by Figure 3.8, in which the electronic component 

of the molar heat capacity is displayed. These measurements extend to lower 

temperatures and incorporate many more samples than the heat capacity 

measurements reported in ref. 11. At low temperatures Cel/T of Sr3Ru2O7 is 

independent of temperature and the Sommerfeld coefficient is 110 mJ/Ru mol K2. A 

small amount of Ti-doping induces an upturn in Cel/T at low temperatures. For x = 

0.025 and 0.05 this upturn extends over a decade of temperature down to 0.4 K and 

diverges logarithmically with temperature. A substantial reduction in Cel/T of the 

samples with heavier Ti-doping has also been observed; the temperature dependence 

of these two heat capacities is also quite weak. Overall, these observations are 

consistent with emergence of a spin density wave as a function of Ti-doping. A small 

Cel/T indicates that sections of the original Fermi surface have been gapped; a ln(T) 

contribution to the heat capacity points towards critical magnetic fluctuations. It may 
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be possible that, at a critical value of x, these magnetic fluctuations are ‘frozen’ and 

that static magnetic ordering then emerges at higher doping levels. An upturn in ρab(T) 

is observed in these samples at temperatures approximately equal to Tmax. It is notable 

that Hooper et al. also measured a low-T upturn in C/T of some of their materials but 

did not report any particular temperature dependence. Ref. 11 also reports an upturn 

in ρab(T) of an x = 0.08 sample, but the magnetic susceptibility or heat capacity of this 

sample was not reported.  

 

Spin dynamics and magnetic ordering wave-vectors can often be explored by neutron 

scattering experiments. Such experiments have been performed by Professor Markus 

Braden and Paul Steffens of the University of Cologne, to whom crystals of x = 0.075 

and 0.1 from this thesis were provided. These measurements are unpublished, so only 

minor reference is made to them here. Five of the conclusions that have emerged from 

these experiments are: (1) static magnetic ordering with an ordering wave-vector Q ~ 

(¼ ¼ 0) (in the (h k l) notation) is observed in these samples; (2) this magnetic 

ordering has a well-defined dependence of reciprocal Sr3Ru2O7 lattice out of the RuO2 

planes; (3) the ordering is much weaker out-of-plane than it is in-plane; (4) the 

temperature below which this ordering is seen is 18 and 30 K for x = 0.075 and 0.01, 

respectively and; (5) the ordered magnetic moment is aligned along the crystalline c-

axis. The second of these conclusions validates the earlier assertion that signatures of 

ordering in the DC susceptibility (Figure 3.6) are intrinsic, rather than intergrowth-

related. The latter two conclusions are also in excellent agreement with the 

measurements of χ(T). The two-dimensional nature of this magnetic ordering can 

probably be traced back to the quasi-2D structure of Sr3Ru2O7. Regarding the wave-

vector of the magnetic ordering, a similar Q was observed in magnetically-ordered 

samples of Sr3(Ru1-xMnx)2O7 studied by Mathieu and colleagues. Displayed in Figure 

3.12 for x = 0.075 and 0.1 is the elastic intensity at certain Q as a function of 

temperature. The onset of the magnetic intensity is clear in each case. Overall, the 

measurements reported in this chapter and these neutron scattering measurements 

provide unambiguous evidence for the formation of a spin density wave in x = 0.075 

and 0.1.  

 

A spin density wave in the Sr2Ru1-xTixO4 series has been accounted for in terms of 

spin fluctuations in undoped Sr2RuO4 [21] Magnetic fluctuations (arising from Fermi 
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surface nesting) with Q ~ (0.67, 0.67, 0) have been measured in Sr2RuO4. Ti-doping 

seems to ‘freeze’ these fluctuations: static magnetic ordering with Q ~ (0.67, 0.67, 0) 

has been observed in samples of Sr2Ru1-xTixO4 (x = 0.09). However, fluctuations with 

Q ~ (¼, ¼, 0) relevant to the Mn- and Ti-doped bilayer ruthenate have not been 

observed in undoped Sr3Ru2O7 [25]. Furthermore, glassy magnetic behaviour (i.e. a 

time-dependent remanent magnetisation) has been observed in small-x samples of the 

Sr2Ru1-xTixO4 series [1] but no similar behaviour has been measured for any of the of 

the Sr3(Ru1-xTix)2O7 materials reported in this work. It is therefore unlikely that the 

static magnetic ordering in samples of Sr3(Ru1-xTix)2O7 emerges in the same way as 

the ordering does in Sr2Ru1-xTixO4.  

 

Figure 3.12. The temperature dependence of the elastic intensity measured in 

neutron scattering experiments on crystals of x = 0.075 and 0.1 grown in St 

Andrews. The wave-vectors at which this intensity has been measured are 

displayed in each panel. Images courtesy of Paul Steffens and Markus Braden. 

 

The depression to lower temperatures of the peak in χ(T) is in qualitative agreement 

with the earlier work of Hooper and colleagues. In the theory of Yamada [22], a 

smaller Tmax is consistent with an enhanced Pauli susceptibility. χP, estimated from 

∆M(B), is enhanced as a function of x, for x ≤ 0.05. The sharp metamagnetic features 
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of Sr3Ru2O7 are also smeared out in field by a small amount of Ti-doping and ac/b2 is 

enhanced. These observations imply that the first-order metamagnetic physics is 

suppressed by Ti-doping.  

 

Figure 3.10 indicates that thermal effects on the in-plane magnetoresistance of 

Sr3Ru2O7 are inequivalent to the effect on ρab(B) of a small amount of Ti-doping. Spin 

fluctuations may, in principle, be the source of the difference between the two ρ(B). 

At relatively high temperatures, it is likely that electrical transport would be 

influenced by thermal population of the modes of such fluctuations.  On the other 

hand, it is not clear how such fluctuations would be influenced at low temperatures by 

quenched crystalline disorder. In light of the strong magneto-elastic coupling known 

in Ruddlesden-Popper ruthenates, a mode of the lattice cannot be ruled out as a source 

of the difference in the two ρab(B).  

 

 

                              (a)                                                                          (b) 

Figure 3.13. (a) A crystal of Sr3(Ru0.99Ti0.01)2O7, cleaved and ready for use in an 

STM experiment. (b) A topographic image of this crystal, with atomic resolution. 

Images courtesy of Dr Jinho Lee, Alfred Wang and Milan Allan. 

 

Although the orbitals of Ti4+ cations probably do not hybridise with the conducting 

Ru-O planes, Ti-doping can, nonetheless, modify the spectrum of Landau 

quasiparticles of Sr3Ru2O7. Elastic scattering from impurity atoms will mix 

eigenstates of the same energy but with different k. If eigenstates with k1 and k2 are 

mixed an interference pattern with wave-vector q = k2-k1 will appear in the 

Ti 

23nm 

1mm 
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quasiparticle wavefunction and, hence, modulations of the local density of states 

(LDOS) with wavelength λ=2π/|q| will occur. These quasiparticle interference (QPI) 

effects can, in principle, be observed by scanning tunnelling microscopy [26, 27]. 

Samples of Sr3(Ru1-xTix)2O7 referred to in this chapter have been provided to the 

research group of Professor Séamus Davis at Cornell University. In work which has 

not yet been published Dr Jinho Lee, Alfred Wang and Milan Allan have observed 

QPI effects in some of the small-x samples of this series. In contrast to the very clean 

Sr3Ru2O7 crystals in which disorder-sensitive features have been observed some 

degree of quenched crystalline disorder is desirable for QPI experiments, hence the 

suitability of the Ti-doped samples referred to in this thesis.  

 

                        (a)                                                                              (b) 

Figure 3.14. (a) The QPI pattern of a crystal of Sr3(Ru1.99Ti0.01)2O7 grown during 

the execution of the work described in this chapter. This pattern, displayed in q-

space, was obtained by Fourier-transforming the pattern of the real-space 

variation in the local electronic density of states. (b) The electronic band-

structure of undoped Sr3Ru2O7, displayed in k-space. This image was obtained in 

an ARPES experiment by Dr Felix Baumberger; the crystal on which this 

measurement was made was also grown in St Andrews, by Dr Robin Perry. 

Images courtesy of Dr Jinho Lee, Alfred Wang and Milan Allan. 

 

Displayed in Figure 3.13(a) is an image of a cleaved crystal of Sr3(Ru0.99Ti0.01)2O7; a 

topographic image of this crystal obtained in an STM experiment is shown in Figure 

3.13(b). The titanium ions are clear in this image and, furthermore, the concentration 

of these ions is in good agreement with EDX measurements (section 3.2.2). A real-
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space map of the variations in the LDOS of this material has been made; QPI effects 

have been revealed by obtaining the Fourier transform of this map. The QPI pattern 

from a crystal of x = 0.01 is compared to the Fermi surface of undoped Sr3Ru2O7 in 

Figure 3.14. These are the first observations of QPI effects in ruthenates; no QPI 

signatures were observed in previous experiments on undoped Sr3Ru2O7 or in cation-

doped Sr2RuO4. These STM experiments may shed light on the heavily-renormalised 

ground state of undoped Sr3Ru2O7 and may also reveal the origins of the spin density 

wave in the heavily-doped samples. Previous STM experiments on samples of Sr2Ru1-

xTixO4 were hindered by a surface reconstruction of the electronic structure [28]; no 

such surface reconstruction has been observed in samples of bilayer strontium 

ruthenate. Overall, STM measurements on cation-doped samples grown during the 

execution of this work, when combined with the magnetisation, heat capacity and 

transport measurements already made, are likely to reveal much information about the 

electronic physics of Sr3Ru2O7. 

 

3.8 References 

 

[1] M. Minakata and Y. Maeno, Phys. Rev. B 63, 180504 (2001)  

[2] N. Kikugawa and Y. Maeno, Phys. Rev. Lett. 89, 117001 (2002) 

[3] M. Braden, O. Friedt, Y. Sidis, P. Bourges, M. Minakata and Y. Maeno, Phys. 

Rev. Lett. 88, 197002 (2002) 

[4] K. W. Kim, J. S. Lee, T. W. Noh, S. R. Lee and K. Char, Phys. Rev. B 71, 125104 

(2005) 

[5] J. Kim, J.-Y. Kim, B.-G. Park and S.-J. Oh, Phys. Rev. B 73, 235109 (2006)  

[6] N. Kikugawa and A. P. Mackenzie, unpublished 

[7] T. He and R. J. Cava, Phys. Rev. B 63, 172403 (2001)  

[8] http://abulafia.mt.ic.ac.uk/shannon/ptable.php 

[9] S. V. Halilov, D. J. Singh, J. Minár, A. Y. Perlov and H. Ebert, Phys. Rev. B 71, 

100503 (2005) 

[10] K. Maiti, R. S. Singh and V. R. Medicherla, Phys. Rev. B 76, 165128 (2007) 

[11] J. Hooper, M. H. Fang, M. Zhou, D. Fobes, N. Dang, Z. Q. Mao, C. M. Feng, Z. 

A. Xu, M. H. Yu, C. J. O’Connor, G. J. Xu, N. Andersen and M. Salamon, Phys. Rev. 

B 75, 060403 (2007) 



 89 

[12] P. Steffens and M. Braden, unpublished 

[13] T. Hanaguri, Y. Kohsaka, J. C. Davis, C. Lupien, I. Yamada, M. Azuma, M. 

Takano, K. Ohishi, M. Ono and H. Takagi, Nature Phys. 3, 865 (2007) 

[14] J. Hoffman, K. McElroy, D-H Lee, K.M. Lang, H. Eisaki, S. Uchida and J.C. 

Davis, Science 297, 1148 (2005) 

[15] G. Cao, L. Balicas, W. H. Song, Y. P. Sun, Y. Xin, V. A. Bondarenko, J. W. 

Brill, S. Parkin and X. N. Lin, Phys. Rev. B 68, 174409 (2003) 

[16] V. Durairaj, S. Chikara, X. N. Lin, A. Douglass, G. Cao, P. Schlottmann, E. S. 

Choi and R. P. Guertin, Phys. Rev. B 73, 214414 (2006) 

[17] S. Chikara, V. Durairaj, W. H. Song, Y. P. Sun, X. N. Lin, A. Douglass, G. Cao, 

P. Schlottmann and S. Parkin, Phys. Rev. B 73, 224420 (2006) 

[18] H Nakatsugawa, E Iguchi and Y Oohara, J. Phys.: Condens. Matter 14, 415 

(2002) 

[19] A. J. Williams, A. Gillies, J. P. Attfield, G. Heymann, H. Huppertz, M. J. 

Martínez-Lope and J. A. Alonso, Phys. Rev. B 73, 104409 (2006) 

[20] B. Dabrowski, S. Kolesnik, O. Chmaissem, T. Maxwell, M. Avdeev, P. W. 

Barnes and J. D. Jorgensen, Phys. Rev. B 72, 054428 (2005) 

[21] L. Capogna, E. M. Forgan, S. M. Hayden, A. Wildes, J. A. Duffy, A. P. 

Mackenzie, R. S. Perry, S. Ikeda, Y. Maeno and S. P. Brown, Phys. Rev. B 67, 

012504 (2003) 

[22] H. Yamada, Phys. Rev. B. 47, 11211 (1993) 

[23] G. Cao, S. McCall, M. Shepard, J. E. Crow and R. P. Guertin, Phys. Rev. B 56, 

321 (1997)  

[24] G. Cao, S. Chikara, J. W. Brill, P. Schlottmann, Phys. Rev. B 75, 024429 (2007) 

[25] Y. Sidis, M. Braden, P. Bourges, B. Hennion, S. NishiZaki, Y. Maeno and Y. 

Mori, Phys. Rev. Lett 83, 3320 (1999) 

[26] http://people.ccmr.cornell.edu/~jcdavis/mK_stm/ 

[27] S. H. Pan, E. W. Hudson and J. C. Davis, Rev. Sci. Inst. 70, 1459 (1999) 

[28] B.I. Barker, S.K. Dutta, C. Lupien, P.L. McEuen, N. Kikugawa, Y. Maeno and 

J.C. Davis, Physica B 329, 1334 (2003) 

 

 



 90 

4. Sr3(Ru1-xCrx)2O7 

 

4.1 Motivation 

 

Titanium cations are probably in the nonmagnetic Ti4+ state when they are substituted 

onto the ruthenium lattice sites of Sr3Ru2O7. It is also desirable to investigate the 

influence of magnetic cations on the electronic properties of Sr3Ru2O7. Mathieu et al. 

[1] studied single crystals of Sr3(Ru1-xMnx)2O7 – manganese cations are usually stable 

as Mn3+ or Mn4+, both of which have a nonzero magnetic moment. Chromium cations 

are, likewise, usually found with a 3+ or 4+ nominal valence in perovskite TMOs. A 

decision was made to replace some of the Ru4+ ions in Sr3Ru2O7 with Cr ions. 

Chromium-doping has been reported for other perovskite ruthenates, namely SrRu1-

xCrxO3 [2,3,4] and CaRu1-xCrxO3 [3]. In this latter case only a small amount of doping 

(x ~ 0.05) was enough to promote magnetic ordering out of the paramagnetic ground 

state of CaRuO3. 

 

The valence state of a TM cation is inextricably linked to the occupation of its d 

orbitals and, hence, to its spin configuration. The importance of the orbital degree of 

freedom in TMOs was briefly referred to in section 1.1. This degree of freedom in 

many oxides has been explored in recent years by resonant X-ray scattering [5]. RXS 

experiments on crystals of Mn-doped Sr3Ru2O7 referred to in the previous paragraph 

have been made by Professor Andrea Damascelli, who suggested the substitution of 

chromium atoms into Sr3Ru2O7. Crystals referred to in this chapter have, along with 

Ti- and La-doped Sr3Ru2O7 crystals, been provided to the group of Professor 

Damascelli.  

 

4.2 Crystal Growth and Chemical Characterisation 

 

SrCO3, Cr2O3 and RuO2 powders were mixed in the ratio 3: x : 2.52(1-x) and a feed-

rod was made with the procedure described in section 2.1.2. Three crystal growth runs 
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were attempted; the nominal Cr content of batches Cr3, Cr4 and Cr5 was x = 0.01, 

0.05 and 0.1, respectively.  

 

4.2.1 X-ray Diffraction 

 

The X-ray diffraction patterns of batches Cr3 and Cr4 are dominated by the 

diffraction peaks of the bilayer phase. Batch Cr5 was not considered for further study 

because the bilayer phase was a minority constituent. Batches Cr3 and Cr4 are the 

highest quality (in terms of having the smallest fractions of SrRuO3 and Sr4Ru3O10 

impurity phases) of all the cation-doped Sr3Ru2O7 referred to in this thesis. To the 

unaided eye, the ab-planes of these crystals appear very smooth, with only minor 

distortions evident. The molar percentage of ferromagnetic intergrowths in these 

crystals is estimated in section 4.3.1. 

 

4.2.2 Energy Dispersive X-ray Analysis 

 

The concentration of chromium cations in batches Cr3 and Cr4 was deduced from 

EDX measurements; the Cr Kα peak at E = 5.41 keV was considered. It was 

determined that x = 0.0064 ± 0.0009 and 0.021 ± 0.002 for Cr3 and Cr4, respectively. 

These x values are significantly smaller than the nominal x values. A large 

discrepancy between the actual and the nominal chromium content of these crystals 

may arise from a number of sources. It is unclear how the Sr-Ru-Cr-O phase diagram 

behaves in the environment within an image furnace; Cr2O3, like RuO2, may be 

susceptible to evaporation out of the molten zone. A discrepancy between the nominal 

and measured Cr content has also been recorded in crystals of Sr2Ru1-xCrxO4 grown in 

the St Andrews image furnace. 

 

4.3 Magnetisation 

 

4.3.1 Intergrowth Contributions 

 

Using the analysis described in section 3.3.1 the molar percentages of SrRuO3 and 

Sr4Ru3O10 in each batch of Sr3(Ru1-xCrx)2O7 has been deduced. These values, listed in 
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Table 4.1, are much smaller than the intergrowth percentages in any of the Sr3(Ru1-

xTix)2O7 crystals, thus confirming the relatively high crystalline quality of these 

batches.  

 

Batch Molar Percentage of 

Sr4Ru3O10 

Molar Percentage of 

SrRuO3 

Cr3, x = 0.006 0.08 0.18 

Cr4, x = 0.02 0.31 0.05 

Table 4.1. The estimated molar percentages of SrRuO3 and Sr4Ru3O10 

intergrowths in batches Cr3 and Cr4. 

 

 

4.3.2 B || ab 

 

χ(T) of x = 0, 0.006 and 0.02 is displayed in Figure 4.1. No difference in χZFC(T) and 

χFC(T) was observed with this field orientation for any of these materials. The 

distinctive peak in χ(T) is shifted in temperature from 16 K for Sr3Ru2O7 to 15 K for x 

= 0.006. At temperatures below approximately 25 K the susceptibility of x = 0.02 is 

greater than χ(T) of x = 0 or 0.006. χ(T) of x = 0.02 peaks at T = 6 K and decreases in 

value by a relatively small amount at lower temperatures. 

 

The inset to Figure 4.1 displays the magnetisation of Sr3Ru2O7 and the Cr-doped 

samples as a function of magnetic field. A super-linear rise in M(B) of both x = 0 and 

0.006 is clear. The magnetisation of x = 0.006 rises to the same value (0.26 µB/Ru at 5 

Tesla) as M(B) of Sr3Ru2O7 but the super-linear rise in M(B) of this Cr-doped material 

is broader in field range than the equivalent feature in M(B) of Sr3Ru2O7. The 

variation with field of the magnetisation of x = 0.02 is qualitatively different to M(B) 

of  x = 0 and 0.006: M varies linearly with B at low fields but no super-linear rise in 

magnetisation is seen in the field range up to 5 Tesla. The low field slope of M(B) 

increases from 0.025 (µB/Ru)T-1 for Sr3Ru2O7 to 0.028 and 0.048 (µB/Ru)T-1 for x = 

0.006 and 0.02, respectively. 
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Figure 4.1. χ(T) of x = 0, 0.006 and 0.02, measured with B = 0.3 T.  The inset 

shows the magnetisation of each sample as a function of field at T = 2 K. 

 

4.3.3 B || c 

 

Figure 4.2 shows χ(T) of x = 0, 0.006 and 0.02 when the external magnetic field is 

parallel to the c-axis of each material. χ(T) of x = 0.006 peaks at T = 14 K, a 

temperature which is slightly less than 16 K, the temperature at which χ(T) of 

Sr3Ru2O7 peaks. In addition to the susceptibility peak a minimum in χ(T) of x = 0.006 

is observed at T ~ 8 K and, at temperatures below this, χ(T) rises as a function of 

decreasing temperature. There is no difference in χZFC(T) and χFC(T) of either x = 0 or 

0.006. A difference in the FC and ZFC magnetisation of x = 0.02 at low temperatures 

is clear: χZFC(T) is sharply peaked at T = 6 K but a much weaker temperature 

dependence of χFC(T) is observed.  The inset to Figure 4.2 clearly shows the 

difference in χZFC(T) and χFC(T) of x = 0.02, measured with a lower magnetic field. 

The peak in χZFC(T) is coincident in temperature with a change in slope (or ‘kink’) of 

χFC(T).  
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Magnetic irreversibility is indicated by the difference in the FC and ZFC 

susceptibilities of x = 0.02. It was desirable to search for signatures of this 

irreversibility in M(B). The magnetisation of the three materials as a function of field 

is displayed in Figure 4.3. As the magnetic field was swept up and then down no 

hysteresis was seen in the magnetisation of x = 0 or 0.006. By contrast, hysteresis in 

M(B) of x = 0.02 is evident; a remanence of 0.008 µB/Ru and coercive field of 0.125 

Tesla are associated with the hysteresis loop. 

 

Figure 4.2. χ(T) of x = 0, 0.006 and 0.02, measured with B = 0.3 T. The inset 

shows χ(T) of x = 0.02 at low temperatures, measured with B = 0.1 T. 

 

A peak in χZFC(T) at some temperature T* alongside a change in slope or ‘kink’ in 

χFC(T) at a temperature similar to T* may be a signature of a glassy magnetic state. 

Minakata and Maeno [6] observed these features in the susceptibility of Sr2Ru1-xTixO4 

(x = 0.025). The remanent magnetisation of this material was found to decay 

logarithmically with time, t, as t → ∞. It was therefore desirable to investigate any 

time-dependence of the remanent magnetisation of x = 0.02. The inset to Figure 4.3 

displays the remanent magnetisation of x = 0.02 at T = 2, 4 and 6 K as a function of 

time. The sample was cooled from 300 K in zero field to each temperature; an 

external field of 5 Tesla was then applied to the sample; this field was subsequently 
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reduced to back to zero and the magnetisation of the sample was then measured as a 

function of time.  It is clear that as t → ∞, Mrem(t) = Mrem(t0) –H(ln(t)), where t0 is 

some arbitrary time. H = 0.064, 0.023 and 0.004 (µB/Cr) at T = 2, 4 and 6 K, 

respectively. 

 

Figure 4.3. M(B) of x = 0, 0.006 and 0.02 at T = 2 K. The inset shows the 

remanent magnetisation of x = 0.02 as a function of time at T = 2, 4 and 6 K. 

 

4.3.4 x = 0.006  

 

It is possible that the upturn in χ(T) of x = 0.006 in Figure 4.2 is a precursor to the 

magnetic irreversibility of x = 0.02. Associated with this upturn is a 1/T temperature 

dependence; the results displayed in Figures 4.1 and 4.2 also imply that this feature is 

suppressed when the magnetic field is rotated towards the crystalline ab-planes. This 

striking upturn in χ(T) of x = 0.006 is explored here in more detail. 

 

4.3.4.1 Angular Variation of χ(T) 

 

The upturn in χ(T) of x = 0.006 is observed when B || c but not when B || ab. It was 

therefore desirable to investigate the variation with field angle, θ, of the susceptibility 
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of this material at low temperatures. For measurements in the MPMS magnetometer 

samples can be mounted within drinking straws so that the c-axis (θ = 0°) or the ab-

plane (θ = 90°) is parallel to the external magnetic field. Intermediate angles cannot 

be attained by using only drinking straws. To overcome this problem a small holder 

was made from a piece of clear, rigid plastic. One surface of this holder was cut to the 

required angle and the sample was then fixed onto this flat surface with a small 

amount of grease. The holder was subsequently placed inside the plastic straw; the 

susceptibility of the holder was comparable to the (small) magnetic susceptibility of 

the straw. 

 

Figure 4.4. χ(T) of x = 0.006 measured with the crystalline c-axis tilted at various 

angles, θ, to an external magnetic field of 0.3 T. 

 

Figure 4.4 shows χ(T) of x = 0.006 with θ = 0, 20, 45 and 90°. A minimum and 

maximum in χ(T) at Tmin = 7 K and Tmax = 14 K, respectively, are evident when θ = 

0°. As a function of angle the maximum in χ(T) is shifted in temperature by 

approximately 1 K overall, from 14 K when θ = 0° to 15 K when θ = 90°. The 

minimum in χ(T) is shifted to Tmin = 6 and 5 K when θ = 20 and 45°, respectively. 

When θ = 90° no minimum in χ(T) is seen down to T = 2 K. It is therefore clear that 
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increasing the component of magnetic field parallel to the ab-planes of the crystal 

causes a shift to lower temperatures of the minimum in χ(T). 

 

4.3.4.2 Variation of χ(T) with B 

 

Figure 4.5 shows, for various values of magnetic field parallel to the c-axis, χ(T) of x 

= 0.006. A peak in χ(T) is seen at Tmax = 14 K for all field values. A minimum in χ(T) 

at Tmin = 7.5 K is depressed to Tmin = 7, 6.5 and 5 K when B increases from 0.1 T to 

0.3, 0.6 and 1 T, respectively. When B = 2 T no minimum in χ(T) is seen. Also, no 

minimum in χ(T) occurs when larger magnetic fields up to 5 Tesla are applied (not 

shown in Figure 4.5). Overall, increasing the magnitude of the out-of-plane magnetic 

field has a qualitatively similar effect as increasing the in-plane component of 

magnetic field does, namely the depression to lower temperatures of the susceptibility 

minimum. 

 

Figure 4.5. χ(T) of x = 0.006 measured with different magnetic fields. The upper 

inset shows )(
1 TC

−−−−χχχχ at temperatures less than Tmin, measured with B = 0.1, 0.3, 0.6 

and 1 T; the slope of each trendline is 32.4 (emu/Ru mol)
-1
K

-1
. Shown in the 

lower inset is Tmin plotted against θW. 
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χ(T) is proportional to 1/T at temperatures less than Tmin. It is assumed that this 1/T 

contribution, denoted as χC(T),  acts in addition to the Pauli susceptibility, such that 

 

                                  χ(T) = χP + χC(T).                         (4.1) 

 

It is difficult to extract χP from those data in which a minimum in χ(T) is seen. 

However, when B = 2 T no minimum is seen and χ(T) extrapolated to T = 0 is 1.75 × 

10-2 emu/Ru mol, the value assumed to be χP of x = 0.006. It is also assumed that this 

susceptibility is independent of temperature and magnetic field. The inverse of χC is 

plotted against temperature in Figure 4.5. When B = 0.1, 0.3 and 0.6 T )(1
C T−χ  is 

proportional to T across the entire range of temperatures shown; the constant of 

proportionality is 32.4, 33.2 and 28.8 (emu/Ru mol)-1K-1, respectively.  

 

When B = 2 T )(1
C T−χ  is not proportional to T across the entire range because the 

minimum in χ(T) is at T = 5 K. Tmin is largest when the field is low and the 1/T 

behaviour is likely to be captured best by the 0.1 T data: a slope of 32.4 (emu/Ru 

mol)-1K-1 has, therefore, been fitted to each data. This slope fits very well to the 0.3 

and 0.6 T data and also fits the two lowest temperature points of the 1 T data.  

 

The Weiss temperature, θW, (the temperature at which )(1
C T−χ  extrapolates to zero) is 

0.1, -1.1, -3.0 and -6.6 K when B = 0.1, 0.3, 0.6 and 1 T, respectively. The trend of θW 

decreasing as a function of field is not changed when the best-fit lines to the 0.3, 0.6 

and 1T data are considered. θW for each data, deduced from the fit of 32.4(emu/Ru 

mol)-1K-1 and from the best-fit to each data is listed in Table 4.2. It is also clear that 

Tmin and θW both decrease as a function of field. The lower inset to Figure 4.5 displays 

these quantities plotted against each other; a linear trendline of Tmin = 0.4θW + 7.5 

relates these two quantities. 

 

χC(T) = G/T, where G, the inverse of the aforementioned proportionality constant, is 

equal to 0.031 ± 0.001 (emu/Ru mol)K. This contribution to the susceptibility can be 

expressed in terms of the concentration of chromium ions by multiplying this number 

by the Ru/Cr ratio in the crystal, namely 0.994/0.006: G = 5.14 ± 0.16 (emu/Cr 

mol)K. Blundell [7] shows that an effective magnetic moment associated with a 1/T 
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dependence of χ(T) can be expressed as a number of Bohr magnetons per formula 

unit, 

              Tcgs
Meff 827.2 χµ = ,                          (4.2) 

where Tcgs
Mχ is equivalent to G. It can therefore be concluded that the effective 

moment per Cr ion is 6.4 ± 0.9 µB. The uncertainty of this effective moment arises 

from the uncertainty of the Cr x value. The effective moment expected from an 

isolated Cr4+ or Cr3+ ion (assuming that the orbital moment is quenched, so 

that )1(2eff +≈ SSBµµ ) is 2.8 and 3.8 µB, respectively. The effective moment per Cr 

ion in this material is, therefore, significantly larger than the effective moment of an 

isolated chromium cation.  

 

B (T) θW (K) obtained from 

Best-Fit 

θW (K) obtained from fit to 

slope of 32.4 (emu/Ru 

mol)-1K-1 

0.1 0.07 0.07 

0.3 -0.87 -1.14 

0.6 -3.49 -3.04 

1 -10.89 -6.56 

Table 4.2. The Weiss temperature extracted from fitting )(
1 Tc

−−−−χχχχ  to (a) a slope of 

32.4 (emu/Ru mol)
-1
K

-1
 and, (b) to a best-fit slope, unique to each data. When B = 

1 T χC(T) is not proportional to 1/T over the entire range of temperatures 

between 2 and 5 K, so the best-fit was to the 2, 3 and 4 K points only. 

 

The nominal valence of the Cr cations is uncertain. For charge disorder to be 

minimised tetravalent Ru ions should be replaced by Cr4+ but, on the other hand, a 

Ru4+ + Cr4+ → Ru5+ + Cr3+ charge transfer may occur. Also, the size of the chromium 

ions relative to the ruthenium ions must be taken into account. The ionic radius of 

Cr3+ and Cr4+ is 61.5 and 55 pm, respectively; Ru4+ has a radius of 62 pm (these 

numbers are for a 6-coordinate octahedral environment). Therefore, compared to Cr4+ 

ions, Cr3+ ions will cause a smaller change to the perovskite tolerance factor.  Overall, 

if it is assumed that the orbital moment of the Cr cations is quenched, the polarisation 
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attributable to the electron fluid is 3.6 ± 0.9 or 2.6 ± 0.9 µB/Cr if the chromium 

valence is 4+ or 3+, respectively. 

 

4.4 Heat Capacity 

 

Figure 4.6 shows C/T of x = 0, 0.006 and 0.02 as a function of temperature squared. 

C/T of each sample is proportional to 2T  at high temperatures; β = 0.209 ± 0.008, 

0.232 ± 0.006 and 0.237 ± 0.008 mJ/Ru mol K4 for x = 0, 0.006 and 0.02 respectively.  

 

Figure 4.6. C/T of x = 0, 0.006 and 0.02 as a function of temperature squared. 

The inset displays Cel/T of each sample at temperatures below 15 K.  

 

Cel/T of each sample as a function of temperature is shown in the inset to Figure 4.6. 

Cel/T of x = 0 rises from a low temperature value of 110 mJ/Ru mol K2 to a maximum 

of 119 mJ/Ru mol K2 at T = 7.5 K. A broad peak is also seen in Cel/T of x = 0.006: this 

peak of 126 mJ/Ru mol K2 at T ~ 6 K is not, however, the maximum of Cel/T; a broad 

minimum is seen at T = 2.5 K and Cel/T rises as a function of decreasing temperature 

to 130 mJ/Ru mol K2 at 400 mK. Qualitatively similar behaviour is also seen in Cel/T 

of x = 0.02: a broad peak of 137 mJ/Ru mol K2 at T = 3 K alongside a minimum at T ~ 

1.5 K, followed by a rise in Cel/T to 141 mJ/Ru mol K2 at T = 400 mK. The upturn in 



 101 

Cel/T of the Ti-doped x = 0.025 and 0.05 samples was shown to diverge 

logarithmically with temperature (section 3.4). However, the upturn in Cel/T of these 

Cr-doped samples does not extend over a full decade of temperature and a ln(T) 

temperature dependence cannot be claimed. 

 

4.5 Resistivity as a Function of Temperature 

 

ρab(T) of Sr3(Ru1-xCrx)2O7 at temperatures between 0.1 and 300 K is displayed in 

Figure 4.7. The residual in-plane resistivity of x = 0, 0.006 and 0.02 is 1.2, 8 and 21 

µΩcm, respectively. The inset to Figure 4.7 shows (ρab-ρab0)/
2T  of these samples. TFL 

is depressed from 8.2 K for Sr3Ru2O7 to 5.7 K for x = 0.006. It is not certain that a TFL 

can be extracted from the x = 0.02 data because the measurement is dominated by 

noise at low temperatures. If, however, it is assumed that there is a change of slope of 

(ρab-ρab0)/
2T of x = 0.02, an upper limit of TFL is 1.4 K. The A coefficient increases 

from 0.08 µΩcmK-2 for Sr3Ru2O7 to 0.093 and 0.126 µΩcmK-2 for x = 0.006 and 0.02, 

respectively, assuming that ρab(T) of x = 0.02 is proportional to 2T  at temperatures 

below the putative TFL.  

 

Figure 4.7. ρab(T) of x = 0, 0.006 and 0.02. The inset shows (ρab-ρab0)/
2T of each 

material; the arrows point to TFL. 
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4.6 Magnetoresistance 

 

Shown in Figure 4.8 is magnetoresistance (B || I || ab) of x = 0, 0.006 and 0.02 with T 

= 400 mK. The features in ρab(B) of x = 0.006 and 0.02 are less distinctive than the 

sharp features in ρab(B) of Sr3Ru2O7. A broad peak in ρab(B) of x = 0.006 is clear at a 

field of 4.8 T; features in ρab(B) of this material are also clear at fields of 5.05 and 5.8 

T, similar to BM and BM2 of Sr3Ru2O7. The magnetoresistance of x = 0.02 passes 

through a very broad peak at 3.5 T and decreases with field above this value. The 

inset to Figure 4.8 shows ρab(B) of x = 0.006 at different temperatures: no qualitative 

changes are seen in ρab(B) as temperature is raised from 400 mK to 1200 mK. 

 

Figure 4.8. The magnetoresistance, ρab(B)/ ρab(B = 0), of x = 0, 0.006 and 0.02 at T 

= 400 mK. The inset shows ρab(B) of x = 0.006 at T = 400, 900 and 1200 mK. ρab0 

of x = 0, 0.006 and 0.02 is 1, 8 and 21 µΩcm, respectively. 

 

4.7 Discussion 

 

The main observations reported in this chapter are: 

• A relatively small amount of chromium substitution —x = 0.006— into 

Sr3Ru2O7 leads to a 1/T contribution to the magnetisation (B || c) at low 
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temperatures (Figure 4.2). This upturn in the magnetisation has associated 

with it an effective magnetic moment of more than 6 µB per chromium ion. 

• Magnetic irreversibility at low temperatures is observed in the material with a 

greater chromium concentration, namely x = 0.02. This irreversibility is time-

dependent; the remanent magnetisation decays logarithmically with time 

(Figure 4.3). 

• The Fermi liquid A coefficient is enhanced by chromium-doping; TFL, the 

maximum temperature to which the T2-resistivity regime extends, decreases as 

a function of doping (Figure 4.7). In addition, chromium substitution induces 

an upturn in the electronic heat capacity at low temperatures (Figure 4.6). 

 

The crystals of x = 0.006 and 0.02 reported in this chapter have a relatively small 

percentage of SrRuO3 and Sr4Ru3O10 intergrowths and, consequently, the reliable 

magnetisation data obtained from these crystals are the basis of much of the 

discussion provided here. Mathieu and colleagues [1] refer to the use of SQUID 

magnetometry in revealing “minor impurities of Sr2RuO4 and traces of the 

ferromagnetic Sr4Ru3O10” in their Sr3(Ru1-xMnx)2O7 crystals but do not report any 

magnetisation measurements to support their major claim, namely that Sr3Ru2O7 is 

driven into an antiferromagnetic insulating state by doping with a small concentration 

of manganese ions. The main conclusions of this chapter are supported by 

magnetisation measurements. 

 

The magnetisation of Sr3Ru2O7 is changed significantly by doping with a small 

concentration of chromium cations. The metamagnetic feature in M(B) (B || ab) of x = 

0.006 is broadened in field range with respect to the equivalent feature in the 

magnetisation of Sr3Ru2O7. No evidence of metamagnetism is seen in samples of x = 

0.02 with this field orientation. For fields parallel to the crystalline c-axis the effects 

of Cr-doping are remarkable. An upturn in χ(T) of x = 0.006 is seen at low 

temperatures; this upturn is proportional to 1/T and has an effective magnetic moment 

of more than 6 µB/Cr associated with it. The upturn is superimposed onto the main 

susceptibility peak and, hence, a minimum in χ(T) is seen in the intermediate 

temperature range. This minimum is shifted to lower temperatures when the (out-of-

plane) magnetic field is enhanced. A depression to lower temperatures of this 
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minimum is, likewise, observed when the in-plane component of field is increased, by 

tilting the crystal with respect to the external field. Magnetic irreversibility is 

observed in samples of x = 0.02 at temperatures below approximately 6 K; the 

remanent magnetisation of the low temperature magnetic state decays logarithmically 

with time. The following paragraphs give an opinion of how the susceptibility upturn 

of x = 0.006 and the glassy magnetism of x = 0.02 may arise, and how these features 

may relate to each other.  

 

It is possible that the 1/T contribution to χ(T) of x = 0.006 at low temperatures can be 

attributed to magnetic entities which interact weakly with each other, similar in some 

respects to a Curie-type 1/T susceptibility arising from non-interacting local moments.  

An effective moment of more than 6 µB/Cr implies that these entities are not isolated 

Cr cations. One possibility is that each Cr cation has an ‘island’ of magnetic 

polarisation around it. The Pauli contribution to the susceptibility of x = 0.006 is not 

less than χP of Sr3Ru2O7 and, hence, the number of Landau quasiparticles is not 

reduced by Cr-doping. Furthermore, there is no upturn in the resistivity of x = 0.006 at 

low temperatures; localisation of carriers around each Cr cation can therefore be ruled 

out. One possibility is that the ‘island’ of magnetism around each Cr cation is 

associated with a smoothly-varying polarisation of the Sr3Ru2O7 electron fluid. 

 

Blundell [7], Gehring [8] and Guimarães [9] discuss the effects of placing magnetic 

impurities into paramagnetic metals. A magnetic impurity can induce an oscillatory 

magnetisation around itself which, consequently, polarises the surrounding fluid of 

electrons. This polarisation can interact with other magnetic impurities and there is, 

therefore, a long-range interaction between the magnetic ions which is oscillatory in 

real-space – this is the Ruderman–Kittel–Kasuya–Yoshida (RKKY) interaction. This 

interaction oscillates between ferromagnetic and antiferromagnetic coupling and 

decays as a function of distance from the magnetic impurity ion.  

 

The oscillation between antiferromagnetic and ferromagnetic coupling may lead to 

magnetic frustration and the system may be unable to relax into a magnetic ground 

state: ‘freezing’ of the spins may occur at some particular temperature Tf, below 

which spins are fixed in a particular configuration. Non-reversible behaviour and, 

hence, magnetic hysteresis is a consequence of a frozen spin configuration [10]. For 
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instance, non-reversible behaviour can be seen when a very small amount (few ppm) 

manganese ions are dissolved into copper: the RKKY interaction between the Mn ions 

is mediated by the Cu conduction electrons. However, this type of scenario is not 

applicable to Sr3(Ru1-xCrx)2O7 because no hysteresis in the magnetisation of  x = 0.006 

has been observed.  

 

A magnetisation which varies smoothly in real-space can, in principle, arise from a 

susceptibility which is sharply-peaked in q-space. Sr3Ru2O7 has a zero-field Wilson 

ratio of approximately 10 and, consequently, the susceptibility is thought to be 

exchange-enhanced in the vicinity of q = 0. This exchange-enhanced susceptibility is 

a possible origin of a smoothly-varying island of magnetic polarisation around each 

Cr ion. A comparison can be made between Sr3(Ru1-xCrx)2O7 and PdFe [11,12]; 

palladium, like Sr3Ru2O7, is on the verge of a ferromagnetic instability. When iron 

impurities are alloyed into Pd 10 µB ‘giant moments’ can emerge around each iron 

ion. If it is assumed that an island of magnetic polarisation originates is centred about 

each Cr ion in the x = 0.006 material, one possible explanation of the magnetic 

irreversibility of x = 0.02 is that, above a certain doping level, these islands interact 

with each other by the RKKY mechanism. 

 

Minakata and Maeno [6] observed time-dependent magnetic behaviour in Sr2Ru1-

xTixO4, x = 0.025; an effective moment of ~ 0.5 µB/Ti was deduced. Braden et al. [13] 

suggest magnetic frustration in this material may arise from competition between 

disorder (from the Ti scattering centres) and the onset of a spin density wave (which 

is observed in heavily Ti-doped samples). Because the Ti cations in this material are 

in the nonmagnetic 4+ valence state, all of the 0.5 µB/Ti can be attributed to itinerant 

carriers. By contrast, the Cr cations Sr3(Ru1-xCrx)2O7 do have an intrinsic magnetic 

moment. If the orbital moment of the Cr cations is assumed to be quenched the 

magnetic polarisation attributable to the electron fluid is 3.6 or 2.6 µB/Cr if the 

chromium valence is 4+ or 3+, respectively. Either of these values is much larger than 

the moment given to the itinerant carriers per dopant ion in Sr2Ru1-xTixO4. Another 

major difference between the glassy magnetism of Cr x = 0.02 and that of Sr2Ru1-

xTixO4 is clear in the decay profile of the remanent magnetisation. In the notation of 

Mrem(t) = Mrem(t0) –Hln(t), Minakata and Maeno find that H is maximised when T = 

Tf. By contrast, the inset to Figure 4.3 clearly shows that H of x = 0.02 maximised at 
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low temperatures. Overall, it seems likely that the glassy magnetism of Sr3(Ru1-

xCrx)2O7 has a different origin to that of Sr2Ru1-xTixO4.  

 

An upturn in Cel/T of the Cr-doped samples is evident at low temperatures. The upturn 

in Cel/T of some of the Sr3(Ru1-xTix)2O7 was attributed to critical magnetic fluctuations 

– it is possible that the upturn in Cel/T of these Cr-doped samples can also be 

attributed to critical fluctuations. The suppression of TFL as a function of x is also 

striking. The residual in-plane resistivity of Cr x = 0.02 is ~ 25 µΩcm, comparable to 

ρab0 of Ti x = 0.025. TFL of this latter material is approximately 6 K; the putative TFL 

of Cr x = 0.02 is ≤ 1.4 K. In qualitative terms, Fermi liquid theory remains valid if 

there is a restricted region of phase space into which quasiparticles can be scattered; 

any breakdown of Fermi liquid theory may be attributed to the emergence of 

additional phase space, possibly due to critical fluctuations.  
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5. (Sr1-yLay)3Ru2O7 

 

 

5.1 Motivation 

 

Titanium and chromium cations substitute onto the ruthenium sites in the crystal 

lattice of Sr3Ru2O7. Foreign cations can also be introduced out of the conducting 

RuO2 planes. The replacement of Sr2+ ions in Sr3Ru2O7 with isovalent calcium ions 

has been reported previously [1]. Non-isovalent substitution onto the Sr sites has been 

performed in the context of Sr2RuO4: Kikugawa and colleagues [2-5] studied some of 

the electronic properties of Sr2-yLayRuO4 – lanthanum cations are known to be stable 

as nonmagnetic La3+. It was shown that one additional electron is added to the 

electronic structure for each lanthanum ion doped into the lattice – this 'electron 

doping' caused a rigid shift of the Fermi level to a higher energy, towards a van Hove 

singularity in the electronic density of states.  

 

La-doping is particularly interesting in the context of Sr3Ru2O7 because peak(s) in the 

density of states in the vicinity of EF may contribute to the metamagnetism: if the 

rigid band-shift scenario remains applicable to Sr3Ru2O7, adding electrons to the 

valence band may ‘tune’ the Fermi level towards or away from these peaks and, 

hence, cause a measurable change in the value of metamagnetic field. In addition, 

because lanthanum cations substitute out of the RuO2 planes, the rate of change of 

residual in-plane resistivity with La-doping is likely to be much less severe than the 

enhancement of ρab0 due to Ti- or Cr-doping. Results from in the previous two 

chapters indicated that doping cations onto the ruthenium lattice sites caused a 

broadening of sharp features in some of the electronic properties of Sr3Ru2O7. It was 

anticipated that lanthanum substitution into Sr3Ru2O7 would allow the evolution with 

electron-doping of some of these properties to be explored in a relatively low-disorder 

environment. This low-disorder context has been an essential basis for a key focus of 

this chapter – showing that Yamada theory does not adequately describe the 

metamagnetism of Sr3Ru2O7. 
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5.2 Crystal Growth and Characterisation 

 

SrCO3, RuO2 and La2O3 powders were mixed in the ratio 3(1-y): 2.52: 3y/2. La2O3 

absorbs water and carbon dioxide from the atmosphere so, prior to being mixed with 

the other powders, was dried in air at 1000°C; the dried La2O3 powder was then 

weighed a few minutes after being removed to room temperature. A feed rod was 

made according to the procedure described in section 2.1.2 and the conditions in the 

image furnace were unchanged from those described in section 2.1.4. Some of the 

crystal growths were unsuccessful; three batches (L2, L3 and L4) from a total of six 

were used for further study. 

 

5.2.1 X-ray Diffraction 

 

Signatures of Sr2RuO4, Sr4Ru3O10 and SrRuO3 were observed in the X-ray diffraction 

patterns of crushed crystals of L2, L3 and L4 to a similar extent as in samples of 

Sr3(Ru1-xTix)2O7. The content of ferromagnetic intergrowths in the La-doped samples 

is estimated in section 5.3.1. Also, the quasi-2D crystal structure of Sr3Ru2O7 is not 

disturbed by the lanthanum substitution described here: the c-axis lattice parameter of 

crystals of L2, L3 and L4 is unchanged from that of Sr3Ru2O7, namely 20.7 Å. 

 

 

5.2.2 Energy Dispersive X-ray Analysis  

 

Batch ya 

L3, yn = 0.005 0.0048 ± 0.0009 

L2, yn = 0.01 0.011 ± 0.002 

L4, yn = 0.02 0.019 ± 0.002 

Table 5.1. The nominal and actual lanthanum concentration of each batch of 

(Sr1-yLay)3Ru2O7. 

 

The lanthanum content of each batch was deduced from EDX measurements with a 

LaCrO3 standard; the lanthanum Lα peak at E = 4.65 keV was considered. Table 5.1 

lists the La y values of each batch. The measured and nominal y values are very 
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similar. 

 

5.3 Magnetisation 

 

5.3.1 Intergrowth Contributions 

 

An estimation of the molar percentages of SrRuO3 and Sr4Ru3O10 intergrowths of 

each crystal batch was made according to the procedures described in section 3.3.1. 

These values, listed in Table 5.2, are of the same order of magnitude as the 

intergrowth percentages in each batch of Sr3(Ru1-xTix)2O7. Furthermore, χ(T) of each 

of the (Sr1-yLay)3Ru2O7 samples measured with a field of 0.3 T was qualitatively 

similar to χ(T) of the Ti-doped samples measured with an identical magnetic field 

(shown in Figure 3.1): kinks in χ(T) of the La-doped samples were clear at 

temperatures of approximately 100 and 160 K and the susceptibility at low 

temperatures was many times greater than χ(T) of undoped Sr3Ru2O7. ∆χ(T) and 

∆M(B) of these La-doped samples is reported here (rather than χ(T) and M(B)). 

 

Batch Sr4Ru3O10 molar 

percentage 

SrRuO3 molar percentage 

L3, y = 0.005 5.0 1.7  

L2, y = 0.01 4.9 2.4 

L4, y = 0.02 2.2  2.9  

Table 5.2. The molar percentages of Sr4Ru3O10 and SrRuO3 of each of the (Sr1-

yLay)3Ru2O7 batches. 

 

 

5.3.2 B || ab 

 

∆χ(T) of y = 0, 0.005, 0.01 and 0.02 is shown in Figure 5.1. The maximum value of 

∆χ of Sr3Ru2O7 is 2.1 × 10-2 emu/Ru mol at Tmax = 16 K. The maximum of ∆χ of each 

of the La-doped samples is much smaller: 0.51, 0.49 and 0.48 × 10-2 emu/Ru mol at 

Tmax = 14, 15 and 17 K for y = 0.005, 0.01 and 0.02, respectively; the uncertainty of 
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these Tmax values is ± 0.5 K. Therefore, in contrast to the behaviour of the small-x 

samples of Sr3(Ru1-xTix)2O7, Tmax of these La-doped materials does not vary 

monotonically with doping: Tmax of y = 0.005 is smaller than Tmax of the other 

materials. 

 

Figure 5.1. ∆χ(T) of y = 0, 0.005, 0.01 and 0.02. The inset shows ∆M(B) of these 

materials at T = 2 K. 

 

The inset to Figure 5.1 shows ∆M(B) of Sr3Ru2O7 and each of the La-doped samples. 

The low-field slope of ∆M(B) also varies non-monotonically with y: this slope is 

0.025, 0.032, 0.019 and 0.017 µB/RuT-1 for y = 0, 0.005, 0.01 and 0.02, respectively. 

In addition to the metamagnetism of Sr3Ru2O7 a super-linear rise in ∆M(B) of y = 

0.005 is seen in the field range between 4 and 5 T, with BM = 4.6 ± 0.1 T. This field is 

slightly larger than BM = 4.4 ± 0.1 T of Sr3Ru2O7. At fields above approximately 4 T 

∆M(B) of y = 0.01 also rises above the trend of the low-field, linear ∆M(B). However, 

BM of y = 0.01 cannot be deduced because the entire rise in magnetisation is not seen 

within the 5 Tesla field range. No super-linear rise is seen in ∆M(B) of y = 0.02 in the 

field range up to 5 Tesla. Overall, it seems that the metamagnetic field is enhanced 

(monotonically) as a function of y; this trend has been confirmed by 

magnetoresistance measurements made with higher magnetic fields (section 5.6.1). 
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5.3.3 B || c 

 

Figure 5.2 shows ∆χ(T) of each material with B parallel to the crystalline c-axis. Tmax 

= 16.5, 15, 18 and 19.5 K for y = 0, 0.005, 0.01 and 0.02, respectively. The maximum 

value of ∆χ of y = 0, 0.005, 0.01 and 0.02 is 7.0, 2.0, 3.8 and 4.2 × 10-3 emu/Ru mol, 

respectively.  

 

Figure 5.2. ∆χ(T) of y = 0, 0.005, 0.01 and 0.02. The inset shows ∆M(B) of y = 0, 

0.005, 0.01 and 0.02 at T = 2 K. 

 

Displayed in the inset to Figure 5.2 is ∆M(B) of Sr3Ru2O7 and each of the La-doped 

samples with T = 2 K. The low-field slope of ∆M(B) of y = 0, 0.005, 0.01 and 0.02 is 

0.025, 0.034, 0.021 and 0.018 µB/RuT-1, respectively. These values are quite similar to 

the low-field slope of ∆M(B || ab) of each sample, referred to in the previous section. 

The similarity of the ab-plane and c-axis susceptibilities implies that the susceptibility 

of these materials is Pauli-like. Overall, both Tmax and the low-field slope of ∆M(B) 

vary non-monotonically with La-doping: y = 0.005 has the smallest Tmax and the 

largest value of d(∆M)/dB. These observations are in qualitatively similar to the y-

dependence of both Tmax and d(∆M)/dB measured with B || ab in section 5.3.2. 
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5.3.4 The Influence of Intergrowths on ∆χ(T) 

 

The purpose of this section is to deduce to what extent the measured ∆χ(T) are 

representative of the intrinsic χ(T) of the La-doped materials. Shown in Figure 5.3 is 

∆χ(Tmax) of y = 0.005, 0.01 and 0.02 as a function of the total molar percentage of 

SrRuO3 and Sr4Ru3O10 in each material. There is no clear correlation between 

∆χ(Tmax) and the total ferromagnetic intergrowth percentage in these La-doped 

materials. The intergrowth percentage does not vary monotonically with doping – the 

largest percentage of ferromagnetic intergrowths occurs in the y = 0.01 material. For 

B || c the relationship between ∆χ(Tmax) and y is non-monotonic (Figure 5.2): the data 

in Figure 5.3 seem to lend some support to this relationship because there is no 

apparent correlation between ∆χ(Tmax) and the total percentage of ferromagnetic 

intergrowths.  However, absolute values of ∆χ(Tmax) must be treated with caution, 

simply because it is difficult to de-convolute the intrinsic and intergrowth 

contributions to the magnetisation.       

 

 

Figure 5.3. ∆χ(Tmax) as a function of the total molar percentage of SrRuO3 and 

Sr4Ru3O10 intergrowths. 
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5.4 Heat Capacity 

 

C/T of each material as function of temperature squared is shown in Figure 5.4. For 

temperatures greater than approximately 15 K C/T of each sample is proportional to 

2T , with β = 0.202, 0.237, 0.264 and 0.224 mJ/Ru mol K4 for y = 0, 0.005, 0.01 and 

0.02, respectively. The inset to Figure 5.4 shows Cel/T of each sample at low 

temperatures. No upturn is seen in Cel/T of any of these samples at low temperatures 

and the data can be extrapolated to T = 0 K, so that the Sommerfeld coefficient of 

each material can be deduced. γ = 111, 92, 81 and 76 mJ/Ru mol K2 for y = 0, 0.005, 

0.01 and 0.02, respectively.  

 

Figure 5.4. C/T of y = 0, 0.005, 0.01 and 0.02 as a function of temperature 

squared. The inset displays Cel/T of each material as a function of temperature. 

 

The Sommerfeld coefficient of both SrRuO3 and Sr4Ru3O10 is approximately 30mJ/Ru 

mol K2 [6,7] much lower than γ of Sr3Ru2O7: the intrinsic Sommerfeld coefficient of 

the La-doped Sr3Ru2O7 samples referred to here may, in principle, be reduced in value 

by SrRuO3 and Sr4Ru3O10 intergrowth phases. If the heat capacity of these 

intergrowth phases ―the molar percentages of which are estimated in section 5.3.1— 

is assumed to add in series to the intrinsic heat capacity and if a Sommerfeld 
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coefficient of 30mJ/Ru mol K2 is assumed for both of these intergrowth phases, the 

corrected γ coefficients of y = 0.005, 0.01 and 0.02 are 97, 85 and 78 mJ/Ru mol K2, 

respectively. Overall, the clear trend between y and γ is not disturbed by accounting 

for the SrRuO3 and Sr4Ru3O10 intergrowth phases: γ decreases steadily with 

increasing y. 

 

5.5 Resistivity as a Function of Temperature 

 

ρab(T) of y = 0, 0.005, 0.01 and 0.02 between 300 and 0.1 K is shown in Figure 5.5. 

Each ρab(T) is proportional to T at high temperatures and it is also clear that the 

residual resistivity of each material is relatively low. 

 

Figure 5.5. ρab(T) of y = 0, 0.005, 0.01, 0.02. (ρab - ρab0)/
2T  of each material as a 

function of temperature is displayed in the inset. 

 

The inset to Figure 5.5 shows (ρab - ρab0)/
2T  of each material at low temperatures. 

The Fermi liquid A coefficient —the value of (ρab - ρab0)/
2T  at T = 0— decreases 

from 0.08 µΩcmK-2 in Sr3Ru2O7 to 0.074, 0.066 and 0.059 µΩcmK-2 for y = 0.005, 

0.01 and 0.02, respectively. This decrease in A as a function of cation doping is in 

contrast to the increase in A as a function of doping seen in samples of both Ti- and 
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Cr-doped Sr3Ru2O7.  ρab0 = 1.1 ± 0.1, 1.8 ± 0.2, 2.9 ± 0.3 and 4.4 ± 0.4 µΩcm for y = 

0, 0.005, 0.01 and 0.02, respectively: dρab0/dy therefore approximately 170 µΩcm/y. 

This rate of change of residual in-plane resistivity with La-doping is, as expected for 

an out-of-plane dopant, much less than the enhancement of ρab0 per dopant ion in the 

Sr3(Ru1-xTix)2O7 and Sr3(Ru1-xCrx)2O7 series. 

 

5.6 Magnetoresistance 

 

Magnetisation measurements as a function of magnetic field in section 5.3.2 hinted 

that the metamagnetic field of Sr3Ru2O7 is shifted to higher fields as a function of La-

doping. Fields up to 15 Tesla have been available in a dilution refrigerator and, 

therefore, the metamagnetism of (Sr1-yLay)3Ru2O7 has been explored by 

magnetoresistance measurements made at T = 100 mK. 

 

5.6.1 Angular Study at T = 100 mK 

 

5.6.1.1 The Variation of BM(θ) with y  

 

ρab(B) at T = 100 mK of y = 0, 0.005, 0.01 and 0.02 is shown in Figures 5.6 – 5.9. 

These measurements were made with the magnetic field swept at a rate of 0.1 T/min. 

θ = 0° corresponds to B || c-axis and the current and the field are configured so that B 

|| I when θ = 90°. The uncertainty associated with the BM values of each of these La-

doped materials is relatively small: the metamagnetic features in each ρab(B) are 

distinctive and BM is assumed to be the field value at which dρ/dB is a maximum. This 

situation is in contrast to the magnetoresistance of samples of Ti- and Cr-doped 

Sr3Ru2O7 shown in sections 3.6 and 4.6; the metamagnetic field value relevant to 

these materials cannot be deduced unequivocally because ρab(B) is ‘smeared out’ in 

field. A knowledge of an exact, unambiguous value of each BM is essential for some 

of the analysis referred to later in this chapter, the conclusions of which imply that 

Yamada theory does not account for all aspects of the metamagnetism of (Sr1-

yLay)3Ru2O7. It is emphasised here that the relatively low disorder of these La-doped 

materials is crucial to the results of the magnetoresistance studies described in this 

section and in section 5.6.2.  
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Figure 5.6. ρab(B) of y = 0 at T = 100 mK. 

 

 

Figure 5.7. ρab(B) of y = 0.005 at T = 100 mK. 
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Figure 5.8. ρab(B) of y = 0.01 at T = 100 mK. 

 

 

 

Figure 5.9. ρab(B) of y = 0.02 at T = 100 mK. 
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Figure 5.10. ρab(B) of y = 0, 0.005, 0.01 and 0.02 at T = 100 mK with  θ = 0°. The 

dashed lines are a guide to the eye. 

 

Figure 5.11. The variation with θ of BM of y = 0, 0.005, 0.01 and 0.02. Bxy is 

plotted against Bz in the inset; the elliptical fit to each data arises from Equation 

5.1. 
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It is clear in Figures 5.6 and 5.7 that, for each θ, the metamagnetic features of y = 

0.005 are shifted to higher fields than in Sr3Ru2O7. For example, when θ = 90° the 

main metamagnetic feature in ρab(B) of y = 0.005 is centred at approximately 5.5 T 

and there is a further peak in ρab(B) at 6.9 T. For Sr3Ru2O7 the corresponding values 

are 5.1 T for the primary metamagnetic field and 5.8 T for the secondary peak in 

ρab(B). The features associated with the metamagnetic features are shifted to even 

higher field values in the y = 0.01 and 0.02 samples, shown in Figures 5.8 and 5.9, 

respectively. Also, indicated with an arrow in Figures 5.7, 5.8 and 5.9 is a possible 

‘crossing point’ (B*, ρ*) at which ρab(B = B*) seems to be independent of θ. These 

crossing points are explored in more detail in section 5.6.1.2.  

 

Figure 5.10 shows ρab(B) of y = 0, 0.005, 0.01 and 0.02 when θ = 0°. The primary 

metamagnetic feature is shifted from 7.8 T for Sr3Ru2O7 to 8.1, 8.4 and 8.8 Tesla for y 

= 0.005, 0.01 and 0.02, respectively. A weaker feature in ρab(B) of Sr3Ru2O7 at B = 

9.2 T is shifted to fields of 10.4, 11.0 and 11.9 T in the y = 0.005, 0.01 and 0.02 

samples, respectively. A feature similar to the sharp peak in ρab(B) of Sr3Ru2O7 is not 

observed in the magnetoresistance of any of the La-doped materials. It is important to 

note that a peak in ρab(B) of Sr3Ru2O7 (albeit a less sharp one than in Figure 5.10) has 

previously been observed in undoped samples with a residual in-plane resistivity 

comparable to ρab0 of y = 0.005. In other words, the suppression of the sharp peak in 

ρab(B) of Sr3Ru2O7 as a function of La-doping in Figure 5.10 is not only due to 

increasing disorder, but can also be attributed to the intrinsic effects of electron 

doping. The strong influence of electron doping has also been confirmed by separate 

measurements of the AC susceptibility of a y = 0.002 sample (ρab0 = 1.1 µΩcm) by Dr 

Robin Perry [8]. 

 

The variation with θ of BM of all of the samples has been deduced from Figures 5.6 – 

5.9 and is shown in Figure 5.11. Overall, the angular dependence of the metamagnetic 

field of each material follows a single mathematical function. The angular dependence 

of BM can be expressed in terms of the in-plane and out-of-plane components of the 

metamagnetic field vector, Bxy (≡ BMsinθ) and Bz (≡ BMcosθ), respectively. These 

quantities are plotted against each other in the inset to Figure 5.11. For each y, the 

data fit very well to an ellipse with semi-major and semi-minor axes equal to Bz and 

Bxy, respectively. The equation of such an ellipse is 
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The angular variation of BM of each material is therefore 
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The anisotropy of the metamagnetism may be expressed in terms of the eccentricity, 

e, of each ellipse in Figure 5.11:  
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e decreases from 0.76 ± 0.02 for Sr3Ru2O7 to 0.72 ± 0.03, 0.69 ± 0.03 and 0.63 ± 0.04 

for y = 0.005, 0.01 and 0.02, respectively. This decrease in e implies that the 

metamagnetism becomes less anisotropic as a function of y. It should be recalled that, 

for the small lanthanum concentrations considered in this work, the crystal structure 

of Sr3Ru2O7 does not become less anisotropic as a function of La-doping (section 

5.2.1). 

 

5.6.1.2 ‘Crossing Points’ in the (B, ρab) Plane 

 

Marked with an arrow in Figures 5.7, 5.8 and 5.9 is a region of the (B, ρ) plane at 

which a ‘crossing point’ seems to occur: a point (B*, ρ*) in the plot at which many of 

the data seem to coincide. In Figure 5.7 only those data for which θ ≥ 50° coincide at 

the proposed crossing point. By contrast, the proposed crossing points in Figures 5.8 

and 5.9 are very distinctive – most, if not all, of the data seem to coincide at (B*, ρ*).  

 

(B*, ρ*) = (5.42 T, 2.21 µΩcm), (5.82 T, 3.51 µΩcm) and (6.25 T, 4.85 µΩcm) for y = 

0.005, 0.01 and 0.02, respectively. ρ* is plotted against B* in the top inset to Figure 

5.12. These two quantities are related linearly: ρ* = 3.18B* – 15.02, with the field and 

resistivity expressed in units of Tesla and µΩcm, respectively. This linear 

relationship, however, is likely to be coincidental because resistivity is a sample 
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dependent quantity. It is more appropriate to look for a relationship between B* and 

the angle-dependent metamagnetic field. Shown in the main part of Figure 5.12 for y 

= 0.005, 0.01 and 0.02 is a plot of B* against Bab, the value of BM when θ = 90°. There 

is also a linear relationship between these two quantities:  

 

                             B* = 0.593Bab + 2.149.                            (5.5) 

 

It is clear that, for y = 0.005, 0.01 and 0.02, B* is smaller than Bab. 

 

Figure 5.12. B* of y = 0.005, 0.01 and 0.02 plotted against Bab. The top inset 

displays ρ* against B* for the same samples. The lower inset displays B*(θ) of 

Sr3Ru2O7, extrapolated from the y = 0.005, 0.01 and 0.02 data. 

 

There is no crossing point in the Sr3Ru2O7 (B, ρ) plot (Figure 5.6). A putative B* for 

Sr3Ru2O7 can, however, be deduced from Equation 5.5 – when θ = 90°, B* = 5.14 T. 

Moreover, for the crossing points of y = 0.005, 0.01 and 0.02 a good fit for each θ 

between 0 and 90° is 

 

 B*(y) = X(θ)BM(θ, y)  + Z(θ),               (5.6) 
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where X and Z are the slope and intercept found when, for a given θ,  B*(y) is plotted 

against BM(y). The lower inset to Figure 5.12 shows B*(θ) found when BM(θ, y = 0) is 

substituted into Equation 5.6. To a good approximation B*(y = 0) is independent of θ 

across the entire angular range. It is also clear that this B* is slightly larger than Bab 

which, for Sr3Ru2O7 at T = 100 mK, is 5.05 T. This is in contrast to B* of the La-

doped materials, each of which is smaller than Bab. Overall, the existence of the 

crossing points in the (B, ρ) plots is apparently correlated with a relationship between 

B* and Bab. For y = 0.005, 0.01 and 0.02, B* is slightly smaller than Bab. On the other 

hand, no crossing point in the (B, ρ) plot of Sr3Ru2O7 is observed but the predicted B* 

of Sr3Ru2O7 is greater than Bab. 

 

 

5.6.2 The Influence of Higher Temperatures 

 

It was also desirable to investigate how ρab(B) varies with temperature and, therefore, 

to investigate the dependence of BM on temperature. Bab of each of the La-doped 

materials was within the 7.5 Tesla field range available in the ADR and, hence, 

measurements of ρab(B) with B || I || ab have been made. Figure 5.13 displays ρab(B) of 

y = 0.01 at T = 300, 600 and 1200 mK. The rise in resistivity associated with the 

metamagnetism is not broadened in field range significantly as temperature is raised 

from 300 mK to 1200 mK.  

 

The inset to Figure 5.13 shows the derivative of ρab(B) with respect to field in the 

vicinity of the metamagnetic feature. The peak in dρ/dB (at B = BM) is shifted from 

5.87 ± 0.01 T at T = 300 mK to 5.85 ± 0.01 and 5.79 ± 0.01 T at 600 mK and 1200 

mK, respectively: dBM/dT is clearly negative over this temperature range. 

Qualitatively similar temperature-dependence of ρab(B) (little broadening) and the 

peak in dρ/dB (negative dBM/dT ) has also been observed for y = 0.005 and 0.02. A 

similar analysis of the temperature dependence of BM of the Ti- and Cr-doped samples 

was not made in chapters 3 and 4 because the magnetoresistance of these materials 

was ‘smeared out’ in field and the exact value of BM was unclear. 
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Figure 5.13. ρab(B) of y = 0.01, measured with B || I || ab. dρ/dB in the vicinity of 

BM is displayed in the inset. 

 

 

5.7 Discussion 

 

The main observations reported in this chapter are: 

• The Fermi liquid A coefficient (Figure 5.5) and the Sommerfeld coefficient of 

the electronic heat capacity (Figure 5.4) decrease steadily as a function of 

lanthanum substitution into Sr3Ru2O7. 

• The metamagnetic field increases steadily as a function of La-doping (Figure 

5.10). 

• The metamagnetic field of the La-doped materials decreases as temperature is 

raised (Figure 5.13). 

• Both the Pauli susceptibility and Tmax, the temperature at which the magnetic 

susceptibility peaks, vary non-monotonically with lanthanum concentration. 

 

The decreases in both γ and A imply that the mass of some, or possibly all, of the 
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Landau quasiparticles decreases as a function of La-doping. Equations 1.2 and 1.5 

imply that γ and A are expected to be proportional to m* and (m*)2, respectively, so 

that A/γ2 of a Fermi liquid should be a constant, known as the Kadowaki-Woods ratio 

(KWR). However, these two equations are only valid for a single-band, isotropic 

Fermi surface. Hussey [9] provides a detailed discussion of the Kadowaki-Woods 

ratio in the context of real, correlated metallic oxides; it is shown that the KWR 

depends on unit cell volume, dimensionality, carrier density and also the number of 

bands in the Brillouin zone. 

 

Figure 5.14. γ of y = 0, 0.005, 0.01 and 0.02 as a function of A1/2
. The left inset 

displays RW as a function of y; the line is a guide to the eye. The right inset shows 

BM plotted against the inverse of the estimated value of χ(Tmax) for B || ab and B || 

c.  

 

Figure 5.14 shows the square root of A of each material plotted against γ. These two 

quantities are related by a linear fit, but the linear trendline does not pass through the 

origin. However, the KWR is known to be sensitive to carrier density, n, and A/γ2 is 

expected to be proportional to kF
-3 in two-dimensional Fermi liquids. If lanthanum 

substitution is assumed to ‘electron-dope’ the ground state of Sr3Ru2O7, kF should 

increase as a function of y. It is therefore unsurprising that the trendline in Figure 5.14 
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does not pass through the origin because the simplest form of the KWR does not 

account for changes in kF. Hussey shows a qualitatively similar plot to Figure 5.14 for 

the La1-xSrxTiO3 series, for which kF also varies with carrier doping, x. Overall, the 

data in the main part of Figure 5.14 do not imply that the theory associated with the 

KWR is invalid for the (Sr1-yLay)3Ru2O7 series, but do clearly indicate a reduction in 

the thermodynamic mass, m*, of some, if not all, of the Landau quasiparticles as a 

function of y. 

 

y χP (10-2 emu/Ru mol) γ (mJ/Ru mol K2) RW aF0  

0 1.50 ± 0.03 111 ± 3 9.9 ± 0.3 -0.898 ± 0.003 

0.005 1.77 ± 0.13 92 ± 3 13.8 ± 1.1 -0.927 ± 0.006 

0.01 1.05 ± 0.13 81 ± 3 9.3 ± 1.2 -0.892 ± 0.014 

0.02 0.91 ± 0.10 76 ± 3 8.7 ± 1.0 -0.885 ± 0.013 

 Table 5.3. The Pauli susceptibility, Sommerfeld coefficient, Wilson ratio and  

aF0  factor of each member of the (Sr1-yLay)3Ru2O7 series. 

 

Equation 1.3 indicates that the paramagnetic susceptibility of a Fermi liquid is 

renormalised by the m* term and the phenomenological ( a
01 F+ ) factor. Therefore, 

because m* seems to decrease monotonically with y, any non-monotonic variation of 

χ with doping must be accounted for by this latter factor. Listed in Table 5.3 is the 

Pauli susceptibility, the Sommerfeld coefficient, the Wilson ratio and the 

phenomenological aF0 factor of y = 0, 0.005, 0.01 and 0.02. The Pauli susceptibility of 

each material has been estimated from the insets to Figures 5.1 and 5.2 and Equation 

3.4 has been used to take account of the influence of SrRuO3 and Sr4Ru3O10 

intergrowths on the measured susceptibility. Regarding the Sommerfeld coefficient, 

account has also been taken of the relatively small electronic heat capacity of these 

intergrowth phases. All corrections to the susceptibilities and the Sommerfeld 

coefficients are incorporated within the error bars of the χP and γ values listed in Table 

5.3. The Wilson ratio is plotted against y in the left inset to Figure 5.14. RW of y = 

0.005 is significantly larger than RW of the other materials. However, a single datum 

is insufficient evidence for a true peak in RW(y). 
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The large Wilson ratio of y = 0.005 is concomitant with the relatively large Pauli 

susceptibility of this material. However, the susceptibility values were estimated from 

∆M(B) data and their reliability must be challenged. As discussed in section 1.2.4.3, 

in Yamada’s theory of itinerant metamagnetism [10,11] Tmax is proportional to a|b|/c 

and, hence, inversely proportional to the Pauli susceptibility. It was shown in sections 

5.3.2 and 5.3.3 that, for B || ab and B || c, Tmax of y = 0.005 was smaller than Tmax of 

the other materials. It was also argued in section 3.3.2.3 that Tmax is unlikely to change 

as a result of magnetic contributions from SrRuO3 and Sr4Ru3O10 intergrowths. 

Therefore, the relatively small Tmax values of y = 0.005 lend support to the large 

(estimated) Pauli susceptibility of this material. 

 

The simplest view of itinerant electron metamagnetism involves the chemical 

potential of a one-electron band being shifted by an external magnetic field through a 

peak in g(E). Tuning through a peak in g(E) was achieved by La-doping in the Sr2-

yLayRuO4 series. However, it is unlikely that the lanthanum doping in the study 

described here tunes the Fermi level through a peak in the one-electron density of 

states: the Sommerfeld coefficient, predicted to be proportional to g(E), decreases 

steadily with y. On the other hand, a larger Sommerfeld coefficient induced by other 

lanthanum concentrations cannot be ruled out, either at concentrations greater than or 

intermediate between the concentrations referred to in this work. However, in the 

context of a rigid band-shift it may be expected that kBTmax ≈ µBBM. This relationship 

is not satisfied in the series of La-doped crystals studied here: Tmax varies non-

monotonically with y while BM is enhanced monotonically as a function of y. 

 

A relationship between BM and χ-1(Tmax) in the context of the Yamada theory [11] is 

given in Equation 1.9. Displayed in the right inset to Figure 5.14 is BM as a function 

of χ-1(Tmax), for B || ab and B || c. For each field orientation a linear relationship 

between the two quantities is clear, with a slope of 0.059 ± 0.006 and 0.048 ± 0.005 

µB/Ru for the ab-plane and the c-axis, respectively. If these trendlines are extrapolated 

to χ-1(Tmax) = 0, BM is predicted to be nonzero. This observation is in sharp contrast to 

the behaviour of the metamagnetism of the cobalt and uranium compounds reported 

by Yamada and Goto: for these materials BM → 0 at some positive value of χ-1(Tmax); 

in other words, the BM-axis intercept of the plot of (BM, χ-1(Tmax) of these materials is 
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negative (this is clear in ref. 11). Therefore, the positive BM-axis intercepts predicted 

in the inset to Figure 5.14 indicate that the metamagnetism of the (Sr1-yLay)3Ru2O7 

series is not fully accounted for by the theory in refs. 10 and 11. 

 

Three of the predictions of the spin fluctuation extension to the Ginzburg-Landau 

theory of uniform magnetisation are: (1) Tmax is proportional to a|b|/c; (2) BM 

increases as a function of increasing temperature and; (3) a linear relationship exists 

between BM and χ-1(Tmax), with BM = 0 (i.e. a ferromagnetic state) occurring at some 

finite value of susceptibility. The results reported in this chapter are only in partial 

agreement with these theoretical predictions. It has been found that Tmax of these La-

doped materials is correlated with the Pauli susceptibility, with the smallest Tmax 

occurring for y = 0.005, the Pauli susceptibility of which is larger than χP of the other 

materials. However, some observations reported here are not consistent with Yamada 

theory. In particular, the metamagnetic field of these La-doped materials decreases as 

temperature is raised – qualitatively similar behaviour to this has also been observed 

for undoped Sr3Ru2O7 [12]. Furthermore, BM, which does have a linear correlation 

with χ-1(Tmax), is predicted to remain finite when χ-1(Tmax) → 0: in other words, 

metamagnetism is predicted to occur even when the susceptibility (at q = 0) diverges. 

 

The final issue discussed here is the ‘crossing points’ in Figures 5.7, 5.8 and 5.9. The 

field at which these crossing points occur, B*, is always less than Bab. No crossing 

point is observed in the magnetoresistance of Sr3Ru2O7, but a putative B* for 

Sr3Ru2O7 has been extrapolated from the y = 0.005, 0.01 and 0.02 data. This B* is 

predicted to be slightly larger than Bab of Sr3Ru2O7. On the basis of these observations 

it seems that a crossing point can occur if B* < Bab but is avoided if B* > Bab. 

However, the magnetoresistance measurements in section 5.6.1 do not shed any 

further light on the physical significance of B* and no further experimental study of 

these crossing points has been made. Morozov et al. [13] report a crossing point in the 

c-axis magnetoresistance of crystals of Bi2Sr2CaCu2O8+δ (Bi-2212) irradiated by 

heavy ions. The main consequence of this irradiation is the formation of columnar 

defects, where the superconductivity of Bi-2212 is suppressed. Bi-2212, like 

Sr3Ru2O7, is a quasi-2D material but, aside from this similarity, there is no obvious 

connection between the Bi-2212 crossing point and those shown in Figures 5.7, 5.8 

and 5.9.  



 129 

5.8 References 

 

[1] G. Cao, S. C. McCall, J. E. Crow and R. P. Guertin, Phys. Rev. B 56, 5387 (1997) 

[2] N. Kikugawa, A. P. Mackenzie, C. Bergemann, R. A. Borzi, S. A. Grigera and Y. 

Maeno, Phys. Rev. B 70, 060508 (2004)  

[3] N. Kikugawa, A. P. Mackenzie, C. Bergemann and Y. Maeno, Phys. Rev. B 70, 

174501 (2004)  

[4] N. Kikugawa, C. Bergemann, A. P. Mackenzie and Y. Maeno, Phys. Rev. B 70, 

134520 (2004)  

[5] K. M. Shen, N. Kikugawa, C. Bergemann, L. Balicas, F. Baumberger, W. 

Meevasana, N. J. Ingle, Y. Maeno, Z.-X. Shen and A. P. Mackenzie, Phys. Rev. Lett. 

99, 187001 (2007) 

[6] G. Cao, S. McCall, M. Shepard, J. E. Crow and R. P. Guertin, Phys. Rev. B 56, 

321 (1997)  

[7] G. Cao, S. Chikara, J. W. Brill, P. Schlottmann, Phys. Rev. B 75, 024429 (2007) 

[8] R. S. Perry, unpublished 

[9] N. E. Hussey, J. Phys. Soc. Jpn. 74, 1107 (2005) 

[10] H. Yamada, Phys. Rev. B. 47, 11211 (1993) 

[11] H. Yamada and T. Goto, Physica B 346, 109 (2004) 

[12] S. A. Grigera, R. A. Borzi, A. P. Mackenzie, S. R. Julian, R. S. Perry and Y. 

Maeno, Phys. Rev. B 67, 214427 (2003)  

[13] N. Morozov, L. N. Bulaevskii, M. P. Maley, J. Y. Coulter, A. E. Koshelev and 

T.-W. Li, Phys. Rev. B 60, 96 (1999) 

 

 

 

 

 

 



 130 

6. Summary 

 

The aim of this work was to shed light on some of the electronic physics associated 

with Sr3Ru2O7 by substituting foreign cations into the crystal lattice of this metallic 

ruthenate. The experimental results presented in chapters 3, 4 and 5 are the basis of a 

number of conclusions related to this aim. Furthermore, a number of ideas for future 

research have also emerged from this work. 

 

6.1 Conclusions 

 

The work in Chapter 3 indicates that a spin density wave emerges in the Sr3(Ru1-

xTix)2O7 series. Doping with a relatively small concentration of titanium cations 

suppresses the metamagnetic features in the magnetisation and magnetoresistance. 

The Sommerfeld coefficient of the heat capacity of the x = 0.025 and 0.05 materials 

was found to diverge logarithmically with temperature, hinting at critical magnetic 

fluctuations in these materials. For larger titanium concentrations a suppression of the 

Sommerfeld coefficient and an upturn in electrical resistivity imply the formation of a 

spin density wave, with the ordered magnetic moment aligned along (or close to) the 

crystalline c-axis. Neutron scattering measurements made by collaborating 

researchers have confirmed the presence of a spin density wave in these heavily-

doped materials. 

 

The effects of substituting a small concentration of chromium cations into Sr3Ru2O7 

are remarkable. A 1/T upturn in the magnetic susceptibility of the x = 0.006 material 

has associated with it an effective magnetic moment of more than 6 µB/Cr. It is 

therefore possible than an island of magnetic polarisation emerges around each Cr 

cation. An island of polarisation which varies smoothly in real space is expected to 

arise from a magnetic susceptibility which is sharply peaked in q-space, consistent 

with the idea that Sr3Ru2O7, with a low-field Wilson ratio much larger than 1, has an 

exchange-enhanced susceptibility. Time-dependent magnetic irreversibility in the x = 

0.02 material has been observed in at low temperatures: this observation suggests that 
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the RKKY mechanism may be responsible for interactions between the 

aforementioned magnetic islands. 

 

Substitution of lanthanum cations onto the strontium lattice sites of Sr3Ru2O7 allows 

the electronic ground state to be ‘electron-doped’ while the crystalline disorder is kept 

relatively low. A clear reduction in the mass of some, if not all, of the Landau 

quasiparticles as a function of La-doping has been indicated by resistivity and heat 

capacity measurements. The metamagnetic field of the (Sr1-yLay)3Ru2O7 series 

increases monotonically as a function of La-doping. On the other hand, it is probable 

that the Pauli susceptibility and Tmax vary non-monotonically with y. These 

observations rule out a description of the metamagnetism of (Sr1-yLay)3Ru2O7 by a 

model involving a rigid shift of a band through a peak in the electronic density of 

states. Also, a linear relationship between BM and χ-1(Tmax) has been found; this 

relationship is not, however, fully consistent with the theory of Yamada and Goto. 

The metamagnetic field of these La-doped materials was also observed to decrease as 

a function of increasing temperature – this observation is in contrast to the increase in 

BM as a function of temperature predicted by theory of Yamada. Overall, it is clear 

that all aspects of the metamagnetism of (Sr1-yLay)3Ru2O7 cannot be accounted for by 

Yamada’s spin fluctuation extension to the Ginzburg-Landau theory of uniform 

magnetisation.  

 

6.2 Suggestions for Future Work 

 

An issue that has not been resolved by the work described in this thesis is how the 

first-order metamagnetic phase transition of Sr3Ru2O7 evolves with cation doping. 

Magnetoresistance measurements do not indicate whether the metamagnetic features 

of the cation-doped materials have associated with them a phase transition or simply a 

crossover. Therefore, measurements of the susceptibility (AC or DC) of some of the 

cation-doped crystals referred to in this thesis at temperatures O(100 mK) would be 

interesting. 

 

The hypothesis of an ‘island’ of magnetic polarisation around each Cr cation in 

Sr3(Ru1-xCrx)2O7 (x = 0.006) is based upon the effective magnetic moment of more 
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than 6 µB associated with each chromium ion. The detection of such islands, if they 

exist in the form postulated in Chapter 4, may be possible by a technique which 

allows real-space variations in an electronic density of states to be measured, namely 

scanning tunnelling microscopy. The chromium substitution referred to in Chapter 4 

is also a source of elastic scattering and, therefore, QPI effects may also be observed 

in STM measurements on Sr3(Ru1-xCrx)2O7 samples. Quasiparticle interference due to 

elastic scattering is different to RKKY-type oscillations associated with magnetic 

impurity ions. How these separate effects coexist or compete with each other is an 

important question that future STM measurements may be able to answer. In 

particular, spin-polarised scanning tunnelling microscopy on samples of these Cr-

doped ruthenates may provide an insight into the coexistence of QPI and RKKY 

effects in a clean, narrow-band metal. 

 

As discussed in the introduction to Chapter 4, information regarding the orbital degree 

of freedom in transition metal oxides can often be provided by resonant X-ray 

scattering measurements. The orbital state in which dopant ions exist may be a source 

of the significant difference in the behaviour of the Sr3(Ru1-xCrx)2O7 materials 

reported in this thesis and the Sr3(Ru1-xMnx)2O7 samples studied by Mathieu et al., 

namely that Mn-doping causes a transition into an insulating state. Chromium cations 

can exist in perovskite TMOs as Cr3+ or Cr4+; the eg orbitals of these cations are 

nominally unoccupied. By contrast, the eg orbitals of manganese cations may be 

occupied, but only if these cations are in the Mn3+ (3d4) state. A comparison between 

RXS measurements of Sr3(Ru1-xMnx)2O7 and Sr3(Ru1-xCrx)2O7 may shed light on the 

role of the orbital degree of freedom in these materials. 

  

A striking feature associated with the (Sr1-yLay)3Ru2O7 series is the relatively large 

Wilson ratio of y = 0.005. However, a true peak in Rw(y) (left inset to Figure 5.14) 

cannot be claimed on the basis of a single datum. Therefore, it may be desirable to 

investigate members of the (Sr1-yLay)3Ru2O7 series with lanthanum concentrations 

intermediate between those already studied. A peak in Rw(y) is likely to be 

inextricable with the metamagnetism of this series, aspects of which remain 

unresolved by the work described in Chapter 5. 
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Regarding further out-of-plane cation substitution, it may be possible to dope holes 

into the electronic ground state of Sr3Ru2O7 by substituting monovalent cations, such 

as those of potassium or sodium, onto the strontium lattice sites of this ruthenate. 

Hole-doping of single crystals of Ruddlesden-Popper ruthenates has never been 

reported – issues associated with the incompatibility of starting chemicals may be 

important. A hole-doping study of Sr3Ru2O7 would provide a helpful contrast to the 

electron-doping study reported in Chapter 5 of this thesis. 

 

Another possibility for future work is an extensive investigation of the influence of 

cation doping on the electronic nematic phase of Sr3Ru2O7. Signatures of this phase in 

magnetoresistance and susceptibility measurements are suppressed by disorder. 

However, an issue that is yet unresolved is how the order parameter of this phase 

couples to crystalline disorder. Carlson et al. (Phys. Rev. Lett. 96, 097003 (2006)) 

discuss the influence that disorder has on the electronic nematicity of high-Tc 

superconductors. In particular they suggest that the random-field effects induced by 

disorder may cause certain hysteresis and noise features; these effects may be 

detectable in STM experiments. High-field STM studies of undoped Sr3Ru2O7 and 

Sr3Ru2O7 doped with a very small concentration of cations may be useful in this 

respect. 

 

 

 

 

 

 

 

 

 



 134 

Appendix 

The Magnetoresistance (B || ab) of 

Sr3Ru2O7 

 

As discussed in section 1.1, two key features associated with the emergent state of 

electronic matter in the vicinity of the metamagnetic QCEP in Sr3Ru2O7 are 

sensitivity to crystalline disorder and an in-plane magnetoresistive anisotropy. Perry 

et al. [1] studied the magnetoresistance of Sr3Ru2O7 with an external magnetic field 

parallel to the crystalline ab-planes and also discovered a disorder- and temperature-

sensitive feature in ρab(B). At T = 110 mK a distinctive hump in the 

magnetoresistance of ultrapure Sr3Ru2O7 (ρab0 = 0.55µΩcm) was observed when Bab ~ 

6 T; this feature appeared much broader when T = 320 mK and was not resolved at 

temperatures above 600 mK. Features in the DC susceptibility (dM/dB) with a similar 

sensitivity to temperature were also identified in the field range between 6 and 6.5 T. 

The unusual feature in ρab(B) in the vicinity of 6 T was not observed in a dirtier 

Sr3Ru2O7 crystal (ρab0 = 2.8 µΩcm): this sensitivity to crystalline disorder led Perry 

and co-workers to speculate that this feature may be related to incipient quantum 

criticality.  

 

The work described in this appendix relates to ρab(B) of crystals of Sr3Ru2O7 with a 

residual resistivity intermediate between ρab0 of the two crystals studied in ref. 1. All 

measurements were made in a dilution refrigerator, with the external magnetic field 

swept at a rate of 20mT/min. Figure A1 shows ρab(B) (B || I || ab) of Sr3Ru2O7 (ρab0 = 

1.15µΩcm) at T = 100, 300, 500 and 700 mK. Features in ρab(B) at fields close to 5.1 

and 5.8 T correspond to the primary and secondary metamagnetic fields, BM and BM2, 

respectively. Both of these features remain quite sharp at temperatures up to 700 mK. 

By contrast, the peak in ρab(B) centred about 6.2 T is less distinctive at higher 

temperatures: the large, narrow peak seen at T = 100 mK is broadened in field range 

and suppressed in magnitude (relative to the background magnetoresistance) at T = 
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300 mK; a broad kink in ρab(B), rather than a peak, is seen at T = 500 mK; this kink is 

less distinctive at T = 700 mK. The sensitivity to temperature of this higher-field 

feature is qualitatively consistent with work in ref. 1. It is also clear from the upper 

inset to Figure A1 that BM, assumed to be the low-field at which ρab(B) peaks, 

decreases as a function of temperature, from 5.087 T at T = 100 mK to 5.084 T at T = 

700 mK. 

 

Figure A1. ρab(B) (B || I || ab) of Sr3Ru2O7 (ρab0 = 1.15 µΩcm). The upper and 

lower insets display ρab(B) in the vicinity of BM and BM2, respectively; the dotted 

lines are a guide to the eye. 

 

∆BM, defined as BM(T = 700 mK) - BM(T = 100 mK), is listed for each crystal in Table 

A1 and also for both field-current configurations, namely IB ||  (ρ||(B)) and IB ⊥  

(ρ┴(B)). For B || I ∆BM is equal, within errors, for each of the three crystals. By 

contrast, when IB ⊥  ∆BM is always positive and decreases sharply as a function of 

increasing ρab0. However, ∆BM is equal, within errors, for the 1.6 and 2.7 µΩcm 

crystals. The relatively large ∆BM of the 1.15 µΩcm crystal cannot be ruled out as an 

outlying result, although there is no particular evidence to suggest this is true. 

 

It was also desirable to investigate how ∆BM2 (= BM2(T = 700 mK) – BM2(T = 100 
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mK)) varied with temperature. The lower inset to Figure A1 shows ρ||(B) of the 1.15 

µΩcm crystal in a limited range of field near BM2, which increases from 5.8 T at T = 

100 mK to 5.855 T at T = 700 mK. ∆BM2, for both field-current orientations and for 

each of the three crystals, is listed in Table A2. For both orientations ∆BM2 is positive 

and, within errors, is independent of residual resistivity. ∆BM2 is significantly larger 

for ρ||(B) than for ρ┴(B). 

 

ρab0 (µΩcm) ∆BM (T) for ρ||(B) ∆BM (T) for ρ┴(B) 

1.15 -0.003±0.002 0.033±0.004 

1.6 -0.005±0.002 0.012±0.003 

2.7 -0.004±0.002 0.010±0.005 

Table A1. ∆BM of the three Sr3Ru2O7 crystals. 

 

 

ρab0 (µΩcm) ∆BM2 (T) for ρ||(B) ∆BM2 (T) for ρ┴(B) 

1.15 0.055±0.008 0.013±0.004 

1.6 0.055±0.005 0.016±0.006 

2.7 0.059±0.007 0.011±0.005 

Table A2. ∆BM2 of the three Sr3Ru2O7 crystals. 

 

For IB ⊥  the variation of ∆BM2 with ρab0 is of particular interest in the context of 

∆BM (with the same field-current alignment). ∆BM ( IB ⊥ ) of the 1.15 µΩcm sample 

is much larger than ∆BM of the other two samples. However, on the basis of the three 

given values, any claim of a dependence on residual resistivity must be treated with 

caution: the large ∆BM of the cleanest sample may be anomalous. The numbers in the 

final column of Table A2 do, however, lend support the numbers in Table A1: ∆BM2 

(for ρ┴(B)) of the 1.15 µΩcm crystal does not seem to be anomalous with respect to 

∆BM2 (ρ
┴(B)) of the dirtier crystals. In principle the ∆BM2 (ρ

┴(B)) value of the 1.15 

µΩcm crystal may also be anomalous (and there may, therefore, be a genuine 

sensitivity of  ∆BM2 to ρab0, not revealed in the final column of Table A2) but this is 

improbable. It is unlikely, although not impossible, that some unknown factor could 

be responsible for inducing a false ρab0-dependency into the ∆BM data yet could 



 137 

exactly cancel out an intrinsic ρab0-dependence in the ∆BM2 data. Overall, the 

observation that ∆BM2 is independent of residual resistivity implies that the 

observation of a ρab0-dependent ∆BM is likely to be (but not certain to be) genuine. 

 

Figure A2. ρ||(B)  of three different Sr3Ru2O7 crystals at T = 100 mK. The inset 

displays ρ||(B) and ρ┴(B) of the 1.15 µΩcm crystal, also at T = 100 mK. 

 

Figure A2 shows ρ||(B) of three different Sr3Ru2O7 crystals at T = 100 mK. Peaks in 

ρab(B) of each crystal at B ~ 5.1 and 5.8 T are clear. The high-field peak in ρ||(B) of 

the 1.6 µΩcm sample, centred at 6.2 T, is broadened with respect to the equivalent 

peak in ρ||(B) of the 1.15 µΩcm sample. A kink, rather than a peak, in ρ||(B) of the 2.7 

µΩcm sample is also seen at 6.2 T. It is therefore clear that the feature in ρ||(B) 

centred about Bab = 6.2 T is ‘washed away’ by crystalline disorder. This observation 

is consistent with the earlier study in ref.1. 

 

ρ┴(B) and ρ||(B) of the 1.15 µΩcm crystal at T = 100 mK is shown in the inset to 

Figure A2. Sharp peaks in ρ(B) are evident at fields of 5.1 and 5.8 T for both field 

orientations but the distinctive peak in ρ||(B) at 6.2 T is suppressed when the in-plane 

magnetic field is aligned perpendicular to the current. Although the electronic mean 
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free path of this crystal is approximately 2.5 times less than the ultraclean crystals 

studied in ref. 2 an in-plane magnetoresistive anisotropy is still observed. 
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