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Summary

This paper proposes a unified framework for defining and fitting stochastic, discrete-time,
discrete-stage population dynamics models. The biological system is described by a state—
space model, where the true but unknown state of the population is modelled by a state
process, and this is linked to survey data by an observation process. All sources of un-
certainty in the inputs, including uncertainty about model specification, are readily incor-
porated. The paper shows how the state process can be represented as a generalization of
the standard Leslie or Lefkovitch matrix. By dividing the state process into subprocesses,
complex models can be constructed from manageable building blocks. The paper illus-
trates the approach with a model of the British Grey Seal metapopulation, using sequential
importance sampling with kernel smoothing to fit the model.
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1. Introduction

Wildlife populations are highly structured stochastic systems, about which there is usu-
ally incomplete information. Nevertheless it is often important to make inferences about
the system, for example when the population is of economic or conservation concern and a
management or policy decision must be made. Constructing and fitting mathematical models
of the population can greatly aid the decision-making process, first by allowing hypotheses
about the populations to be tested against the observed data, and second by predicting the
consequences of the possible decisions, and uncertainty about these consequences.

Traditional approaches to wildlife population modelling involve constructing a model
based on assumptions about the system and then fixing the model parameters based on avail-
able information. Model outputs are then determined analytically or via computer simulation.
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Analytic methods can be applied only to relatively simple (often deterministic) models, but
have the advantage that they can produce results that help understanding of the general behav-
iour of the model (e.g. whether the population cycles or is chaotic). Simulation can be applied
to more realistic models, but it produces only specific results (e.g. predicted trends in abun-
dance or time to extinction). The two approaches are therefore often seen as complementary.

A major limitation of these approaches is that there is no formal way of accounting
for uncertainty in the inputs, or representing uncertainty about the conclusions. Uncertainty
arises from two sources. First, the input parameter values are rarely known absolutely —
instead, they come from separate analyses of survey data when these are available, or ex-
pert opinion when they are not. Second, the model structure is rarely completely based on
proven mechanism — rather, it represents an attempt to construct a parsimonious, robust and
tractable characterization of the system under study. In the traditional approaches, parameter
uncertainty is addressed through ad hoc ‘sensitivity analysis’, which quantifies the influence
on outputs of varying the input values. Model uncertainty, when considered at all, is treated
in a similar way (by trying different models and observing the changes in results). However,
failure to adequately account for uncertainty can have drastic consequences (e.g. Ludwig,
Hilborn & Walters, 1993; Wood & Thomas, 1999).

Here, we propose a framework for embedding stochastic population dynamics models
into statistical inference. Determining model outputs then becomes a statistical prediction
problem, where uncertainties in inputs translate into confidence limits (or other measures)
on outputs. All sources of uncertainty, including model uncertainty (Buckland, Burnham &
Augustin, 1997; Hoeting et al., 1999), can be readily incorporated.

Our approach extends the population projection matrix models described by Caswell
(2001, 2005), in three respects. First, to a model for population dynamics we add an explicit
observation model which connects measurements on the population to the underlying state
of the population. We then define a joint likelihood which is used to fit both models simul-
taneously. Second, we specify the population dynamics model using a separate model for
each population process (e.g. birth, death, migration, age incrementation, etc.). These sepa-
rate subprocess models can be chained together to produce the overall population dynamics
model. This separation into subprocesses provides a simple framework for building complex
models. Third, the subprocess models can be represented in matrix form, as expectations with
attached stochastic errors, but they can also be represented as probability density functions
(pdfs). The matrix form is more familiar to many biological scientists and this representation
can be used to facilitate model building. However, in some cases it is only approximate, and
the pdf form is always used in fitting the models.

The proposed framework is made possible by recent advances in computer-intensive
statistical inference (e.g. Doucet, de Freitas & Gordon, 2001; Liu, 2001), and builds on pre-
vious developments in this direction in the fields of fisheries management (e.g. Mendelssohn,
1988; Schnute, 1994; Punt & Hilborn, 1997; Newman, 1998; Meyer & Millar, 1999), ma-
rine mammals (Raftery, Givens & Zeh, 1995), deer (Trenkel, Elston & Buckland, 2000) and
birds (Besbeas et al., 2002; Besbeas, Lebreton & Morgan, 2003; Besbeas, Freeman & Mor-
gan, 2005).

In Section 2, we describe the modelling framework, and outline a method of fitting the
models. We then give an example: that of the British Grey Seal metapopulation. Lastly, we
discuss some future areas of research. Buckland et al. (2004) give more mathematical details,
and outlines of example applications.
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2. Modelling framework

We describe the system using a state—space model (Harvey, 1989; Durbin & Koopman,
2001) which divides the system into two linked processes: a state process and an observa-
tion process. The state process describes the true, but unknown, state of the population at
successive time steps, while the observation process links the unknown states to data on the
population recorded during surveys or experiments. The advantage of this framework is that
it allows modelling of biologically plausible population processes and estimation of the key
biological parameters, while at the same time explicitly recognizing the uncertainties involved
in the data collection.

2.1. State process

In its simplest form, the state process is simply a deterministic population projection

matrix, such as a Leslie matrix (Leslie, 1945, 1948; Caswell, 2001),
n,=1Ln,,,
where n, is a vector representing numbers of animals by category in year ¢, and L is the
Leslie matrix that updates n,_; to n,. The standard Leslie matrix handles just the population
processes of birth (through birth rates on the first row) and death (through survival probabilities
on the sub-diagonal) in addition to incrementing ages, although it can readily be extended to
incorporate other processes such as movement (Caswell, 2001). In simple models, elements
of n correspond to numbers of animals by age class and perhaps sex, but in more complex
models n can include numbers in different populations of a metapopulation, different species,
different genotypes, etc. If animals are categorized by developmental stage, rather than age,
the matrix is usually referred to as a Lefkovitch matrix (Lefkovitch, 1965; Caswell, 2001).
To extend this formulation to allow a stochastic state process we write

Em,|n,_;)=1Ln,_,,
where E(n, |n,_,) is the expected value of n,, given n
term average effect of a set of stochastic processes.

For complex models, it is often helpful to split the state process into a series of subpro-
cesses, each of which is defined as a separate matrix. The process model can then be written as
the matrix product of the subprocess matrices. By selecting appropriate subprocess matrices
and their ordering, a wide range of biological processes can be modelled. Partitioning the
model in this way also allows attention to be focussed on one particular subprocess in isola-
tion, allowing alternative theories for the subprocess structure to be more readily generated
and tested.

As an example, consider a stage-structured metapopulation in which the principal sub-
processes are breeding in the spring, summer survival, migration among populations in the
autumn, overwinter survival and finally possible incrementation to the next stage. These can
be represented by the matrices B, S, M, W and A respectively. Assume that there is an
early winter harvest each year of a known number of individuals, ¢, (assumed to occur between
the migration and winter survival subprocesses). The state process can be summarized as

,—1-and L now describes the long-

E(n,|n,_)) = AWMSBn,_| —c,).
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In this matrix formulation, the expectation E(n, | n,_) is exact only when the expected
states of the population after each subprocess are a linear combination of the states after the
previous subprocess —e.g. Bn,_ should have elements each of which is a linear combination
of the elements of n,_ . Otherwise, the expectation is an approximation. This does not detract
from its use as a tool to aid model definition and explanation.

The exact representation of the state process is given by defining each stochastic subpro-
cess as a pdf, with a known distribution. The evolution from n,_, to n, is then described by a
series of linked pdfs, where the input to one pdf is the output from the previous one. From the
above example, the full state process distribution, n, 4 H,(n,_,), comprises the following
subprocesses:

d d d
u, = Hy(n,_,), u, = Hy, ), u,, =H,(uy)

d d
u,=H,®uw, —c) n,=H,@u,,),

where u, is a realization of the state vector after subprocess x at time ¢ and H, () is the
distribution defining subprocess x, given the input state u , .

2.2. Observation process

In general, we have some observational data on the population of interest which can be
used to make inferences about the state of the population. These data may come from a variety
of sources, and are not necessarily collected on a regular basis. The observation process is a
stochastic function that maps the data onto the underlying, unknown states. In matrix form,

E(y, luy,)=0um,,
where y,, represents data collected after subprocess x has occurred and O, is the observation
matrix. Generally, when there is only one measurement per time period, the state process is
set up so that this measurement coincides with the time period ¢. The observation process
usually is stochastic, but can be deterministic. For example, if a complete census is taken at
time ¢, without attempting to distinguish components of the population, then the observation
process simply sums all the components of #, .

2.3. Fitting the models

The complete state—space model can be written as a set of three pdfs:

go(ny | ©®) initial state distribution
g/(n, | n,_;,®) state process distribution
iy, I n, 0) observation process distribution,

where ®, the vector of model parameters, was not written explicitly in the previous sections,
and is often implicit in what follows. The state process distribution is first-order Markov: the
distribution of n, is dependent only on n,_,; (and the model parameters), and not on the state
in any previous time periods. The formulation readily extends to higher orders.

We wish to make inferences about n, or ® or both, given the data. For example, for
in-season management of a harvested population, we may wish to make statements about the
current state of the population given all of the data up to the current time period, g(n, | y"),
where y' = (y,...,y,). For retrospective assessment, we may wish to make statements
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about the past state of the population given all of the data up to the current time period,
g(n| y") where s < t. Lastly, we may want to evaluate future management scenarios by
predicting the future state of the population, g(n, | y") where s > t. These three pdfs are
referred to as filtered, smoothed and predicted distributions, respectively.

Evaluating these pdfs requires integration — in particular, integrating over all or some
portion of the state process distribution (Pitt & Shephard, 1999). In some special cases, an-
alytic solutions are available. Specifically, if both the state and observation processes are
linear in the parameters and have normal densities then the Kalman filter algorithm can be
used (Harvey, 1989). This approach has been applied with success to several ornithological
time series by Besbeas et al. (2002, 2003). However, many models of interest in wildlife and
conservation are neither linear nor normal. In these cases, Monte Carlo inference procedures
can be used. These procedures can be divided into two general classes: Markov chain Monte
Carlo (MCMC; Gilks, Richardson & Spiegelhalter, 1996) and sequential importance sampling
(SIS; Doucet et al., 2001), although there is considerable overlap between the classes (Liu,
2001). Here we focus on SIS and briefly describe the basic algorithm, followed by some
refinements used in the example.

2.4. Sequential importance sampling

The basic SIS algorithm is the weighted bootstrap of Smith & Gelfand (1992). We begin
by defining a joint prior distribution on the parameters and initial states. We simulate a large
number, J, of initial parameter and state vectors from the prior. Each pair of state and parameter
vectors (ng] ], ©®U) is called a ‘particle’. We then stochastically project each particle forward
to the first time period using the state process distribution, so that n[lj 14y | (ngj ], O, The
particle density then gives an estimate of the predicted state distribution g(n, | yo). To esti-
mate the filtered state distribution g(n, | y'), we use the observation process distribution to
calculate a likelihood weight

1 f] (.V1 | ”El]» G)U])
1 = ; )
YL iy [ a6l

ey

and then take a weighted resample from the particles. This process is then repeated for sub-
sequent time periods, first using the state process distribution to project forward to the next
time period and then ‘correcting’ the resulting predicted state distribution using the weighted
resample, with weights calculated according to the observation process. This yields estimates
of the filtered state and parameter density at each time point. The parameter density at the
final time point is an estimate of posterior parameter density given all the data.

In practice, the basic algorithm is unreliable, because of a phenomenon known as ‘particle
depletion’. In the weighted bootstrap step, particles with relatively large weights tend to be
chosen many times, while those with small weights tend not to be chosen at all. Therefore,
over time, a few of the initial particles come to dominate the particle set, resulting in a very
inaccurate representation of the posterior state and parameter densities. Particle depletion
becomes worse as the time series of observations gets longer, and within each time step the
problem is worse when the variance of the bootstrap weights is high.

Many strategies are available to help circumvent this particle depletion problem (see
papers in Doucet et al., 2001; Liu, 2001). We used three strategies in the example presented
in this paper, and we briefly outline them below.
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First, we used kernel smoothing of the parameter vectors at each time step, as proposed
by West (1993) and Trenkel et al. (2000). This adds a small perturbation to the parameter
values of each particle selected at the resampling stage. The effect is to increase the diversity
of parameter values in the vicinity of parameter space supported by the data. The degree
of perturbation is controlled by a smoothing parameter, a, where a = 0 corresponds to no
smoothing (i.e. the non-parametric weighted bootstrap of Smith & Gelfand, 1992) and a = 1
corresponds to a parametric weighted bootstrap, where the parametric form is determined by
the choice of kernel. We found that moderate smoothing of @ = 0.7 produced consistently
reliable results using a multivariate normal kernel with shrinkage to preserve the mean and
variance—covariance structure of the parameter estimates.

Second, we used the auxiliary particle filter of Pitt & Shephard (1999). Here, an initial
‘auxiliary’ resample is taken from the population at time ¢, with weights calculated according
to the expected likelihood of the states at time ¢ + 1, given the data at # 4 1. This resampled
set of particles is then projected forward from time ¢ to time ¢ + 1, and ‘corrected’ using
likelihood weights just as with the bootstrap filter, except that the likelihood weights must
take account of the auxiliary resampling stage. The effect of the auxiliary resampling is to
boost the number of particles that are expected to be projected into the vicinity of parameter
and state space supported by the data. This reduces the variance of the likelihood weights,
and reduces the effect of particle depletion. Auxiliary particle filtering combined with kernel
smoothing of parameters was first suggested by Liu & West (2001).

Third, we used residual sampling (Liu & Chen, 1998) rather than simple random sampling
at the weighted resampling stages. Residual sampling gives the same expected distribution of
particles as simple random sampling, but has smaller Monte Carlo variance.

3. Example: British Grey Seals

The British population of the Grey Seal (Halichoerus grypus) provides an interesting case
study for scientific management. The species breeds colonially, mostly on offshore islands to
the north and west of Scotland. Grey Seals spend over 80% of their time at sea (McConnell
et al., 1999), and 90% of this time underwater (Thompson et al., 1991) — as a result it is
extremely difficult to survey the entire population. The only component that can be readily
counted are pups during their first three weeks of life, when they spend almost all of their
time ashore at the breeding colonies. All of the major breeding colonies have been surveyed
from the air in almost every year since 1962, although survey methods were changed some-
what after the tragic death of the field crew in a plane crash in 1983. The aerial surveys are
used to produce annual colony-specific estimates of pup production (Hiby & Duck, in press).
Estimated pup production has increased at an approximately exponential rate of 6% per year
since records began, although individual breeding colonies have exhibited diverse dynamics,
including fluctuations around exponential or logistic increases, decreases to extinction and a
few new colonizations (Hiby & Duck, in press). Since seals eat fish, the overall increase is of
great concern to Scottish fishermen and others.

Here, we present a preliminary model of the Grey Seal metapopulation dynamics for
the period 1984-2000. In this model, we have aggregated the colonies into four geographi-
cally distinct regions: North Sea (4 colonies), Inner Hebrides (19 colonies), Outer Hebrides
(11 colonies) and the Orkneys (22 colonies); these are sometimes indexed 1-4 below. Our
first objectives were to find out if important population parameters could be estimated based
on pup production data alone, and to test whether a model for density-dependent migration
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could account for the observed pattern of metapopulation dynamics. Such a model has been
proposed by Ruxton & Rohani (1999) and there is some genetic evidence that it may apply
to British Grey Seals (Gaggiotti et al., 2002). Adult female seals show strong philopatry
(Pomeroy, Twiss & Redman, 2000), so any density-dependent migration would most likely
occur when young females recruit to the breeding population. Our ultimate objective is to
predict the long-run stationary distribution of seals by colony.

3.1. Model formulation

Grey Seals breed colonially in the autumn, when breeding females produce a single off-
spring. After weaning, both pups and adults disperse and may travel large distances during the
rest of the year to forage (McConnell et al., 1999). Female offspring recruit to the breeding
population at about five years old. Grey Seals are polygynous, with mating occurring at the
breeding colonies towards the end of the breeding season.

The time step for the process model is 1 year, beginning just after the breeding season.
The state vector is of length 7 for each region, representing pups (n,), age 1 females (n,)
through to age 5 females (n5), and then age 6 and older females grouped into a single category
(ng,). In general, n ,, represents the number of seals of age a in region r at time 7.

The process model is divided into four subprocesses: survival, age incrementation, move-
ment and breeding. These can be represented in matrix form by the matrices S,, A, M, and
B, respectively (Table 1). The process model can be written

E(n,|n,_)) =BM,AS;n,_,.

The expectation is approximate because the expected pup survival is a nonlinear function of
the number of pups born in the previous year (see below). Multiplying the subprocess matrices
together yields the generalized Leslie matrix shown in Table 2.

We assume that survival of adults during the non-breeding season is density independent,
with binomial survival probability ¢, . Survival of pups is assumed to be a density-dependent
function of the number of pups born in that region in the previous year,

d -
Usorr = Bl(nOr,t—l’ ¢prt) ’

where u . is the number of pups surviving and ¢

e 1S the probability of survival, given by

sOrt

b=
prt 1 + lBr"Or,tfl
This is equivalent to the Beverton—Holt stock recruitment model commonly used in fisheries
(Quinn & Deriso, 1999). Here qb; is the expected survival rate of pups when the number of
pups is low, and B, determines the rate at which density dependence reduces productivity
in a region with increasing numbers of pups. The B, parameter can be thought of as being
related to the region-specific carrying capacity: smaller values of this parameter mean that
the population in a region can grow larger before density-dependent reduction in productivity
slows the population growth.

The age incrementation subprocess includes sexing of pups. Since we model only adult

females, the number of age 1 females is a binomial random variable, u 4 Bi(u 0.5).

alrt sOrt>
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TABLE 1

Component matrices for the British Grey Seal process model. Only the parts of the matrices repre-
senting the first and last of the four regions are shown, the rest being indicated by dots (- --). S; is the
survival matrix, A is age incrementation and sexing of pups, M, is movement of recruiting females
between colonies, and B is breeding. Notation of parameters within each matrix is given in the text.

r¢pir 0 0 0 0 0 0 - 0 00 00 0 07 r0 000000--- 0 00000 0]
0 ¢a 0 0 0 0 O - 0 00O0O0OO0OTO 05000000 --- 0 000000
0 0¢qa 0 0 O O - 0 000O0O0OTO 0100000-- 0000000
0 0 0¢qg 0 0 O - 0 000O0O0O 0010000-- 0000000
0 0 0 0¢q O O - 0 00O0O0O0TO 0001000--- 0000000
0 0 0 0 0 ¢q O - 0 00O0O0O0OTO 0000100-- 0000000
0 00 0 0 0 ¢q 0 00O0O0O0OTO 0 0000T11 0 0000O00O

S = ool A=
0 000000 - ¢y 000000 000000O0-- 0 000000
0O 00O0O0OO0O0- 0 ¢4 0 0 0 0 O 0000000 ---05000000
0O 00O0O0O0O0- 0 0¢qs 0 0 0 O 0000000:-- 0 100000
0O 00O0O0O0O0- 0 0 0¢q0 0O 0000000:-- 0010000
0O 00O0O0O0O0- 0 00 0¢q0 O 0000000:-- 0 001000
0O 00O0O0O0O0- 0 000 O0¢q0 0000000--- 0000100

L 0 00 O0O0OO- 0 00 0 0 0 ¢g- L O 0O0OO0O0OO0OO--- 0 00001 1
r10000 0 0---00000 0 0] ~r0 00000 « 000000 0
01000 0 0---00000 0 0 0100O0O0TO 0 000O0OO0OO0O O
00100 0 0---00000 0 0 0010O0O00O0 000O0O0OO0TO
00010 0 0---00000 0 0 0001O0O0O0 00O0O0OO0OO0OTO O
00001 0 0---00000 0 0 00O0O0T1TO0O 00O0O0O0O0OO
00000 p; ;000000 pg,1;0 000O0O0OT1O0 000O0O0O0OO
00000 0 1---00000 0 0 000O0O0O0°11 00O0O0O0O0OO

M, = B-
00000 0 0---10000 0 000O0O0OOO O 000000 «
00000 0 0---01000 0 0 000O0O0O0O 010000O0O0
00000 0 0---00100 0 0 00O0O0O0OO0DO 00100O00O0
00000 0 0--00010 0 0 000O0OO0O0OTO O 00O0T1O0O0TO0
00000 0 0---00001 0 0 000O0OO0O0OTO O 00O0O0OT1O0O0
00000 p;_44,0--00000pg 4,0 000O0O0CO0OO 000O0O0OT1OQ0
LO0OO0OOO 0 0---00000 0 1| L0 0O 0 O0O0O0O0 00000O0O0O 1]

For all other ages, age incrementation is deterministic, with animals ageing by one year except
for age 6+ females, who remain in the same age class.

To model movement, we assume that only females in their last year before breeding may
move — once a female has started breeding she remains faithful to that region. We assume
that movement is density dependent, such that females will not move unless the expected
survival of their future offspring is higher elsewhere, in which case probability of movement
is proportional to the expected survival difference. In addition, we assume that females are
more likely to move among regions that are relatively close together, and that females show
some degree of site fidelity — that is, they may not move even if conditions for their offspring
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TABLE 2

Generalized Leslie matrix for the British Grey Seal process model. Only the parts of the matrices
representing the first and last of the four regions are shown, the rest being indicated by dots (- - -).

- 0 0 0 0 0 badt Pact 0 0 0 0 0 0 0 -
05y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ¢a 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ¢a O 0 0 0 0 0 0 0 0 0 0
0 0 0 ¢ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ¢api»1r O 0 0 0 0 O ¢agpas1r O 0
0 0 0 0 0 b a 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 badt  Pacx
0 0 0 0 0 0 0 05¢p4 O 0 0 0 0
0 0 0 0 0 0 0 0 ¢a 0 O 0 0 0
0 0 0 0 0 0 0 0 0 ¢a O 0 0 0
0 0 0 0 0 0 0 0 0 0 ¢ 0 0 0
0 0 0 0 ¢apr>ar O 0 0 0 0 O ¢apssar O 0
L o 0 0 0 0 0 0 0 0 0 0 0 ba  u A

are better elsewhere. We model movement from each region as a multinomial random variable,

d
(umS,re],t’ e umS,r%4,t) = Mn4(ua5rt’ Prostp - pra4,t) ’

where u,,s ., is the number of age 5 females moving from region r to region i, us,, is
the number of age 5 females at region r after age incrementation but before movement, and

P,_; is the probability of movement from region r to region i.
_ 9r—>i,t
Prosip = S e
Zj:l r—jt

where )
exp (V) r=i,

0._.. = .
robt {exp(ydd max([¢p,~, - ¢prl]s 0) — vgud) TFI

and y,; is the parameter regulating the strength of the site fidelity, y,4 regulates the effect of
density dependence on movement and y,; regulates the effect of distance between regions,
d,;, on movement.
We model breeding by assuming that the number of pups produced is a density indepen-
dent function of the number of breeding females in the region, with binomial probability «.
For the observation process, we assume that pup production estimates follow a normal
distribution, where the variance is a linear function of the true pup production squared:

d
Yorr = N, ¥2ng,) 2

The parameter  determines the coefficient of variation (CV) of the observations. This model
was found to fit the observed regional-level data well, but is likely to be a poor description of
the observation process at the colony level (see Discussion).
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TABLE 3

Prior distributions used for parameters in the British Grey Seal model
(see also Figure 2 for plot of priors). Each parameter was initialized independently.

Parameter Prior Mean
ba Be (22.05, 1.15) 0.95
o Be (14.53, 6.23) 0.7
Bi Ga(4,2.07x 107 829 x10~*
B> Ga(4,2.96 x 1074  1.18 x 1073
B Ga4,740 x 1075) 296 x 1074
Ba Ga4,5.76 x 107%) 230 x 1074
Vst Ga(2.25,1.33) 3
Ydd Ga(2.25,1.33) 3
Vdist Ga(2.25,1.33) 3
o Be (22.05, 1.15) 0.95
¥ Ga(4,0.025) 0.10
The state—space model therefore has 11 parameters: {¢,, ¢y, By, - ... Bas Vs Vaa> Vaists

o, ¥}. We fit the model using the SIS algorithm described earlier, with 250 000 particles. Prior
distributions used for the parameters are shown in Table 3. These priors were selected after
discussion with Grey Seal biologists, from the Sea Mammal Research Unit at St Andrews, and
simulation exercises, where we simulated from the process model using a range of parameter
values. Expected values were chosen to represent values considered most likely by the biolo-
gists, and variances set so that the middle 95% of the distribution of each parameter covered
all values considered feasible. The results are likely to be sensitive to choice of at least some
of the priors.

Priors for the states were generated using the estimated pup production in 1984 in con-
junction with the priors for the parameters, as follows. The initial number of pups in each
particle, ngjr]o (where j denotes the particle number, j =1, ..., 250 000), was generated by
‘reversing’ the observation equation, i.e. by sampling from

[j1 d 20512
g0 = N(or- ¥ [J]y(»o) )

where y, is the estimated pup production in region r in 1984 (year 0) and YUl is the
value of the ¢ parameter sampled from the prior for particle j. It is more important that
the distribution of initial values encompasses all likely values than that the distribution of
initial values has minimum variance, so in all cases we further dispersed the initial values
by resampling each one from a uniform distribution with bounds given by the sampled value
—+ 1.3 and the sampled value x 1.3. (The value 1.3 was chosen by trial and error.) We then
generated initial values for age 1 females from the survival subprocess, i.e. by sampling from

[j1 dpn. 1] [J]
nyy0 = Bi(ngpg, 0.5¢;,0)

(the 0.5 is because only half of the pups are expected to be female), and ages 2 to 5 females from

n[j] d Bi(n[j] ¢£ii])’

arQ — a—1,r0°

where a = 2,...,5. Again, we resampled the values from a uniform distribution to fur-
ther disperse them. Lastly, we generated initial values for age 6+ females by ‘reversing’ the
fecundity subprocess, i.e. by sampling from

o £ Mol -+
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Figure 1. Pup production data (circles) and filtered estimates of pup production (lines)
from the British Grey Seal model. First year estimates are starting values. Solid lines show
the mean of the particle values, dashed lines show 2.5th and 97.5th percentiles.

and again resampling from a uniform distribution. This procedure produced initial values for
all of the states.

Because we used the 1984 values to generate the initial values, we started the fitting
algorithm with the 1985 data. The SIS algorithm requires calculation of likelihood weights
(1), the form of which is specified by the observation process model. In this example, given
the observation model (2), the likelihood is a product of normal densities:

4 [j]

2
£y, | ngj] @[j]) _ 1_[ ( 1 exp <_(y0rt B n()rt) ))
'\t ) = 7 T :
1 Y 2yling, 2y2iing, !

Program code (in S-PLUS 6.1) is available from the journal web site.

3.2. Results

Filtered estimates of pup production for the four regions are shown in Figure 1, together
with the pup production data used in fitting the model. The fit appears to be very good, with
the algorithm quickly homing in from the wide starting bounds to provide a tight bracket on
the observed counts. There appears to have been a sudden drop in pup production in 1999
which the filtered estimates struggled to track.

Posterior marginal parameter estimates are shown in Figure 2, with the corresponding
priors. Some posterior distributions have changed markedly from the priors, particularly
adult survival, ¢, and the observation CV parameter v . Other parameters, such as maximum
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Figure 2. Posterior parameter estimates (histograms) and priors (solid lines)

from the British Grey Seal model. Vertical line shows posterior mean, and this
value is given in the title of each plot after the parameter name.

pup survival qb; and the movement parameters, Y ¢, ¥4q and vy, » have virtually unchanged
marginal distributions. Given the model structure and available data, we had expected some
parameters to be strongly confounded. Scatterplots of the posterior parameter estimates in-
dicate some dependencies among the posterior distributions, but less than we had expected
(highest correlation is between ¢, and fecundity, o, with r = —0.48, but the next highest is
between ¢, and qb;, with » = —0.09).

4. Discussion

4.1. Grey Seal model

It is not surprising that these data contain strong information about adult survival, given
that the species is long-lived and productive into old age: small errors in estimated adult
survival would therefore lead to large errors in pup production predictions, which would be
penalized by the likelihood weights. We were not expecting the data to contain much infor-
mation on animal movement, so we were surprised to see the site fidelity parameter move so
far from its prior. The posterior estimate is high enough that there is almost no movement of
recruiting females among regions, regardless of differences in survival or distance between
regions. This implies that either some part of the model is substantially incorrect, or that there
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is indeed little movement of animals between regions. We plan to try a number of alternative
models, as well as moving to a colony-level analysis before drawing conclusions.

Our model can be improved in a number of other respects. Constant survival and fecundity
rates could be replaced by time-varying rates in a hierarchical or random-effects framework
(e.g. Newman, 2000), where for example fecundity rate is sampled from a hyper-distribution
that is slowly varying through time. This would help, for example, to fit the 1999 data, where
pup production was unexpectedly low. Our observation model was adequate for the regional
level, where observations have approximately the same order of magnitude. However, the
assumption of constant CV in estimated pup production is not appropriate at the colony level,
where production estimates of near zero at some colonies may be quite inaccurate (because
little emphasis is placed on counting pups at colonies that account for a very small part of the
overall population). A mixture model for the observation process may be appropriate in this
case. Ultimately, we would like to develop an observation model for the raw counts taken
from the repeated aerial survey photographs, rather than the estimated pup production for the
season. This may allow us to estimate the pre-weaning mortality of pups on the colonies and,
under the assumption that this is correlated with first year survival, improve our estimates of
pup survival.

British Grey Seals are relatively well studied, and there are many other sources of data
that could provide information for the model, either to improve the priors or to be incorporated
explicitly through additional observation models. For example, there are mark—-recapture data
from two intensive study sites, some genetic data on relatedness (Gaggiotti et al., 2002), in-
formation on body condition of pups that could be extracted from the aerial surveys, and other
information that could be used to provide covariates for pup-carrying-capacity of colonies.
Any available covariates are easily incorporated into the framework, by modifying the model
parameters to make them functions of the covariates.

Another area of interest is in determining which data collection methods may in the future
yield the most information about parameters of interest. For example, performing the aerial
survey only every second year may free up resources for an extensive mark—recapture exercise
aimed at estimating survival and migration rates. Fitting the above models to simulated data
can help in evaluating the trade-offs between different possible allocations of survey effort.

4.2. Future methodological research

Given that the fitting method introduces Monte Carlo error into the posterior estimates,
it is important to check the reliability of the results. Of the 250 000 independent particles that
started the simulation presented here, only 18 790 survived the first year and only 39 were
represented by descendants at the final time period. A large amount of particle depletion is
typical in the first year, as generating the particles from independent priors produces many that
have an impossible combination of parameters and/or states. Having only 39 of the original
ancestral particles represented at the end is not necessarily a problem either, since kernel
smoothing of the parameters means that each particle generated from the ancestral particle
has a slightly different set of parameters. Nevertheless, it is important that the remaining
particles span the entire region of parameter and state space that has posterior density. There
is a need to develop diagnostic statistics that give an indication of the ‘mixing’ of particles
generated from different ancestral particles.

Once past the first few time periods, severe particle depletion at one time step indicates a
data value that is not supported by the model — because either the data value is an outlier or
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the model is incorrect. A useful diagnostic in model checking therefore is the level of particle
depletion at each time step.

A crude measure of reliability is to re-run the simulations, drawing a new set of starting
values. For the model presented here, three independent runs produced almost identical re-
sults. It may be possible to use information from within and between repeat runs to estimate
the Monte Carlo error rates on estimates efficiently.

The state estimates presented here are filtered estimates, that is estimates of g(n, | y')

for t =1, ..., T. It can be argued that if we are interested in estimating past states, we want
to use all the data available to us, i.e. we are interested in smoothed estimates g(n, | yT) for
t = 1,..., T. Smoothing can be done analytically in linear normal models, using the back-

wards Kalman smoother (Harvey, 1989), and is feasible (although very computer intensive)
in nonlinear, non-normal models where the state process density can be evaluated (Doucet,
Godsill & West, 2000). However, in the case of most wildlife population dynamics process
models, where the state process density cannot be easily evaluated, an efficient and general
smoothing algorithm for SIS has yet to be developed.

Several aspects of the fitting algorithm need further research. For example, local kernel
smoothing may prove better than global kernel estimation when the relationship between pa-
rameters is nonlinear. The amount of kernel smoothing to perform is also not well understood
(although see Trenkel et al., 2000). There are many strategies in addition to those mentioned
here to reduce the effects of particle depletion (e.g. papers in Doucet et al., 2001; Liu, 2001)
and these should be investigated in the context of wildlife population dynamics models. There
is some hope for an omnibus suite of methods that could be applied semi-automatically once
the state and process models have been formulated. Lastly, the potential for fitting the models
outlined here using MCMC needs further exploration. Smoothed estimates of the states is an
automatic by-product of MCMC output.

The framework outlined here is an ideal vehicle for model selection and model averaging.
If a number of models are specified a priori, and these are given prior weights, then the
frequencies of the different models at the end is an estimate of their posterior probability
given the data. The likelihood weights in the correction step would need to be replaced by
some form of penalized likelihood weights (e.g. Akaike Information Criterion (AIC) weights).
This approach becomes impractical when there are a very large number of candidate models
— for example, in multiple regression with many potential covariates. An algorithm for SIS
in this circumstance remains to be developed (although algorithms for MCMC methods exist;
see Green, 2003).

Relaxing the requirement for a fully parametric specification of the models would be
an advantage when the form of the model is not known, as is commonly the case. Semi-
parametric differential equation models have been developed by Wood (1999, 2001), and
extending this into the framework described here would have wide utility.

As we have shown, the state—space framework can be seen as an extension of the matrix
population methods comprehensively documented by Caswell (2001). Many of the concepts
associated with those methods can also be extended into the state—space framework. For ex-
ample, perturbation analysis is used to predict which life-history components have the largest
potential impact on outputs of interest, such as asymptotic growth rate (Caswell, 2005). Such
analyses, based on the elasticities and sensitivities of matrix models, have been criticized
because they usually do not incorporate demographic and environmental stochasticity as well
as density dependence in the analysis (Benton & Grant, 1999). Using SIS, sensitivities and/or
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elasticities could be calculated for each particle, and the resulting distribution of sensitivi-
ties/elasticities used to perform perturbation analyses that incorporate all of these features, as
well as model uncertainty if required.

In conclusion, this framework is applicable to a wide array of current problems in wildlife
management and conservation. Although there are several methodological issues still to be re-
solved and improvements to be made, we anticipate that these methods will receive widespread
use in the future.
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