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Abstract

Fatás (2000) argues that in a cross-section analysis of countries there exists a positive

correlation between long-term growth rates and the persistence of output fluctuations.

The current paper extends this line of research by examining manufacturing sectors of an

economy which can be characterised by two levels of technology; a low level and a high

level. Analysis of the data reveals a positive correlation between long-term growth rates

and the persistence of output fluctuations in ‘high-tech’ sectors. This empirical analysis is

further supported by reformulating the model of Matsuyama (1999b) in a stochastic

environment. Within this framework the model is able to capture the two main theories of

growth, namely; the Solow model and the Romer model. The stochastic nature of the

long run output trend is endogenous and based on technological shocks. Despite the

cyclical nature of the shocks we are able to show that output fluctuations are more

persistent in ‘high-tech’ sectors.
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1. Introduction

Explaining the occurrence and duration of business cycles has been a recurrent theme in

macrodynamic research. Regardless of the theoretical framework in which the model is

set, the existence of output fluctuations is recognised. In a stochastic environment the

explanation for such fluctuations is often connected to real business cycle theory

(Kydland and Prescott, 1982). Stochastic fluctuations are the result of exogenous shocks

to the fundamentals of the economy (for example, technology). Whilst in a deterministic

framework, endogenous fluctuations may appear once agents’ expectations are specified

(Grandmont, 1985). However, a central issue that remains concerns whether these

fluctuations persist over time.

According to real business cycle theory, business cycles, in themselves, do not

change the long run output trend of the economy in a stochastic framework. It is thought

that the occurrence of a technological shock causes output fluctuations that are transitory

in nature. However, this conclusion has recently been put in question. In particular, Fatás

(2000) finds a positive correlation between the persistence of business cycle fluctuations

and the level of growth in a cross-country analysis. This empirical finding is then

supported by the use of a stylised endogenous growth model with exogenous cyclical

shocks. The conjecture being that growth dynamics are an important element in the

persistence of output fluctuations, which requires further study in other economic

settings.

The purpose of this paper is to continue this line of research, and specifically, we

extend this idea to explain how, within a particular country, growth and persistent
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fluctuations may be correlated at a sectoral level. If industries are characterised by

different levels of technology, e.g. ‘high-tech’ and ‘low-tech’, it is likely that these

industries will also experience different levels of growth. Typically, innovation occurs in

‘high-tech’ industries which also show rapid growth, whereas growth in traditional less

innovative manufacturing sectors is usually low. If this is the case, then transitory

technology shocks will not exert the same effect across industries, and indeed will be

more persistent the higher the level of technology used in production. This in turn implies

that economies characterised by a high proportion of ‘high-tech’ industries may display

persistent fluctuations and rapid growth, whereas economies based on ‘low-tech’

traditional manufacturing industries are more likely to show low growth and highly

transitory fluctuations. From a macroeconomic point of view we can also explain how a

given economy may experience different growth dynamics and cyclical fluctuations over

different periods of time depending on its industrial structure.

In the analysis presented here empirical evidence on US manufacturing sector

supports our initial intuition. A positive and high correlation can be clearly seen in Figure

1 between the persistence of cyclical fluctuations and the level of growth in ‘high-tech’

sectors. While the persistence of fluctuations is less significant in ‘low-tech’ sectors

characterised by low growth. From a theoretical point of view, this evidence seems to fit

with the framework introduced by Matsuyama (1999b) in which growth equilibrium

dynamics are linked to the type of technology prevailing across industries. In this paper

we extend Matsuyama’s framework to a stochastic environment and study the effects of

transitory technological shocks on the dynamics of growth in a multi-sector economy.
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The remainder of the paper is organised as follows. Section 2 presents the

empirical evidence, Section 3 presents the theoretical model, Section 4 is devoted to

discussion of this model, while Section 5 summarises and concludes.

2. Empirical evidence

Monthly data is taken from the US Governments Federal Reserve - Board of Governors

Industrial Production series for the period 1967:1 to 2000:3. The series include output

for: advanced processing; aerospace; chemicals; computers, communications and

semiconductors; durable manufacturing; electrical machinery; industrial machinery and

equipment; iron and steel; mining; motor vehicles and parts; non-durable manufacturing;

textile mill products; transportation equipment; and utilities. Within this data set sectors

such as computers, communications and semiconductors, industrial and electrical

machinery, chemicals and advanced processing can be seen as relatively ‘high-tech’

sectors, compared to ‘lower-tech’ sectors such as iron and steel, mining and textiles, with

the remaining sectors being less obviously classified. All data are presented in

logarithms.

Following Fatás (2000) we present, in Figure 1, a plot comparing the degree of

persistence in output, measured against the average annual growth rate in output for each

of our series. The measure of persistence used is that of Cochrane (1988), whose variance

ratio measure is given by the following:1

                                                          
1 Alternative measures of persistence, such as estimating autoregressive models were conducted with
results qualitatively similar to those reported above. Full results available from the authors upon request.
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where J is the ‘window’ or lag length over which persistence is measured. In the analysis

conducted here J is equal to 60, which represents 5 years, and is thus the same time

horizon as used in Fatás. The resultant plot is presented in Figure 1, and suggests a

positive correlation between average annual growth rate and persistence of output growth

to shocks. Higher growth sectors (the identified ‘high-tech’ sectors of computers,

communications and semiconductors, electrical and industrial machinery and advanced

processing) also exhibit a higher degree of persistence, while the ‘low-tech’ sectors

(mining, iron and steel, and textiles) which have low growth exhibit low persistence of

output fluctuations.

This graphical analysis is further complemented by a simple cross-section

regression of the following form:

εαα ii10i   +  Growth  Average  +    =  ePersistenc

where i indexes each industrial sector. The results show a positive and significant

relationship between persistence and growth, with the coefficient estimates being -0.4158

(-1.0469) and 0.5687 (8.2667) on 0α  and 1α  respectively (heteroscedasticity robust

standard errors in parentheses). In addition, with the 2R  of above regression being

0.8713, this suggests a high explanatory power of average growth rates for output

persistence.

In the following section we present a model that is capable of generating this

observed correlation. Growth is driven by investment in physical capital, and uncertainty

is related to transitory technology shocks.
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3. The model: a theoretical explanation

3.1. The model under certainty (Matsuyama, 1999b)2

The model contains an infinitively-agent framework with inelastic labour supply. Time is

discrete and goes from zero to infinity. There is a final good, taken as numeraire, which is

competitively produced and is either consumed or invested. Let us first highlight that tK

denotes the capital stock available at the end of period t. It is equal to the amount of the

final good left unconsumed in period t and carried over to period 1+t . Therefore, the

capital stock used in period 1+t  is denoted by tK . We assume that there is a positive

amount of capital stock in the first period, i.e. 00 >K .

3.1.1. Preferences

In period t the income of the representative agent takes two forms: the capital income,

tt Kr 1− , and the wage income, Lwt . This income allows the agent to consume an amount

tC  of the final good that results from the intertemporal utility function:

( )t
0

Cln∑=
∞

=t

t
t

C
UMax

t
β

(where 10 << β  is the discount rate) subject to the flow budget constraint:

ttt CYK −= .                                                                                                          (1)

The intertemporal solvency condition, which rules out a Ponzi-scheme:

0lim

1

≥
Π
=

∞→
t

t
r

K
τ

τ
τ

.
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The optimal consumption path is then characterised by the Euler equation:

01

1

1 >=
+

+

t

t

t C
r

C
β                                                                                                     (2)

and the binding intertemporal solvency condition:

0limlim

1

==
Π

∞→

=

∞→ τ

τ
ττ

τ
τ

β
C
K

r

K

t
t

.

3.1.2.  Production

The final good, tY , is competitively produced, and is either consumed or invested. The

part invested is converted into a variety of differentiated intermediate products, and

associated with labour (exogenously fixed) according to a Cobb-Douglas technology. The

intermediate products are aggregated into a symmetric CES technology. Therefore, the

final goods production function is given by:

( ) ( )
σ

σ
11

0

1
−













∫=
tN

tt dzzxLAY

where ( )zxt  is the intermediate input of variety [ ]tN,z 0∈  and ( )∞∈ ,1σ  is the elasticity

of substitution between each pair of intermediates3 and [ ]tN,0  represents the range of

intermediates available at period t.

Define cx  as the intermediate input produced in the competitive sector (with no

innovation), and mx  the intermediate input produced in the monopolistic innovative

                                                                                                                                                                            
2 Sections (3.1.1-3.1.2) largely follow Matsuyama (1999b).

3 Note that the price elasticity of the final good producer’s demand is also equal to σσσσ and the labour share to
1/σ.
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sector. In the sector with no innovation, firms are price takers and there are constant

returns to scale of production. These intermediates are in the range [ ]10 −tN, . They are

produced by a units of capital into one unit of an intermediate. The ‘new’ intermediates

are in the range of [ ]tt N,N 1−  and may be introduced and sold by innovators in period t.

These require F units of capital to innovate and a units of capital per output. There is no

barrier to entry. Demands for intermediate inputs come from maximisation of the final

good producers’ profit function, taking into account that all the intermediates enter

symmetrically into the production of the final good, i.e. ( ) c
tt xzx ≡  for [ ]10 −∈ tN,z  and

( ) m
tt xzx ≡  for [ ]tt N,Nz 1−∈ . Under these assumptions,

θ
σ

σ
≡





 −=










=

−11m
t

c
t

m
t

c
t

p
p

x
x

where ( )718321 .e, ≅∈θ  is a parameter related to the monopoly margin of the innovator

(i.e. ( )11 −σ ). Thus, 1=θ  when σ  is close to one, and e=θ  as ∞→σ . Which implies

that the demand for each intermediate input reads as:

( )Faxc
t θσ=1  and ( ) aFxm

t 1−σ= .

By use of these relationships and the economy’s resource constraint on capital in period t,

we have:

( )( )FxaNNxaNK m
ttt

c
ttt +−+= −−− 111

which implies:

{ }1min11 1-t ,kFaxa c
t θσ=





σ
−=

σ−
,      where  

t

t
t FN

Kk
θσ

≡
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and

( ){ } ( )11
1

111 −−
−

=−+= tt
t

t kk,Max
N
N ψθ .

Total output is equal to:

( ) ( ) ( )( ) 



 −+=

−
−

−
−

σσσ 11
1

11
1

1 m
ttt

c
ttt xNNxNLÂY

which can be rewritten as:

( ){ } ( )1
1

1
1

−
−

−
−

== tt
t

t kAA,kAMax
K
Y φσ  where 

σ

θσ

1





≡

F
aL

a
ÂA .

Before proceeding, let us simplify the notation by assuming 1=a , 1=L  and ( )σθ1=F .

Therefore, ttt NKk ≡  and AA ˆ≡ .

When 11 <−tk , no innovation can take place. The resource available in the

economy is too small relative to the number of products. In this case, we can say that the

economy is in the Solow regime. When 11 >−tk , there is enough resource in the economy

to create new products. We can then say that the economy is in the Romer regime. The

critical level of k that separates the two regimes is 1.

3.1.3. Dynamics

The dynamical system governing this economy is derived as follows. First, rewrite the

flow budget constraint (1) as:

( ) ( ) t
t

t
t

t

t k
k

kkA
N
C

−=
−

−
−

1

1
1 ψ

φ

we then substitute this expression into (2) rewritten as:



10

1

1

1

1

+

+

+

+
=

t

t

t

t

t

t

t

N
C
r

N
N

C
N β

in addition we know that in equilibrium  1−+= tttt KrLwY  and

( ) ( ) ( )tttt kAYKr φσσ 11111 −=−=− . Therefore, (2) becomes:

( )
( ) ( )

( ) ( )
( ) ( )tttt

t

tttt

t
kkkAk

kA
kkkAk

k
ψφ

φσβ
ψφ

ψ

1111

1 11

+−−−

−
−

−
=

−

which is equivalent to:

( )
( )

( )( ) ( )
( )

( ) ( )( ) ( )
( ) ( )1

11
1

1111

−

−−
+

−−−+=
tt

ttt

t

tt

t

tt
t kk

kAkkAA
k

kkA
k

kAkk
ψψ

φφσβ
ψ

φσβ
ψ

φ .

This is a second-order difference equation in tk , 1−tk  that can be rewritten as a system of

two first order difference equations by a simple change of variables ( tt kh =+1 ). Let us

denote ( )σβ 11−≡ AG , we then obtain:

( ) ( )
( )

( ) ( )
( ) ( )





−+=

=

+

+

tt

ttt

t

tt
t

tt

hk
hkAGh

k
kkGAk

kh

ψψ
φφ

ψ
φ

1

1

3.1.4 Steady state analysis4

Steady state values can be easily computed from the Euler equation. A steady state k  is

such that 1+= tt kk . Therefore, we have ( ) ( )kGk φψ = . In the Solow regime, i.e. 1<tk ,

then σGk = . The economy does not grow.  In the Romer regime, i.e. 1>tk , then

                                                          

4 The analysis of the stability properties of the steady states are in Appendix A.



11

11 +−=
θ

Gk . In this steady state, new products are introduced and K and N grow at the

same rate, which is the balanced growth path:

( ) 1
111

>==== ∞

−−−
Gk

N
N

K
K

Y
Y

t

t

t

t

t

t ψ .

3.2. Uncertainty and dynamics

We now introduce uncertainty in the model and assume exogenous transitory technology

shocks. For this purpose a new variable 1+tZ  is introduced into the production function to

capture the state of technology at the outset of period t. The production function is now

given by:










≥=

≤=

−
−

−
−
−

−

 1 if           

 1 if       

1
1

1
1
1

1

tt
t

t

ttt
t

t

kZA
K
Y

kkZ
K
Y σ

Following Fatás (2000) we assume that uncertainty originates in tZ  which follows a

stochastic process with the Wold representation:

( ) tt LCẑ ε= .

For simplicity we assume that the steady state value of tZ  is 1. ( )LC  is a lag polynomial,

( ) !+++= 2
211 LcLcLC  where all roots are assumed to be less than one to ensure

stationarity of the stochastic process. Stationarity of ẑ  allows us to refer to this process

as cyclical. Note that to convert to log deviations, we make use of the fact that
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( ) XXXX logd≈−  in the neighborhood of X , the ‘hat’ notation is used to denote log

deviations from the steady state.

Let us now evaluate the FOC of the maximization of the expected utility function,

i.e. the Euler equation of the model under uncertainty:

( )
( ) ( ) ( ) ( )






−

=
− +

+

−−−

−

tttt

t
t

tttt

t
kkkAk

rE
kkkAk

k
ψφ

β
ψφ

ψ

1

1

111

1                                       (3)

Equation (3) together with the flow-budget constraint describes the new equilibrium

dynamics of the model. The solution of this system of equations is found by log-

linearisation around the steady state. A few computations (see Appendix B) yields:

111 ++− +=++ ttttttt ẑdEk̂Ek̂ak̂cẑb                                                                     (4)

where

( )











≥−=−+=−=−=

≤−=+−=−=−=

1 if   111

1 if         1111

1

1

t-

t-

kd,
G

Ac,
G
Ab,

G
Aa

kd,
G
Ac,

G
Ab,a

θθ

σβ

Let us assume that tẑ  follows an AR(1) process:

ttt ẑẑ ερ += −1

Equation (4) can be then rewritten as:

( ) ( ) ttt k̂cẑdbk̂a −=−+− ρρ1

and a particular solution of this equation is:
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tt ẑ
caL

bdk̂ 





+−

−=
ρ

ρ                                                                                                (5)

We now need to substitute this solution into the log-differentiated production function

and the log-differentiated flow-budget constraint (see Appendix C) to find an expression

for the deviations of output growth from its steady state value, that is:

( ) ( )( ) ( ) tttt LCLẑLẑLŷ εωω −−=+−=∆ 111

where

( )













≥







+−

−








+−





−=

≤







+−

−




 −





 −





+=

−

−

1 if        11

1 if       111
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1

t

t

kL
caL

bd
G
A

G
A

kL
caL

bd
G
A

G
A

ρ
ρθω

ρ
ρ

σ
ω

This expression can be used to evaluate the stochastic properties of output, and is similar

to the expression found by Fatás (2000). Let ( ) AGX =−≡ σβ 11  and assume

10 << ω .

Proposition

0>∂∂ Aω if XL <<0 .

Proof: See Appendix D.

4. Discussion

4.1. Properties of V
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Following Fatás (2000), we now turn to the measure of persistence. As highlighted in

Section 2 the measure of persistence we have chosen is that proposed by Cochrane

(1988). While, our model generates a unit-root output process as long as 0≠ω . Recall

that V can be written as:

( )
( ) ( )( )( )ωρωρ

ρω
−−+−

−=
1121

1
22

22
V

A straightforward computation shows that V is increasing in ω  which is increasing in A.

Therefore, ‘high-tech’ sectors will have a higher steady state growth rate and a higher ω .

Since V is increasing in ω , this explains the positive correlation between persistence and

long-term growth rates, as shown in Figure 1.

4.2 Analysis

Let us consider a multi-sector economy, whose sectors can be characterised by different

levels of technology. No innovation takes place in the ‘low-tech’ sectors, while

innovation takes place in the ‘high-tech’ sectors. Assume that the whole economy is

affected by an exogenous transitory technological shock. Our findings show that in

sectors with low technology, the correlation is empirically very small and, if we associate

the ‘low-tech’ sectors to the Solow Regime, should be theoretically nil. ‘High-tech’

sectors show persistent fluctuations because of the positive correlation between

persistence and rates of growth. In our model presented here, the higher is the rate of

growth, the higher is the prospect of fluctuations and the higher is their persistence.

We can further point out that in a stochastic setting, the model exhibits

fluctuations for the same parameter values as in the deterministic setting (see Appendix

A). However, this persistence affects the whole economy and can be explained in two
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ways. First, the business cycles in these ‘high-tech’ sectors overbalance what is

happening in the ‘low-tech’ sectors. Second, as shown by Matsuyama (1999a, 1999b)

there exists a link between the two regimes. This model explains how in a deterministic

setting the economy can oscillate between two phases of growth. Assume that the

economy is initially at the stationary balanced growth path (i.e. the Romer regime). If the

steady state loses its stability endogenous fluctuations can appear such that it becomes

possible for the economy to cycle between phases of high investment-low innovation and

low-investment-high innovation. Recall from Section 3 that when more resource are

available in the economy, innovation takes place, new goods are introduced and

innovators enjoy their monopoly rents. The economy can then steadily grow at the rate

defined in the Romer regime. This, however, is just a temporary phenomenon since there

are no barriers to entry. The economy will then return to a phase of no innovation where

it grows solely by capital accumulation, and so forth. This analysis allows us to explain

the rise of the total output in the overall economy thanks to a switch between the sectors,

one sector driving the other sector. Periods of high investment are followed by periods of

high innovation. Both regimes are then alternatively leading to make the economy grow

faster. But recall that in this model the ‘high-tech’ sectors are the more responsive to

fluctuations. The existence of the switch facilitates the capital accumulation in the ‘low-

tech’ sectors.
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5. Concluding comments

Recent research has suggested that a positive correlation may exist between the

persistence of output fluctuations and long-run growth rates of output for industrialised

economies, which can be explained through a stylised endogenous growth model. This

paper seeks to extend that research by examining sectoral data for a single country. The

empirical evidence again supports a positive correlation between the persistence of output

fluctuations and long-run growth rates for individual sectors. Further, we extend the

theoretical framework by reformulating the model of Matsuyama (1999b) in a stochastic

framework. Considering a multi-sector economy this model captures the different engines

of growth, and allows us to study the effects of transitory technological shocks on the

dynamics of growth. We are able to show that in a stochastic framework cyclical

fluctuations experienced by ‘high-tech’ industries have a positive impact upon growth,

while similar fluctuations experienced by ‘low-tech’ sectors have little or no effects on

growth. Thus, the model explains why economies experience different growth dynamics

and cyclical fluctuations depending on their industrial structure.

The model presented here, we believe, provides an interesting first step for future

research. A natural extension of this work would be to evaluate the impact of a subsidy to

these ‘high-tech’ industries when the overall economy is performing poorly. Since these

sectors appear to be more responsive to fluctuations, it would be of interest to study if the

implementation of such a policy improves the state of the overall economy and its

consequences on the ‘low-tech’ industries. Alternatively, one could analyse, in terms of
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welfare, the consequences of implementing of a redistributive tax on the 'high-tech'

industries to the 'low-tech' industries.
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Appendix

The appendices below describe the techniques used in this paper. Appendix A contains

the computation of the Hessian Matrix of the system in the deterministic case. Appendix

B contains the log-linearisation of the Euler equation that helps us to find the solution of

the model. Appendix C resumes the different steps to find the expression for the

deviations of output growth from its steady state value. Appendix D explains the different

properties of the coefficient of linearisation ω .
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Appendix A: Stability properties of the steady state in the deterministic case

In the Solow regime the Hessian matrix evaluated at the steady state is equal to:













 −+−

01

111
βσ G

A

The trace is equal to GA+− σ11 . The determinant is equal to β1 . Recall that the

characteristic polynomial is: ( ) tdeterminantrace)( 2 +−= λλλp . After straightforward

computations, we obtain: ( ) 01 >λ  and ( ) 01 <−λ . Therefore, the steady is a saddle.

In the Romer regime the Hessian matrix evaluated at the steady state is equal to:

( )












 −+−

01

11
2G

A
G

A θθ

The trace is equal to ( ) GA+−θ1 and the determinant is ( ) 21 GA −θ . One eigenvalue of

the characteristic polynomial is always greater than 1. The other eigenvalue is always

negative, but can be less or greater than -1. Therefore,

If 11 −<−
G

θ , the other eigenvalue is less than –1. The steady state is a source.

If 011 <−<−
G

θ , the other eigenvalue is greater than –1. The steady state is a saddle.

Appendix B

To compute the expression that describes the deviations of output growth from its steady

state values, we first log-linearise the Euler equation (3) around the steady state values,
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and obtain a linear difference equation in the logs of k  and the exogenous technological

shock Z . Second, we find a solution of this expression, rewriting equation (3) as:

( ) ( )






=

++

+
−

11

1
1

ttt

t
tttt k,k,Zg

rEk,k,Zf β

where

( ) ( )
( ) ( )111

1
1

−−−

−
− −

≡
ttttt

t
ttt kkkAZk

kk,k,Zf
ψφ

ψ

and

( ) ( ) ( )tttttttt kkkAZkk,k,Zg ψφ 1111 ++++ −≡ .

Assume that the random variable on the right-hand side of (3) is log-normally distributed

with a conditional variance that is constant over time. By use of the properties of log-

normal random variables, (3) can then be written as:
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taking logs of both sides yields:

( ) [ ]
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t
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Since [ ]
( ) o

ttt

t
k,k,Zg

r χ≡








++

+

11

1logVar
2
1  is a constant and the steady state interest rate

equals β1  this equation can be expressed in terms of deviations from the steady state as:

( ) ( ) ( )( ) ottttttttt k,k,ZgErEk,k,Zf χ+−≅ +++− 1111 loglog log
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Since we are interested in the system’s dynamic response to shocks, we omit the constant

0χ  and we totally differentiate the approximate Euler equation around the steady states

(recall that 1=Z ):
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By substituting the value of the different functions at the steady state values into this

latter expression we obtain:

111
ˆˆˆ1ˆ11ˆ ++− +−=−





 +−+− ttttttt kEzEkk

G
Az

G
A

βσ
if 11 ≤−tk

( )
1112

11
++− +−=



 −+





 −++− ttttttt k̂EẑEk̂

G
Ak̂

G
Aẑ

G
A θθ   if 11 ≥−tk

Appendix C

Here we derive an expression that describes the deviations of output growth from its

steady state value. This computation is performed in two steps. First, we log-linearise the

production function around its steady states values. Second, we approximate the budget

flow constraint equation around the steady states values in order to evaluate the

deviations of the capital per product from its steady states values. This will allow us to

compute the coefficient of the linearisation needed to evaluate our measure of

persistence.
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The production function is linear in logs and therefore needs no approximation.

( )11 −−= tttt kZKAY φ  with 111 −−− = ttt NkK

which is equivalent to
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To log-linearise the budget-flow constraint around the steady states we first use the

production function to substitute for Y and then we totally differentiate the result:
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The expression of the deviation of the output around the steady states values is then easy

to compute. We just need first to replace 1−tk̂  by expression (5) into tk̂∆  and then

implement 1−∆ tk̂  into tŷ∆ .

Appendix D

Here, we study the different properties of the coefficient of linearisation ω . The

computation of this coefficient is straightforward to calculate, we plug into the expression

(5) the solution of the Euler equation under uncertainty (3), and obtain:
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We do not study the case of the Solow regime since 0=∂∂ Aω . Turning to the analysis

of the Romer regime, computations yield to the two following remarks:

Remark 1: if ( ) LXXAX <
−
−−
1

1
θ

 then 10 <
+−
−<

aLc
bd

ρ
ρ

Remark 2: if ( )
( )( )
( )LX

LXX
ALL +

−+<−<
+ 2

2 111
14
1 θ  then 10 << ω .

Proof of the proposition: ω  is increasing in A.

( ) ( ) ( ) ( )( )( )
( ) 
























+−
−−−









+−





−





+−

−




 ++−−−=

∂
∂

2

2

2
1111111

caL
bdLAGG

G
A

caL
bdG

GG
L

A ρ
ρθθ

ρ
ρθω

The first term of this expression into brackets is always negative since Remark 1, 1>θ ,

1>G , and 0>L . The last expression into brackets is always positive if LAG > .

Therefore the whole expression is always positive.

Q.E.D.
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θθρ
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Figure 1: Persistence and average annual growth rate
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Source: US Governments Federal Reserve, Board of Governors Industrial Production
series; 1967:1 to 2000:3

Legenda:
a: computers, communications and semiconductors h:durable manufacturing
b: electrical machinery i: utilities
c: industrial machinery and equipment j: textile mill products
d: chemicals k: transportation equipment
e: aerospace l: motor vehicles and parts
f: non durable manufacturing m: mining
g: advanced processing n: iron and steel


