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Hyperfine Stark effect of shallow donors in silicon
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We present a complete theoretical treatment of Stark effects in bulk doped silicon, whose predictions are
supported by experimental measurements. A multivalley effective mass theory, dealing nonperturbatively with
valley-orbit interactions induced by a donor-dependent central cell potential, allows us to obtain a very reliable
picture of the donor wave function within a relatively simple framework. Variational optimization of the 1s donor
binding energies calculated with a new trial wave function, in a pseudopotential with two fitting parameters, allows
an accurate match of the experimentally determined donor energy levels, while the correct limiting behavior for
the electronic density, both close to and far from each impurity nucleus, is captured by fitting the measured contact
hyperfine coupling between the donor nuclear and electron spin. We go on to include an external uniform electric
field in order to model Stark physics: with no extra ad hoc parameters, variational minimization of the complete
donor ground energy allows a quantitative description of the field-induced reduction of electronic density at each
impurity nucleus. Detailed comparisons with experimental values for the shifts of the contact hyperfine coupling
reveal very close agreement for all the donors measured (P, As, Sb, and Bi). Finally, we estimate field ionization
thresholds for the donor ground states, thus setting upper limits to the gate manipulation times for single qubit
operations in Kane-like architectures: the Si:Bi system is shown to allow for A gates as fast as ≈10 MHz.
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I. INTRODUCTION

Donor spins in silicon represent one of the most promising
and well studied candidates for quantum computing archi-
tectures [1]. Very long coherence times have been measured
in both nuclear [2] and electron spin donor qubits [3], and
individual spins can be manipulated and measured [4–7].
In any large scale information processing architecture, the
application of an electric field is likely to be a vital enabling
tool for addressing individual qubits [8]. Whatever the specific
setting used, manipulation of quantum information in these
systems requires a thorough understanding of how the energy
levels of the spin qubits are modified by external magnetic
or electric fields. These could either be deliberately applied
to execute a particular gate operation, or exist anyway in an
inhomogeneous electrostatic environment. Electric fields in
particular can strongly affect two main properties of the donor
via the Stark effect: the hyperfine coupling between the nuclear
and the electron spin, proportional to the electronic density at
the nuclear site, and the electron g factor, i.e., the splitting
induced by a magnetic field between the spin up and the spin
down electronic levels.

Knowledge of such effects is ever more critical when
an electric field is used to directly engineer the electronic
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wave function for storage or manipulation of quantum states
[1,8–11]. The first and most famous proposal of this kind was
provided by Kane [8], where a single qubit state, encoded in the
impurity nuclear spin, is manipulated by using a Stark shift to
bring it into resonance with an oscillating magnetic field. More
recently, scalable architectures have been proposed to extend
single qubit control techniques to larger structures [12,13].

For these reasons, the Stark effect in doped silicon has
been broadly studied in literature, either theoretically [14–22]
or experimentally [23,25–28]. More generally, the ability
to theoretically describe the donor electron wave function
accurately in a wide range of electrostatic environments is
beneficial for determining the values of control parameters
which provide best performance, and in the best case for
estimating a priori the feasibility of quantum algorithms and
error correction codes [20].

Nonetheless, the physical mechanisms underlying the Stark
effect for donors in silicon are not yet fully understood. The
best attempt, so far, within effective mass theory (EMT), was
proposed by Friesen [15]: for Si:P, he correctly predicted a
quadratic hyperfine shift, but one which is one order of magni-
tude larger than the value expected from the two measurements
performed so far (Si:Sb [23] and Si:As [25]). More recently,
other theories such as tight-binding (TB) and band-minima
basis (BMB) [21,24] have been applied to the same Si:P
problem, leading to closer agreement with experiment. TB
and BMB, though, are computationally demanding numerical
approaches, which eclipse full physical understanding. Current
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theoretical predictions of hyperfine shifts, then, are limited
to Si:P alone, but other V group donors such as Bi are now
established as promising alternative donor qubits and are being
widely researched [29–33]. We are thus motivated to present
a multivalley EMT that provides a unifying framework for P,
As, Sb, and Bi donors. Theoretical predictions are supported
by complete and precise experimental work.

Finally, we will consider the effects of the electric field on
the donor ground binding energy. This has raised opposing
opinions [15,18] as which of two competing effects play a
dominant role in determining its magnitude: the lowering of
single-valley energies due to admixing higher orbital states
in the ground level, versus the narrowing of the valley-orbit
1s spectrum, which is a consequence of the reduced effect of
the short-range impurity potential on the energy levels when
the electron moves away from the nucleus. We clarify how
the interplay of both results in an overall energy decrease of
the ground donor state under the external field, confirming
earlier ab initio calculations [18,20].

The highly successful match between our theory and
experimental measurements motivates the determination of
expected field ionization thresholds for each implanted donor
species, setting (i) upper limits to the achievable speeds
for single-qubit operations relying on resonant excitation
of selected donor electron spin transitions (like the Kane
architecture [8]), and (ii) the gate voltages that should be
applied to read-out the state of bulk qubits [5,6], possibly
following transfer of quantum information to the electron spin
from other degrees of freedom [9].

II. THEORY

The Hamiltonian of a donor electron weakly bound to an
impurity nucleus implanted in a silicon lattice is

H�(r) =
[
− �

2

2m0
∇2 + V 0(r) + U (r) + eE · r

]
�(r)

= ε�(r), (1)

where �(r) is the wave function of the donor electron, m0 is its
rest mass, V 0(r) is the periodic potential of the undoped silicon
crystal, U (r) accounts for the interaction with the impurity
ion, E is a uniform external electric field, and ε stands for the
resulting energy eigenvalues.

The lowest conduction band in silicon has six equivalent
minima (valleys) k0μ, one along each of the crystallographic
〈100〉 directions in k space and located ≈ 86% of the way to
the edge of the Brillouin zone (μ = ±x,±y,±z). The donor
ground state can be expanded to a good approximation in terms
of packets of Bloch functions whose k vectors concentrate
around each minimum. This is the cornerstone of EMT [34,35],
which is improved further by accounting for the intervalley
coupling induced by the impurity potential. Such coupling is
strongest in the lattice cell containing the donor nucleus—
this is the so-called central cell correction [36–39]. In this
paper, we will use a multivalley EMT, which accounts for
the anisotropy of the silicon conduction band and includes
a suitable donor-dependent pseudopotential that mimics the
impact of a dopant nucleus on the periodic environment of
the undoped silicon lattice hosting the electron [36]. Within

the central cell, the impurity potential differs significantly from
the screened Coulomb attraction usually considered in single
valley treatments [34,35] and is responsible for the lifting of
the valley degeneracy inherent to undoped silicon. We take

U (r) = − e2

εSi|r| (1 − e−b|r| + B|r|e−b|r|)

≡ − e2

εSi|r| + Ucc(r), (2)

where εSi = 11.9 is the static dielectric constant for silicon, e is
the elementary charge, and b and B are parameters setting the
two inverse length scales specific to the central cell corrections
Ucc(r) of each impurity potential.

After the usual EMT expansion in terms of the Si Bloch
functions φ0(k,r) ≡ u0(k,r)eik·r with k-vector close to each
of the six k0μ [34], we have

�(r) ≡
∑

μ

αμξμ(r)

=
∑

μ

αμ

1

(2π )3

∫
F̃μ(kμ + k0μ)φ0(kμ + k0μ,r)dkμ,

(3)

with ξμ being the contribution of the envelope of Bloch
functions centered at k0μ. Following the other EMT approxi-
mations [39], the expectation value of Hamiltonian (1) for the
wave function (3) is∫

dr
∑

p

α∗
pF ∗

p (r) ×
[
αp(p · Ai · p + eE · r − ε)Fp(r)

+
∑

q

αqe
−i(k0p−k0q )·rC0(k0q,k0p)U (r)Fq(r)

]
= 0, (4)

where the sums over p and q are over the six valley minima;
p · Aμ · p ≡ T is the anisotropic kinetic energy operator,
which implements the Hamiltonian of the undoped silicon
lattice—the first two terms in (1)—through two distinct
effective masses (m∗

⊥ = 0.191m0 and m∗
‖ = 0.916m0), cor-

responding respectively to perpendicular and parallel motion
with respect to each μ̂ axis. C0(k0q,k0q) = 1,C0(k0q,k0−q ) =
−0.1728 and C0(k0q,k0±p) = 0.4081(p 
= q), as further de-
tailed in Ref. [40], are due to the lattice-periodic por-
tion of the Bloch functions involved: u∗

0(k,r)u0(k′,r) =∑
G CG(k,k′)eiG·r (where G runs over the vectors of the

silicon reciprocal lattice) [34]. In particular, EMT requires the
umklapp G 
= 0 contributions to this product to be neglected.

A. Zero field

With the external electric field turned off, we arbitrarily fix
the two donor-dependent parameters of the pseudopotential
(2), b and B, then variationally minimize the 1s-manifold
energies

ε1s = inf
�1s

{〈�1s(r)|H |�1s(r)〉 : 〈�1s(r)|�1s(r)〉 = 1}, (5)

thus setting the corresponding optimal wave functions �̄1s .
The procedure is repeated with different values for b and
B, until the experimental ionization energies of the singlet
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A1 (the ground state), the triplet T2 and the doublet E

eigenstates are reproduced. Those states are the result of the
lifting of the sixfold aforementioned valley degeneracy, and
their coefficients {αq} [see Eq. (3)] are fixed by tetrahedral
symmetry [41], consistent with the pseudopotential employed
here.

Previous multivalley EMT studies [36,38,39,42] have also
employed a variational approach, but with hydrogenic Bohr
functions as trial effective mass envelopes Fq(r), to compute
the same energy levels. While the variational method is
expected to give reliable predictions of the binding energies,
care must be taken when using it to probe the exact nature
of the wave function: this is the reason why many different
pseudopotentials and EMT approximations used in the past
have led to satisfactory binding energies, but poor wave
functions. As a first improvement, in a previous paper [40], we
highlighted the importance of using anisotropic envelopes and
imposing further constraints on the shape of the wave function,
as indicated by experimental measurements. More precisely,
we set the trial ground state function of a Si:P electron to
match the experimental contact hyperfine coupling, which is
proportional to the value of the electron density at the impurity
site.

When trying to extend the same approach to include
donors other than P, however, we found that matching both
binding energies and hyperfine coupling at the same time
cannot be satisfied for Sb and Bi: more strongly nonisocoric
donors (i.e., those that are more different from the hosting
silicon atoms) [37] display a larger contact hyperfine coupling,
and are expected to need a more careful account of the
central cell corrections. Nonetheless, the single-valley limit
is a trustworthy solution far enough from the nucleus [34],
where the screened Coulomb interaction represents a good
approximation to the potential felt by the effective mass
electron. For those donors, anisotropic Bohr envelopes are
too simple to mediate between those contrasting regimes. We
highlight here how more accurate pictures of the electronic
spatial density, both close to and far from the nuclear region,
can be achieved if envelopes with more structure are used
to describe the donor wave function. Two different pairs of
anisotropic Bohr radii that distinguish the short (as,bs) from
the long (al,bl) range hydrogenlike decay; these and a relative
weight β of the two parts define our trial envelopes:

F 0
z = N0

(
e
−

√
x2+y2

a2
s

+ z2

b2
s + β e

−
√

x2+y2

a2
l

+ z2

b2
l

)
,

F 0
x = N0

(
e
−

√
z2+y2

a2
s

+ x2

b2
s + β e

−
√

z2+y2

a2
l

+ x2

b2
l

)
,

(6)

where N0 is a normalization factor. When looking for the
optimal solutions in Eq. (5), as,bs are essentially fixed by
the central cell potential (i.e., they depend strongly on b and
B), while β, al,bl set the resultant long-distance tail, which
depends on the screened Coulomb potential surviving further
from the nucleus.

This approach is inspired by the observation that, even
with only one valley [e.g., setting α1 = 1,αq = 0 if q 
= 1
in Eq. (4)], the Hamiltonian to be solved is that of a
screened hydrogen atom with an extra short-range potential,

TABLE I. Pseudopotential parameters b and B as defined in
Eq. (2) for various V group donors leading to best agreement of
the theoretical ground energy εth

A1
with its experimental counterpart

ε
exp
A1

.

Donor b (nm−1) B (nm−1) ε
exp
A1

(meV) [45] εth
A1

(meV)

P 8.55 37.06 −45.59 −45.75
As 17.74 136.84 −53.76 −53.54
Sb 33.58 386.44 −42.74 −42.92
Bi 48.46 1055.7 −70.98 −71.08

hence the principal quantum number n, which labels the
radial eigenfunctions of the hydrogen atom is not an exact
quantum number for the s states. Anisotropic exponentially
decaying shapes are known to provide reliable solutions for a
Coulomb-bound electron with two different effective masses
along orthogonal spatial directions (captured by parameters
al,bl above) [34], and the nature of the central cell potential in
Eq. (2) suggests the same ansatz for the (as,bs) part [36].

The pseudopotential values that fit 1s energies and hyper-
fine coupling for each donor are reported in Table I, along-
side the relative ground-state energies; expected electronic
densities at the nuclear site are listed in Table II, together
with the corresponding values deducible from measurements
[43]. The optimal parameters, which characterize all ground
wave functions, and are used to calculate theoretical values in
Tables I and II, are listed in Table III.

B. Field on

The solution of the problem of a hydrogen atom in vacuum
within a uniform external electric field E (the Stark effect) has
long been known [46]. Perturbation theory correctly predicts,
for small fields, quadratic shifts of the ground-state energy,
linear terms in |E| ≡ E being prevented by parity symmetry.
The curvature can only be calculated precisely, though, after
an infinite sum over all excited orbital states is admixed into
1s.

An alternative approach is supplied by variational theory:
the ansatz for the ground state under a uniform electric field
[19] is inspired by the first-order perturbative correction to the
wave function:

ψ(r) = [1 + (q1 + q2r)z]e−r/aB , (7)

with aB the Bohr radius, r =
√

x2 + y2 + z2, while the
variational coefficients q1 and q2 represent the weight of
higher orbital states coupled to the fundamental one, and are

TABLE II. Theoretical values are calculated as |�(0)|2th =
6η|F 0(0)|2, where η = |u0(k0,0)|2/〈|u0(k0,r)|2〉unit cell = 159.4 is
taken from Ref. [44], and F 0 is either envelope in Eq. (6).

Donor A0 (MHz) [43] |�(0)|2exp(cm−3) [43] |�(0)|2th(cm−3)

P 117.53 0.43 × 1024 0.46 × 1024

As 198.35 1.73 × 1024 1.78 × 1024

Sb 186.80 1.18 × 1024 1.15 × 1024

Bi 1475.4 1.4 × 1025 1.4 × 1025
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TABLE III. Wave function parameters for the donor ground state
as defined in Eq. (6), found by variational minimization as shown in
Eq. (5). All long-range radii āl ,b̄l are significantly smaller than the
Kohn-Luttinger values aKL = 2.365 nm, bKL = 1.36 nm [34], due to
central-cell corrections. Though Si:Sb is more nonisocoric than Si:P,
their wave functions look similar in the region far from the nucleus,
in line with their similar ground binding energies.

Donor ās (nm) b̄s (nm) β̄ āl (nm) b̄l (nm)

P 0.303 0.181 0.922 85 1.71 0.912
As 0.192 0.114 0.474 03 1.45 0.737
Sb 0.146 0.0852 0.472 89 1.67 0.889
Bi 0.0968 0.0572 0.271 53 0.967 0.472

determined via the principle of minimization of the binding
energy of the state in Eq. (7).

The Stark effect in vacuum is complicated, in the framework
of shallow donor states in silicon, by two factors: (i) as
shown in the previous paragraph, the zero-field potential felt
by the donor electron, has a short-ranged impurity potential
component on top of the (screened) Coulomb interaction. This
modifies the response to the field of each separate valley as
treated within a single-valley approach, so these are termed
intravalley corrections; and (ii) the nontrivial structure of the
silicon conduction band introduces the extra valley degree
of freedom, hence it becomes important to account for the
rearranging of the intervalley interactions under E 
= 0. Our
multivalley EMT provides one of the most straightforward
schemes that can capture the interplay between those two
features, and also leads to physical insight.1

Following these considerations, our trial zero-field en-
velopes (6) are modified as [15]

Fz = Nz

(
e
−

√
x2+y2

a2
s

+ z2

b2
s + β e

−
√

x2+y2

a2
l,z

+ z2

b2
l,z

)
(1 + qzz),

Fx = Nx

(
e
−

√
z2+y2

a2
s

+ x2

b2
s + β e

−
√

z2+y2

a2
l,x

+ x2

b2
l,x

)
(1 + qxz),

(8)

with qx,qz,al,x,bl,x,al,z,bl,z being variational parameters, as
we justify later on. This procedure is expected to give an
appropriate account of the adjustment of each valley to the
altered electrostatic environment. Another novelty of our
theory is that, for each fixed E value, we choose to minimize
the complete singlet A1 ground energy, noting that at E = 0
this is a symmetric superposition of all valleys [αμ = 1/

√
6 ∀μ

in Eq. (3)]. Earlier works [15,19] have optimized the binding
energy relative to each valley alone. This is a crucial difference
that allows us to treat valley-orbit effects in a nonperturbative
way, and to depict consistently how they are modified by
inhomogeneous potentials.

Let us write the Hamiltonian above in matrix form, in the
valley basis {ξμ}. If we assume, with no loss of generality, that

1We assume in the following, within EMT approximations, that
the field dependence of the wave function is entirely ascribed to the
envelope part of �(r), i.e., we do not include the adjustment of the
periodic part of the Bloch functions.

E ‖ ẑ [15], we have

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�x �1x �2xy �2xy �2xz �2xz

�1x �x �2xy �2xy �2xz �2xz

�2xy �2xy �x �1x �2xz �2xz

�2xy �2xy �1x �x �2xz �2xz

�2xz �2xz �2xz �2xz �z �1z

�2xz �2xz �2xz �2xz �1z �z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Diagonal entries �μ correspond to intravalley energies, while
�1μ,�2μν terms represent couplings between (ξμ,ξ−μ) and
(ξμ,ξν), respectively. After diagonalization, the ground eigen-
vector and eigenenergy are simple functions of these matrix
elements [15]:

εg = 1

2

[
�x + �z + �1x + �1z + 2�2xy .

+
√

32�2
2xz + (�x − �z + �1x − �1z + 2�2xy)2

]
,

(10)

and

{αμ}g = (1,1,1,1,γ,γ )√
4 + 2γ 2

, (11)

where

γ = 1

4�2xz

[ − (�x − �z + �1x − �1z + 2�2xy)

+
√

32�2
2xz + (�x − �z + �1x − �1z + 2�2xy)2

]
.

(12)

It will be appreciated that our matrix is different from that
appearing in Friesen’s theory of Stark effect [15] for four
reasons: we consider the whole Bloch functions including the
lattice-periodic part, rather than the plane-wave part alone;
central cell corrections are implemented in a self-consistent
way, fit to experimental electronic properties and crafted
to coincide with expected limiting behaviours of the wave
function; Eq. (4) does not involve spurious intervalley coupling
induced by the kinetic portion of the Hamiltonian, in contrast
with Twose’s equation [42]; finally, our envelopes are not
approximated by their amplitude at the impurity site (a
constant), since our Ucc(r) in Eq. (2) is not a contact potential.

As the effective local electric field due to Ucc(r) is always
much larger in the region close to the nucleus than the external
one due to the field (for the parameter regime considered here),
the variational parameters of the donor envelopes in Eq. (8)
that pertain to that region are not affected significantly by
the field. On the contrary, the long range radii al,bl and the
coefficients qx,qz, representing the “squeezing” of the wave
function in the z direction, encode all the Stark sensitivity of the
ground state �1s . Distinct al,bl are allowed for the envelopes
F±z in the direction of the field, and for the transverse ones
F±x,F±y , as they are expected to adjust differently to the E ‖ ẑ
perturbation. For each fixed E, the optimal values q̄x , q̄z and
āl,x,b̄l,x ,āl,z,b̄l,z, that minimize εg , fix all matrix elements in
Eq. (9), whence γ and {αμ}g are determined.

Deviations of �x,z from the zero-field values �0
x,z are

seen to be respectively one and two orders of magnitude
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FIG. 1. (Color online) Spatial electronic density of a Si:P bulk donor electron around the implanted nucleus it is bound to, in the plane
(010), up to 5 nm away from donor nucleus along the vertical and the horizontal axes. The three panels show how the density changes under
different electrostatic environments. The left panel shows the symmetric situation for the isotropic E = 0 case, the center and the right panel
display how the density is driven off the central nucleus in the direction opposite to the vector E, under an intermediate and a strong electric
field, respectively. Red dots represent the positions of the silicon nuclei of the underlying lattice: their positions do not coincide with the local
maxima and minima of the density because of the interference of different valleys contributing to the ground-state wave function.

larger than those of the off-diagonal �2μν and �1μ in (9).
These latter intervalley terms get negligible alterations from
the field directly, since higher Fourier components of a linear
Hamiltonian potential ∝Ez are not able to couple significantly
different valleys: they only change due to the weak squeezing
of the envelopes of each separate valley in the z direction.
Hence, after expansion of Eq. (10) up to second order in the
field, it is possible to approximate

εg − ε0
g ≈ 1

3
(�x − �z), (13)

γ ≈ 1 − 1

6

�x − �z

�2xz

. (14)

If we consider the differential equations that lead to the
optimal solution in more detail, we can distinguish different
trends within the parameter space, as a function of the field.
Since qxal (qzbl) � 1 (i.e., the amount of the squeezing of the
envelopes in the z direction 〈Fx(z)(r)|z|Fx(z)(r)〉 is very small
compared to their zero-field spatial extent), to an excellent
degree of approximation,

�x ≡ �0
x + ��x

≈ �0
x + q2

x

〈
F 0

x z
∣∣ (−�0

x + T + U (r)
) ∣∣zF 0

x

〉
+ eE qx

〈
F 0

x

∣∣z2
∣∣F 0

x

〉
. (15)

(The same expressions and discussions presented for the x

valleys hold for the z ones, changing x → z in the subscripts.)
Since, clearly, �0

x does not depend on qx , the equation 0 =
∂εg/∂qx ∝ ∂�x/∂qx , which determines q̄x , decouples from
all others and gives

2q̄x = − eE
〈
F 0

x

∣∣z2
∣∣F 0

x

〉
〈
F 0

x z
∣∣( − �0

x + T + U (r)
)∣∣zF 0

x

〉 . (16)

As the denominator is positive, it must be that q̄x,q̄z are
negative, and their magnitude increases linearly with the field.
The wave function extends further along the z axis, in the
opposite direction to the vector field E (Fig. 1). This accounts

for admixture into the fundamental wave function of p and
higher angular momentum orbitals, with the correct singlet A1

valley structure.2

We find, on the other hand, that the radii al,bl undergo
a slight shift from their zero-field values, only to adjust
to the new energy terms ��x,z in Eq. (15). Specifically,
the differential equations determining the optimized radii
āl,x,b̄l,x ,āl,z,b̄l,z have the form

ε0
g

[
a0

l → {al,x,al,z},b0
l → {bl,x,bl,z}

] − ε0
g

+�εg

[
a0

l → {al,x,al,z},b0
l → {bl,x,bl,z}

] = 0, (17)

where a0
l → {al,x,al,z} is a shorthand for variations a0

l →
al,x(al,z) within each envelope Fx(Fz). The first row is only
second order in δal,δbl (the unperturbed energy is stationary
against small changes of the wave function), while the second
includes linear terms in δal,δbl . Thus the total shift of the
intravalley energies �μ [and consequently of the total εg , via
Eq. (13)] is due to the parameters q̄x,q̄z alone:

��x,z ≈ eE〈Fx,z(r)|z|Fx,z(r)〉/2 ∼ q̄x,zE ∼ E2, (18)

leading immediately, considering Eqs. (13) and (14), to
εg − ε0

g ∝ E2,(γ − 1) ∝ E2. It then follows that {δal,δbl} ∝
{q̄x,q̄z}E ∝ E2, these small variations of radii play a decisive
role in determining the relative fraction of electronic density
leftover at the impurity site, which allows the correct estimates
of the Stark shifts presented here.

Let us highlight that, due to the silicon transverse effective
mass m∗

⊥ being smaller than the longitudinal m∗
‖, Fx extends

more broadly in the z direction than Fz, hence, in Eq. (18),
|��x | > |��z|: the valleys transverse to the applied pertur-
bation react more effectively than the parallel ones, and this

2The field cannot couple the ground state to other s-like orbitals,
due to parity symmetry, nor to high angular momentum states, which
have orthogonal valley structures T2 and E.
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observation will have important consequences, as will become
clear when we present our results later on.

III. HYPERFINE STARK SHIFT

The hyperfine interaction between the electron spin S and
the nuclear spin I is described though a coupling tensor A:

HHF = I · A · S. (19)

The most relevant part of HHF, which is usually exploited in
quantum computing schemes, is the Fermi contact scalar term
A I · S [8], whose values we listed in Table II for all four
group V donors. ESR and NMR donor spectra are determined
primarily by the interplay between hyperfine and Zeeman
splittings, which can result in nontrivial dependence of spin
transition frequencies on the background magnetic field B,
with interesting applications in single-qubit control [30]. Such
features have been exploited in numerous proposals, with
successful experimental realizations already achieved in some
cases [31,33,47]. In particular, the ability to tune these resonant
frequencies with external electrostatic gates has often been
exploited in proposals [9,10]. In the presence of a modified
electrostatic environment, the electronic density can be pulled
off the impurity site, and thus the hyperfine coupling can be
altered. The pertinent regime for quantum computing schemes,
and which will also be explored by measurements reported in
Sec. IV, is one of weak fields—the order of a few tenths of
a V/μm, which is well below the ionization threshold [8].
As stated previously, in this regime, we expect a quadratic
dependence on E:

�A

A0
≡ |�(E 
= 0,r = 0)|2

|�(E = 0,r = 0)|2 − 1 ≡ ηaE
2. (20)

Unlike εg , the coefficient ηa is significantly influenced by the
precise value of the long-range radii āl ,b̄l :

ηa =
{

1

6F 0(0)2

4

4 + 2γ 2
[2Fx(E,0) + γFz(E,0)]2 − 1

}
1

E2
,

(21)

where F 0(0) is the value of any zero-field envelope evaluated
at the nuclear site. γ depends on E2, but much more weakly,
hence it can be effectively considered equal to 1 for the
evaluations of �A below.

The optimal parameters enter Eq. (21) essentially
through the normalizations Nx = 〈Fx |Fx〉,Nz = 〈Fz|Fz〉,
since Fx(z)(0) = Nx(z)(1 + β) [see Eq. (8)]. Let us highlight
the two ways �A depends quadratically on E: from Eqs. (20)
and (21),

�A = 1

9

(
2

Nx

N0
+ Nz

N0

)2

− 1, (22)

where (i) Nx(Nz) ∝ q2
x (q2

z ) ∝ E2 (for parity symmetry rea-
sons, Nx and Nz cannot comprise linear terms in q̄x,q̄z, being
expectation values of the identity, an even operator); and (ii) to
lowest order, (Nx(z)/N0 − 1) ≈ 1

N0
( ∂N0

∂al
δal,x(z) + ∂N0

∂bl
δbl,x(z)),

then from the discussion at the end of the previous section we
know {δal,δbl} ∝ E2.

Hyperfine frequency shifts for each donor are displayed as a
function of applied field in Fig. 2. From the least-squares fitting

FIG. 2. (Color online) Absolute hyperfine frequency shifts �A

as calculated from Eq. (21), as a function of the applied uniform field
E, for all donors considered here. The field range shown is typical
of those required for executing quantum gates and corresponds to the
range investigated experimentally in Sec. IV, but is well below the
ionization thresholds discussed in Sec. V.

of those graphs, we obtain values for the quadratic Stark shift
coefficient ηa of hyperfine couplings of all donors considered
here; these are shown in Table IV, alongside their respective
experimental values, which have been measured for this study
to high precision as will be detailed in Sec. IV.

The agreement is excellent for P, As, and Sb, and good for
Bi; the latter is very nonisocoric [37], thus an effective mass
treatment is expected to work not as well. More specifically,
the umklapp valley-orbit terms neglected in Eq. (4) are more
important, and the EMT approximations are less justified.
Nonetheless, the Stark shift of Bi is still correctly found to
be the lowest of the V group donors. We underline that any
simpler MV EMT, including our previous work [40], could
not get such consistent agreement across all donors due to the
lack of consideration of anisotropy, matching of short versus
long-range behavior, and central cell corrections.

Let us stress that the ordering of the magnitudes of ηa

coefficients across different donors, i.e., the trend in the
tendency of the corresponding electron to be pulled off the
nucleus, follows the pattern suggested by the donors’ binding
energies, rather than being dictated by the respective hyperfine
couplings as one may naively expect. This is shown in Fig. 3,
where both theoretical and experimental ηa coefficients are
reported, for all donors, in correspondence to their respective
ground binding energies. Specifically, Si:Sb shows the largest

TABLE IV. Quadratic Stark shift coefficients ηa(th) of the
hyperfine couplings of four group V donors in silicon, as calculated
from Eq. (21), and compared to respective experimental values
ηa(exp) found in Sec. IV. As we discuss in Sec. IV, the P, As, and Sb
donors are measured in the same sample and so here we quote only
errors relative to one another; there is an additional absolute error of
about 17% of the shift which is plotted in Fig. 3.

Donor ηa(μm2/V2) (th) ηa(μm2/V2) (exp)

P −3.0 × 10−3 −(2.5 ± 0.5) × 10−3

As −1.2 × 10−3 −(1.2 ± 0.1) × 10−3

Sb −3.7 × 10−3 −(3.5 ± 0.05) × 10−3

Bi −0.16 × 10−3 −(0.26 ± 0.05) × 10−3
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FIG. 3. (Color online) Donor ηa coefficients as a function of the
zero-field ground binding energy ε0

g : both theoretical points (red)
and experimental values with absolute errors (blue) are reported. The
monotonic dependence displayed here is qualitatively explained in
the text.

ηa since it is the shallowest of all donors, and in spite of the
fact that it has a stronger A0 than Si:P (see Table II). In other
words, it does not only matter how concentrated the electron
is at the nuclear site, more important is how much the ground
state is spread further from the impurity. This can be deduced
from Eq. (16), (and a similar expression for q̄z) where all the
quantities involved are expectation values on the state |F 0z〉,
which has vanishing amplitude around z ≈ 0.

IV. EXPERIMENTAL METHODS

Stark shift experiments were performed on ensembles of
spins for the four group V donors in two different samples.
Material 1 contains 31P, 75As, and 121Sb donors ranging
in concentration between 1014 and 1015 cm−3. Material 2
has Bi in concentration of 2 × 1015 cm−3. Both materials
are isotopically purified silicon-28 float-zone crystals with
below 100 ppm isotope concentration of 29Si and 30Si.
The measurements were realized in a pulse electron spin
resonance (ESR) X-band (0.3 T, 9.7 GHz) Bruker spectrometer
at temperatures ranging from 5 to 11 K; for each donor,
the temperature is adjusted so that the electron spin-lattice
relaxation T1e ≈ 10–20 ms (a repetition rate of 40 ms was
therefore used). Samples of materials 1 and 2 are sandwiched
between two metallic plates in between which the voltage
is applied, to generate the field in a parallel plate capacitor
configuration. The electric pulses range from 0 to 0.2 V/μm
for a duration up to 0.5 ms and each sequence contains 4
pulses of alternating polarities. The resistances of the samples
are >100 M� (<30 K) and no change was recorded during
pulsing due to potential impact ionization.

Owing to the Stark effect, the electric field shifts the
ESR frequency, which can then be measured as a phase
shift over time [see Fig. 4(b)]. The frequency shift can be
directly retrieved by Fourier-transforming (F.T.) this phase
acquisition (see Fig. 4). Then the frequency shift for all ESR
transitions of the four donors can be measured at different
electric fields, see Fig. 5. The sensitivity of the measurement
is thus limited by the frequency deviation and the acquisition
time (limited by T2e). The electric field deviation, σE/〈E〉, is
typically around 15%, since the plates are not perfectly parallel
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FIG. 4. (Color online) Measurement of the Stark shift in
28Si:121Sb using dynamical decoupling. (a) Uhrig dynamical decou-
pling (UDD) sequence with four refocusing pulses. As each π pulse
reverses the phase acquisition (see signs in sequence), the dc electric
field is applied in between alternating pairs of π pulses. Using positive
and negative voltage pulses, the linear Stark shift contribution, arising
from local defects, is eliminated and only the quadratic part remains.
(b) Electron spin phase evolution measured in the mI = +5/2 ESR
transition of Sb in material 1 for different electric fields. (c) Fast
Fourier transform (F.F.T.) showing the frequency shift distribution in
the sample, fitted here with a Lorentzian.

due to samples geometry and roughness, and the acquisition
time can be made as long as 1.6 ms by using a dynamical
decoupling sequence [see Fig. 4(a)]. Experimental errors such
as variation in sample thickness, voltage pulse rise and set
times have also been taken into account. Finally, because P,
As, and Sb were measured on the same sample of material 1, in
exactly the same configuration, the errors in Table IV are only
given relative to one another, taking into account only the fit
error from Fig. 5. Due the above mentioned inhomogeneities,
there is an additional absolute error of about 17% of these ηa

values, which were calculated by Monte Carlo sampling over
all frequency (F.T.) distributions. This additional error is not
included in Table IV but is shown in Fig. 3.

Local strain or charge defects in the sample create an
internal electric field Ein. In the presence of an external electric
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field Eex, the Stark shift is

�f ∝ (Eex + Ein)2 = 2EinEex + E2
in + E2

ex. (23)

As a result, the defect induced Stark shift has a component
that depends linearly on the external electric field [23]. This
component is expected to be strictly inhomogeneous and thus
results in a decay of the electron spin echo signal—but it can be
canceled by applying bipolar (positive and negative) electric
pulses, as given by the sequence depicted on Fig. 4(a). The
quadratic shift that we want to measure is still acquired under
this sequence.

The Stark-induced frequency (f ) shift combines both the
hyperfine (A) and the spin-orbit (g) contributions. They both
depend quadratically on the applied electric field, but the
sensitivity of the frequency to each of them (df/dA and df/dg,
respectively) depends on both the nuclear state mI and the
magnetic field B0. In the high-field limit (no mixing) and for
the electron spin transition, df/dA = mI and df/dg = μBB0.
For B0 < 1 T, the hyperfine contribution is then expected to
be strongly dominant over the spin-orbit contribution. Thus,
at X band, measuring the Stark shift for each of the mI states
provides a good estimate of the hyperfine contribution in very
good agreement with theoretical values (see Fig. 3).

The values of ηa measured here agree well with previous
results for As and Sb [23,25], while this is the first time they
have been reported for P and Bi.

V. GROUND-STATE ENERGY AND ELECTRON
IONIZATION

Using our previous analysis, captured by Eq. (13), and
keeping in mind that �x < �z < 0, we find that the absolute
magnitude of the donor binding energy |εg| increases with
increasing field. This is nontrivial behavior that arises from
the combination of effects discussed in Sec. II, where we saw
how the lowering of intravalley energies produced by the field,
see Eq. (18), is the only important factor in determining the
change in the total donor binding energy with E. The impact
on the shape of the wave function in the central-cell region
modifies εg negligibly, hence the intervalley interactions are
not affected significantly, and the spectral narrowing of the 1s

manifold is not strong enough to produce an overall energy
increase of the ground state. Our conclusion contrasts with
Ref. [15], where the electron was predicted to be less bound in
increasing field, but it confirms the conclusions in the ab initio
treatments presented in Refs. [18,20].

We find that the dependence of the ground-state energy
on the field is rather weak, as shown in the 1s A1 energy
plots of Fig. 6: this is compatible with studies performed
within different approaches [20], and confirms that bulk donor
electrons “instantaneously” tunnel off an impurity nucleus, in
contrast to adiabatic tuning available to electrons closer to an
interface [14].

So far, we have dealt with electric fields of magnitudes
that would be required for the execution of quantum gate
operations. As E increases by one order of magnitude above
those considered so far, qualitatively new dynamics takes
place [18]: the 2p-like orbital levels of the donor electron
(with the singlet A1 valley structure) anticross with the
slowly changing ground 1s-like state, so that the electron can

FIG. 6. (Color online) Donor binding energies of the ground
states of Si:P, Si:Sb, Si:As, and Si:Bi decrease very weakly as a
function of the field, as detailed in the text. For each species, values
are reported only up to the point Ec where they become degenerate
with the “2p” energy level, which is common to all donors, as it
is not influenced by central cell corrections. Each crossing point
corresponds to the ionizing field for each donor.

effectively tunnel off the bulk of the silicon layer. Using our
model, we can predict the ionization field for each of the donor
chemical species. The size of this field is important, since spin
dependent tunneling is a leading proposed read-out technique
for solid state spins [7,9]. Such read-out often occurs at the
interface with an oxide layer, or close to an SET device [5,6],
which is rather far from the dopant nucleus and thus requires
ionization of the donor electron.

We compute the Stark shifted binding energy of the bulk A1

“2p0” state as a function of the field (see Fig. 6), by variational
optimization of Hamiltonian (1) on the following trial wave
function:

�2p(r) = Np z e
−

√
x2+y2

a2
p

+ z2

b2
p
(
1 + qp

z z
)
, (24)

which is suggested by the zero-field form in Ref. [35], modified
to include the admixing with higher energy states induced
by the applied external field. Let us remark that valley-orbit
effects play practically no role in determining the energy and
the wave function of this state (and more generally, of all non-
s states), since the corresponding orbital is concentrated far
from the impurity nucleus and is thus not sensitive to the non-
Coulombic potential Ucc(r). For the same reason, its features
do not depend on the specific chemical donor species.

We stress that the energy levels shown in Fig. 6 refer to the
diagonal Hamiltonian terms 〈�2p|H |�2p〉 and 〈�1s |H |�1s〉,
i.e., we do not take into account the off-diagonal couplings
〈�2p|H |�1s〉. The latter would lead to the expected anticross-
ing of the levels as hybridization between �1s and �2p occurs.
However, the field at which 〈�2p|H |�2p〉 = 〈�1s |H |�1s〉
provides a good estimate of the ionization field Ec [48].

The dependence of the A1 2p binding energy on the field
qualitatively confirms the behavior calculated in Refs. [14,18]
and [20] for a donor electron state closer than 25 nm to the
interface with a dioxide. Our results are specific to impurities
implanted deep in the bulk of a Si layer, though, and hence there
are quantitative differences of a few tenths of V/μm between
our results and the threshold for Si:P and Si:As predicted in
those references. We report in Table V, for the first time, the
expected ionization fields for all bulk donors.
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TABLE V. Predictions of the size of the electric field required to
ionize each donor species, and the corresponding maximum absolute
hyperfine shift �Amax that can be achieved before the electron tunnels
away from the nucleus. Each ESR frequency shift �f max = �AmaxmI

in the last column is for a nuclear magnetic moment mI = I (i.e., the
maximum possible value of mI) and represents the largest transition
frequency shift that can be induced by the applied field E with
each donor. The first �Amax,�f max for Bi are calculated using the
theoretical value for ηa given in Table IV, while the bracketed value
refers to the experimental ηa measured here and available in Table IV.

Donor Ionization Maximum Maximum ESR
field hyperfine shift frequency shift

Ec (V/μm) �Amax (MHz) �f max (MHz)

P 1.55 0.8 0.4
As 1.84 0.8 1.2
Sb 1.45 1.4 3.5
Bi 2.45 1.4 (2.1) 6.3 (9.5)

While specific measurements of these thresholds are still
lacking, very recent experimental work [25] reports that Si:As
donor electrons are ionized at E ∼ 2 V/μm, in full agreement
with our prediction.

Other than identifying precise field regimes that are relevant
for bulk donor spin read-out, our study allows us to extract
another piece of information valuable to any silicon quantum
computing scheme. Single qubit operations in this system are
performed via selective microwave (ESR) magnetic pulses
addressing the hyperfine- and Zeeman-split transitions of the
donor electron spin levels (in the high magnetic field limit,
electron-spin levels are only weakly hyperfine-mixed with the
nuclear spin ones, i.e., the electron spin projection mS is a
good quantum number). In order to manipulate individual
spins within a large ensemble of implanted donors, it is
easiest [49] to apply a global alternating magnetic field Bac,
bringing only selected qubits in resonance with it, by locally
Stark-shifting their spin-resonance frequency [8]. The selected
ESR transitions can be shifted by at most �f (E) = ηaE

2A0mI

with mI, the nuclear spin projection, equal to the nuclear spin
quantum number I [47]. This maximum shift sets the limit on
how quickly spins can be manipulated: if the time scale τ of Bac

pulses is shorter than �f −1, then the resonance frequencies of
the nonselected qubits will lie within the pulse bandwidth. It
follows that faster gates can be performed with larger �f , and
this is in turn limited by the ionization threshold presented here.

We estimate the maximum hyperfine frequency shifts that
the donor ESR transitions can undergo in silicon while still
being safe from ionization: the results are reported in Table V.
Si:Bi supports gate times as short as �f −1

max ∼ 100 ns, yielding
the fastest manipulation obtainable with Kane-like A gates [8]
within donor spins systems in silicon.

VI. CONCLUSIONS

Our theory provides the first comprehensive treatment of
Stark effects for donors in silicon. The inherent physical mech-
anisms behind them are unveiled by the analytic and insightful
multivalley EMT framework. After appropriate calibration
using bulk donor properties, we obtain an excellent match with
experimental hyperfine shifts of all V group donors under a
nonzero applied electric field. The reported measurements of
hyperfine Stark shifts include the first experimental hyperfine
ηa coefficient of Si:P and Si:Bi.

We establish that the donor electron in the bulk is slightly
more bound to the nucleus with an increasing field, for small
fields, and calculate field thresholds at which ionization is
expected to occur, for each donor. This leads us to estimating
the maximum frequency shifts of ESR transitions that can be
achieved by A gates in a Kane-like architecture. Very short
operation times, as fast as ∼100 ns, are allowed if the qubit
is implemented in the Si:Bi electron spin. Our theoretical
framework would need modification to model a device where
a nearby interface or another kind of confinement affects the
bulk properties considered here, yet the fundamental physical
mechanisms will be the same.

Building on these results, our reliable wave functions are
ready to be used for calculation of other single and two-donor
electron properties, especially those relevant for implementing
quantum information processing protocols. They represent
a fast and flexible scheme rich in physical insight, easily
extendable to include more complicated electromagnetic
environments, such as interfaces, nonuniform electric fields,
and hybrid donor-dot schemes.
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