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Abstract 
A sequential Bayesian Monte Carlo approach is proposed in which model space can 
be explored during the Sequential Importance Sampling (SIS, a.k.a. Particle Filtering) 
fitting process. The algorithm allows model space to be explored while filtering 
forwards through time and takes a similar approach to Reversible Jump Markov Chain 
Monte Carlo (RJMCMC) strategies, whereby parameters jump into and out of the 
model structure. Possible efficiency gains of the new Trans-Dimensional SIS routine 
are discussed and the approach is considered most beneficial when the exploration of 
large model space in the SIS framework is desired. 
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Introduction 
Commonly, data analysts seek to choose objectively a single ‘best’ model and 
subsequently draw inference using that model. Model selection is thus a fundamental 
part of many frequentist or Bayesian modelling procedures and a crucial step if 
inference is to be made with any reliability. Much progress concerning the selection 
of a model from a set using information theory (such as the Akaike Information 
Criterion, AIC, and its many variants) has been made in recent years (Seghouane and 
Amari, 1997; Wager et al., 2007; Link and Barker, 2006; Burnham and Anderson, 
2002). However, when inference is based upon a single model, predictions may not be 
robust. A sensible general framework that incorporates model uncertainty into 
estimation and prediction is that of Bayesian model averaging (Hoeting et al., 1999; 
Wintle et al., 2003; Wang et al., 2004). In this context, many models are fitted and 
weights are attached to each so that the whole suite of models can be used to generate 
a composite forecast (Buckland et al., 1997; Kass and Raftery, 1995). Bayesian 
Monte Carlo approaches, such as Markov Chain Monte Carlo (MCMC) and 
Sequential Importance Sampling (SIS, a.k.a. Particle Filtering) are able to incorporate 
model selection and the generation of model weights within the fitting process. 
MCMC can utilise the Reversible Jump method (RJMCMC, see King and Brooks, 
2002ab) to allow parameters to jump into and out of the model structure, while a 
similar sequential method for use with SIS has been developed by Vermaak et al. 
(2003) and termed Trans-Dimensional Sequential Monte Carlo (TD-SMC). The TD-
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SMC method is non-iterative and is based on a generalisation of importance sampling 
to spaces of variable dimension. Here, we suggest a related procedure, ‘Trans-
Dimensional Sequential Importance Sampling’ (TD-SIS), whereby the dimension of 
the modelled structure for a sampled particle can be similarly altered during the SIS 
fitting framework. The major development in the TD-SIS algorithm is the use of a 
likelihood-based transition probability coupled with the storage of random seeds in 
order to reduce Monte Carlo error between particles and proposals. This advance 
should allow for more efficient exploration of model space and permit the 
investigation of model structures with high dimensionality. 

 
Methods 
Sequential Importance Sampling  
Consider a system defined by unknown states (for example animal abundances or 
illegal immigrants) represented by a state vector tn , and by processes (such as 
recruitment or economic growth) represented by a single model with parameters θ . 
Then the joint prior distribution for the state vector and the parameters is 

∏
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−××
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where )(θg  is the prior distribution on the parameters, )|( 00 θng  is the prior 
distribution on the initial states 0n  given the parameters at t = 0 and 

),,...,|( 01 θnnn −tttg  is the prior distribution on the states tn  at time t given the 
previous states and the parameters. If ),|(),,...,|( 101 θnnθnnn −− ≡ tttttt gg , then the 
model is first-order Markov, and is termed a state-space model (Buckland et al., 2004; 
Newman et al., 2006).  

Although there are many potential algorithm to implement SIS, typically one draws a 
large number R of samples from the joint proposal distribution for the parameters and 
initial states, say )|()(),( 000 θnθθn qqq ×= , and each independent set of parameters 
and initial states is termed a ‘particle’. So, the thr  particle at t = 0 represents a single 
realization θr of the parameters of the population model, together with a single 
realization of the population in the initial year, r,0n . So, an empirical measure of the 
samples from the prior distribution on the parameters is given by  
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where rδ  is the delta-Dirac mass located at θr (Doucet et al. 2001). Each particle can 
be projected forwards stochastically to time 1=t  (in the chosen units of time), by 
simulating the state vector rt ,n  from ),|( ,1, rrtrttg θnn − . The particles can then be 
resampled, with weights  

 [ ])|()()|()( ,11,11,, rrttrrrttrrtrt qqggLw θnθθnθ −−−− ×××∝   (3) 
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where ),|( ,, rrtttrt fL θny=  is the contribution to the likelihood for particle r from the 

data yt at time point t. It is convenient to normalize these weights, so that 1
1

, =∑
=

R

r
rtw . 

If the proposal distribution is taken to be the prior distribution 
)|()()|()( ,11,11 rrttrrrttr ggqq θnθθnθ −−−− ×=× , then the resampling weights are 

simply likelihood weights and they can be normalized thus: ∑
=

=
R

r
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1
,,, . 

When the resampling scheme above is combined with the use of the posterior 
distribution of parameters at time t-1 as the prior distribution for time t, the algorithm 
is known as ‘bootstrap filtering’ (Gordon et al. 1993). For example, given data at time 

1=t , the surviving particles ),,( ,1,0 rrr nnθ  are approximately a sample from the joint 
posterior distribution of parameters and states. These particles may be projected 
forwards to become the joint prior distribution for 2=t , with the state vector 
simulated from ),,|( ,0,1,22 rrrrg θnnn , and so on, until resampling at the final time 
point maxT  has been carried out. The surviving particles are then an approximate 
sample from the joint posterior distribution of parameters and states. 

 

Model Averaging by Sequential Importance Sampling: Theory 
To incorporate model averaging, it is natural to extend the hierarchical framework of 
(1) to include prior information for each model considered: 

∏
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−×××
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1
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where )(Mg  represents the prior distribution for the models M, )|( Mθg  represents 
the prior distribution for the parameters θ  given the models and 

)|()(),( MθMMθ ggg ×=  (King and Brooks, 2002a,b). We adopt a slightly different 
approach to King and Brooks (2002a,b) in that we define a maximal model with K 
parameters. Other models are obtained by fixing one or more of these parameters to a 
pre-determined constant, usually 0 (e.g. for a coefficient corresponding to a covariate) 
or 1 (e.g. for a parameter representing a probability). Thus, the prior distribution for 
the parameters has two components: a binary component that determines whether 
each parameter takes a fixed value, and conditional on it not taking a fixed value, a 
continuous probability density function. Thus, the sampling distribution of the joint 
prior distribution for the parameters and models is  
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where )',,( 1 Kpp L=p  is a vector of prior probabilities of whether each parameter is 

included in the model. 
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δ  is a matrix of ones and zeros with 

jrj p== )1(Pr ,δ  such that the number of parameters included in the model structure 
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for particle r is ∑
=

=
K

i
rira

1
,δ . If we want to include parameter j in the model space of 

every particle, we simply set jp  and thus rj ,δ  = 1 for all r. Remaining elements of p 

might be set equal, subject to the constraint kp
K

j
j =∑

=1
, where k is judged a priori to 

be a suitable size of model (in terms of number of parameters) for the system, given 
available data. For example, if there are K = 20 parameters in the maximal model and 
we require 5 particular parameters to be in all models and we also judge that k = 10 
parameters are appropriate for the model given the size of the dataset available, then 
we set 1=jp  for the 5 parameters of our minimal model, and 3/1=jp  for each of 
the remaining 15 parameters. So, the prior probability of model m is 

∏
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jδ  is the vector of ones and zeros corresponding to the 

parameters included in model structure m and the normalising constant ∑=
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m
mh )Pr(  

where NM  is the number of model types possible.  

Note that we have assumed, as is commonly the case in RJMCMC and SIS, that the 
individual priors )( jjg θ  are independent. However, if there is strong correlation 
between parameters any transformation of the covariates or reparameterization that 
reduces these correlations should improve the performance. For regression-type 
model structures, a simple measure is to ensure that all covariates are centred on their 
mean, thus removing correlations between regression coefficients and the 
corresponding intercept. 

The joint prior distribution for the models M, parameters θ  and the state vector tn  is 
thus 

∏
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and given observations ty , at each time point t the posterior distribution 
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The overall likelihood of the particle at time T ≤ maxT  is simply 
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and overall likelihood weights for particles simulated from the priors are  

∑
=

=
R

r

T
r

T
r

T
r LLw

1
    (9) 



Technical Report 2007-6  NSCE, University of St. Andrews  Page 5 of 14 5

In order to assess the performance of the particle set at any time point t, the equivalent 
number of iid samples in the set can be determined from the Effective Sample Size at 
time point t (Kong et al. 1994; Liu 1996), while the posterior model probabilities at 
time t indicate the support for each model given the data up to time t. 
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Model Averaging through Trans-Dimensional Sequential Importance 
Sampling 
To illustrate simply the implementation of the proposed model selection technique, 
the SIS framework in the following simulation study is simplified by the exclusion of 
the resampling scheme of Gordon, Salmond, and Smith (1993). However, it is 
theoretically possible to conduct the resampling and model jumping methods in 
tandem. For this model averaging study, particles are generated as above and fit to 
data to generate overall likelihood weights ( T

rw  see above) and then instead of the 
resampling stage the following dynamic ‘model jumping’ algorithm is conducted.  

For each particle r, first simulate a vector of ones and zeros to assign to each row (j) 
in the rth column of δ , where each element indicates whether or not a parameter is 
included. This can be achieved by generating binary deviates with success 
probabilities given by p, although a different proposal distribution could be taken. For 
each parameter jθ  selected for inclusion in the rth particle, i.e. 1, =jrδ , parameter 
values are simulated from the proposal distribution )(θq . The initial states are then 
generated by simulating from )|( 00 θnq . SIS proceeds as usual and likelihood 
weights are constructed sequentially. At pre-chosen time points t, or when the 
estimated sample size has reduced past a preset threshold, the particles may then be 
altered through model jumping, such that some particles will increase their model 
dimension while others particles will reduce it. 

Model jumps are stochastic and for each particle the probability of a transition in 
model space is computed as follows. At time point t, where data are available, for the 
jth parameter or for a randomly chosen subset of θ , if jθ  is currently in the rth 
particle’s model space ( 1, =rjδ ), generate a ‘parallel’ particle identical to particle r 
(i.e. with the same random numbers used for simulation from each stochastic process 
and with the identical values of each parameter and initial state) except with jθ  
excluded ( 0, =rjδ ); if jθ  is not currently in the model, generate a parallel particle 

with jθ  included. Select the particle with jθ  included with transition probability 

( )0,1,1, ,,, === + rjrjrj δT
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, ,, ; t = 1 is the first time point with 

data; and rjδ
rtL ,

,  indicates the contribution of time point t to the likelihood at time T for 
particle r with parameter jθ  included in (δj,r = 1) or excluded from (δj,r = 0) the model 
space. Otherwise select the particle with jθ  excluded, i.e. with 1 minus the transition 
probability. Discard the parallel particle (or store it for future use, should this model 
be selected again at a later time point). If the random numbers used to generate 
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deviates for each process of particle r are retained, then they can be re-used to 
generate the parallel particle (except for any associated with a dropped process, if the 
exclusion of a parameter results in the elimination of a process). If this supply of 
random numbers is exhausted, more can be generated (and stored) as they are needed, 
for example when a process is added to a model. Re-using random numbers in this 
way will reduce Monte Carlo variation between parallel particles. 

The definition of the transition probability above will affect the validity of the method 
and also its efficiency. One should remember that although particles are not 
independent of their parallels, with which they share random numbers, they are 
independently generated of other particles. By making the direction of the jumps 
reversible and by taking the usual importance sampling assumption of very large 
sample size model space can be explored in the manner set out above with the 
following potential adjustments. The above probabilities intrinsically favour more 
complex models because the probability of retaining the simpler model is at most 0.5, 
while the more complex model is more likely to attain a greater likelihood simply due 
to its greater flexibility. Hence use of a penalized likelihood is likely to lead to better 
efficiency. e.g. if for particle r we select the model with jθ  included with 

probability ( )0,11,1, ,,, . === + rjrjrj δT
r

δT
r

δT
r LeLL , this equates to using the Akaike Information 

Criterion to choose between particles and their parallels (Buckland et al., 1997), 
increasing the chances of selecting the simpler model. In general, denote these 
transition probabilities by  

( )0,1,1, ,,, . === += rjrjrj δT
r

δT
r
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r

T
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where for example: 1=c  corresponds to likelihood weights; 1ec =  to AIC weights 
nc =  to Bayesian Information Criterion (BIC) weights, where n is sample size; or 

prc = , where pr is the ratio of simple over complex model prior probabilities. If the 
prior probabilities on each model are equal (pr = 1) then the transition probabilities 
are equal to non-penalised transition probabilities. In contrast to RJMCMC, the 
reversibility condition (eqn 12) is not required by either the TD-SIS method or indeed 
the TS-SMC method of Vermaak et al. (2003). 
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If the above condition were satisfied by TD-SIS then particles would be just as likely 
to move to a parallel particle that poorly fits the data as they are to stay in a currently 
satisfactory particle. By formulating the transition probabilities as in equation 11, 
‘good’ moves are more likely than ‘poor’ moves and the algorithm is thus relatively 
efficient. Once the algorithm is complete, the particles should be distributed across 
models such that the posterior model probabilities can be determined simply by the 
proportion of the particle set within each model. 

 

Simulation study 
A simple model structure utilising two processes was chosen for investigation by the 
simulation study. The model processes are described by the following equations: 
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where
ryα is the probability of recruitment and 

ryθ is the probability of survival in year 
yr, 

ryX is the state value, and β, γ, δ and λ are parameters to be estimated from the 
following prior distributions: β ~ normal(0.5, 0.001); γ ~ normal(0.00075, 0. 00008); 
δ ~ normal(0.55, 0.0001); λ ~ normal(0. 000225, 0. 00005).  

Using the above processes and an initial state value of 150 animals, four stochastic 
models were evaluated: M0, the full model with density dependent recruitment and 
survival; M1, density independent recruitment (γ set to 0) and density dependent 
survival; M2, density dependent recruitment but density independent survival (λ set to 
0); M3, the simple model density independent recruitment and survival (γ and λ set to 
0). Data were generated by a single stochastic realisation from M2 (Fig. 1) but were 
potentially reproducible by each model. However, deterministic modelling using the 
expected values of the parameters’ prior distributions suggests that density 
dependence in one process is necessary to fit to the data (Table 1). 

 

Results 
With the model jumping algorithm in place, a quarter of a million independent 
particle simulations were made, from a set of 1 million particles including the non-
independent parallel particles, for the two following types of transition probability: 
prior transition probabilities (c = pr and pr = 1 and thus equal to likelihood transition 
probabilities without penalization in this case), and AIC transition probabilities (c = 
e1). No difference, above that expected for Monte Carlo error, was found between the 
posterior support on each model using the two types of transition probability (Table 
1). However, differences were evident when compared to 1 million independent 
simulations from the SIS algorithm without model jumping. M1 and M2 were 
favoured much more greatly by the standard SIS algorithm (100% of the Akaike 
model weights, see eqn 16) than by the TD-SIS (75% of particles ended up in these 
two models). However, the reduced set of particles in M0 and M3 after TD-SIS were 
much improved over the fully independent set created by the standard SIS method 
(i.e. fewer poor particles were included). Although, very little difference is visually 
evident between the model fits (Figs. 2 and 3) fewer independent particles are utilised 
by the TD-SIS method. In this case, the smaller particle set (¼ M particles) in the 
posterior distribution created using TD-SIS had an almost equal ESS for each model 
as the standard SIS algorithm attained using 1M independent particles (Table 1). If the 
efficiency of the TD-SIS method were improved (i.e. not all parallel particles need be 
modelled fully as they have been here) then the fewer independent samples required 
by the TD-SIS algorithm would prove a major benefit, particularly for large model 
space. 

 

Discussion 
The effectiveness of the algorithm in searching through parameter space is a function 
of the length of the time series and of the priors placed on whether or not parameters 
are in the model. If there is a trend in average model size with t, which is still evident 
by the end of the time series, this may indicate a poor prior choice for k, the size of the 
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model. However, large changes in average model size, and model weights, may also 
occur due to outliers in the data. The algorithm goes some way to address this issue by 
calculating the transition probabilities ( T

ru ) historically, so that the current and all 
previous time points at which data are available determine the probability of a jump 
through model space thus damping the effect of the outliers. 

A useful and simple tool to investigate the relative model fit at time t may be a 
penalised likelihood score such as the Akaike Information Criterion (AIC),  

  log1 2 AIC
1
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, 
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where Nm,t is the number of particles at time t in model m and am is the number of 
parameters in model m, and the Akaike model weight is thus,  

{ } { } −= ∑
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k
tktmtm

1
,,, AIC 5.0expAIC 0.5-exp  AW ∆∆   (16) 

where M is the number of models considered and  )(− = ∆ , ,, tmalltmtm AICminAICAIC . 
The Akaike model weights are determined by particles that are simulated 
independently for each model structure. The TD-SIS algorithm allows particles to 
jump through model space such that the posterior sample of parameters for each 
model is determined by those particles that have jumped into the model type. 
Although the parameters sets are still independent samples, the choice of which 
parameters to include in the model is determined sequentially through fitting to the 
data and altering the model space. In effect, a high-pass filter is created such that the 
posterior set for each model is under-represented by poor samples from the prior. This 
is reflected in the difference in the ∆AIC scores for the entire set of particles and their 
parallels (∆AIC 1 M) and for the selected particle set only (∆AIC ¼ M) (Table 1). 

 

Auxiliary Transition Sequential Importance Sampling (AT-SIS) 
The TD-SIS routine presented above is computationally expensive and particularly so 
for long time-series with large model space. We may improve the method through use 
of an ‘auxiliary transition probability’. In order to evaluate the probability of a jump 
through model space using TD-SIS, one must calculate T

ru (eqn 11), which is based on 

the product of each model’s likelihood scores ∏
=

=
T

t

δ
rt

δT
r

rjrj LL
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,
, ,,  over the present and all 

previous time points.  To reduce the complexity of the calculation, one could calculate 
the likelihood scores, and thus the transition probability, approximately: for the 

particle currently modelled (say, rjδ , = 0), ∏
=

== ==
T

kt

δ
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δkT
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and for the parallel particle, ∏
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1,,1, ,,, ˆˆ . For the parallel particle 

( rjδ , = 1), the estimate of the likelihood is considered here to be based on updates of 
the modelled states to time T from the previously computed states of the current 
model ( rjδ , = 0) up to time k – 1; hence the use of an estimated likelihood 1

,
,ˆ =rjδ
rtL  at 

time t for the parallel particle.   
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For example, we might consider model jumping based on the current data year only (T 
= k).  If the time-point k is 10 time intervals after the initial state we can estimate 

0,10 ,ˆ =rjδ
rL and 1,10 ,ˆ =rjδ

rL  using the previously modelled states (up to t = 9 with, say, rjδ , = 
0) and update to t = 10 using both the current and alternative model type (i.e. the 
parallel particle with rjδ , = 1 that we might switch to). However, the actual difference 
in the likelihoods of the  two particles will be under-estimated: i.e. 
( ) ( )1,10,10

1
0,10,101,10

1
0,10 ,,,, ˆˆ  ========== −>− rjrjrjrj δkTδkT

r
δTδT

r LLLL . So, making model jumps 
based on such approximate likelihoods would lead to incorrect posterior model 
probabilities, particularly if a particular model fits well in the later part of the time-
series (and thus the probability of jumping to that model is high in those later years) 
but not in the earlier years. Therefore we must correct for the inaccuracy of the 
auxiliary movement; however, this will reduce the efficiency gain of the method. For 
successful model jumps using the estimate ( )0,,1,,1,,, ,,, .ˆ === += rjrjrj δkT

r
δkT

r
δkT

r
kT

r LcLLu  we 
should calculate the entire history of the particle in the new model and determine what 

T
ru  would have been before jumping through model space. The weight of the particle 

can then be modified, in order to account for the approximation in the calculation, by 

T
rT

r

T
rT

r L
u
uw
ˆ

∝           (15) 

Altering the weights (after jumping) in this way would correct for the auxiliary 
calculation of pr(move) if the move is made. However, if a particle does not jump 
across models no correction is necessary, this is valid if the direction of any model 
jump is reversible and there are many particles in each model. Auxiliary model 
jumping is perhaps unwise if all the particles have converged on a single model 
because the technique might impose an incorrect model fidelity if more than one 
additional/fewer parameters are required to move to more suitable model space. 

The efficiency gains by this auxiliary transition method are due to the removal of the 
requirement to calculate the complete history of states, likelihoods and weights for a 
parallel particle under the alternative model. However, once a move has been made 
and the selected parallel particle is fully specified, if we choose to consider the reverse 
jump through model space at a subsequent time point (assuming that the original 
particle data was saved and that the time points are not too widely spaced) we may 
want to model the original particle forward from the previous states so that the 
calculation of T

ru is exact; since there may be little gain in the auxiliary method. 
However, in practice for very large model space it may be so unlikely to consider a 
reverse jump, rather than a jump to another model, so that this circumstance does not 
occur.  

In summary, the TD-SIS algorithm manages to perform as well as the SIS routine 
(e.g. similar ESS by model, Table 1; Figs 2 and 3) but the posterior sample relies upon 
1/(number of possible model types) fewer independent samples. The strength of the 
method relies upon further improvements to its efficiency so that the number of 
parallel particles that need to be explored do prohibit its successful implementation. 
However, given the many possibilities to approximate the ‘parallel’ (non-
independent) particles this technique deserves further study. 
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Tables 
 

  M0 M1 M2 M3

∆AIC 1 M 210.8 0.78 0 45.86Deterministic simulation 
All time points. 
R = 4 particles AW 1 x 10-44 40.3 59.7  7 x 10-9  

∆AIC 1 M 64.3 0.17 0 13.1Deterministic simulation 
Six time points. 
R = 4 particles AW 6 x 10-15 47.9 52.0  7 x 10-4  

N 249966 250325 249901 249808
ESS 1 M 894 2305 1927 286
∆AIC 290 2.2 0 28

Standard SIS  
(no resampling) 
R = 1 M particles 
ESS(1 M) 4095 AW   9 x 10-64 0.25 0.75 5 x 10-7

Ninitial 62281 62989 62357 62373
Nfinal 21691 95615 92266 40428
Nfinal / R  0.08 0.38 0.37 0.16
ESS ¼ M 875 2157 1811 257
∆AIC ¼ M 0 7.3 9.1 19.4

TD-SIS (c = pr, pr = 1) 
R = ¼ M particles 
from 1 M (incl. parallels) 
ESS(¼ M) 3814 

∆AIC 1 M 294 2.5 0 25
Ninitial 62281 62989 62357 62373
Nfinal 23056 96123 93139 37682
Nfinal / R 0.09 0.38 0.37 0.15
ESS ¼ M 928 2156 1727 285
∆AIC ¼ M 0 7.1 8.9 18.9

TD-SIS (c = e1,  pr =1) 
R = ¼ M particles 
from 1 M (incl. parallels) 
ESS (¼ M) 3810 

∆AIC 1 M 294 2.7 0 25
 

Table 1:  Akaike Information Criterion (AIC, see eqn 15) and, for standard SIS, the Akaike 

Weight (AW, see eqn 16) for each model, given the simulated data and assuming a 

constant 15% coefficient of variation in the observation process: rows 1 (likelihood 

calculated from fit at every time point) and 2 (likelihood constructed at yr = 10, 15, 

20, 22, 25, 30) calculated using the expectation (mean) values of the parameters’ 

prior distributions and deterministic model simulation (Fig. 1) and rows 3 – 5 (Figs. 

2 and 3) using typical stochastic modelling and 6 time points. EES = Estimated 

Sample Size from posterior samples, N = number of particles by model, R = total 

number of particles in study. For TD-SIS, R = ¼ M independent particles (not 

including parallels) and ¾ M parallels (since there are four models types), the 

∆AIC ¼M value incorporates only the independent particles and the ∆AIC 1M is 

given for comparison. Nfinal /R is the posterior model probability for TD-SIS and are 

comparable to the AW for standard SIS. 
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Fig. 1.  Deterministic model outputs using the expectations from the prior distributions 

and selected data (circles; solid circles are the states at the 6 time points used 

for likelihood evaluation) for the study from a single stochastic simulation 

using M2. M0, black dotted line; M1, black dashed line; M2, solid black line; 

M3, solid grey line; 
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Fig. 2.  Fit after standard SIS. Median and 95% credible interval by model (solid black 

lines) and data (circles) (circles, where solid circles are those used for 

likelihood calculation). Also shown 100 randomly selected particles from the 

posterior distribution for each model. 
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Fig. 3.  Fit after TD-SIS using equal model priors and thus non-penalised transition 

probabilities (c = 1). Median and 95% credible interval by model (solid black 

lines) and data (circles, where solid circles are those used for likelihood 

calculation). Also shown 100 randomly selected particles from the posterior 

distribution for each model. 

 


