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Summary / Abstract 1 

1. Wildlife scientists continue to be interested in studying ways to quantify how the 2 

movements of animals are inter-dependent – dynamic interaction. While a number of 3 

applied studies of dynamic interaction exist, little is known about the comparative 4 

effectiveness and applicability of available methods used for quantifying interactions 5 

among animals. 6 

2. We highlight the formulation, implementation, and interpretation of a suite of eight 7 

currently available indices of dynamic interaction. Point- and path-based approaches are 8 

contrasted to demonstrate differences between methods and underlying assumptions on 9 

telemetry data.  10 

3. Correlated and biased-correlated random walks were simulated at a range of sampling 11 

resolutions to generate scenarios with dynamic interaction present and absent. We 12 

evaluate the effectiveness of each index at identifying differing types of interactive 13 

behaviour at each sampling resolution. Each index is then applied to an empirical 14 

telemetry dataset of three white-tailed deer (Odocoileus virginianus) dyads. 15 

4. Results from the simulated data show that three indices of dynamic interaction reliant on 16 

statistical testing procedures are susceptible to Type I error, which increases at fine 17 

sampling resolutions. In the white-tailed deer examples, a recently developed index for 18 

quantifying local-level cohesive movement behaviour (the di index) provides revealing 19 

information on the presence of infrequent and varying interactions in space and time.  20 

5. Point-based approaches implemented with finely sampled telemetry data over-estimate 21 

the presence of interactions (Type I errors). Indices producing only a single global 22 

statistic (7 of the 8 indices) are unable to quantify infrequent and varying interactions 23 
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through time. The quantification of infrequent and variable interactive behaviour has 24 

important implications for the spread of disease, and the prevalence of social behaviour in 25 

wildlife. Guidelines are presented to inform researchers wishing to study dynamic 26 

interaction patterns in their own telemetry datasets. Finally, we make openly available 27 

our code, in the statistical software R, for computing each index of dynamic interaction 28 

presented herein.  29 

 30 

Keywords: contact rate, static interaction, proximity, simulation, biased random walk, sampling 31 

resolution, Odocoileus virginianus, GPS telemetry  32 
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1 – Introduction 33 

The development of GPS tracking technologies is revolutionizing wildlife movement and 34 

behaviour research (Cagnacci et al. 2010), and has led to increased interest in the study of 35 

interactions among individual animals (e.g., mating behaviour, Stenhouse et al. 2005; and 36 

predator-prey dynamics, Eriksen et al. 2008). Interactive behaviour can be characterized as either 37 

static or dynamic (Macdonald, Ball & Hough 1980). Static interaction can be defined simply as 38 

the joint-space use between two individuals, ignoring the temporal information of location fixes, 39 

(Kernohan, Gitzen & Millspaugh 2001), and is typically measured by an index of home range 40 

overlap or volume of intersection using utilization distributions (Millspaugh et al. 2004; Fieberg 41 

& Kochanny 2005). Alternatively, dynamic interaction refers to how the movements of two 42 

individuals are related (Macdonald et al. 1980), or as the inter-dependency in the movement of 43 

two individuals (Doncaster 1990). Strictly speaking, the presence of dynamic interaction implies 44 

some degree of static interaction, while the converse may or may not be true. Tests for dynamic 45 

interaction can be used to examine attraction or avoidance behaviour (Doncaster 1990), 46 

simultaneous joint-space use (Minta, 1992), or cohesiveness in the movements of two individuals 47 

(Long & Nelson 2013). A number of techniques for studying dynamic interactions have been 48 

developed and adopted widely in wildlife telemetry studies (see Table 1), but little is known 49 

about the effectiveness of each at identifying true dynamic interaction patterns. Similarly, it is 50 

difficult for researchers to compare results among existing methods because most applied studies 51 

typically implement only a single method. 52 

< Approximate location of Table 1 > 53 

Novel tracking technologies (e.g., GPS, Argos, Platform terminal transmitters (PTTs), 54 

global satellite Iridium systems, etc.) are changing the manner in which wildlife telemetry data 55 
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are recorded and transmitted. A wide variety of systems can be programmed to collect telemetry 56 

fixes at variable sampling resolutions (Tomkiewicz et al. 2010). Sampling resolutions (the 57 

frequency at which telemetry fixes are collected) previously unattainable are now routinely 58 

implemented in modern tracking studies. However, many studies still employ coarser resolution 59 

telemetry systems (e.g., VHF telemetry), which have a lower unit cost in order to monitor a 60 

greater number of individuals (Girard et al. 2006). In addition to the wide range of technologies, 61 

study objectives typically dictate sample size, sampling resolution, and study design, all of which 62 

may influence the ways in which data are analyzed and interpreted. Therefore, researchers are 63 

often left with the difficult task of identifying which, of a suite of available analytical techniques, 64 

are appropriate for meeting study objectives.  65 

The overall goal of this study is to demonstrate the effectiveness of eight available 66 

indices for measuring dynamic interaction common to wildlife telemetry data using both 67 

simulated and empirical data. Our objectives were to: 1) review the formulation and 68 

interpretation of each of the eight indices, 2) detect present vs. absent dynamic interaction using 69 

simulated data at varying sampling resolutions, 3) evaluate each method using empirical data 70 

collected on white-tailed deer fitted with GPS collars, 4) highlight the advantages and 71 

disadvantages of each approach, and 5) provide guidance on the selection, use, and interpretation 72 

of dynamic interaction indices common to analysis of wildlife telemetry data. Areas of future 73 

research are discussed to encourage the development of additional tools and algorithms that can 74 

be used in association with dynamic interaction analysis. Last, we provide code for the R 75 

statistical computing environment that allows researchers to implement each of the eight indices 76 

of dynamic interaction presented herein.  77 

2 – Indices of Dynamic Interaction 78 
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Indices of dynamic interaction can be broadly categorized as point-based or path-based, 79 

depending on how they represent telemetry data (as points, or as connected segments – paths). 80 

Clear conceptual differences in the calculation and interpretation of the eight dynamic indices are 81 

apparent from their individual formulation (see below and Table 2), but also between point- and 82 

path-based approaches. Point-based indices typically examine attraction/avoidance behaviour, 83 

while path-based indices look at cohesive movement behaviour. Of the eight currently available 84 

indices of dynamic interaction, six are point-based, while two are path-based (Table 2). The 85 

terminology and notation used for describing telemetry data and concepts relating to 86 

measurement of dynamic interaction is introduced in Table 3.  87 

< Approximate location Table 2 > 88 

< Approximate location Table 3 > 89 

2.1 – Proximity analysis 90 

Dynamic interaction is most simply quantified as a measure of nearness in space. Researchers 91 

have used proximity analysis (Prox) to understand the frequency at which two individuals are 92 

near each other. The simplest such index is the proximity rate: 93 





T

ST
Prox  94 

where Prox measures the proportion of simultaneous fixes (Tαβ – defined using temporal 95 

threshold – tc) that are spatially proximal (STαβ – based on spatial threshold dc). The value of 96 

implementing Prox is that it is easily interpreted and gives an estimate of the proportion of time 97 

animals are proximal in space (within dc distance units), given the fixes that are close in time 98 

(based on temporal threshold tc) (Table 2). Further analysis can examine temporally the binary 99 

sequence of proximal and non-proximal fixes. Prox has been used as an indicator of attraction 100 

between individuals (e.g., Bertrand et al. 1996), and as an estimate of contact rates, which is 101 
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useful when studying disease spread dynamics (Baker & Harris 2000). The requirement of a 102 

distance threshold is both advantageous and problematic. In some cases, such as with contact 103 

rates, a biologically motivated spatial distance may be used. However, in many cases, it will be 104 

chosen subjectively by the researcher, owing to previously used thresholds in the literature, or 105 

some other property of the data such as error or sampling interval. In these cases, the subjectivity 106 

of the chosen threshold will impact the results as various choices for dc will change Prox results.  107 

2.2 – Coefficient of association 108 

The coefficient of association (Ca) was first introduced by Cole (1949) for measuring 109 

interspecific associations in field samples and has since been identified as a potential measure of 110 

dynamic interaction in wildlife telemetry data (Bauman 1998).  Coefficient of association is 111 

calculated as: 112 





nn

ST




2
Ca  113 

where nα (resp. nβ) is the total number of all fixes in α (resp. β). Ca is similar to Prox, only Ca 114 

measures the rate of all fixes that are STαβ, not just the simultaneous fixes; thus Ca is measuring 115 

the same phenomenon as Prox. Typically, Ca > 0.5 indicates attraction, while Ca < 0.5 indicates 116 

no association (Kernohan et al. 2001; Table 2). Like Prox, Ca is a useful indicator of attraction 117 

and contact rates, as defined by the threshold dc. However, it is similarly affected by the 118 

subjectivity with which dc is determined.  119 

2.3 – Coefficient of sociality 120 

The coefficient of sociality (Cs) was proposed by Kenward et al. (1993) as an alternative 121 

measure of attraction using the raw distances between fixes, rather than a user-defined threshold. 122 

The formulation of Cs is a variant of Jacobs’ index (Jacobs 1974), a metric originally proposed 123 

for measuring food selection by wildlife. Cs is calculated as: 124 
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OE

OE

dd

dd




Cs  125 

where dO is the mean spatial distance between Tαβ fixes and dE is the expected mean distance, 126 

based on n
2
 permutations of the Tαβ fixes. The statistic is symmetric (on [-1, 1]) where positive 127 

values suggest attraction while negative values suggest avoidance. A Wilcoxon signed-rank test 128 

can be used to examine the significance of the resulting Cs value (Table 2). A major limitation is 129 

determining a reasonable expectation of mean distance to test against. Generally, the distribution 130 

of distances of the n
2
 permutations of all Tαβ telemetry fixes is used to determine dE. Others have 131 

suggested that dE can be determined via simulations using, for example, correlated random walks 132 

(Miller 2012). 133 

2.4 – Doncaster’s non-parametric test 134 

Doncaster (1990) proposed a non-parametric test for interaction (Don) by examining the 135 

separations between the n Tαβ fixes and the unpaired n
2
-n permutations of the Tαβ fixes, and is 136 

analogous to the Knox test for space-time clustering (Knox 1964). The cumulative distribution of 137 

the Tαβ fix distances can be compared graphically with the cumulative distribution of the n
2
 - n 138 

permutated distances. For example, Don is useful for determining a suitable distance threshold 139 

(dc) by identifying where the Tαβ plot is above the expected line based on the permutations. Upon 140 

selecting a suitable dc value, a contingency table can be constructed, identifying the number of 141 

Tαβ and non- Tαβ (termed ‘unpaired’) fix distances that are above and below the threshold dc. A χ
2
 142 

test (with 1 d.f.) or a binomial test can be used to examine the statistical significance of the 143 

counts of Tαβ and non- Tαβ distances above and below dc (Table 2). A modified version of Don 144 

replaces the expectations derived from the n
2
-n permutations of the Tαβ fixes with a simulation 145 

procedure based on correlated random walks (White & Harris 1994).  146 

2.5 – Minta’s test for spatial and temporal interaction 147 
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Minta (1992) introduced three statistics (LAA, LBB, and Lixn) for examining the spatial and 148 

temporal interactions between two individuals. LAA and LBB ignore the temporal information 149 

from fixes and represent only spatial measures of interaction. Here, we focus on Lixn, which is a 150 

statistic for examining temporal interaction. Lixn requires the calculation of individual home 151 

ranges, typically from the collected telemetry data, which are then divided (using a spatial 152 

intersection) into three areas: 1)  used by α only, 2) used by β only, and 3) shared by α and β 153 

(often termed the overlap zone; see Table 1 for notations). The number of fixes contained in each 154 

area (i.e., used by α only, used by β only, and the shared area) are tested against expectations 155 

representing the probability of finding the animal in each of these areas. Expectation 156 

probabilities can be derived by using either the proportions of all fixes contained in each area, or 157 

the overlap area percentages (see Minta 1992). In the case of overlap area percentages, it is 158 

assumed the relative areas associated with space used by α only, by β only, and the shared area, 159 

are proportional to the amount of use.  160 

The Lixn statistic is a function of the ratio of simultaneous use and avoidance of the 161 

shared area to that of the solitary use of the shared area, and is calculated by:  162 
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 163 

where n represents the number of observed fixes, p is the expectation probability, and the 164 

subscripts α and β signify each individual’s presence in the shared area, while the subscript 0 165 

signifies absence from the shared area. Thus, Lixn measures the simultaneous use (defined using 166 

temporal threshold tc) of the shared area. Positive Lixn values suggest simultaneous use of the 167 

shared area (attraction), while negative values indicate solitary use of the shared area 168 
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(avoidance). Lixn near 0 indicates indifference or random use of the shared area. The Lixn 169 

statistic can be tested for significance using a χ
2
 test with 1 df from the contingency table of 170 

observed and expected frequencies of use within the shared area (Table 2).  171 

2.6 – Half-weight association index 172 

The half-weight association index (HAI - Brotherton et al. 1997) represents a companion test to 173 

the Minta (1992) Lixn temporal interaction statistic (Atwood & Weeks 2003). As in Lixn, HAI is 174 

based on the shared area between the two individual home ranges (the overlap zone). The HAI 175 

statistic is however a more localized approach, focusing only on those fixes contained in the 176 

shared area (or only on the area of static interaction). HAI is calculated as: 177 

 

2

HAI
yx

ST

ST








  178 

where x and y are the number of solitary fixes (for α and β, respectively) within the shared area. 179 

Values near 1 indicate attraction (within the shared area) and values near 0 indicate avoidance 180 

(within the shared area; Table 2). HAI is computed identically to Ca, but only for those fixes 181 

contained in the shared area of the home range. Thus, for a dyad consisting of two individuals 182 

with identical home ranges, Ca = HAI.  183 

2.7 – Correlation index 184 

Shirabe (2006) introduced a correlation index (Cr) for analyzing movement data, which can be 185 

considered a type of path-based measure of dynamic interaction. The Cr index takes the form of 186 

a Pearson product-moment correlation statistic for multivariate data (in this case bivariate in the 187 

two spatial dimensions, X and Y). With Cr, movement data are represented as time-series with 188 

vectors corresponding to movement segments that connect consecutive fixes (see Table 3). Cr 189 
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measures differences in corresponding vectors with respect to overall path means to determine 190 

the correlation structure of the data.  Cr is calculated as: 191 

   
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where vt and wt represent movement vectors (for α and β) corresponding to time t, and v̄ and w̄ 193 

are mean vectors. Cr is interpreted similarly to other correlation statistics; values range from -1 194 

to 1 where positive values indicate stronger correlation (cohesive movement), negative values 195 

indicate negative correlation (opposing movement), and values near 0 indicate random 196 

movement with respect to the other individual (Table 2). The mean vectors (v̄ and w̄ ) represent 197 

the average speed and direction of travel of an object, which may or may not have relevance in 198 

the context of measuring and interpreting the presence of dynamic interactions, but strongly 199 

influence the results from Cr. 200 

2.8 – Dynamic interaction index 201 

Recently, Long & Nelson (2013) introduced a dynamic interaction index (DI) based on path-202 

based methods, similar to earlier attempts of Shirabe (2006). The DI index attempts to measure 203 

the cohesiveness of corresponding movement vectors. DI is constructed as the mean of a 204 

localized version (termed di).  Here, di is calculated as 205 

 






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
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 cos1di  whereas DI is calculated by 206 



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

1

1

di
1

1
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n

in
 207 

where d is displacement and θ (the direction) of vector t for individual α or β. The localized di is 208 

simply the product of terms measuring cohesiveness in displacement and direction for each 209 
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corresponding segment. Thus, di is capable of separately measuring cohesiveness in the distance 210 

and direction components (did and diθ respectively), which can be averaged into global statistics 211 

(see Long & Nelson 2013 for more details). Temporal trends in di can be used to identify periods 212 

of cohesive, opposing, and random movement within a dyad. The DI approach, as in Cr, 213 

measures cohesiveness irrespective of proximity between corresponding movement vectors 214 

(Table 2). Thus, to justify DI analysis, the researcher is required to have some a priori 215 

expectation of cohesive movement, which for example, can be based on proximity (defined by 216 

distance threshold dc), a measure of static interaction (e.g., home range overlap), or simultaneous 217 

capture (e.g., familial groups). DI can then be set to 0 when these conditions are not met. 218 

3 – Testing Indices 219 

3.1 – Simulated Data 220 

In order to test methods of dynamic interaction, we simulated situations where dynamic 221 

interaction would be present vs. absent. Generating movement dyads without dynamic 222 

interaction can be accomplished by simulating two independent correlated random walks (CRW) 223 

(White & Harris 1994; Miller 2012). When we simulated the absence of dynamic interaction, the 224 

origin of the second independent CRW was chosen to be a random location within the bounding 225 

box of the first CRW to offer the potential for static interaction (see Figure 1a). CRW’s are 226 

governed by two parameters – h and r. The step-length parameter (h > 0) controls movement 227 

distances, and represents a multiplicative value for random draws from a step-length distribution 228 

(e.g., l = h×d, d a random draw from a step-length distribution). The turning correlation 229 

parameter (r) governs the amount of correlation in turning direction, which is interpreted simply 230 

as a sliding scale from r = 0 (no correlation) to r = 1 (complete correlation in turning direction). 231 

Turning angles then were drawn from a circular distribution with µ = 0, and σ = f(r).  Here we 232 
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use simm.crw function in the adehabitatLT package in R (Calenge 2006), which employs the chi 233 

distribution for step-lengths and a wrapped normal distribution for turning direction. In our 234 

simulations, h was varied across the range 1 – 5, and r between 0 and 0.5 to produce a range of 235 

scenarios with low to moderate amounts of correlation.  236 

Unfortunately, no studies have simulated the presence of dynamic interaction in wildlife 237 

dyads. Therefore, we use the following procedure for simulating trajectories where dynamic 238 

interaction is present. Two trajectories are simultaneously generated, the first a CRW (as in the 239 

absent scenario), the second a random walk consisting of combinations (McClintock et al. 2012) 240 

of CRW and biased correlated random walks (BCRW; Barton et al. 2009). To emulate 241 

interactive behaviour, we modeled the bias towards the current position of the first CRW (i.e., 242 

the movement direction of the BCRW at time t is towards the position of the first CRW at time 243 

t+1). If we had biased the CRW throughout the entire second simulated trajectory, it would have 244 

produced a strong level of dynamic interaction at all times, which is unrealistic for many wildlife 245 

scenarios.  A more realistic scenario is one where behaviour may shift between interactive and 246 

non-interactive phases.  In the second trajectory, we simulate behaviour switches from non-247 

interactive into interactive phases (CRW to BCRW and vice-versa) with transition probability p, 248 

resulting in varied amounts of time spent in the interactive phase. The range of values chosen for 249 

p (0.001 ≤ p ≤ 0.005) was appropriate for producing a realistic behaviour in our simulations 250 

given that we simulated trajectories with n = 2000 to 3000 fixes. During the interactive phase, 251 

step-lengths of the second trajectory were constrained so that the difference in step-lengths 252 

between the first and second trajectories was ≤ 25%, producing realistic patterns of interaction in 253 

movement speed as well as movement direction.  254 
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In a BCRW, three parameters (b, c, and ρ) govern different aspects of the bias effect 255 

(Barton et al. 2009). We randomly varied the bias strength parameter (b) across a range of 256 

acceptable values (0.5 ≤ b ≤ 4; Barton et al. 2009; Fronhofer, Hovestadt & Poethke 2013). The 257 

shape parameter (c) governs how the proximity of the two individuals influences the magnitude 258 

of the bias, which was varied randomly across a range of realistic values (-0.3 ≤ c ≤ 0.3). Finally, 259 

ρ is a correlation parameter for the turning distribution, similar to r from the CRW, which we 260 

also varied following previous studies (0.8 ≤ ρ ≤ 0.9; Barton et al. 2009; Fronhofer et al. 2013). 261 

For more information see the Supplementary Material which contains the R code used for 262 

simulating the presence of interaction with the BCRW, alongside a figure that demonstrates a 263 

dyad with interaction present and a dyad with interaction absent.  In total, 1000 simulated 264 

scenarios were created to serve as a testing dataset, each containing two simulated dyads, one 265 

with dynamic interaction present and one with dynamic interaction absent.  266 

In order to examine the effect of varying sampling resolutions on indices of dynamic 267 

interaction, we systematically down-sampled the simulated trajectories representing high 268 

resolution telemetry data at four coarser levels (50%, 33%, 20%, and 10% of the original fixes). 269 

This resulted in 1000 scenarios at each of five sampling resolutions (i.e., 100%, 50%, 33%, 20%, 270 

and 10% of original fixes), each containing one dyad with dynamic interaction absent, and one 271 

with dynamic interaction present.  272 

3.2 – Empirical Data: White-tailed Deer GPS Telemetry Data 273 

We collected data on a number of white-tailed deer from two study areas in south-central 274 

Oklahoma, USA.  Study site 1 was 1,214 ha in size, and was surrounded by a 15-strand, high-275 

tensile electric fence, thus restricting movement across property boundaries (2.5-m tall; Webb et 276 

al. 2009).  Study site 2 was 1,861 ha and consisted of 5-strand barbed-wire fences, which 277 
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allowed deer to cross property boundaries unrestricted.  Vegetation on both study sites was 278 

consistent with that of the Cross Timbers and Prairies ecoregion (Gee et al. 1994).  On both 279 

study sites, we captured deer during January–March (1998–2005 on study site 1; 2010–2012 on 280 

study site 2) using modified drop-net systems (Gee, Holman & Demarais 1999).  We sedated 281 

deer using intramuscular injections of telazol (4.4 mg/kg) and xylazine (2.2 mg/kg), and used 282 

yohimbine as an antagonist at 0.125 mg/kg.  We fitted deer with GPS collars (ATS G2000 283 

remote-release collars; Advanced Telemetry Systems, Inc., Isanti, MN) programmed to collected 284 

1 fix every 15 (study site 1) or 30 minutes (study site 2).  On study site 1, collars were capable of 285 

collecting data for ~3 months, and on study site 2, collars collected data for ~6 months.  All 286 

capture, handling, and marking procedures were consistent with the guidelines of the American 287 

Society of Mammalogists (Gannon et al. 2007) and were approved by permit from the Oklahoma 288 

Department of Wildlife Conservation. 289 

Three dyads of white-tailed deer (dyad 1 and 3 from study site 1 and dyad 2 from study 290 

site 2) were selected to further demonstrate the performance of each index of dynamic interaction 291 

using empirical telemetry data. We began with high-resolution GPS data recorded at a 30 min 292 

sampling resolution
1
, but systematically resampled data to reflect coarser fix intervals (i.e., 6 and 293 

24 hours); which is a common practice (Webb et al. 2010). Final evaluation of dynamic 294 

interaction measures occurred at three sampling resolutions: 30 min, 6 hour, and 24 hours.  295 

 We delineated 95% volume contour home ranges using the kernel density estimate 296 

(Worton 1989) and the ad hoc bandwidth, which assumes the resulting density surface is 297 

bivariate normal (Silverman 1986). For each dyad, we calculated the area of overlap of the two 298 

home ranges (interpreted as the proportion of home range overlap - AOP; Millspaugh et al. 299 

                                                 
1
 Dyads 1 and 3 were tracked using a 15 min sampling resolution, but here we resampled the temporal resolution to 

30 min for consistency with dyad 2.  
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2004) as a measure of static interaction that can be used as an a priori indicator of the potential 300 

for dynamic interaction in dyads. Similar to other studies, our hypothesis on the presence of 301 

dynamic interaction behaviour is based on a hierarchical approach where we first examine static 302 

interaction (home range overlap) between individuals (Figure 1), and subsequently look at finer 303 

resolution dynamic interactions. We predict little dynamic interaction in dyad 1 (AOP = 0.17), 304 

but greater dynamic interaction in dyads 2 and 3 (AOP = 0.67 and 0.57, respectively). We test 305 

these a priori predictions at all three sampling resolutions. 306 

< Approximate location Figure 1 > 307 

3.3 – Calculating measures of dynamic interaction 308 

All eight indices of dynamic interaction (Table 2) were computed for each of the dyads in 309 

the simulation study and using empirical GPS data from white-tailed deer. Several of the indices 310 

required the selection of parameter thresholds for identifying Tαβ fixes and Sαβ fixes. A tc 311 

threshold of ½ the sampling resolution was used to determine simultaneous fixes, for example tc 312 

= 15 min was used with the 30 min white tailed deer telemetry data. In the simulation study, a 313 

distance threshold parameter of dc = 2*h was used, where h is the step-length parameter in the 314 

CRW. Previous research on deer interactions has used dc = 24 m (Bertrand et al. 1996). We 315 

selected a more conservative value of dc = 50 m based on visual observations of deer and 316 

because there would be greater potential for identifying dynamic interactions at this spatial 317 

resolution for testing purposes.  However, depending on specific hypotheses to test, the spatial 318 

threshold may be adjusted higher or lower, and comparison across spatial thresholds could help 319 

identify the scale at which processes are occurring across the landscape. Validating identified 320 

thresholds for dc using independent dyads will provide evidence as to whether a given threshold 321 

is appropriate.   322 
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We evaluate results of the 1000 simulations, examining the mean and standard deviation 323 

of results from each index, for both the present and absent scenarios, along with significance of 324 

statistical tests where appropriate. Histograms of index values for both the present and absent 325 

scenarios are shown to highlight the distribution of results. Where statistical tests are employed 326 

(i.e., in Don, Lixn, and Cs), we use an α-level of 0.01 to identify significant values. Results are 327 

used to explore the effect of sampling resolution on each dynamic interaction index and to 328 

compare among the various indices for measuring dynamic interaction in telemetry studies. The 329 

relationship between index values and the amount of time spent in the interactive phase (in those 330 

dyads with interaction simulated as present) is investigated using scatterplots and correlation 331 

coefficients to quantify the effectiveness of indices for characterizing interactive behaviour, and 332 

to identify scenarios where misleading results may occur.  In those dyads where no interaction 333 

was simulated (absent scenarios), the relationship between index values is compared to the level 334 

of static interaction (AOP) in the dyad to discover how the level of static interaction influences 335 

misleading inferences when interaction is absent. We chose one pair of dyads (see the 336 

Supplementary Material) to examine in finer detail the performance of each index in scenarios 337 

where interaction is present or absent. We compute index values at each resolution, along with 338 

time-series plots to demonstrate how local analysis facilitates a finer treatment of interactive 339 

behaviour. 340 

 In the white-tailed deer examples, we examine each index in finer detail for each 341 

individual dyad. We explore the use of the local di statistic (Sec. 2.8) to examine temporal 342 

variations in dynamic interaction behavior in these three dyads. At the finest sampling interval 343 

(such as the 30 min sampling resolution here), the time-series plots of di can be noisy, making 344 
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interpretation of patterns difficult. To circumvent this problem, we present the time-series plot of 345 

di for the 30 min data using a 24 hour moving average. 346 

4 – Results 347 

4.1 Simulated Data 348 

Using simulated data to generate scenarios where dynamic interaction is present and 349 

absent provided a useful means for assessing the differences and similarities between the eight 350 

indices of dynamic interaction. Histograms for Prox, Ca, and HAI reveal that these three indices 351 

are each capable of identifying cases where dynamic interaction was present and absent (Figure 352 

2). All three indices are comparable in terms of interpretation, but the Prox and Ca indices are 353 

essentially identical. The Prox, Ca, and HAI indices all appear to be robust to changes in 354 

sampling resolution (Figure 2).  The Don statistic also performed well, identifying interaction 355 

(i.e., attraction) in all 1000 of the present scenarios, at each sampling resolution (Figure 2).  356 

However,  at all sampling resolutions, Don produced unexpectedly high Type I error; for 357 

example, given that an α-level of 0.01 was used in the Don test, the number of falsely identified 358 

occurrences of dynamic interaction identified in the absent simulations was higher than expected 359 

(e.g., 98 of 1000 simulations at the 100% sampling resolution; Figure 2). 360 

< Approximate Location of Figure 2 > 361 

The Cs index also was successful at identifying correctly the presence of dynamic 362 

interaction in all of the simulated scenarios (Figure 2). However, Cs was highly susceptible to 363 

Type I error, which was more severe than Don in that Cs identified 380 of 1000 absent cases as 364 

having significant dynamic interaction at the 100% sampling resolution, down to 222 of 1000 365 

significant cases at the coarsest resolution (Figure 2). However, raw Cs index values were 366 
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relatively consistent across sampling resolutions, which suggests Cs, as an index, may be useful 367 

without the formal statistical testing through the calculation of p-values. 368 

The Lixn statistic performed poorest of all eight indices in that it was highly susceptible 369 

to both Type I and Type II errors (Figure 2). Lixn failed to correctly identify dynamic 370 

interactions in many of the present scenarios (Type II error), but this problem tended to be 371 

reduced at finer sampling resolutions (e.g., 736/100 correctly identified as present at the 100% 372 

sampling resolution vs. only 83/1000 at the 10% sampling resolution – Figure 2). More 373 

problematic is the fact that Lixn also produces a high level of Type I errors; between 262 and 374 

380 of 1000 of the absent scenarios were identified as having significant dynamic interaction. 375 

The rate of Type I error also appears to increase at finer sampling resolutions, making the use of 376 

Lixn problematic with modern high-resolution telemetry systems (e.g., GPS collars). The raw 377 

Lixn values appear to be robust to changes in sampling resolution, but are hindered by high 378 

variability in output results (and overlap of index distributions between present and absent 379 

scenarios) leading to confusion in quantitative assessments (e.g., p-values).  380 

As a path-based index of cohesive movement, Cr appears to be robust to changes in 381 

sampling resolution (Figure 2). DI, on the other hand, was more sensitive to changes in sampling 382 

resolution than Cr; lower DI values occurred at finer sampling resolutions (Figure 2). However, 383 

DI may be easier to interpret because of a relatively low variation in output values, and accurate 384 

assignment to dynamic interaction when one actually is present (conversely, no dynamic 385 

interaction for absent cases). Thus, at the global analysis level, it appears both Cr and DI provide 386 

relatively robust and similar results.  387 

To further examine simulation results, we explored the relationship between index values 388 

and the proportion of time spent in the interactive phase (Pint) in present scenarios and level of 389 
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static interaction (AOP) in absent scenarios, focusing on the 100% sampling resolution. Several 390 

patterns emerged from the correlation analysis (Figure 3; top row). Prox, Ca, Cs, HAI, Cr, and 391 

DI all showed a strong, positive relationship with Pint (r ≥ 0.6; Figure 3). Lixn on the other hand 392 

showed a very weak positive relationship with Pint (r = 0.209; Figure 3). Further, by plotting 393 

significant vs. non-significant results, we can see that with with Lixn, Type II error occurred 394 

across the range of Pint scenarios suggesting that Lixn produces misleading interpretations even 395 

when substantial interaction is present. The correlations associated with Don were ignored 396 

because we only were able to plot p-values, which are not meaningful in this context. 397 

< Approximate location Figure 3 > 398 

In the absent scenarios, all indices showed a relatively weak relationship (Figure 3; 399 

bottom row) with the level of static interaction (AOP) in the scenario (ignoring Don, since we 400 

can only plot p-values). With those indices not employing statistical tests (Prox, Ca, HAI, Cr, 401 

DI), index values were near 0 in all cases, correctly identifying no interaction. For Don, Lixn, 402 

and Cs, Type I errors were produced across the range of AOP values (Figure 3), which is 403 

problematic because it infers that a range of static interaction levels can result in misleading 404 

interpretations. 405 

We take one pair of dyads from the simulation to examine, in finer detail, the nature in 406 

dynamic interaction, and the presence of Type I & II error. In the present case, the proportion of 407 

time in the interactive phase was 0.53, and predictably, the level of static interaction was also 408 

higher in the present case (AOP = 0.75) than in the absent case (0.30) (see the Supplementary 409 

Material). First, looking at the dyad with interaction present, we see that Prox, Ca, and HAI 410 

provide consistent results across all sampling resolutions (Table 4). Cr and DI both show 411 

substantial interaction is present, but as seen before, the values are influenced by sampling 412 
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resolutions, increasing with coarser sampling data (Table 4). Cs and Don both successfully 413 

identify significant interaction at all scales, while Lixn identifies significant interaction only at 414 

the 100% and 33% resolutions (Table 4). In the absent scenario, Prox, Ca, HAI, Cr, and DI, all 415 

identify no interaction in the data, each index ~ 0.  Don and Lixn, correctly identify the absence 416 

of interaction; however, Cs incorrectly identifies significant interaction at all five scales (Type I 417 

error – Table 4).  418 

< Approximate location Table 4 > 419 

To demonstrate how varying phases of dynamic interaction occur throughout simulated 420 

trajectories, we plotted time series of di (along with proximity) to graphically investigate the 421 

temporal phases of interactive behaviour of the two simulated dyads (Figure 4). Based on the 422 

simulation parameters (see Supplementary Material) we know that the proportion of time in the 423 

interactive phase was Pint = 0.53, which occurred across multiple phases. From the localized 424 

time-series graphs, we identify when (and for how long) interactive behaviour occurs. In the 425 

absent scenario, we see several instances later in the trajectories where the two objects become 426 

proximal, but throughout the level of di remains near 0, correctly identifying no interactive 427 

behaviour.   428 

 < Approximate location Figure 4 > 429 

4.2 – Empirical Data: White-tailed Deer 430 

Based on computed indices of static interaction (AOP) we predict little dynamic 431 

interaction in dyad 1 (AOP = 0.17), but greater dynamic interaction in dyads 2 and 3 (AOP = 432 

0.67 and 0.57, respectively). For dyad 1, 3 of the 8 indices indicated dynamic interaction in at 433 

least one sampling resolution (i.e., either 30 min or 6 hr), but no interaction at the coarsest 434 

sampling interval (24 hour) for all eight indices (Table 5). In general, indices did not show a 435 
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strong or consistent indication that these two individual deer were exhibiting dynamic 436 

interaction.  Also, for this particular dyad, indication of dynamic interaction appeared to 437 

disappear as sampling resolution became coarser when using Don, Cs, and Lixn; otherwise, 438 

indices did not reveal any interaction. 439 

< Approximate location of Table 5 > 440 

In dyad 2, the results showed much conflicting interpretation of whether dynamic 441 

interaction was present at the different sampling resolutions and with each index (Table 5). The 442 

Don and Cs indices identified significant attraction at all three sampling resolutions, Lixn 443 

indicated random use, and Prox, Ca, HAI, Cr and DI showed the absence of any dynamic 444 

interaction behaviour (Table 5). However, as Cr is similar to interpreting correlations, the values 445 

(from 0.095-0.16) might be interpreted as minimal correlation in movements. Thus, in dyad 2, it 446 

is particularly difficult to conclude whether or not dynamic interaction exists, which underscores 447 

the difficulty in selecting an appropriate index.  448 

 With dyad 3, results indicated substantial and consistent dynamic interaction among 449 

seven of the indices and at each sampling resolution (Table 5). Lixn suggested that there was 450 

random use of the shared area across the three sampling resolutions. Given the ubiquitous 451 

identification of dynamic interaction by 7 of the 8 indices, at all three sampling resolutions, we 452 

conclude that positive interactive behaviour (i.e., both attraction and cohesive movement) does 453 

exist in dyad 3.  454 

While DI provides an overall index of cohesive movement, the local index di can be used 455 

to examine spatial and temporal variations in cohesive movement behaviour. Due to varying 456 

levels of dynamic interaction among the 3 dyads of deer, we plotted time series of di (and 457 

temporal patterns of proximity between the two deer in meters) to graphically investigate the 458 
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spatial and temporal patterns of: 1) no interaction (top plot; dyad 1), 2) infrequent or minimal 459 

interaction (middle plot; dyad 2), and 3) strong dynamic interaction (bottom plot; dyad 3) (Figure 460 

4). In the plot of dyad 1, we first observe that distance between this dyad never exceeds 800 m. 461 

However, the observed separation between the dyad appears random because there is little 462 

variation in the plot of di (minimal variation around di = 0). In the plot for dyad 2, most 463 

simultaneous locations were within 1000 m of each other; however, in a few instances, locations 464 

of the two deer were >3000 m apart. Global statistics for the 8 indices revealed discrepancies in 465 

the dynamic interaction behaviour in dyad 2.  However, plotting di revealed that dyad 2 did in 466 

fact exhibit dynamic interaction on multiple occasions. Finally, the plot for dyad 3 revealed 467 

definitively the presence of strong dynamic interaction. Across much of the 3-month sampling 468 

period, the dyad of male deer remained proximal for extended periods of time, with 469 

corresponding cohesive movement. Although dynamic interaction is occurring across most of the 470 

sampling period, this graph reveals periods of variable levels of dynamic interaction through 471 

time. 472 

< Approximate location Figure 4 > 473 

5 – Discussion 474 

The simulated data (and subsequent analysis) allowed the identification of several indices 475 

that will be useful when applied to empirical wildlife telemetry data; including high resolution 476 

data such as those collected from GPS collars. The case study on white-tailed deer revealed that 477 

minimal AOP resulted in minimal dynamic interaction, but higher levels of AOP did not 478 

necessarily equate to dynamic interaction behaviour because AOP relies on a 2-dimensional 479 

home range that does not account for the simultaneous use of these areas, which is inferred using 480 

both point- and path-based measures of interaction. The results from all eight indices 481 
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corroborated what is known about the seasonal biology of white-tailed deer; dyad 3 was a dyad 482 

of male deer of ~3 years of age that were part of the same bachelor group. Although we used 483 

white-tailed deer as a case study to assess various indices of dynamic interaction and behaviour; 484 

the indices and guidelines we discuss can be applied much more broadly to animal behaviour 485 

studies, and even for the analysis of any two moving objects in space and time (e.g., dyads of 486 

vehicles, cell-phone users, athletes, etc.).  487 

5.1 – Comparison across indices 488 

 The Prox, Ca, and HAI indices produce nearly identical values in all cases, owing to the 489 

similarity in their derivation. In our examples, HAI produced similar values to Prox and Ca and 490 

identical interpretation of attraction in both the simulation study, and in the white-tailed deer 491 

case study. Our results also suggest that three of the classical indices of dynamic interaction 492 

(Don, Cs, and Lixn) can be misleading, especially with high-resolution telemetry data. 493 

Misleading results are due to statistical testing procedures being especially susceptible to Type I 494 

error. Type II error was only problematic in the case of Lixn, as Don and Cs were only not-495 

significant in those present scenarios where interaction was low (Pint < 0.2; Figure 3). Plots and 496 

contingency tables accompanying the Don statistic may be more useful for interpretation than 497 

computed p-values; for instance, when examining the effect of the dc parameter. Similarly, the 498 

Cs index may still be a useful measure of dynamic interaction (despite the high type I error rate 499 

when used in a hypothesis testing framework) because it was able to adequately separate 500 

between the presence and absence of dynamic interaction. In the simulation experiment, Cs 501 

showed a direct relationship with the proportion of time spent in the interactive phase. Further, 502 

Cs measures a unique property of the data apart from other indices by utilizing the raw distances 503 

between fixes rather than a subjectively defined distance threshold (dc). Unlike the other indices, 504 
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Lixn index tests for dynamic interaction based on simultaneous use of the shared area (Minta, 505 

1992). However, despite examining co-occurrence of the shared area, Lixn appears to be poorly 506 

suited for measuring dynamic interaction in wildlife telemetry datasets.  507 

Cr and DI measure dynamic interaction as the cohesiveness in movement using a path-508 

based approach. Cr values were consistent across sampling intervals, making it a suitable 509 

candidate for measuring dynamic interaction with modern telemetry datasets. The primary 510 

limitation of Cr is that it is dependent on measuring correlations relative to a mean path vector, 511 

which is typically not meaningful in the context of dynamic interaction analysis. DI was 512 

sensitive to changes in sampling resolution producing a lower index value at the highest 513 

resolution. The advantage of the DI approach is in examining spatial variation in dynamic 514 

interactions through the local level statistic – di.  515 

5.2 – Static vs. dynamic interaction 516 

We looked at three white-tailed deer dyads containing static interaction levels of AOP = 517 

0.17, 0.67, and 0.57, respectively. However, only dyad 3 (AOP = 0.57) showed substantial 518 

dynamic interaction, which agrees with the seasonal biology of male deer during this time; male 519 

deer form bachelor groups during spring and summer (Hirth 1977).  Thus, we were able to 520 

identify a dyad of deer belonging to the same bachelor group using dynamic interaction metrics, 521 

particularly di (see Figure 4). Further, while the converse may be true (i.e., no static interaction 522 

implies no dynamic interaction), our analysis suggests that the relationship between the level of 523 

static interaction and presence of dynamic interaction is complex and inferring dynamic 524 

interaction from static interaction can be misleading. For example, with our simulations, we 525 

produced a range of AOP values, from which no interaction was present. Incorrect inferences 526 

may be most problematic for species inhabiting relatively large home range areas, where joint 527 
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space use (i.e., home range overlap) can occur without individuals ever encountering one another 528 

from a temporal standpoint. Quantitative indices of dynamic interaction allow researchers to 529 

examine a wide range of questions relating to animal behaviour and general ecology, and go 530 

beyond typical measures of static interaction (e.g., home range overlap). Current methods (e.g., 531 

those outlined here) only begin to scratch the surface of the potential for space-time analysis in 532 

wildlife systems where multiple animals are tracked simultaneously with high resolution tracking 533 

devices. 534 

Recent research has suggested that measures of static interaction (like AOP) can be used 535 

to estimate contact-rates and levels of dynamic interaction between wildlife, important in 536 

modeling disease transmission (Robert, Garant & Pelletier 2012). Our analysis reveals the flaws 537 

in this assumption, as even moderate levels of static interaction may have highly variable contact 538 

rates and levels of dynamic interaction (e.g., Figure 3). However, some disease transmission 539 

occurs via mechanisms that simply relate to spatial overlap, through feces or saliva (e.g., chronic 540 

wasting disease, Williams et al. 2002), or intermediate hosts (e.g., West Nile virus, Marra et al. 541 

2004). Thus, the nature of disease transmission will be important in identifying whether 542 

measures of static or dynamic interaction are appropriate.  543 

5.3 – Scale 544 

Our simulation study outlined a key problem commonly encountered in wildlife 545 

movement analysis; inferences made at one scale of analysis do not necessarily hold at other 546 

scales (see Laube & Purves 2011 for a more thorough discussion of this). Indices that do not 547 

formally test statistical significance appear to be less sensitive to varying scales (i.e., Prox, Ca, 548 

HAI, Cr, DI) when compared to indices that implement statistical tests (i.e., Don, Cs, Lixn). 549 

Beyond scale, inference among indices is impacted by the nature or level of dynamic interaction 550 
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present. Most methods appear to successfully identify strong dynamic interaction when present 551 

(e.g., simulations, and deer dyad 3) with greater inconsistencies occurring for infrequent or low 552 

levels of dynamic interaction (e.g., deer dyad 2). Our guidelines will help inform the selection of 553 

appropriate indices given varying scales and levels of dynamic interaction. 554 

The implementation of the local-level statistic (i.e., di), along with time-series plots of 555 

proximity (e.g., in Figure 4 and Figure 5), reveals information on infrequent (e.g., deer dyad 1), 556 

variable (e.g., deer dyad 2), and frequent (e.g., deer dyad 3) interactions. The prevalence of 557 

infrequent and variable interactions in wildlife is unknown, which typically is the motivating 558 

factor for assessing the level of dynamic interaction, and the di index represents a new metric for 559 

revealing both frequent and infrequent interactive behaviour. Animals are now routinely tracked 560 

for an extended duration (e.g., several months) with fine resolution telemetry fix rates (e.g., sub-561 

hour sampling intervals), allowing the identification of rare and periodic interactive behaviour, 562 

which has important implications on a wide range of studies such as disease spread (Böhm et al. 563 

2008), patterns of sociality (Gorman et al. 2006), and predator-prey dynamics (Eriksen et al. 564 

2008).   565 

 We only superficially examine the temporal local dynamics in di. More sophisticated 566 

analysis could involve other temporal variables to investigate more complex problems, such as 567 

circadian rhythms, seasonality, and weather factors. Variations in the level of dynamic 568 

interaction (measured through di) may be a result of different behaviour states that can relate to 569 

resting, foraging, or travelling behaviour (Dzialak et al. Unpublished data). Including a 570 

quantitative characterization of movement behaviour (e.g., Morales et al. 2004; Jonsen, 571 

Flemming, & Myers 2005; Gurarie, Andrews, & Laidre 2009) for comparison could enhance 572 

interpretation of changes in dynamic interaction when using the di measure. Similarly, by 573 
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mapping the local statistic di, one can investigate the role of fine scale landscape and 574 

environmental variables on the observed patterns of dynamic interaction. For example, in 575 

northern Alberta, Canada, high levels of anthropogenic disturbance are causing increased 576 

permeability in the landscape, resulting in a higher potential for caribou predation by wolves 577 

(Latham et al. 2011). To assist in maintaining the caribou population, the Government of Alberta 578 

has promoted the culling of wolves.  Novel dynamic interaction analysis, through local di, could 579 

help reveal the landscape characteristics (e.g., habitat, fragmentation, topography) associated 580 

with predation in order to better inform land management policies (e.g., Dzialak et al. 2011; 581 

Wasser et al. 2011), rather than adopt more extreme measures such as culling. 582 

5.4 – Statistical testing 583 

In wildlife telemetry research, the effects of sampling resolution and autocorrelation are 584 

well documented (e.g., home range delineation – Swihart & Slade 1985; Seaman & Powell 1996, 585 

habitat selection models – Otis & White 1999; Nielsen et al. 2002, behaviour analyses – Boyce 586 

et al. 2010). Yet, little is known about the effects of autocorrelated data and sampling resolution 587 

on indices of dynamic interaction. Serial autocorrelation in successive fixes of telemetry data 588 

increases with higher sampling frequency (Dray, Royer-Carenzi & Calenge 2010) and hinders 589 

the use of methods where independence is assumed (Swihart & Slade 1985), as standard errors 590 

will typically be underestimated. In the presence of highly autocorrelated data, statistical tests 591 

can be overly sensitive, producing false positives more frequently as the degree of 592 

autocorrelation increases. While some have argued that the autocorrelation problem can be 593 

overcome by down-sampling telemetry data until it is functionally independent (Swihart & Slade 594 

1997), this procedure has been criticized due to loss of biologically relevant data (de Solla, 595 

Bonduriansky & Brooks 1999). Alternately, it may be more effective to implement statistical 596 
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methods that accommodate (de Solla et al. 1999; Nielsen et al. 2002), are less sensitive to 597 

autocorrelated structures (Fieberg 2007), or adjust the null distribution so that it is appropriate 598 

for autocorrelated data (White & Harris 1994). With dynamic interaction analysis, it is pragmatic 599 

to think of the autocorrelation problem from a sampling strategy perspective, that is, more 600 

(autocorrelated) data provides a better representation of the animals true movement path (Fieberg 601 

2007). Finer space-time analysis is possible with greater sampling resolution, enabling better 602 

estimates of true dynamic interaction and contact rates between individuals. 603 

Several of the indices we examined use formal statistical tests for the presence of 604 

dynamic interaction that require the generation of null distributions in order to test the 605 

expectation of no interaction.  In Don and Cs, these null distributions are generated by permuting 606 

the observed fixes of the two animals and measuring the distance between the two permuted 607 

fixes. Generating null distributions through permutations of observed data assumes that the data 608 

are independent and identically distributed within individual trajectories, but also that the two 609 

individuals move independently of one another. As such, permutations typically result in an 610 

incorrect expectation leading to increased Type I error when data are autocorrelated (White & 611 

Harris 1994). Further, Cs is more susceptible to Type I errors than Don, owing to the use of raw 612 

distance values in its calculations. More appropriate methods for generating null expectations for 613 

statistical tests are warranted, either using random walk simulations (e.g., White & Harris 1994; 614 

Miller 2012) or by developing more appropriate mechanistic models. 615 

With Lixn the statistical test is based on expectations derived from the relative area 616 

values of each home range overlap section (inhabited by α only, β only, and overlapping area).  617 

We initially thought that if the area of home range overlap is relatively large, Lixn is susceptible 618 

to Type I error; conversely, if the overlap is relatively small, Lixn may be susceptible to Type II 619 
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error. However, from the simulation study, we revealed that Lixn was susceptible to Type I error 620 

across a range of overlap values (Figure 3).  Given that Lixn relies explicitly on the calculation 621 

of individual home ranges, Lixn is further confounded by problems associated with producing 622 

reliable home range estimates (e.g., Hemson et al. 2005; Börger et al. 2006; Downs & Horner 623 

2008). Thus, Lixn represents a measure of simultaneous home range use, somewhere in between 624 

typical measures of static interaction (like AOP) and the other measures of dynamic interaction. 625 

Animals typically use their home range in a non-homogenous fashion (Samuel, Pierce & Garton 626 

1985); therefore expectations derived from the overlap of home ranges may be misleading 627 

relative to actual space use intensity patterns – typically represented by a utilization distribution 628 

(Worton 1989). An improved formulation for Lixn could derive the expected values as a function 629 

of the joint distribution of two individual utilization distributions (see Powell 2000; Fieberg & 630 

Kochanny 2005), assuming the animals move independently of one another.  631 

5.5 – Guidelines 632 

 The role of classical hypothesis testing in ecological analysis continues to be questioned 633 

(e.g., Hobbs & Hilborn 2006), and in the context of measuring dynamic interactions, our results 634 

suggest that procedures avoiding null hypothesis testing provide greater insight into interactive 635 

behaviour patterns. Most times, statistical hypothesis testing is not the goal; rather it is the 636 

identification of an ecological mechanism (e.g., why are animals interactive at a given point?). 637 

The usefulness of Prox, Ca, and HAI owe to the simplicity of their (near identical) calculation 638 

and interpretation, and as demonstrated produce nearly identical results. The Don and Cs indices 639 

suffer from the susceptibility of their statistical testing procedures to Type I errors, and in the 640 

case of Cs, a problem magnified with high resolution GPS telemetry data. Cs, due its formulation 641 

based on raw distances, may still be useful to examine this separate property of the data; 642 
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however, we suggest that a subjective interpretation be employed. The Don index measures 643 

attraction similar to Prox, Ca, and HAI, and we advocate the use of those methods over the Don 644 

index. The Lixn index suffers from the same statistical problems as Don and Cs, but also from 645 

the configurational problems related to the general task of home range delineation. Lixn 646 

performed poorly when viewed as a stand-alone index and provided contrasting results in the 647 

white-tailed deer case study, and as such we do not recommend its use. 648 

 Novel path-based measures of dynamic interaction (i.e., Cr, DI) examine the 649 

cohesiveness in movement segments, rather than proximity or arrangement of fixes represented 650 

as spatial points. Of these two metrics, Cr appeared to be least sensitive to sampling resolution, 651 

but did suffer from high variation in index values. DI provides novel insight into the spatial 652 

variation in dynamic interaction behaviour through the use of the local di statistic. Thus, di is 653 

most useful with high resolution GPS telemetry data because of the ability to examine spatial and 654 

temporal changes in dynamic interaction behaviour. Neither Cr or DI consider the spatial 655 

distance between individuals, and analyzing dyads alongside some measure of proximity (e.g., 656 

Figure 4) provides added context for these path-based measures of dynamic interaction. 657 

 The following points can be used to guide decisions when studying dynamic interaction 658 

in wildlife telemetry datasets. First, it is necessary to identify the presence of temporal overlap in 659 

α and β to asses if a dyad offers potential for interactive behaviour. A measure of static 660 

interaction (e.g., AOP, as used here) can be used to assess joint space use. Second, Prox, Ca, or 661 

HAI can be used as an index of attraction or avoidance behaviour. Alternatively, Cs can be used 662 

as a measure of attraction or avoidance that is based on raw distances; however statistical 663 

inference should be avoided. Third, Cr or DI can be used as an index of the overall level of 664 
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cohesion in movement segments. Finally, di can be used to further investigate local-level 665 

variations in the cohesiveness of movement, especially within proximal episodes.  666 

5.6 – Future Directions 667 

 The development of more sophisticated simulation models that emulate the complex 668 

nature of dynamic interactions present in wildlife dyads is required to further advance 669 

understanding of the capability of current and future methods aimed at measuring dynamic 670 

interaction behaviour. Here we provide a simple and straightforward procedure for simulating 671 

the presence of dynamic interaction in movement dyads using biased correlated random walks 672 

(Codling et al. 2004), where the bias component is set to be the current location of the other 673 

individual. We vary parameters related to distance-decay between individuals and bias-strength 674 

over ranges that have been tested in studies looking at correlated random walks biased towards 675 

favorable habitat patches (e.g., Barton et al. 2009; Fronhofer et al. 2013). Further testing is 676 

required to examine the role of these parameters in the context of interactive behaviour.  677 

Agent-based models (Bennett & Tang 2006) offer the opportunity to incorporate 678 

increasingly detailed and sophisticated interactive behaviour patterns into simulations. New 679 

technologies are now integrating robotic agents into real-world scenarios that are capable of 680 

interacting with live organisms (Krause, Winfield & Deneubourg 2011). Programming different 681 

movement patterns with robotic agents may provide novel opportunities to study new and unique 682 

problems looking at different interactive behaviour in robot-organism dyads. 683 

Researchers are now capable of directly measuring animal contacts through the use of 684 

proximity collars. Proximity collars utilize ultra-high frequency radio (UHF) to detect when two 685 

(or more) collars are within a pre-programmed distance of another (Prange et al. 2006). 686 

Specifically, proximity collars measure contact rates directly, as opposed to inferring contact as 687 
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is done with telemetry data through the use of the temporal threshold tc and measures such as 688 

Prox. This direct measurement of contact is especially important in the study of disease 689 

transmission, where existing tracking systems are hindered by the lack of information between 690 

fixes (Böhm, Hutchings & White 2009). Traditional tracking technologies also have been limited 691 

in studying dynamic interactions and contact rates in smaller animals due to the combined effect 692 

of their fine-scale movements and the positional error of VHF or GPS sensors. Also, missing 693 

telemetry fixes are often prevalent due to the cryptic habitats frequented by smaller animals (e.g., 694 

nests, burrows, and man-made structures) further motivating the use of alternative sensors. For 695 

example, interesting social behaviour has been revealed in possums (Ji, White & Clout 2005) and 696 

raccoons (Prange, Gehrt & Hauver 2011) using proximity collars. Proximity collars are limited 697 

in that they provide no location information on where contacts occur, but can be analyzed with 698 

temporal variables, or additional bio-sensors (e.g., Laske, Garshelis, & Iaizzo 2011), to study 699 

timing patterns and rates of contacts. A combined tracking-proximity collar system would be 700 

advantageous in order to simultaneously investigate contacts along with location (Davis et al. 701 

2013) and to provide validation data for tracking-based dynamic interaction indices. 702 

 The future of dynamic interaction research likely lies with modifying more complex 703 

mechanistic movement models (e.g., Morales et al. 2004; Jonsen et al. 2005) for studying 704 

interactive behaviour patterns. Given the flexible inferential framework under which most of 705 

these models are developed (see Patterson et al. 2008), incorporating the effects of mobile con- 706 

or cross-specifics in order to study dynamic interactions is imperative to further advancing 707 

mechanistic movement models (Haydon et al. 2008; McClintock et al. 2012). For example, in 708 

studying grey seals, McLintock et al. (2012) utilize a small number of known ‘centres of 709 

attraction’ in order to model seal movements. Extension of a similar model to the study of 710 
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dynamic interactions might assume, for example, that during an interactive phase, centers of 711 

attraction would be the locations of another individual based on biased random walks, as in our 712 

simulation study. In predator-prey situations, this relationship would be further complicated by 713 

the attraction of predators to prey, and the avoidance of prey to predators. As they are able to 714 

explicitly accommodate environmental covariates (e.g., Patterson et al. 2009), mechanistic 715 

movement models are primed to take dynamic interaction analysis to the next phase, whereby the 716 

combined effect of habitat and other environmental covariates on dynamic interaction is explicit 717 

within the analysis framework. 718 

 719 

6 – Conclusion 720 

There still is much to be learned about animal behaviour.  Despite recent technological 721 

advances, much research builds on early studies that relied on visual observations of animals 722 

(Hirth 1977), which is limited by animal activity patterns, habitat use, and observation bias.  For 723 

example, early accounts on the breeding behaviour of white-tailed deer were based on visual 724 

observations, but recent molecular genetic techniques have revealed greater insight into the 725 

breeding biology of deer (e.g., DeYoung et al. 2009). Then, indices of dynamic interaction can 726 

be leveraged to further study rare behavioural interactions that are not readily observed visually 727 

while in the field.  Other avenues of research that may benefit from recently developed 728 

techniques to study dynamic interactions and contact rates (e.g., contact at dc) include: studies of 729 

behaviour and ecology, territory defense, determining mating and reproduction events, assessing 730 

disease spread through direct contact, interspecific competition for resources, and intra- and 731 

interspecific interactions. One of the most pervasive topics deals with potential for disease 732 

spread, particularly when wild animal species come into contact with domestic livestock 733 
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(Wyckoff et al. 2009). Combining behavioural indices with spatially-explicit landscape data or 734 

genetic data will provide greater insight into unobservable phenomena that shape animal 735 

populations (demographics and dynamics) and long-term fitness measures (e.g., reproductive 736 

success).  737 

In summary, the calculation of contact rates and measures of dynamic interaction offer 738 

promise in studying dynamically moving objects in a wide range of fields from pure scientific 739 

discovery and ethology to application and management. Herein, we have provided general points 740 

on the formulation, interpretation, and use of dynamic interaction indices that can be used to 741 

guide future research. Specifically, we have found existing techniques relying on significant-tests 742 

to be misleading (e.g., Don, Cs, and Lixn) due largely to the propensity to falsely identify 743 

dynamic interaction when it is absent. Further, local-level analysis provides more illuminating 744 

evidence of the complex nature of interactive behaviour in wildlife dyads; especially with 745 

modern high-resolution telemetry systems. In future research, it will prove useful to combine 746 

local-level measurements of dynamic interaction (e.g., di, Long & Nelson 2013) with landscape 747 

data to determine where interactions are linked to; for example, to determine preferred resources 748 

on the landscape, dietary or niche overlap (within and between species), and the potential for 749 

disease spread. To make these methods and indices as widely available as possible, we have 750 

implemented each of the eight indices in the R statistical computing environment, and made this 751 

code openly available to other users <Website Link>. 752 
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Table 1: Selected examples of applications involving the study of dynamic interactions using 

wildlife telemetry data. 

Index Species Data Study Objective Citation 

Prox white-tailed deer 

(Odocoileus virginianus) 

VHF Parturition (Bertrand et al. 1996) 

 maned wolves 
(Chrysocyon brachyurus) 

GPS Familial bonds (Bandeira de Melo et al. 2007) 

Ca maned wolves 

(Chrysocyon brachyurus) 

VHF Inter- & intra-sex behaviour (de Almeida Jácomo et al. 2009) 

 red wolves 

(Canis rufus) 

GPS Sociality, group behaviour (Karlin & Chadwick 2011) 

Don wood mice 

(Apodemus sylvaticus) 

VHF Mating (Tew & Macdonald 1994) 

 raccoons 

(Procyon lotor) 

VHF Philopatry (Gehrt & Fritzell 1998) 

 coyote 
(Canis latrans) 

VHF Inter- & intra-sex behaviour (Chamberlain, Lovell & Leopold 2000) 

 badgers 

(Meles meles) 

VHF Sociality, group behaviour (Böhm et al. 2008) 

Cs lynx 

(Lynx canadensis) 

VHF Inter- & intra-sex behaviour (Poole 1995) 

 red & grey squirrels 
(Sciurus vulgaris & carolinensis) 

VHF Interspecific (Kenward & Hodder 1998) 

 wolves & moose 

(Canis lupus & Alces alces) 

GPS Interspecific (Eriksen et al. 2008) 

Lixn badgers 
(Taxidea taxus) 

VHF Inter- & intra-sex behaviour (Minta 1993) 

 grizzly bear 
(Ursus arctos) 

VHF Inter- & intra-sex behaviour (Mace & Waller 1997) 

 mountain lion 

(Puma concolor) 

VHF Familial bonds (Nicholson et al. 2011) 

HAI coyote 
(Canis latrans) 

VHF Management and control (Bromley & Gese 2001) 

 coyote 

(Canis latrans) 

VHF Habitat relations (Atwood & Weeks 2003) 

Cr caribou 

(Rangifer tarandus) 

VHF Sociality, group behaviour (Shirabe 2006) 

DI  grizzly bear 

(Ursus arctos) 

GPS Mating (Long & Nelson 2013) 
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Table 2: Eight indices of dynamic interaction for wildlife telemetry data. Refer to Table 3 for 

terminology.  In all indices, except for Lixn, simultaneous fixes (Tαβ) are determined using a 

temporal threshold (tc) and dc is a threshold distance for proximal fixes (Sαβ). 
Index Reference Sig. Test Data Tests Interpretation 

Prox  - - Point Ratio of STαβ fixes to Tαβ fixes, 

based on dc. 

Prox can be interpreted much like Ca (see 

below) and is similarly based on dc. 

Ca  Cole (1949) - Point The proportion of all fixes that are 

STαβ based on dc. 

Ca ~ 1 – attraction 

Ca ~ 0 – no association 

Don 

 

Doncaster 

(1990) 

χ2 test Point If the distribution of distances of 

Tαβ is different than the distances of 
permutations of all fixes. 

Based on the contingency table and a χ2 test 

looks for significant attraction in STαβ for a 
given dc. 

Lixn Minta (1992) χ2 test Point The simultaneity of usage of the 

shared area of each home range. 

Lixn > 0, shared use is simultaneous (attraction) 

Lixn < 0, shared use is solitary (avoidance) 
Lixn ~ 0 shared use is random 

Cs Kenward 

(1993) 

Wilcoxon 

signed-

rank test 

Point For differences between distances 

of Tαβ and distances of 

permutations of all fixes. 

Cs ~ 1 – attraction 

Cs ~ -1 – avoidance 

HAI Atwood & 

Weeks 

(2003) 

- Point Number of STαβ fixes within the 

shared area of the home range 

against solitary use of shared area. 

HAI ~ 1 – attraction 

HAI ~ 0 – avoidance 

Cr Shirabe 
(2006) 

- Path Correlation of movement segments 
tested against respective path 

means. Identical to Pearson 

correlation statistic (r). 

Cr ~ 1 – positive correlation (cohesion)  
Cr ~ -1 – negative correlation (opposition)  

Cr ~ 0 – no correlation (random) 

DI Long & 

Nelson 

(2013) 

- Path Cohesion in individual movement 

segments (global and local), with 

respect to distance and direction. 

DI ~ 1 – cohesive movement 

DI~ -1 – opposing movement 

DI ~ 0 – random movement 
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Table 3: Terminology and notation used for describing telemetry data and dynamic interaction 

methods. 
Term Explanation 

α or β Individuals of a dyad (telemetry data) 

dyad Pair of individuals (α and β) 
fix A telemetry record (spatial location and time stamp) 

tc Time threshold 

dc Distance threshold 

Tαβ Temporally simultaneous fixes based on tc 

Sαβ Spatially proximal fixes based on dc 

STαβ Spatially proximal and temporally simultaneous fixes based on dc and tc 

vt, wt Movement segment, vector connecting two consecutive fixes 

v̄ , w̄  Mean movement segment for an entire path 
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Table 4: Index results from single scenario analysis in the simulation experiment, * denotes 

significant values (p < 0.01). A video, along with the parameterization, of these two dyads is 

available in the supplementary material. 

    Prox Ca Don   Lixn   Cs   HAI Cr DI 

P
re

se
n

t 

100% 0.427 0.427 0 * 0.626 * 0.607 * 0.456 0.324 0.277 

50% 0.427 0.427 0 * 0.586 

 

0.608 * 0.452 0.364 0.287 

33% 0.435 0.435 0 * 0.765 * 0.609 * 0.458 0.359 0.305 

20% 0.413 0.413 0 * 0.343 

 

0.608 * 0.432 0.409 0.332 

10% 0.427 0.427 0 * -0.738 

 

0.607 * 0.446 0.401 0.387 

 

  
           

A
b

se
n

t 

100% 0 0 0.262 

 

-0.614 

 

0.051 * 0 0.012 -0.002 

50% 0 0 0.582 

 

-0.614 

 

0.051 * 0 0.016 -0.001 

33% 0 0 0.791 

 

-0.593 

 

0.050 * 0 0.010 0.005 

20% 0 0 1 

 

-0.538 

 

0.051 * 0 -0.022 -0.010 

10% 0 0 1   -0.497   0.051 * 0 0.001 -0.016 
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Table 5: Results of dynamic interactions using empirical GPS data collected from white-tailed 

deer in Oklahoma, USA.  Dynamic interactions were tested at three temporal resolutions (30 

min, 6 hr, and 24 hr) for eight indices of dynamic interaction.  Values highlighted in grey 

indicate significance at p < 0.01. 
Dyad Sampling Resolution Interpretation  

1   30 min 6 hr 24 hr 

 

 

Prox 0.017 0.030 0.018 No proximity 

 

Ca 0.014 0.025 0.016 No attraction 

 

Don (p-val.) 0 0.0042 0.66 Varies depending on scale, attraction at 30 min and 6hr 

 

Cs 0.013 0.02 0.01 Varies depending on scale, attraction at 30 min and 6 hr 

 

Lixn -0.19 0.11 0.058 Simultaneous use of shared area at 30 min, but not at coarser scales 

 

HAI 0.037 0.053 0.044 No attraction within shared area 

 

Cr -0.022 0.079 0.060 No correlation 

  DI -0.004 0.021 -0.014 No dynamic interaction 

2   30 min 6 hr 24 hr 

 

 

Prox 0.071 0.073 0.072 No proximity 

 

Ca 0.069 0.07 0.07 No attraction 

 

Don (p-val.) 0 0 0 Attraction 

 

Cs 0.10 0.10 0.10 Attraction 

 

Lixn 0.37 0.31 0.32 Random use of shared area 

 

HAI 0.074 0.077 0.075 No attraction within shared area 

 

Cr 0.095 0.16 0.11 Very low positive correlation 

 

DI 0.029 0.11 0.028 No dynamic interaction 

3   30 min 6 hr 24 hr 

 

 

Prox 0.57 0.57 0.58 Poximity 

 

Ca 0.53 0.52 0.54 Attraction 

 

Don (p-val.) 0 0 0 Attraction 

 

Cs 0.40 0.39 0.36 Attraction 

 

Lixn 0.11 0.21 0.21 Random use of shared area 

 

HAI 0.60 0.60 0.61 Attraction within shared area 

 

Cr 0.59 0.66 0.72 Positive correlation 

  DI 0.28 0.57 0.61 Positive dynamic interaction (cohesive movement) 
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Figure 1: Empirical GPS telemetry data for three white-tailed deer dyads (n = 6 deer). Contours 

(grey and black polygons) represent 95% volume contour home ranges using kernel density 

estimates, along with static interaction measured as the area of overlap proportion (AOP) of the 

two individual home ranges. AOP is depicted as the grey shaded region.  Deer in dyads 1 and 3 

were tracked for approximately 3 months; while in dyad 2, deer were tracked approximately 6 

months.  
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Figure 2: Results from simulations where 1000 scenarios were generated, each containing one 

dyad, under two circumstances: 1) dynamic interaction present (medium grey histogram) and 2) 

dynamic interaction absent (light grey histogram). Dark grey indicates where the index values 

overlap. Each scenario was examined at five sampling resolutions (100% , 50%, 33%, 20%, 10% 

of fixes). Along with the histogram of index values, we present the mean, standard deviation (in 

brackets), and number of significant results where appropriate (p < 0.01 – denoted by *). Note: 

values plotted for Don are simply p-values as no stand-alone index is generated with Don. 

  



50 

 

Figure 3: Correlation between indices of dynamic interaction and proportion of time in the 

interactive phase (Pint) from the scenarios where interaction was simulated as present (top row); 

and static interaction (AOP) from the dyads where interation was simulated as absent (bottom 

row). Values plotted using an open circle denote Type II error in the top row (no significant 

interaction when present) and Type I error in the bottom row (siginificant interaction when 

absent). 
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Figure 4: Time series plot of the local di statistic (in black; developed by Long and Nelson 2013) 

and proximity (meters; in grey) for the 100% sampling resolutoin from a single pair of dyads 

from the simulation study (see Supplementary Material A), one with interaction absent (top) and 

one with interaction present (bottom). The black dotted line represents random interaction at 

di=0, whereas the grey dotted line represents the critical threshold for identifying proximal fixes 

(dc = 50 m).  
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Figure 5: Time series plot of the local di statistic (in black; developed by Long and Nelson 2013) 

and proximity (meters; in grey) for the 30 min sampling interval for three white-tailed deer dyads 

(n = 6 deer). A 24 hr moving window average of di was used to minimize noise. The index di is 

presented on y-axis 1 and proximity (m) on y-axis 2. The black dotted line represents random 

interaction at di=0, whereas the grey dotted line represents the critical threshold for identifying 

proximal fixes (dc = 50 m).  
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Supplementary Material: 

1. Figure showing two simulated dyads along with 95% kernel home range estimates; a) 

interaction present, b) interaction absent. These two scenarios were used for finer 

treatment of dynamic interaction in the simulation study. The parameters used were: 

n = 2475 

h = 3.46 

r = 0.19 

p = 0.004 

b = 3.9 

ρ = 0.87 

This resulted in a Pint = 0.53 for the present case (a) with an AOP = 0.75 and in the absent 

case (b) AOP = 0.30. 

 

 

2. R Code (function) for producing the biased correlated random walk (BCRW) used to 

simulate the presence of dynamic interaction. 

< Attach R code as file for uploading > 


