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During nest building in zebra finches (Taeniopygia guttata), several regions in the social behav-

iour network and the dopaminergic reward system, which are two neural circuits involved in

social behaviour, appear to be active in male and female nest-building finches. Because the nona-

peptides, mesotocin and vasotocin and the neurotransmitter, dopamine, play important roles in

avian social behaviour, we tested the hypothesis that mesotocinergic-vasotocinergic and dopami-

nergic neuronal populations in the social behaviour network and dopaminergic reward system,

respectively, are active during nest building. We combined immunohistochemistry for Fos (an

indirect marker of neuronal activity) and vasotocin, mesotocin or tyrosine hydroxylase on brain

tissue from nest-building and non-nest-building male and female zebra finches and compared

Fos immunoreactivity in these neuronal populations with the variation in nest-building behaviour.

Fos immunoreactivity in all three types of neuronal populations increased with some aspect of

nest building: (i) higher immunoreactivity in a mesotocinergic neuronal population of nest-build-

ing finches compared to controls; (ii) increased immunoreactivity in the vasotocinergic neuronal

populations in relation to the amount of material picked up by nest-building males and the

length of time that a male spent in the nest with his mate; and (iii) increased immunoreactivity

in a dopaminergic neuronal population in relation to the length of time that a male nest-building

finch spent in the nest with his mate. Taken together, these findings provide evidence for a role

of the mesotocinergic-vasotocinergic and dopaminergic systems in avian nest building.
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Understanding the neurobiology of reproductive behaviour in

vertebrates has long been a focus of neuroendocrine research

(1). In birds, these studies have typically investigated the pro-

duction and perception of courtship song (2), affiliation (3),

copulation (4) and parental care (5). One key avian reproductive

behaviour that has received much less attention is nest-building

behaviour.

The current consensus is that two evolutionarily conserved neural

circuits, the social behaviour network and dopaminergic reward sys-

tem, are important for most reproductive behaviour in vertebrates

(6). Functionally, the social behaviour network is considered to be

involved in the production of courtship, sexual, affiliative and

aggressive behaviours (7), whereas the dopaminergic reward system

is implicated in the motivation to perform these behaviours (8).

Recent studies from our laboratories have revealed that neuronal

activity increases in brain regions within both the social behaviour

network and dopaminergic reward system in male and female zebra

finches during nest building (9).

Many of the brain regions in the social behaviour network and

dopaminergic reward system that exhibit elevated neuronal activity

with nest-building behaviour are known to contain populations of

neurones characterised as using specific signalling molecules to

transmit neuronal information to target brain regions (6). In zebra

finches, these populations include the vasotocinergic and mesoto-

cinergic parvocellular neuronal populations in the medial bed

nucleus of the stria terminalis (BSTm) of the social behaviour net-

work, which release the nonapeptide hormones vasotocin (the avian

analogue of arginine vasopressin in mammals) and mesotocin (the

avian analogue of oxytocin in mammals), respectively. In addition

to releasing these nonapeptides, which may bind to receptors in

brain regions including the social behaviour network (10), these

neuronal populations also innervate hypothalamic and social behav-

iour network targets, including the medial preoptic area (10), which

exhibits elevated neuronal activity during nest building (9). These

populations are distinct from the parvocellular paraventricular neu-

rones forming part of the hypothalamic-pituitary-adrenal stress
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response axis that are vasotocinergic (11). Central effects on behav-

iour via dendritic release from magnocellular vasotocin and mesot-

ocin neuronal populations may be predicted to occur in birds as

reported in mammals (12–14), although this remains to be estab-

lished and was not the focus of the present study. In the dopami-

nergic reward system, dopaminergic neuronal populations in the

ventral tegmental area and central grey synthesise and release the

neurotransmitter dopamine, which may act on dopaminergic recep-

tors in both the striatum and regions in the social behaviour net-

work, including BSTm and the septum (15,16), amongst other sites.

The actions of the vasotocinergic, mesotocinergic and dopami-

nergic neuronal populations appear to mediate many reproductive

behavioural functions that are enhanced during the breeding sea-

son. For example, in zebra finches, vasotocinergic neurones in the

BSTm are considered to be involved in affiliative behaviour and

courtship (17) and dopaminergic neurones in the central grey

appear to be involved in vocal communication with conspecifics

(18). Nonapeptidergic signalling has diverse behavioural effects in

mammals: oxytocin can suppress appetite; it stimulates female sex-

ual receptivity and male sexual arousal, as well as grooming behav-

iour, and also is anti-anxiolytic (19), and vasopressin has been

implicated in social behaviour, including pair bonding social recog-

nition and aggression (20). These nonapeptides also have a well-

established important role in parental behaviour in mammals

(19,21–23); for example, i.c.v. oxytocin infusions induce maternal

behaviour in rats and mice (23,24) and oxytocin signalling appears

to be involved in nest-building behaviour in rodents (25,26). There-

fore, we hypothesised that the vasotocinergic, mesotocinergic and

dopaminergic neuronal populations within the social behaviour net-

work and dopaminergic reward system are also involved in nest

building, a key parental behaviour in birds. In the present study, we

compared nest-building behaviour in male and female zebra finches

with concurrent neuronal activity, as measured indirectly by the

number of neurones producing the immediate early gene protein

product Fos (27), in vasotocinergic and mesotocinergic neuronal

populations in subdivisions of the BSTm and dopaminergic neuronal

populations in the ventral tegmental area and central grey. Because

we previously established that neuronal activity in the dorsal subdi-

vision of the BSTm (BSTmd) increased in relation to the length of

time that female finches spent in the nest (9) and Klatt and Good-

son (28) found that the delivery of a mesotocin antagonist in the

zebra finch brain reduces the amount of time nest-building female

finches spent in the nest, we hypothesised that mesotocinergic

neurones in the ventral subdivision of BSTm (BSTmv) may be

involved in the amount of time a female finch spends within the

nest and predicted that Fos and mesotocin neurone immunoreactive

co-localisation will reflect this brain–behaviour relationship. Neuro-

nal activity also increases in the BSTmd during nest building (9)

and so we also predicted that Fos immunoreactivity in vasotociner-

gic and mesotocinergic neurones in the BSTmd would be higher in

nest-building finches compared to controls.

Finally, we aimed to further understand the role of the ventral

tegmental area in nest building (9). If increases in neuronal activity

involve the dopaminergic neuronal population in this region, then

Fos immunoreactivity within dopaminergic neurones in the ventral

tegmental area should increase the more often male finches pick

up nest material.

Materials and methods

Animals

We bred thirty-two adult zebra finches (n = 16 male, n = 16 female) in

captivity at the University of St Andrews, St Andrews, Scotland, UK. Prior to

experimentation, we housed all birds in single-sex group cages containing

10–20 birds with ad lib. access to finch seed mix and water. All birds were

maintained under a 14 : 10 h light /dark cycle (lights on 08.00 h) at

19–27 °C and 50–70% relative humidity. All procedures in the present study

were performed with permission from the University of St Andrews Animal

Welfare and the Ethics Committee and the UK Home Office (PPL. 60/3666).

Treatment group assignment

We randomly paired zebra finches in opposite-sex pairs in wooden/wire

mesh cages (40 9 30 9 39 cm) and housed finch pairs within the same

room as the single-sex group cages. Pair cages were fitted with a wooden

nest cup (11 9 13 9 12 cm), the floor of the cage was covered with bed-

ding chips, and finch pairs were given access to finch seed mix and water

ad lib. Finches were paired for a minimum of 1 week before receiving 15-cm

lengths of string (No. 4 Polished Cotton Twine; Rope Source, Bolton, UK) as

nest material. Prior to receiving string, finch pairs regularly filled their nest

cups with bedding chips from the cage floor and some females laid eggs in

these bedding nests. We removed bedding and eggs from nest cups daily.

At least 1 week after pairing, we gave four pairs of birds 50 pieces of

string at 12.00 h. We inspected cages 24 h later to identify pairs that had

begun building a string nest in their nest cup. To create an experimental

cohort, we randomly assigned each finch pair that had begun building a

nest to one of the two behavioural treatment groups (nest-building and

control group). We selected only finch pairs that had begun building a nest

to ensure that all pairs included in the present study were motivated and

capable of building nests prior to nest building observation.

After allocating birds to treatment groups, we removed all string from

the cages of both finch pairs in the experimental cohort and also removed

the nest cup from the cage of the control finch pair. We removed the bed-

ding chips from the cages of both pairs to prevent the birds using them for

nest building, lined the cage floors with black plastic, and moved both pairs

to the experimental room. We repeated this selection procedure until we

had eight nest-building and eight control zebra finch pairs.

Nest building

Once in the experimental room, the control and nest-building pairs were

visually but not acoustically isolated from each other by a wooden barrier.

To record out-of-nest cup behaviour, we positioned a camcorder in front of

each pair’s cage (Sony Handycam AVCHD, Model no. HDR-CX115E; Sony

Corp., Tokyo, Japan) and, to record in-nest cup behaviour, we suspended a

bird-box camera inside each pair’s cage (SpyCameraCCTV, Bristol, UK). We

left each cohort undisturbed in the experimental room for 24 h to habituate.

Thirty minutes after lights on, and on the morning after habituation, we

gave the nest-building pair 250 pieces of string and began filming both

pairs. An experimenter observed the birds from outside the test room via a

window until the male of the nest-building pair made three consecutive

trips with nest material from the cage floor to the nest. We recorded these

trips as the time at which the male began to build and sacrificed the birds

90 min later. If the male began building immediately after receiving mate-

rial, we delayed the start of the observation for 15 min to avoid sampling
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Fos production in the brain associated with the bird seeing the

experimenter.

Behaviour coding

We encoded the birds’ behaviour using NOLDUS OBSERVER (TrackSys Ltd, Notting-

ham, UK) behavioural analysis software and measured the occurrence of

behaviours performed 80–50 min prior to sacrifice, a time bin in which Fos

production is associated with these nest-building behaviours (9). Briefly, we

measured instances of hopping, feeding, drinking, preening, scratching and

allopreening in all birds. In males, we recorded the number of song bouts

and the time spent singing (s). In nest-building birds, we measured six nest-

building behaviours: pick up (when the bird picked up a piece of string), put

down (when the bird deposited a piece of string into the nest), tuck (when

the bird used its beak to push a piece of string into the nest when in the

nest cup), nest visits and time in nest (s). We also measured time together

(s) in the nest (i.e. the duration both members of a nest-building pair spent

together in the nest cup).

Tissue collection

Ninety minutes after the start of nest building, an experimenter entered the

room to confirm visually that string was deposited in the nest cup. Once con-

firmed, we terminally anaesthetised (0.2 ml i.p.; Dolethal; V�etoquinol, Buckin-

ghamshire, United Kingdom) both pairs of birds and rapidly dissected their

brains from their skulls. We fixed brains via submersion in 4% paraformalde-

hyde in phosphate-buffered saline (PBS) (0.1 M; pH 7.4) for 6 days and then

moved the brains to 20% sucrose in PBS overnight and then to 30% sucrose

in PBS for another night to cryoprotect them. An experimenter removed cere-

bella from the rest of the brains and froze both the cerebella and remaining

brain on pulverised dry ice and stored all neural tissue at �80 °C before trans-

porting the brains on dry ice to the Roslin Institute (University of Edinburgh,

Roslin, UK), where the samples were again stored at �80 °C. An experimenter

sectioned brains coronally (section thickness = 52 lm) using a freezing

microtome and collected sections in four, alternating series in cryoprotectant

and stored the sections at �20 °C until free-floating immunohistochemical

processing. The cerebella were processed for Fos immunoreactivity in a sepa-

rate study (Hall Z.J., Ihalainen E., Meddle S.L., Healy S.D., in preparation).

Double-label immunohistochemistry

Three series of sections were rinsed four times in 0.2% Triton X-100 (Sigma,

St Louis, MO, USA) in 0.1 M phosphate buffer (PBT) and once in 0.1 M PBS

before being incubated in 0.3% H2O2 in PBS for 15 min at room tempera-

ture to reduce endogenous peroxidase activity. After three PBT rinses, sec-

tions were incubated in 10% normal goat serum (Vector Laboratories,

Burlingame, CA, USA) in PBT for 60 min at room temperature. Sections were

then moved into the primary Fos antibody (rabbit polyclonal anti-Fos K-25,

sc-253, Santa Cruz Biotechnology, Santa Cruz, CA, USA, dilution 1 : 10 000)

in 10% normal goat serum in PBT and incubated for 21 h at 4 °C. The K-25

Fos antibody has been extensively used in zebra finches (29) and validated

in songbirds (30). Sections were then rinsed three times in PBT and incu-

bated in biotinylated goat anti-rabbit secondary antibody (diluted 1 : 250 in

PBT; Vector Laboratories) for 1 h at room temperature. After another three

rinses in PBT, sections were then incubated in avidin-biotin horseradish-per-

oxidase complex (Vector Laboratories, dilution 1 : 400) in PBT for 1 h at

room temperature. After four rinses in PBT, one rinse in PBS, and a brief

rinse in 0.1 M sodium acetate, sections were visualised with 0.04% nickel-

intensified diaminobenzidene (Sigma) solution for 210 s at room tempera-

ture to develop Fos immunoreactivity and then rinsed five times with PBS

to terminate the reaction.

Immediately after Fos visualisation, we double-labelled each series to

visualise tyrosine hydroxylase, vasotocin or mesotocin. Tyrosine hydroxylase

is an enzyme catalysing the rate-limiting step in dopamine synthesis and is

used as a marker for dopaminergic neurones in vertebrate neuroanatomy

(6). Briefly, tissue series were rinsed three times in PBT, once in PBS and

incubated in 0.3% H202 for 15 min. After another three PBT rinses, tissue

series were incubated in blocking serum (tyrosine hydroxylase: 10% normal

horse serum, Vector Laboratories; vasotocin and mesotocin: 3% normal goat

serum, Vector Laboratories) in PBT for 60 min at room temperature. Sections

were then transferred into PBT containing the appropriate blocking serum

and primary antibody (tyrosine hydroxylase: mouse monoclonal; Millipore,

Billerica, MA, USA, MAB5280, dilution 1 : 1000; vasotocin: rabbit polyclonal;

a gift from David A. Gray, University of the Witwatersrand, Johannesburg,

South Africa, dilution 1 : 10 000) and incubated for 60 h at 4 °C. Sections
destined for mesotocin double-labelling were incubated in primary antibody

(mesotocin: rabbit polyclonal; ImmunoStar Inc., Hudson, WI, USA, 20,068,

dilution 1 : 5000) for 87 h at 4 °C. All primary antibodies included in the

present study have been used and validated previously in birds [tyrosine

hydroxylase (31), vasotocin (32,33), mesotocin (34)]. The vasotocin antibody

exhibits no cross-reactivity with oxytocin, mesotocin and angiotensin (33)

and the mesotocin antibody exhibits no cross-reactivity with vasotocin (34).

The specificity of the tyrosine hydroxylase antibody has been extensively

addressed by the manufacturer (Millipore; see manufacturer’s data sheet)

and has wide vertebrate species cross-reactivity including avian species. We

also assessed antibody specificity by performing a series of immunohisto-

chemical tests that did not result in any staining and these included com-

plete omission of the primary or secondary antibodies. The distribution of

cytoplasmic immunostaining in the zebra finch brain for each primary anti-

body was as expected compared to the distribution of other published stud-

ies using different primary antibodies [tyrosine hydroxylase (35); mesotocin

and vasotocin (28)] and also for the known expression of each peptide

mRNA. In addition, a dilution series of each primary antibody, when deter-

mining the optimum concentration of primary antibody to use, resulted in a

correlated reduction in staining intensity. After three further rinses in PBT,

tissue was incubated in a solution containing biotinylated secondary anti-

body (tyrosine hydroxylase: horse anti-mouse, Vector Laboratories, dilution

1 : 100; vasotocin and mesotocin: goat anti-rabbit, Vector Laboratories, dilu-

tion 1 : 100) in PBT for 60 min at room temperature. After three rinses in

PBT, sections were then incubated in avidin-biotin horseradish-peroxidase

complex (Vector Laboratories, dilution 1 : 50) in PBT for 60 min at room

temperature. After a final four rinses in PBT and a single rinse in PBS, the

second label was visualised by incubating tissue in diaminobenzidene at

room temperature for different periods of time depending on the tissue ser-

ies (tyrosine hydroxylase, 110 s; vasotocin, 225 s; mesotocin, 140 s). Tissue

was rinsed five times in PBS to terminate the diaminobenzidene reaction.

This labelling procedure produced an intensely dark, black Fos labelled nuclei

in neurones and a light brown cytoplasmic staining of neurones producing

tyrosine hydroxylase, vasotocin or mesotocin. After double-labelling, all tis-

sue sections were mounted in series on to 0.5% gelatine-subbed microscope

slides (Thermo), serially dehydrated in alcohol (70–99%), cleared in xylene

and cover-slipped with Pertex mountant (CellPath).

Quantification of Fos immunoreactivity

We quantified Fos immunoreactivity in neuronal populations characterised

by their production of vasotocin, mesotocin or tyrosine hydroxylase. We

located each neuronal population with reference to full-section architecture

(36) and, more specifically, visualisation of vasotocin, mesotocin and tyrosine

hydroxylase. In both vasotocin- and mesotocin-labelled tissue, we sampled

vasotocinergic and mesotocinergic populations in the BSTmd in three adja-

cent sections and BSTmv in two adjacent sections in each brain. We were

unable to sample Fos co-localisation in vasotocinergic and mesotocinergic
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neuronal populations in the supraoptic or paraventricular nuclei because

vasotocin and mesotocin immunoreactivity in neurones in both of these

regions was too intense to determine whether Fos immunoreactivity was

present in the nuclei of these neurones. In tyrosine hydroxylase-labelled tis-

sue, we sampled tyrosine hydroxylase-immunoreactive (dopaminergic) popu-

lations in the ventral tegmental area in three adjacent sections and central

grey in four adjacent sections in each brain.

In each neuronal population, we counted the number of neurones pro-

ducing vasotocin, mesotocin or tyrosine hydroxylase and the number of

double-labelled (vasotocin + Fos, mesotocin + Fos, or tyrosine hydroxy-

lase + Fos) neurones. Although tyrosine hydroxylase + Fos neurones could

be counted in the ventral tegmental area visually using the microscope, sin-

gle-labelled tyrosine hydroxylase-immunoreactive neuronal populations were

too extensive to be quantified using this method. To count these neurones,

we took photomicrographs of all ventral tegmental area sections using a

9 20 objective lens and counted the tyrosine hydroxylase-immunoreactive

neurones using IMAGEJ, version 1.45 (NIH, Bethesda, MD, USA). All neurone

counts were made in both hemispheres. To account for differences in vasot-

ocinergic, mesotocinergic and dopaminergic neuronal population sizes

between sections and birds, we divided the total number of double-labelled

cells by the total number of vasotocinergic, mesotocinergic or dopaminergic

neurones, respectively, in a given brain to quantify Fos immunoreactivity as

the percentage of a neuronal population immunoreactive for Fos.

Statistical analysis

We used PASW software, version 19.00 (SPSS Inc., Chicago, IL, USA) for all of

our statistical analyses. We compared the amount of non-nesting behaviours

exhibited by birds using generalised linear model (GLMs) with independent

variables including sex on two levels (male and female) and treatment on

two levels (nest building and control). We compared the number of song

bouts and time spent singing between male control and nest-building birds

using the Mann–Whitney U-test because these data did not conform to the

assumptions of parametric statistical analysis. Similarly, we compared nest-

building behaviours between nest-building male and female birds using

Mann–Whitney U-tests. Finally, we compared Fos immunoreactivity in each

neuronal population using GLMs with independent variables including sex

on two levels (male and female) and treatment on two levels (nest building

and control), as above for non-nesting behaviour.

To investigate whether nest-building behaviour explained individual varia-

tion in Fos immunoreactivity, we used multiple linear regression including

neuronal activity as a dependent variable and all recorded behaviours in

nest-building birds as independent predictors. We ran regression models

separately for each sex and each vasotocinergic, mesotocinergic and dopa-

minergic neurone population sampled using a stepwise reduction procedure

to identify behaviours that significantly explained individual differences in

Fos immunoreactivity in these populations.

Results

Behavioural analysis

Although control and nest-building birds did not differ in how often

they hopped, preened, scratched, drank and allopreened (all

P > 0.05), control birds fed significantly more often than nest-build-

ing birds (F1,26 = 3.494, P < 0.001; control: 131.64 � 13.38 feeds;

nest-building: 32.63 � 12.52 feeds). Control male birds also sang

more often (U = 9.0, P = 0.027; control: 14 � 5.7 song bouts, nest-

building: 2.8 � 0.7 song bouts) and for longer (U = 9.0; P = 0.028;

control: 50.7 � 21.6 song bouts, nest-building: 12.6 � 4.9 song

bouts) than nest-building males. Overall, control birds spent

time feeding and, in the case of males, singing, when nest-building

opportunities were not available.

Nest-building males picked up (U = 64.0, P = 0.001; male:

143.3 � 36.5 pick ups, female: 8.8 � 4.7 pick ups) and deposited

(U = 64.0, P < 0.001; male: 68.8 � 10.5 deposits, female:

0.1 � 0.1 deposits) nest material significantly more often than

nest-building females. Male and female nest-building finches did

not differ in the number of times they tucked nest material into

the nest structure (U = 48.0, P = 0.093). Nest-building male finches

visited the nest cup more often (U = 64.0, P = 0.001; male:

79.1 � 10.8 visits, female: 16.0 � 2.9 visits) than nest-building

females; however, male and female nest-building finches did not

differ in the total amount of time they spent in the nest (U = 36.5,

P = 0.473), suggesting that females made fewer but longer trips to

the nest cup than their mates.

Vasotocinergic neuronal populations

Overall, Fos immunoreactivity in vasotocinergic neurone populations

in the BSTmd or BSTmv did not differ between nest-building birds

and control birds (BSTmd: F1,26 = 0.396, P = 0.535; BSTmv:

F1,25 = 0.001, P = 0.978).

Among nest-building males, Fos immunoreactivity in vasotociner-

gic neurones in the BSTmd increased in relation to the length of

time a male spent together with his mate in the nest cup

(b = 0.837; t = 3.748; F1,6 = 14.048; P = 0.010) (Fig. 1). Addition-

ally, Fos immunoreactivity in vasotocinergic neurones in the BSTmv

increased the more often males picked up pieces of nest material

(b = 0.784; t = 3.097; F1,6 = 9.590; P = 0.021) (Fig. 1). In the

female mates of nest-building males, none of the behaviours that

we measured significantly explained the individual variation in Fos

immunoreactivity in vasotocinergic populations in either BSTmd or

BSTmv.

Mesotocinergic neuronal populations

Fos immunoreactivity in mesotocinergic neurones in the BSTmd

(but not in the BSTmv) tended to be greater in nest-building birds

than in controls (BSTmd: F1,26 = 4.160, P = 0.052; BSTmv:

F1,25 = 0.612; P = 0.441) (Fig. 2).

None of the behaviours that we measured significantly explained

individual variation in Fos immunoreactivity in mesotocinergic neu-

rones in either BSTmd or BSTmv in nest-building males or females.

Dopaminergic neuronal populations

Overall, Fos immunoreactivity in dopaminergic neurones in both the

ventral tegmental area and central grey did not differ between the

nest-building and control birds (ventral tegmental area:

F1,26 = 0.488; P = 0.491; central grey: F1,26 = 2.880; P = 0.102).

Among nest-building males, Fos immunoreactivity in dopaminer-

gic neurones in the central grey increased in relation to the length

of time a male spent with his mate in the nest cup (b = 0.921;

t = 5.793; F1,6 = 33.564; P = 0.001) (Fig. 3). Additionally, Fos
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immunoreactivity in dopaminergic neurones in the ventral tegmen-

tal area decreased in relation to the amount of nest material males

tucked into the nest (b = �0.719; t = �2.531; F1,6 = 6.405;

P = 0.045).

In females paired with nest-building males, Fos immunoreactivity

in dopaminergic neurones in the ventral tegmental area decreased in

relation to the amount a female fed (b = �0.816; t = �3.453;

F1,26 = 11.923; P = 0.014). None of the behaviours that we measured

significantly explained individual variation in Fos immunoreactivity in

dopaminergic neurones in the central grey of female nesting finches.

Discussion

Vasotocinergic and mesotocinergic neuronal populations

Nonapeptide hormones and parental behaviour

The demonstration that vasotocinergic and mesotocinergic neuronal

populations are active during nest building in zebra finches sug-

gests that, in addition to nonapeptide hormones acting in the brain

to regulate pair formation (37), they may also be involved in nest
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building. In conjunction with previous studies demonstrating a role

for nonapeptide signalling within the brain in parental behaviour in

mammals (38) and fish (39), it appears that a role for nonapeptide

hormone systems in parental behaviour may be evolutionarily con-

served across vertebrate taxa. As recently highlighted by Kelly and

Goodson (17), correlational studies demonstrating a relationship

between neuronal activity in nonapeptidergic neuronal populations

and social behaviours require complementary studies in which neu-

ronal activity in these cells is manipulated within specific cell

groups to establish a functional connection between brain and

behaviour. It should also be noted that, because we used a rela-

tively limited sample size and because Fos immunohistochemistry

suffers from a lack of temporal specificity in relation to specific

patterns of neuronal activity, the lack of a correlation between Fos

immunoreactivity in a given neuronal population and a specific

behaviour should not be used as evidence to preclude the involve-

ment of that brain region in the behaviour of interest because

some brain–behaviour relationships may not be detected using Fos

immunohistochemistry or a smaller sample size.

BSTmd

In the present study, we found that the previously-reported

increase in BSTmd Fos immunoreactivity in nest-building finches

compared to nonbuilding controls (9) may occur specifically within

mesotocinergic neurones. Because this increase in immunoreactivity

did not correlate with any nest-building behaviour, it may be

related to nest possession or perception of the nest rather than to

nest-building behaviour per se, which is consistent with the find-

ings reported by Hall et al. (9). This possibility requires explicit test-

ing. The limited power in this group difference reported by Hall

et al. (9) and the present study suggests that this group difference

may be better tested with a larger sample size in the future.

Within the BSTmd, Fos immunoreactivity in vasotocinergic neuro-

nes also increased in male nest-building finches in relation to the

length of time a male spent together with his mate in the nest,

which appears to be at odds with the absence of a relationship

between Fos immunoreactivity in vasotocinergic neurones in the

BSTm and the time spent in the nest in zebra finches (28). This dis-

crepancy may be explained in part by differences in quantifying

BSTmd and BSTmv Fos immunoreactivity separately or together (9)

and the behaviours measured. Although Klatt and Goodson (28)

and Hall et al. (9) measured the amount of time individual birds

spent within the nest, in the present study, we measured the

amount of time the pair of finches spent together in the nest. This

finding might be particularly important because vasotocinergic neu-

rones in the BSTm appear to be involved in eliciting affiliative

responses to mates (40). These results support the hypothesis that

vasotocinergic neuronal populations in BSTm of male birds may be

involved in affiliative behaviour (17), including social interactions

within the nest during nest building, although further studies are

necessary to test this possibility.

BSTmv

Although Fos immunoreactivity in the BSTmv was unrelated to nest-

building behaviour in male finches in a previous study (9), in the

present study, we found that Fos immunoreactivity in vasotocinergic

neurones increased in the BSTmv in relation to the amount of time

that a nest-building male finch picked up nest material. This differ-

ence may be explained if the relationship between neuronal activity

and picking up nest material is specific to vasotocinergic neurones

in this region. The earlier result (9) may have been the result of a

masking of the total Fos immunoreactivity in other neuronal popula-

tions located within the BSTmv. Functionally, vasotocinergic neuro-

nes in the BSTmv of zebra finches may be involved in picking up

nest material. As antagonising vasotocin signalling in the brain did

not affect nest material collection behaviour by male nest-building

zebra finches (28), it is plausible that vasotocinergic neurones in the

BSTmv influence nest material collection via their neuronal activity.

It should be noted that the number of birds contributing to this

relationship is limited and would benefit from replication using large

sample sizes or manipulations to test for a functional relationship

between the BSTmv and nest material collection.

The lack of a relationship between Fos immunoreactivity in either

vasotocinergic or mesotocinergic neuronal populations and the time

that a female spent in the nest suggests that other neuronal popu-

lations located in the BSTmv intermingled with the nonapeptidergic

populations sampled in the present study, such as the population

of neurones expressing receptors for vasoactive intestinal peptide
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(41), may increase their activity in relation to the length of time a

female finch spends in the nest. This vasoactive intestinal peptide-

sensitive neuronal population may be particularly interesting in the

context of nest building because vasoactive intestinal peptide sig-

nalling regulates prolactin release, which is involved in maternal

behaviour including incubation in birds (42). The involvement of

another neuronal population aside from vasotocinergic and mesoto-

cinergic neurones in the relationship between neuronal activity in

BSTmv and time spent in the nest also explains why central infu-

sions of pharmacological antagonists that impair vasotocin and

mesotocin signalling did not affect the time female zebra finches

spent within the nest (28).

Dopaminergic neuronal populations

Ventral tegmental area

Fos immunoreactivity in dopaminergic neurones within the ventral

tegmental area was not correlated with nest material collection by

male finches, and so it appears that this dopaminergic neuronal

population does not play a role in collecting nest material. The

negative correlation between Fos immunoreactivity in the ventral

tegmental area dopaminergic neurones and the the number of

times male finches tucked pieces of nest material into the nest

structure may instead suggest that tucking nest material into the

nest structure is unrewarding or that the dopaminergic neurone

population in the ventral tegmental area inhibits tucking behaviour

in male finches. Pharmacological manipulations could be used to

inhibit neuronal activity in ventral tegmental area dopaminergic

neurones to distinguish between these two possibilities.

Banerjee et al. (43) found that Fos immunoreactivity increased in

dopaminergic neurones in the ventral tegmental area in recently

paired male and female zebra finches, who were also observed to spent

more time in the nest together than controls. In the present study, we

found no relationship between time spent in the nest together with

Fos immunoreactivity in dopaminergic neurones in the ventral teg-

mental area; however, we also waited for a minimum of 1 week after

pairing to record nest-building behaviour, suggesting that this

increased neuronal activity may be specific to recently-paired birds.

Finally, in female nest-building finches, we found that Fos immu-

noreactivity in dopaminergic neurones in the ventral tegmental area

decreased in relation to how often these females fed. This negative

relationship contrasts with the well-known relationship that dopa-

mine has in the ventral tegmental area mediating food rewards

(44). It should be noted that this negative relationship only

appeared in our nest-building female finches and studies dedicated

to identifying neural substrates of feeding in birds are required to

begin to clarify the biological significance of this result.

Central grey

The increase in Fos immunoreactivity in central grey dopaminergic

neurones in male nest-building finches the more time they spent in

the nest with their partners supports the proposal that dopaminergic

neurones in the central grey may play a role in social communication

(3) between a male finch and his female partner. Consistent with the

central grey playing a role in pair interaction during nest building

specifically, Banerjee et al. (43) found that Fos immunoreactivity

increased in dopaminergic neurones in the central grey of male

finches that had recently been paired with a female and spent more

time in the nest compared to controls. This social communication

might take the form of ‘duet-like’ vocalisations that appear to be

performed during nest building (45) but, as yet, we have no data to

confirm this possibility.

Taken together, these data provide the first evidence that vasoto-

cinergic, mesotocinergic and dopaminergic neuronal populations in

the social behaviour network and dopaminergic reward system are

active when birds are nest building. These brain–behaviour relation-

ships suggest that nest-building behaviour can be classified as a

social behaviour regulated by the social behaviour network and

dopaminergic reward system and also provide a robust neuroen-

docrinological foundation for future studies on the neurobiology of

nest-building behaviour. Furthermore, these data support the sug-

gestion that nonapeptidergic systems in the brain play an evolu-

tionarily conserved role in controlling parental behaviour in

vertebrates, including nest building in birds.

Acknowledgements

This work was supported by funding from the BBSRC (BB/I019502/1 to SDH

& SLM) and NSERC (grant number PGSD3-409582-2011 to ZJH) and Roslin

Institute Strategic Grant funding from the BBSRC (SLM). We also acknowl-

edge general laboratory assistance by Valerie Bishop. We thank the anony-

mous reviewers for their very useful comments on the manuscript. The

authors of the manuscript have no conflicts of interest to declare.

Received 2 September 2014,

revised 5 December 2014,

accepted 12 December 2014

References

1 O’Connell LA, Hofmann HA. The vertebrate mesolimbic reward system

and social behavior network: a comparative synthesis. J Comp Neurol

2011; 519: 3599–3639.

2 Ball GF, Balthazart J. The neuroendocrinology and neurochemistry of

birdsong. In: Lajtha NSA, Blaustein JD, eds. Handbook of Neurochemis-

try and Molecular Neurobiology. Plenum Press; New York, NY, 2007:

419–457.

3 Goodson JL, Kelly AM, Kingsbury MA. Evolving nonapeptide mechanisms

of gregariousness and social diversity in birds. J Neuroendocrinol 2012;

24: 525–526.

4 Balthazart J, Ball GF. Topography in the preoptic region: differential reg-

ulation of appetitive and consummatory male sexual behaviors. Front

Neuroendocrinol 2007; 28: 161–178.

5 Buntin JD. Neural and hormonal control of parental behavior in birds.

In: Rosenblatt JS, Snowden CT, eds. Parental Care: Evolution, Mecha-

nisms, And Adaptive Significance: Parental Care: Evolution, Mechanisms,

And Adaptive Significance Advances in the Study of Behaviour.

Academic Press: San Diego, California, 1996: 161–214.

6 O’Connell LA, Hofmann HA. Evolution of a vertebrate social decision-

making network. Science 2012; 336: 1154–1157.

7 Goodson JL. The vertebrate social behavior network: evolutionary

themes and variations. Horm Behav 2005; 48: 11–22.

© 2014 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd
on behalf of British Society for Neuroendocrinology

Journal of Neuroendocrinology, 2015, 27, 158–165

164 Z. J. Hall et al.



8 Riters LV. Pleasure seeking and birdsong. Neurosci Biobehav R 2011;

35: 1837–1845.

9 Hall ZJ, Bertin M, Bailey IE, Meddle SL, Healy SD. Neural correlates of

nesting behaviour in zebra finches (Taeniopygia guttata). Behav Brain

Res 2014; 264: 26–33.

10 Goodson JL, Kelly AM, Kingsbury MA. Evolving nonapeptide mechanisms

of gregariousness and social diversity in birds. Horm Behav 2012; 61:

239–250.

11 Nagarajan G, Tessaro BA, Kang SW, Kuenzel WJ. Identification of argi-

nine vasotocin (AVT) neurons activated by acute and chronic restraint

stress in the avian septum and anterior diencephalon. Gen Comp Endo-

crinol 2014; 202: 59–68.

12 Ludwig M, Sabatier N, Bull PM, Landgraf R, Dayanithi G, Leng G. Intra-

cellular calcium stores regulate activity-dependent neuropeptide release

from dendrites. Nature 2002; 418: 85–89.

13 Landgraf R, Neumann ID. Vasopressin and oxytocin release within the

brain: a dynamic concept of multiple and variable modes of neuropep-

tide communication. Front Neuroendocrinol 2004; 25: 150–176.

14 Ludwig M, Leng G. Dendritic peptide release and peptide-dependent

behaviors. Nat Rev Neurosci 2006; 7: 126–136.

15 Balthazart J, Absil P. Identification of catecholaminergic inputs to and

outputs from aromatase-containing brain areas of the Japanese quail

by tract tracing combined with tyrosine hydroxylase immunocytochem-

istry. J Comp Neurol 1997; 382: 401–428.

16 Kubikova L, Wada K, Jarvis ED. Dopamine receptors in a songbird brain.

J Comp Neurol 2010; 518: 741–769.

17 Kelly AM, Goodson JL. Social functions of individual vasopressin-oxyto-

cin cell groups in vertebrates: what do we really know? Front Neuroen-

docrinol 2014; 35: 512–529.

18 Schroeder MB, Riters LV. Pharmacological manipulations of dopamine

and opiods have differential effects on sexually motivated song in male

European starlings. Physiol Behav 2006; 88: 575–584.

19 Leng G, Meddle SL, Douglas AJ. Oxytocin: pregnancy, birth and maternal

behaviour. Curr Opin Pharmacol 2008; 8: 731–734.

20 Leng G, Meddle SL. Vasopressin: the central systems. In: Laycock JF, ed.

Perspectives on Vasopressin. London: Imperial College Press, 2010: 257–

287.

21 Bosch OJ, Neumann ID. Brain vasopressin is an important regulator of

maternal behavior independent of dams’ trait anxiety. Proc Natl Acad

Sci USA 2008; 105: 17139–17144.

22 Caughey SD, Klampfl S, Bishop VR, Pfoertsch J, Neumann ID, Bosch OJ,

Meddle SL. Changes in the intensity of maternal aggression and central

oxytocin and vasopressin V1a receptors across the peripartum period in

the rat. J Neuroendocrinol 2011; 23: 1113–1124.

23 Rosenblatt JS, Mayer AD, Giordano AL. Hormonal basis during pregnancy

for the onset of maternal behavior in the rat. Psychoneuroendocrino

1988; 13: 29–46.

24 McCarthy MM. Oxytocin inhibits infanticide in female house mice (Mus

domesticus). Horm Behav 1990; 24: 365–375.

25 Fahrbach SE, Morrell JI, Pfaff DW. Oxytocin induction of short-latency

maternal behavior in nulliparous, estrogen-primed female rats. Horm

Behav 1984; 18: 267–286.

26 Li L, Keverne EB, Aparicio SA, Ishino F, Barton SC, Surani MA. Regulation

of maternal behavior and offspring growth by paternally expressed

Peg3. Science 1999; 284: 330–333.

27 Morgan JI, Curran T. Stimulus-transcription coupling in the nervous sys-

tem: involvement of the inducible proto-oncogenes fos and jun. Ann

Rev Neurosci 1991; 14: 421–451.

28 Klatt JD, Goodson JL. Sex-specific activity and function of hypothalamic

nonapeptide neurons during nest-building in zebra finches. Horm Behav

2013; 64: 818–824.

29 Kabelik D, Schrock SE, Ayres LC, Goodson JL. Estrogenic regulation of

dopaminergic neurons in the opportunistically breeding zebra finch. Gen

Comp Endocrinol 2011; 173: 96–104.

30 Alger SJ, Maasch SN, Riters LV. Lesions to the medial preoptic nucleus

affect immediate early gene immunolabeling in brain regions involved in

song control and social behavior in male European starlings. Eur J Neu-

rosci 2009; 29: 970–982.

31 Peng Z, Zeng S, Liu Y, Dong Y, Zhang H, Zhang X, Zuo M. Comparative

study on song behavior, and ultra-structural, electrophysiological

and immunoreactive properties in RA among deafened, untutored and

normal-hearing Bengalese finches. Brain Res 2012; 1458: 40–55.

32 Xie J, Kuenzel WJ, Sharp PJ, Jurkevich A. Appetitive and consummatory

sexual and agonistic behaviour elicits FOS expression in aromatase and

vasotocin neurones within the preoptic area and bed nucleus of the

stria terminalis of male domestic chickens. J Neuroendocrinol 2011; 23:

232–243.

33 Gray DA, Simon E. Mammalian and avian antidiuretic hormone: studies

related to possible species variation in osmoregulatory systems. J Comp

Physiol B 1983; 151: 241–246.

34 Chokchaloemwong D, Prakobsaeng N, Sartsoongnoen N, Kosonsiriluk S,

El Halawani M, Chaiseha Y. Mesotocin and maternal care of chicks in

native Thai hens (Gallus domesticus). Horm Behav 2013; 64: 53–69.

35 Karten HJ, Brzozowksa-Prechtl A, Lovel PV, Tang DD, Mello CV, Wang H,

Mitra PP. Digital atlas of the zebra finch (Taeniopygia guttata) brain: a

high-resolution photo atlas. J Comp Neurol 2013; 521: 3702–3715.

36 Stokes TM, Leonard CM, Nottebohm F. The telencephalon, diencephalon,

and mesencephalon of the canary, Serinus canaria, in stereotaxic coor-

dinates. J Comp Neurol 1974; 156: 337–374.

37 Pederson A, Tomaszycki ML. Oxytocin antagonist treatments alter the

formation of pair relationships in zebra finches of both sexes. Horm

Behav 2012; 62: 113–119.

38 Lim MM, Young LJ. Neuropeptidergic regulation of affiliative behavior

and social bonding in animals. Horm Behav 2006; 50: 506–517.

39 Goodson JL, Bass AH. Forebrain peptides modulate sexually polymorphic

vocal circuitry. Nature 2000; 403: 769–772.

40 Goodson JL, Wang Y. Valence-sensitive neurons exhibit divergent func-

tional profiles in gregarious and asocial species. Proc Natl Acad Sci USA

2006; 103: 17013–17017.

41 Goodson JL, Evans AK, Wang Y. Neuropeptide binding reflects conver-

gent and divergent evolution in species-typical group sizes. Horm Behav

2006; 50: 223–236.

42 Sharp PJ, Dawson A, Lea RW. Control of luteinizing hormone and prol-

acting secretion in birds. Comp Biochem Physiol C Pharmacol Toxicol

Endocrinol 1998; 119: 275–282.

43 Banerjee SB, Dias BG, Crews D, Adkins-Regan E. Newly paired zebra

finches have higher dopamine levels and immediate early gene Fos

expression in dopaminergic neurons. Eur J Neurosci 2013; 38: 3731–

3739.

44 Yoshida M, Yokoo H, Mizoguchi K, Kawahara H, Tsuda A, Nishikawa T,

Tanaka M. Eating and drinking cause increased dopamine release in the

nucleus accumbens and ventral tegmental area in the rat: measurement

by in vivo microdialysis. Neurosci Lett 1992; 139: 73–76.

45 Elie JE, Mariette MM, Soula HA, Griffith SC, Mathevon N, Vignal C. Vocal

communication at the nest between mates in wild zebra finches: a pri-

vate vocal duet? Anim Behav 2010; 80: 597–605.

© 2014 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd
on behalf of British Society for Neuroendocrinology

Journal of Neuroendocrinology, 2015, 27, 158–165

Nonapeptides, dopamine and nest building 165


