
Repeating History: Execution Replay for
Parallel Haskell Programs

Henrique Ferreiro1, Vladimir Janjic2, Laura Castro1, and Kevin Hammond2

1 Department of Computer Science, University of A Coruña, Spain
{hferreiro,lcastro}@udc.es

2 School of Computer Science, University of St Andrews, United Kingdom
{vj32,kh}@cs.st-andrews.ac.uk

Abstract. Parallel profiling tools, such as ThreadScope for Parallel
Haskell, allow programmers to obtain information about the performance
of their parallel programs. However, the information they provide is not
always sufficiently detailed to precisely pinpoint the cause of some per-
formance problems. Often, this is because the cost of obtaining that
information would be prohibitive for a complete program execution. In
this paper, we adapt the well-known technique of execution replay to
make it possible to simulate a previous run of a program. We ensure
that the non-deterministic parallel behaviour of the application is prop-
erly emulated while the deterministic functional code is run unmodified.
In this way, we can gather additional data about the behaviour of a par-
allel program by replaying some parts of it with more detailed profiling
information. We exploit this ability to identify performance bottlenecks
in a quicksort implementation, and to derive a version that gives better
speedups on multicore machines.

1 Introduction

Writing correct parallel programs in pure functional languages, such as Glas-
gow Parallel Haskell (GpH [10, 15]), is relatively simple, since the absence of
side-effects means that it is not necessary to worry about some situations such
as race conditions or deadlocks that can seriously complicate parallel programs
written using more traditional techniques. However, writing good parallel pro-
grams, which will give good speedups on a wide variety of parallel architectures,
is much harder. Understanding why a seemingly “perfect” parallel program does
not perform the way the programmer expects can be difficult, especially in a
lazy language like Haskell. Profiling can greatly help in understanding the per-
formance of parallel programs. Current tools for profiling parallel functional
programs, such as ThreadScope [6], allow the programmer to obtain some infor-
mation about the behaviour of the parallel program. However, the information
they give is often too low-level to pinpoint performance problems (in the case
of ThreadScope), or their use can change the runtime behaviour of the original
program (in the case of cost centre profiling).

In this paper, we describe how to adapt the well-known technique of execu-
tion replay [14] to allow us to do performance debugging of parallel functional

programs. Traditionally, execution replay has been used to debug imperative
programs, and its essence is in replaying the execution of a program in order to
reproduce the same state of the memory and registers as in the original execution.
To the best of our knowledge, this paper represents both the first attempt to use
this technique in the context of a lazy functional language, and its first adapta-
tion for parallel performance debugging. With our implementation, the repeated
execution of a program is simulated in a way that allows us to i) reproduce the
conditions that led to the poor parallel performance and ii) make changes to
the program execution in order to collect additional information about its run-
time behaviour. In this way, we can dynamically tune the amount and type of
profiling we do during the replay to get high-level profiling information without
changing the runtime behaviour of the original program.

In particular, the paper presents the following novel research contributions:

– We describe the implementation of execution replay for the parallel programs
written in the pure lazy functional language Haskell. In particular, we de-
scribe the smallest set of events from the program execution that needs to be
recorded in order to reproduce the parallel behaviour of these programs. We
subsequently present a simulator we built to replay the program execution
using these events.

– We discuss how this technique can be used for performance debugging of
Parallel Haskell programs.

– We present a use case, where execution replay is used to discover the per-
formance bottleneck of a simple program (quicksort) which appears easy to
parallelise, yet it is quite subtle to obtain good speedups.

2 Why is Parallel Functional Programming Hard?

The lack of explicit program flow, and the fact that a lot of things happen im-
plicitly during the program execution, is both a blessing and a curse for parallel
functional programmers, especially in a lazy language like Haskell. While it is ar-
guably easier to write parallel programs in Haskell than in imperative languages
(the programmer “just” needs to insert simple parallel annotations in the appro-
priate places in his code), discovering performance bottlenecks of such programs
can be daunting. There are just so many things that can go wrong, and of which
the programmer does not have explicit control. Consider, for example, a simple
parallel implementation of the quicksort list-sorting algorithm:

psort :: Int → [Int]→ [Int]
psort [] = []
psort parLevel l@(x : xs)
| parLevel > 0 = hiSorted ‘par ‘ loSorted ‘pseq ‘ (loSorted ++ x : hiSorted)
| otherwise = seqSort l
where (lo, hi) = partition (<x) xs

loSorted = psort (parLevel − 1) lo
hiSorted = force (psort (parLevel − 1) hi)

Fig. 1. ThreadScope profile of psort

The reasoning behind this attempt at parallelisation of quicksort is simple:
after dividing the initial list l into its lower and higher parts (lo and hi) by using
x as a pivot, we try to sort these two parts in parallel using the par combinator.
Because of how laziness works, we use the function force3 to make sure that
each parallel thread completely evaluates its sublist. In addition, by using the
parLevel parameter, we control the amount of parallelism generated, so that
after a certain point in recursion is reached, the higher and lower parts of the
list are sorted sequentially. In this way, we can tune the parallelism to get a
small number of coarse-grained parallel threads. However, no matter what value
for parLevel we chose, the speedups of psort are very poor, not even achieving
a speedup of 2 in up to 8 cores.

In order to understand why this program gives a bad speedup, we can try to
use ThreadScope to visualise what happens during its execution. Figure 1 shows
the profile of the program. It shows a high-level overview of the threads activity
on both cores. The solid rectangles indicate that a thread is running, the little
marks in between and the rectangles not reflected in the activity area indicate
garbage collection. Blank space indicates that the core is idle. We can zoom in on
specific parts of the execution and obtain low-level information such as individual
thread identifiers, some information about thread blockage, or garbage collection
requests.

From the profile above, we can observe that one performance bottleneck lies in
the three long garbage collection phases, where no useful work is performed. An
additional problem seems to be the serialisation towards the end of the execution,
where only one thread at a time is doing evaluation. However, ThreadScope does
not provide us any hints about where do these problems come from, e.g. what
data ends up being collected in these long garbage collection phases, or what
part of the program is responsible for the final sequential phase. Based on the
knowledge of the runtime behaviour of the language, we can speculate that the
serialisation comes from the linear behaviour of the ++ operator, which traverses
both lists sequentially. However, we cannot know for sure.

3 force :: NFData a ⇒ a → a returns its argument after forcing its evaluation to
normal form.

As we can see from the previous example, even though the information that
we obtain using ThreadScope is valuable, it is too low-level to allow for proper un-
derstanding of the parallel performance of the program. What is really needed is
much more detailed, high-level information about the runtime behaviour, ideally
linking the parallel events from the ThreadScope profile to the source expresions
they are related to. In the example above, knowing which expressions are being
evaluated in the final sequential phase, and which ones are responsible for the
great amount of wasted memory would be a first step into fixing the performance
problems of this program. We come back to this problem in Section 5.

Obtaining the information required for performance debugging using exist-
ing infrastructure and tools would require either recording a huge amount of
additional information, which could then be processed offline, or rerunning the
program multiple times with different profiling options enabled. In both cases,
the runtime behaviour (such as scheduling and communication between threads)
of the original program might change, making the profiling data useless and mak-
ing it very hard to reproduce the problem that is being debugged. Our solution
to the problem is to reproduce the original execution of the program without
changing its runtime behaviour while, at the same time, dynamically adjust the
level and type of profiling information that is gathered during the execution.
The way we did this was to adapt the technique of execution replay to parallel
functional programs (and Parallel Haskell in particular).

3 Execution Replay for Parallel Haskell

Execution replay [14, 2] is a debugging technique in which a programmer records
the execution trace of a program and then uses that trace to replay it step by
step. The trace of the program encapsulates the whole state of the system as
it changes throughout the execution. When replaying, the programmer is able
to inspect the state of the program (e.g. variables, registers, stack) as it was at
each step of the original execution.

Execution replay consists of two distinct phases (see Figure 2):

– a logging phase where, during the original program execution, enough infor-
mation is logged so that the execution can be replayed and

– a replaying phase where the original program execution is replayed, using
the logged information.

Our main goal is to use this technique to investigate performance bottlenecks
of parallel programs, written in purely functional programming languages. This
has an important consequence in that we do not have to be concerned with
replaying exactly the same execution as the original one. It will suffice if the
replayed execution is “similar enough” to the original one, such that both have
the same parallel behaviour. We can, therefore, see a replay as a simulation of
the execution where the threads created and the interactions between them are
the same as in the original execution, and where other details of the execution
may differ. This flexibility allows us to introduce changes in the program which

Fig. 2. Execution replay in Parallel Haskell

will enable us to gather data needed for debugging its parallel performance. It
also means that the amount of information that we need to record is significantly
smaller than if we want to do a full replay. In the next section, we discuss exactly
what events we need to record in the logging phase.

We have built a prototype implementation of this modified execution re-
play in the Glasgow Haskell Compiler (GHC) and runtime system for Parallel
Haskell [13]4. Currently, logging of the events works by running a program un-
der GHC with event logging support5. For replaying, we use the same compiled
executable, with the --replay command line flag. This runs the simulator in-
side the GHC runtime system, which reads the events recorded in the logging
phase and sequentially simulates the program execution. In Section 4 we provide
additional details.

3.1 Events Needed for Replay

Execution replay relies on the amount of recorded information in the logging
phase being tractable. Usually, most of the program execution consists in running
code with a deterministic runtime behaviour, which can be replayed just by re-
running it. With the introduction of mutation, parallelism and non-deterministic
data sources (e.g. random numbers, I/O, signals), the execution path (and,
hence, the ordering of certain events in the program execution) can change.
If the program execution is to be reproduced, all the events that introduce non-
determinism in the program execution need to be recorded. In imperative lan-
guages, the biggest problem is to track the mutation of data, which may be
4 Its development can be followed on http://github.com/hferreiro/ghc.
5 Using the flag -eventlog to compile and the runtime system flag -ls when executing

the program.

shared between different threads at any time, and this may require every access
to shared memory to be logged. Current mechanisms for doing this efficiently
rely on very elaborated protocols of page ownership tracking at the operating
system level [7].

In a pure and lazy functional language, on the other hand, the situation is
much simpler. The interactions between threads (which are the main reason for
the existence of different execution paths in parallel programs) are greatly sim-
plified. Data dependencies between threads are handled transparently, without
the use of locks and other synchronising mechanisms. Once a computation has
been evaluated to normal form, then the runtime system enforces read-only ac-
cess. Furthermore, due to laziness, any unevaluated data will be updated by at
most one thread.

For simplicity, we consider only pure computations (i.e. those that do not use
any side-effects, such as I/O and concurrent data mutation). Also, as mentioned
earlier, we are focusing on parallel profiling, which means that we are only in-
terested in each thread’s progress and the coordination between threads. Given
this, for Parallel Haskell programs there is only a small number of events that
needs to be recorded:

– thread interactions: thread run, thread stop, thread block (when a thread is
blocked on some data being evaluated by some other thread);

– scheduling events: thread migrate (when threads are migrated between cores),
new spark (for creation of parallelism), steal spark (load balancing event),
run spark (when a parallel expression is picked by its owner thread);

– task related: acquire capability, release capability (to track ownership of ca-
pabilities).

Besides these, there are also some additional events very specific to the internal
details of the GHC runtime system. In Section 4, we give more details about the
implementation of the recording of events in GHC.

3.2 Usage of Execution Replay

The key observation for our work is that we are simulating the previous execution
of the same program, rather than rerunning it. The replay is deterministic in
its runtime behaviour, and only depends on the events that were recorded in
the original run of the program. This makes it ideal for performance debugging
of functional programs, since gathering more profiling data does not have any
impact on the ordering of the events in the replay. It might only increase the
time the replay may take, which is not of great importance in debugging.

Our ultimate goal is to integrate execution replay with the ThreadScope
visualisation tool. In that way, we would have a GUI tool that would enable
us to pause the replay at the points where the parallel performance starts to
degrade, and then turn on the appropriate kind of profiling that would enable
us to get a better insight into the problems encountered. In Section 5, we show a
worked example of using execution replay to debug a non-trivial parallel program
(quicksort). We now discuss a few hypothetical use cases of such a tool:

– For parallel programs that perform badly due to a large amount of unevalu-
ated data shared between threads, which is reflected in frequent blocking of
threads, we can replay the program execution without any profiling data up
to the point where blocking starts to occur, then turn on profiling to inves-
tigate what data are the threads blocking on. At this point, we could take
advantage of cost centre profiling to link the heap data to the expressions in
the source code to which they relate, so that we can find out where exactly in
the program source do these data hotspots come from. We may then rewrite
the original program to avoid sharing at these particular points.

– In large parallel programs, we might be interested in different profiling data
during different stages of the execution. In some stages, we might be only
interested in granularity of the threads created from sparks, in others, we
might be interested in discovering what data is being garbage collected. The
possibility of dynamically adjusting the type and level of profiling detail
during replay is one of the main motivations for using execution replay.

– For some parallel programs, there may be very subtle bugs which produce one
bad execution out of many. It is not very useful to have to rerun your program
many times until you reproduce a pathological behaviour. By using execution
replay, the only requirement is to have a trace of the target execution. Then,
it can be replayed as many times as needed with the confidence that the
same wrong behaviour is being analysed.

4 GHC Implementation Details

Although the result of a Parallel Haskell program is deterministic, its runtime
behaviour might not be. In this section, we describe some of the internals of
the GHC runtime system, focusing on the parts that contribute to the non-
deterministic behaviour of application execution6. We then describe in more
detail how we implemented the logging and replaying phases of execution replay
in GHC.

4.1 The GHC Runtime System

The Glasgow Haskell Compiler is a state-of-the-art compiler and parallel runtime
system for the pure lazy functional language Haskell [10]. It achieves great flexi-
bility by using a lightweight thread model, where multiple logical Haskell threads
are mapped into one single OS thread which runs concurrently with others (see
Figure 3). The whole runtime system is organised in three layers of abstraction:
capabilities, tasks and threads. A capability is a virtual core in which Haskell
code is run. Each time a new thread is created at the Haskell level, it will be
appended to the run queue of its capability. To run the code of these threads,
real OS threads are needed. This is the mission of tasks: each task corresponds to
an OS thread which tries to become the owner of a capability. Once a capability
has been acquired, the task will run a scheduler cycling through the capability’s
run queue and assigning a time slice to each Haskell thread.
6 A much more complete description of GHC can be found in [11].

Fig. 3. Overview of the GHC Runtime System

Besides finishing its time slice there are other mechanisms by which a thread
can lose control of the CPU: blocking on the evaluation of a shared value, a
stack or heap overflow, or exceptions. Additionally, threads can migrate to idle
capabilities to increase parallelism.

The basic primitives for parallel programming are par a b and pseq a b7.
par denotes that it would be useful to evaluate its first parameter in parallel to
the second which is returned as result [15]. pseq makes it possible to order the
evaluation of two expressions by ensuring that its first parameter is evaluated to
weak head normal form before returning its second parameter [11].

When a thread evaluates the expression p ‘par ‘q , a spark for p is created, and
the thread continues with the evaluation of q . Sparks are just pointers to the part
of the graph that represents the source expression. They are kept in spark pools,
with one spark pool per capability. Each spark is eventually converted into a
thread, or discarded if the expression it points to is already under evaluation, or
not needed at all. Load balancing across capabilities is done using work stealing
and pushing, where idle capabilities steal sparks, and threads are pushed from
busy ones.

7 Not to be confused with seq which is strict in both of its arguments but does not
enforce an ordering in its evaluation [11].

4.2 Logging Phase

From the discussion above, we identified the set of events related to the pos-
sible non-determinism in the execution of parallel programs under GHC that
we need to record. A mechanism for event logging already exists in GHC [6],
and it supports logging of some basic events that are used for visualisation with
ThreadScope. We have significantly enhanced the logging mechanism, adding
several new events and changing some of the existing ones. We can group the
needed events by the parts of the runtime system they are related to:

Thread scheduling. Logical Haskell threads executed on the same capability are
scheduled in a round-robin fashion. Each thread runs in a capability until one
of three things occur:

– the thread runs out of heap or stack space (in the first case garbage collection
needs to be performed before any thread can continue evaluation),

– the thread blocks on some expression being evaluated, or
– the predefined time slice expires.

In all of the above cases, the thread is preempted and the next thread in the
queue is selected for evaluation. If we want to replay how threads are interleaved,
we need to be able to tell how much evaluation a thread has done in a given
time slice. This amount of work changes in different executions because of how
modern CPUs work. Thankfully, GHC preempts threads only when they make a
heap check. The already existing thread run event already provides us with the
data to identify which thread began running in a capability. We then modified
the thread stop event to additionally store the amount of allocation the thread
did in its time slice. For the case in which a thread blocks on an expression
being evaluated by another thread, we enhanced the thread block event by adding
information about the threads involved. A thread wakeup event is recorded when
its execution can be resumed.

Load balancing. As a consequence of the previous discussion, the number of
sparks created in the same time period in different program executions can be
different, and also the times at which capabilities become idle (and, therefore, the
need to perform spark stealing or thread pushing) can be different. This means
that we need to record the events related to spark creation and migration, and
also events related to threads being pushed to capabilities. We, therefore, need
new spark (that occurs when a new spark is created), spark steal (that occurs
when a capability steals a spark) and thread migrate (that occurs when a thread
is migrated between capabilities) events to be logged. For these events, we need
to record exactly which capability became idle, which spark it stole from which
capability, or which thread was pushed to it.

Capability ownership. The task-related events that were described before, acquire
capability and release capability, are new events we added so that we could track
which task was responsible for the execution of threads in a capability.

An excerpt from the trace of the simplePar application described in Section 2
is shown below:

...

4177926000: cap 1: stopping thread 4 (stack overflow) (96 words allocated)

4177940000: cap 1: running thread 4

4180949000: cap 1: stopping thread 4 (heap overflow) (65024 words

/ allocated)

4180979000: cap 0: stopping thread 3 (blocked on blackhole owned by

/ thread 4) (25253 words alloced)

4181027000: cap 0: task 1 releasing

4181146000: cap 1: running thread 4

...

4.3 Replay Phase

The replaying phase works by spawning an independent scheduler thread at the
beginning of the program execution. This thread initialises the runtime system
and makes sure that all tasks stop after being created. Then, in a loop, it reads
the recorded events ordered by time. If the event is thread run or thread wakeup,
the scheduler thread checks the capability responsible for the event, and allows
the corresponding thread to progress until it is stopped (once it has done the
same amount of work as in the recorded execution) or blocked. The rest of
the events are needed to preserve the ordering between the threads that emit
conflicting events (the same spark trying to be stolen by different threads, etc.).
Respecting this ordering will allow the execution to be replayed without trouble.

5 Use Case: Why is Parallel Quicksort so Slow?

In order to show how execution replay can be used for performance debugging
of non-trivial parallel programs, we come back to the quicksort example we pre-
sented in Section 2. Quicksort has gathered a lot of attention recently in teaching
parallel functional programming at Universities [4], since it is an example of a
program which “seems” rather trivial to parallelise, yet for which obtaining good
speedups (especially using lazy languages) is quite challenging.

A high-level, integrated profiling tool, designed with the use cases detailed in
Section 3.2 in mind, is still work in progress, so for this example we show how to
use execution replay in conjuction with a custom low-level tool for annotating
the source code.

We saw in Section 2 that the obvious method of parallelising this program
does not work as expected. In order to come up with a better parallel program,
we first made some optimisations to the sequential version. We implemented our
own strict version of the partition function so that we could avoid the overhead of
lazy evaluation caused by computing the sublists on demand. Next, we got rid of
the append operator ++, which requires multiple traversals of the same lists when
it is applied left-recursively, as in our case. For this, we used an accumulator in

which the resulting list is being constructed. First, we start with the whole list
to be sorted and an empty accumulator. Then, at each recursive step, the pivot
is accumulated into the sorted higher sublist. When there are no more elements
to sort, the accumulator is returned as the fully sorted list.

qsort :: [Int]→ [Int]
qsort xs = seqSort xs []

where seqSort [] zs = zs
seqSort (x : xs) zs = seqSort lo (x : seqSort hi zs)

where (lo, hi) = partition x xs
partition :: Int → [Int]→ ([Int], [Int])
partition x xs = go xs [] []

where go [] ts fs = (ts, fs)
go (y : ys) ts fs
| y < x = go ys (y : ts) fs
| otherwise = go ys ts (y : fs)

Similarly to the first time, we tried to naively parallelise this code in the same
way as we did in Section 2. Given the changes mentioned above, we expected to
avoid the sequential phase that occurs at the end of the execution.

psort1 n xs = go n xs []
where go [] zs = zs

go n (x : xs) zs
| n > 0 = r ‘par ‘ go (n − 1) lo (x : r)
| otherwise = seqSort (x : xs) zs
where r = force (go (n − 1) hi zs)

(lo, hi) = partition x xs

We measured the speedups of this program on a machine with two Intel Xeon
2.93GHz CPUs, each of them having four cores. Each CPU owned 8MB of L2
cache, that was shared between all of its cores. The total amount of RAM was
64GB. In the speedups figures below, we took the mean time over five runs of
each program with the same input, a list consisting of 10 million elements.

Figure 4 shows the speedups against the sequential version of the algorithm,
measured by using from two up to eight cores. From the figure, we can observe
that we are actually getting significant slowdowns as we use more cores.

No. cores Speedup

2 1.49

4 0.78

8 0.60

Fig. 4. Speedups of psort1 with an input list of 10 million elements

In order to debug the performance of this program, we used again Thread-
Scope to get an overview of the thread activity. Figure 5 shows the output from
ThreadScope after running our program using two cores.

Fig. 5. ThreadScope profile of psort1

While garbage collection pauses were mostly fixed, we can see that we still
have the same serialisation problem we had in the initial parallel version in
Section 2, and that getting rid of ++ operator did not help at all.

We now used execution replay to discover which part of the program is re-
sponsible for the sequential phase at the end of the execution. We developed
some custom tools on top of our system to be able to register timestamps when
the evaluation of an annotated expression is finished and to analyse the output
produced. By using execution replay, we were sure that the same execution was
reproduced and so, the output data matched the original ThreadScope profile.
To focus on the interesting parts of the program, we added two checkpoints:
start, which is the point after reading the input list, and end which marks the
end of the program (see Figure 5). We then replayed the program and processed
its output to obtain the following report:

188.020 (93.914) cap 0: partition [10.837.539]

1.240.278 (1.052.258) cap 0: seqSort [11.889.797]

1.747.763 (507.485) cap 0: seqSort [12.397.282]

1.747.766 (3) cap 0: force [12.397.285]

1.828.627 (80.861) cap 0: force [12.478.146]

0 (0) cap 1: start [10.649.519]

94.106 (94.106) cap 1: partition [10.743.625]

170.970 (76.864) cap 1: partition [10.820.489]

732.638 (561.668) cap 1: seqSort [11.382.157]

1.621.573 (888.935) cap 1: seqSort [12.271.092]

1.996.394 (374.821) cap 1: force [12.645.913]

2.225.849 (229.455) cap 1: force [12.875.368]

2.225.852 (3) cap 1: end [12.875.371]

Each line shows the timestamps for the completion of each annotated function
in the program. First, the relative time against start is presented. Next, the rel-

ative time against the previous function timestamp and the absolute timestamp
are shown in brackets. Each event is classified according to its capability.

The relevant aspect of this data is that the sorting process has finished by
the time the sequential phase begins. We can see this because the timestamp of
the finish time of the last call to the seqSort function on capability 0 is 12.397s
(checkpoint s in Figure 5) and, from the ThreadScope profile, we can observe that
the sequential phase starts at a timestamp around 12.3s. After the checkpoint
s, only the timestamps of the force functions are left. So, the sequential phase
at the end must correspond to the execution of these functions.

The conclusion is that the program execution is almost perfectly balanced
between the two cores while the parallel threads are sorting their parts of the list
(the timestamps for the completions of the calls to seqSort are similar in each
capability). But then, because of the force call, each thread needs to traverse
the sublist passed in the accumulator zs. This sublist is being sorted by another
thread, so the thread evaluating the force call gets blocked immediately, waiting
until zs has been evaluated. Only then can it finish traversing it. When finished,
this thread returns the sorted list and allows its parent thread to also finish
evaluating its force call. This linear process gets worse as more threads are
involved in it. This is the reason why the speedups get worse as we add more
cores.

In the end, the same behaviour we tried to prevent by avoiding the ++ op-
erator, i.e. sequential traversal of the sorted list, is reproduced by evaluating to
normal form each of the sublists.

This analysis suggests that the way to fix this behaviour is to replace the
function force with a function that would immediately return when the tail of the
list being forced is already in normal form. To this end, we implemented a custom
version of quicksort which operates on a datatype List a (instead of a regular
list) as its input. This new type has the same Nil/[] and Cons/: constructors as
regular lists, and also an additional constructor Done. The Done constructor has
a list of elements as argument, and is used to mark this list as fully evaluated.
Together with this new type, we introduced a toList :: List a → [a] function
which takes a List a as input and returns its corresponding regular list in normal
form. Its behaviour is similar to our usage of force, with the exception that it
terminates if a Done xs element is found:

data List a = Nil | Cons a (List a) | Done [a]
toList :: List a → [a]
toList Nil = []
toList (Cons x xs) = let xs ′ = toList xs

in x ‘seq ‘ xs ′ ‘seq ‘ x : xs ′

toList (Done xs) = xs

Now, by making use of the former definitions, we can implement a version of
psort1 in which the threads evaluating the higher half of the list, hi , will mark it
as already evaluated, so that the ones sorting the other half will find a Done xs
value and directly return xs instead of traversing it again:

psort2 :: Int → [Int]→ [Int]
psort2 n xs = toList (go n xs Nil)

where go [] zs = zs
go n (x : xs) zs
| n > 0 = r ‘par ‘ go (n − 1) lo (Cons x r)
| otherwise = seqSort (x : xs) zs
where r = Done $! toList (go (n − 1) hi zs)

(lo, hi) = partition x xs

The speedups for psort2 are shown in Figure 6. We can observe much better
speedups that for psort1 . For two cores, the speedup is almost linear. However,
it gets worse when using more cores. This decrease in the performance can be
attributed to the fact that each thread is created only after the list has been
partitioned. The same thing will happen to the next threads once the generated
sublist are partitioned again. So, if we need to use more threads, it will take
longer to create them, increasing the initial sequential phase.

No. cores Speedup

2 1.90

4 2.35

8 2.75

Fig. 6. Speedups of psort2 with an input list of 10 million elements

6 Related Work

Previous approaches to performance profiling of Parallel Haskell programs in-
volve the use of simulators such as GranSim [9] or parallel cost centre profiling [3].
GranSim was developed as an instrumentation of the GHC runtime system that
allowed the programmer to gather statistics of the program which was simulated
to run in a distributed machine with a customizable environment (e.g. network
delay). Events could be visualised in a similar way to ThreadScope. The same
event log format was used by the parallel profiler for the GUM parallel imple-
mentation [16]. Similar techniques are used by the more recent ThreadScope [6]
and EdenTV [1] visualisers.

Our approach enhances profiling by using a kind of simulated environment,
which, in contrast to GranSim, does not emulate any real hardware but replays
a previous run. This technique is known as execution replay [14]. So far, it has
been used almost exclusively for debugging instead of performance profiling.
Most execution replay systems allow any program to be replayed without re-
compilation [7]. The most difficult problem these systems have to solve is that
of shared memory interactions, something we can completely ignore because our

source code is purely functional. In addition, some of these systems also try to
replay the scheduling of threads (a requirement in our case), but they do so
by using hardware counters [5, 8], which makes them hardware dependent and
subject to inaccurate measurements [12, 17]. Another benefit of our approach
is that we can modify the original program at will, as long as it produces the
same allocations, in order to gather more information, and the replay will still
be valid.

7 Conclusions and Future Work

In this paper, we described a prototype implementation of the execution replay
mechanism in the GHC compiler for Parallel Haskell. We also described how
this mechanism can be used to obtain a better insight of the parallel behaviour
of functional programs, which makes it very useful for performance debugging
of such programs. We have presented a use case of execution replay for parallel
debugging, using a parallelisation of the well-known quicksort algorithm as an
example. Whe showed that, despite quicksort being a program which seems easy
to parallelise, it contains a number of hidden caveats that make obtaining good
speedups quite challenging. Hence, being able to obtain better profiling informa-
tion is vital in order to understand its behaviour and discover the bottlenecks.

This paper presents the first implementation of the execution replay mech-
anism in the context of a lazy functional language. In addition, this is the first
time execution replay is used for performance debugging. Our focus on pure func-
tional languages and on parallel performance debugging significantly relaxed the
assumptions that we need to make about the replay. We are not restricted to
having to reproduce exactly the same execution as the original one. The replayed
execution can differ from the original one, as long as they both have the same
parallel behaviour. This significantly reduces the amount of logging information
that is required for replay, making it much less expensive that when used in
imperative languages for replaying the exact state of the program at each point
of its execution. It also allows dynamic enabling and disabling of data gathering
modules during the replay.

With execution replay as a foundation, we are able to build better profiling
tools which will allow functional programmers to better understand and fix many
parallel programs for which there were no tools to deal with. In the future,
we plan to implement these tools by integrating already existing profiling and
visualisation approaches (such as ThreadScope and cost centre profiling) with
execution replay. We are also in the process of extending execution replay for
programs with side-effects. Finally, we plan to demonstrate the effectiveness of
replay-driven performance debugging on a larger set of parallel programs.

References

1. Berthold, J., Loogen, R.: Visualizing Parallel Functional Program Runs: Case Stud-
ies with the Eden Trace Viewer. In: Parallel Computing: Architectures, Algorithms

and Applications. Advances in Parallel Computing, vol. 15, pp. 121–128. IOS Press
(Feb 2008)

2. Cornelis, F., Georges, A., Christiaens, M., Ronsse, M., Ghesquiere, T., De Boss-
chere, K.: A Taxonomy of Execution Replay Systems. In: Proceedings of the In-
ternational Conference on Advances in Infrastructure for Electronic Business, Ed-
ucation, Science, Medicine, and Mobile Technologies on the Internet (2003)

3. Hammond, K., Loidl, H.W., Trinder, P.: Parallel Cost Centre Profiling. In: Pro-
ceedings of the Glasgow Workshop on Functional Programming. Ullapool, Scotland
(Sep 1997)

4. Hughes, J., Sheeran, M.: Teaching Parallel Functional Programming at Chalmers.
In: Draft Proceedings of the 1st International Workshop on Trends in Functional
Programming in Education (Jun 2012)

5. Itskova, E.: Echo: A deterministic record/replay framework for debugging multi-
threaded applications. Master’s thesis, Imperial College, London (Jun 2006)

6. Jones Jr., D., Marlow, S., Singh, S.: Parallel Performance Tuning for Haskell.
In: Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell. pp. 81–92.
Haskell’09, ACM (2009)

7. Laadan, O., Viennot, N., Nieh, J.: Transparent, lightweight application execution
replay on commodity multiprocessor operating systems. In: Proceedings of the
ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems. pp. 155–166. SIGMETRICS’10, ACM (Jun 2010)

8. Lee, D., Said, M., Narayanasamy, S., Yang, Z., Pereira, C.: Offline symbolic anal-
ysis for multi-processor execution replay. In: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture. pp. 564–575. MICRO
42, ACM (2009)

9. Loidl, H.W.: Granularity in Large-Scale Parallel Functional Programming. Ph.D.
thesis, Department of Computing Science, University of Glasgow (Mar 1998)

10. Marlow, S.: Haskell 2010. Language Report (2010),
http://www.haskell.org/onlinereport/haskell2010

11. Marlow, S., Peyton Jones, S., Singh, S.: Runtime Support for Multicore Haskell. In:
Proceedings of the 14th ACM SIGPLAN International Conference on Functional
Programming. pp. 65–78. ICFP’09, ACM (Aug 2009)

12. Mathur, W., Cook, J.: Toward Accurate Performance Evaluation using Hardware
Counters. In: Proceedings of the Applications for a Changing World, ITEA Mod-
eling & Simulation Workshop (Dec 2003)

13. Peyton Jones, S.L., Hall, C.V., Hammond, K., Partain, W., Wadler, P.: The Glas-
gow Haskell compiler: a technical overview. In: Proc. UK Joint Framework for
Information Technology (JFIT) Technical Conference (1993)

14. Ronsse, M., De Bosschere, K., Chassin de Kergommeaux, J.: Execution replay and
debugging. arXiv:cs/0011006 (Nov 2000)

15. Trinder, P.W., Hammond, K., Loidl, H.W., Peyton Jones, S.: Algorithms + Strat-
egy = Parallelism. Journal of Functional Programming 8(1), 23–60 (Jan 1998)

16. Trinder, P.W., Hammond, K., Mattson Jr., J.S., Partridge, A.S., Peyton Jones, S.:
GUM: A Portable Parallel Implementation of Haskell. In: Proceedings of the ACM
SIGPLAN’96 Conference on Programming Language Design and Implementation.
pp. 79–88. PLDI, ACM (May 1996)

17. Zaparanuks, D., Jovic, M., Hauswirth, M.: Accuracy of performance counter mea-
surements. In: 2009 IEEE International Symposium on Performance Analysis of
Systems and Software. pp. 23–32. ISPASS, IEEE (Apr 2009)

