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Abstract

The aim of this thesis was to isolate the compounds responsible for the antibacterial activity

of cell extracts of the marine diatom, Phaeodactylum tricornutum. Marine microalgae are

not only important primary producers but, due to their phylogenetic diversity, they are also

a potential source of novel bioactive compounds. The marine diatom, P. tricornutum, was

selected for study because its cell extracts are known to be antibacterial but the compounds

responsible have not been isolated. In this thesis, the compounds responsible for the

antibacterial activity are isolated from aqueous methanol P. tricornutum cell extracts by

column chromatography and reverse phase high-performance liquid chromatography using

a bioassay-guided approach. The compounds in three active fractions were identified by

mass spectrometry and nuclear magnetic resonance spectroscopy as the unsaturated fatty

acids (5Z, 8Z, 11Z, 14Z, 17Z)-eicosapentaenoic acid, (9Z)-hexadecenoic acid and (6Z, 9Z,

12Z)-hexadecatrienoic acid. The fatty acids were found to be antibacterial against

Staphylococcus aureus at micromolar concentrations. P. tricornutum exists in different cell

morphs and, interestingly, extracts prepared from cultures in the fusiform morph were found

to have greater antibacterial activity than extracts from oval cultures. This is explained by

greater levels of the three antibacterial fatty acids in the fusiform cell extracts. The

antibacterial fatty acids are proposed to be released by enzyme action when the diatom cells

lose their integrity. The release of free fatty acids by diatoms is suggested to be a simple,

very low cost population-level activated defence mechanism against potential pathogenic

bacteria triggered when the cell loses its integrity. Further, this pathway may act against

multiple threats to the microalga, including grazers, as fatty acids exhibit activity in diverse
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biological assays. Finally, whilst two of the fatty acids, (9Z)-hexadecenoic acid and (5Z,

8Z, 11Z, 14Z, 17Z)-eicosapentaenoic acid, inhibited the growth of MRSA their usefulness as

therapeutic compounds may be limited due to their instability and their broad biological

activity.
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Chapter 1: Introduction

1.0 Global crisis of antibiotic resistance

The mass production and misuse of antibiotics over the last 60 years has lead to an

increased occurrence of multi-antibiotic-resistant bacteria or ‘superbugs’. Presently,

many antibiotics are unable to cure certain infections and bacterial resistance poses a

serious problem for global healthcare in the 21st century. There are now significant

difficulties in successfully treating a multitude of infectious diseases.

Initially, the discovery of new antibacterial medications proved to be highly

successful and so concern regarding resistant bacterial strains was limited (Rolinson,

1961; Cohen, 1992). However, bacteria continued to acquire resistance to the newly

introduced therapeutics whilst becoming increasingly less susceptible to the

established drugs (Jevons, 1961; Neu, 1992). Methicillin-resistant Staphylococci

strains were reported six months after its introduction in 1960 (Jevons, 1961; Knox,

1961), and the 1960s saw the emergence of methicillin-resistant S. aureus strains with

resistance to multiple classes of antibiotics (MRSA) (Benner and Kayser, 1968).

Subsequently, bacterial antibiotic resistance has been disseminating not only

geographically but also between species (Neu, 1992; Alanis, 2005; Grundmann et al.,

2006). Whilst MRSA remains the most common drug-resistant pathogen

(Grundmann et al., 2006), numerous bacterial pathogens with multiple drug

resistances have been reported and further resistant species continue to emerge (Table

1.1). Worryingly, bacteria have acquired resistance mechanisms for every class of

medicinal antibiotic (Alanis, 2005) and MRSA strains resistant to even the ‘last resort

antibiotic’, vancomycin, have been reported (Srinivasan et al., 2002).
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Table 1.1 – Selected species of human pathogenic bacteria with antibiotic-resistant

strains that are causing increased concern (reviewed by Neu (1992), Alanis (2005)

and Thomson and Bonomo (2005)).

Gram positive Gram negative

Clostridium difficile Acinetobacter baumannii

Enterococcus spp. Campylobacter jejuni

Mycobacterium tuberculosisa Escherichia coli

Staphylococcus aureus Haemophilus influenzae

Streptococcus pneumoniae Klebsiella pneumoniae

Streptococcus pyogenes Neisseria gonorrhoeae

Pseudomonas aeruginosa

Salmonella typhi

Vibrio cholerae

a These are not conventional Gram positive (as they do not take up the stain) but are
widely considered to be so due to the structure of their cell wall (Trifiro et al., 1990).
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Accordingly, the occurrence of antibiotic-resistant infections is increasing steadily

(Payne, 2004; Office for National Statistics, 2007) and between 1994-2004 the

percentage of S. aureus infections reportedly caused by MRSA in the UK increased

from <2 % to >40 % (National Audit Office, 2004). Indeed, MRSA was recorded as

cause of death in more than 1600 cases in England and Wales for 2005 (Office for

National Statistics, 2007). Further, antibiotic-resistant infections are more expensive

to treat because they demand higher antibiotic use or more expensive therapies, longer

hospital stays and precautions to prevent dissemination (Gould, 2006). To solve such

a huge problem requires a multitude of approaches (Table 1.2) though one potential

solution is the discovery of novel antibiotics. However, despite the worsening

problem of antibiotic resistance, the discovery, development and approval of novel

antibacterial drugs is in serious decline, mainly because the pharmaceutical industry

has re-channelled resources into the more profitable disease areas of chronic illnesses

and lifestyle disorders, for example obesity (Payne, 2004; Alanis, 2005).

Furthermore, new anti-infective markets have been identified, for example anti-HIV

and other antiviral treatments, and this has meant reduced investment in antibacterial

research (Alanis, 2005). There remains an urgent need for the discovery of new

therapeutic antibacterial agents, particularly compounds that affect bacteria by

mechanisms that differ from existing drugs (Neu, 1992; Demain, 2006).

1.1 Exploitation of natural products

Natural products are compounds produced by a biological source and their

exploitation has proved to be the most consistent and successful strategy for the

discovery of new pharmaceuticals (Harvey, 2000; Demain, 2006). They have proved

particularly successful as a source of new anti-infective drugs and between 1983-1994

3



Table 1.2 – A plethora of steps can be taken to address the worsening problem of

antibiotic resistance. Further suggestions in Neu (1992), Kunin (1993), Srinivasan et

al. (2002), National Audit Office (2004), Gould (2006) and Grundmann et al. (2006).

Steps that may combat antibiotic-resistant bacteria

Increased surveillance to identify patients carrying antibiotic-resistant infections.

Isolation of patients with antibiotic-resistant infections.

Improved epidemiological investigations to pinpoint sources of infection.

Design and implementation of more effective and faster detection assays.

Improved hand hygiene for health workers.

Improved cleanliness in medical facilities.

Discovery and development of novel therapeutic antibiotics.

Prescription of more selective drugs in place of broad-spectrum medications.

Enforcement of full-term therapies for all infections.

Stricter controls on the availability of pharmaceuticals, especially in the
developing world.
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63 % of newly approved anti-infective drugs and 78 % of antibacterial drugs were

from natural origin (Cragg et al., 1997). Drugs from natural origin include the

unaltered natural product, chemically altered analogues or compounds modelled on a

natural product parent (Cragg et al., 1997). Chemical modifications can improve

efficacy or eliminate deleterious side effects (Munro et al., 1999; Rouhi 2003a).

However, despite playing such a pivotal role in the drug discovery process, natural

product discovery programs in the larger pharmaceutical companies were terminated

in the 1990s mainly because they were considered to be relatively slow, labour

intensive, expensive and yielding few compounds (Rouhi, 2003b; Alanis, 2005;

Battershill et al., 2005). Biodiversity ownership issues have also contributed

(Battershill et al., 2005). Large pharmaceutical companies have embraced the new

technologies of combinatorial chemistry and rational drug design (Battershill et al.,

2005), but thanks in part to the poor performance of these new approaches, there is

now a resurgence in exploring natural products as sources of novel compounds

(Rouhi, 2003b). Such new research into natural products has become more attractive

due to developments in separation technology, high-speed approaches for sample de-

replication, advances in structure elucidation and new methods for titre improvement

(Munro et al., 1999; Harvey, 2000; Rouhi, 2003b; Demain, 2006). Continuing

improvements in natural products chemistry is also providing alternatives to natural

synthesis (Burkart, 2003; Demain, 2006) and issues surrounding organism ownership

have been clarified with the implementation of the United Nations Convention on

Biological Diversity (United Nations, 1992; Battershill et al., 2005).

Natural products offer plenty of potential for the discovery of novel compounds

because more than 90 % of the world’s biodiversity remains to be tested for biological
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activity (Harvey, 2000; Demain, 2006). Whilst natural products cannot compete in

terms of the number of compounds generated by other technologies, these programs

do provide high quality lead compounds with greater structural diversity than can be

offered by standard combinatorial chemistry (Harvey, 2000; Rouhi, 2003b; Battershill

et al., 2005).

1.2 Marine natural products

As many accessible terrestrial plants and microbes have already been explored for

their antibiotic potential, the oceans have been identified as a great source of new

organisms that can be exploited for their metabolites (Bèrdy, 1989; Donia and

Hamann, 2003; Battershill et al., 2005). This is due to the rich, unexplored

biodiversity found within the oceans due to the greater variety of habitats and

environmental conditions that exist in the seas compared with terrestrial environments

(Ruggieri, 1976; Jensen and Fenical, 1994; Patrzykat and Douglas, 2003; Battershill

et al., 2005). Marine organisms are known to synthesise wide-ranging novel chemical

structures with unusual chemistry not seen in terrestrial organisms (Ruggieri, 1976;

Rinehart et al., 1981; Scheuer, 1990; Jensen and Fenical, 1994; Faulkner, 2002; Paul

et al., 2006), often as a result of their diverse and novel biosynthetic pathways

(Harper et al., 2001; Moore, 2005). Moreover, the number of novel compounds

isolated from terrestrial microbial cultures has inevitably decreased, and indeed, more

than 90% of bioactive cultures discovered produce previously known agents (Fenical,

1993). Encouragingly though, the proportion of marine microbes producing antibiotic

compounds compares well with terrestrial isolates (Sponga et al., 1999).
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In short, marine microbes have been neglected by drug screening programs and so

represent a major untapped resource for the discovery of novel pharmaceuticals

(Rinehart et al., 1981 Paul, 1988; Jensen and Fenical, 1994).

1.3 The Algae

The term ‘algae’ essentially describes all photosynthetic organisms that are not

considered higher plants (Hinde, 1995). The algae are crucial for correct functioning

of the oceanic ecosystem where they form an important base for the food chain (Sze,

1998). They also play a major role in maintaining the stability of the biosphere as

they contribute approximately 50 % of the world’s fixed carbon (Lips and Avissar,

1986; Field et al., 1998; Shurin et al., 2006). The algae are a very diverse group

which reflects their polyphyletic origins (Radmer, 1996; Sze, 1998; Falkowski et al.,

2004; Figure 1.1). Only the blue-green algae are prokaryotes (now more commonly

referred to as the Cyanobacteria). The eukaryotic algae are composed of both

multicellular species (the seaweeds or macroalgae) and single-celled species (the

microalgae), though, the microalgae includes species that form colonies or filaments.

The work in this thesis considers only the marine eukaryotic microalgae but examples

from other algal groups are included where appropriate.

The genetic diversity of the eukaryotic microalgae derives from the broad variety of

habitats that these organisms inhabit. For example species can be planktonic or

benthic or exist in mutualistic symbioses with invertebrate organisms (Radmer, 1996;

Sze, 1998). Thanks to their polyphyletic origins, the eukaryotic microalgae express a

broad array of metabolites with rich chemical diversity (Lincoln et al., 1991;

Borowitzka, 1995; Shimizu, 1996; Faulkner, 2002; Moore, 2005). Estimates for the
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Figure 1.1 – The phylogenetic origins of eukaryotes showing that algae have diverse

phylogeny and are found in 5 of the 8 major branches (Baldauf, 2003). Algal groups

signified by ‘#’.
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number of eukaryotic microalgal species vary but it is commonly recognised that

there are between 100,000 and one million species, including at least 100,000 species

of diatom alone (Norton et al., 1996; Falkowski et al., 2004). Despite the exploitation

of the eukaryotic microalgae in various industries (Table 1.3) relatively few workers

have attempted to exploit the microalgae for the discovery of novel bioactive

compounds and there have been no very large-scale screening programs. Some

eukaryotic microalgae have been shown to produce compounds with antibacterial

activity (reviewed by Aubert et al., 1979; Metting and Pyne, 1986; Lincoln et al.,

1990; Pesando, 1990) but, importantly, only a small percentage of the described

eukaryotic microalgal species have been examined for the discovery of novel

antibacterial compounds (Kellam and Walker, 1989; Harvey, 2000). This was

perhaps due to difficulties associated with their collection, identification, storage and

culture but, happily, many of these problems have now been overcome. As many

microalgae can be cultured under laboratory conditions a sustainable supply is

possible (Borowitzka, 1999b; Day et al., 1999; Culture Collection of Algae and

Protozoa, 2007). Improvements in molecular biology aid microalgal identification

(Olmos et al., 2000; Bolch, 2001) whilst steps are being taken to ensure stable strain

storage (Day et al., 1999; Taylor and Fletcher, 1999). Algae can be successfully

grown on very cheap media in outdoor ponds or raceways (Raymont and Adams,

1958; Goldman and Ryther, 1976; Mann and Ryther, 1977; Aaronson and Dubinsky,

1982; Richmond, 1999) but the controlled culture of microalgae is presently relatively

inefficient and thus expensive (Borowitzka, 1999c; Chen and Chen, 2006). During

culture microalgae can suffer light limitation due to self-shading meaning

heterotrophy is highly desirable (Wen and Chen, 2003; Lebeau and Robert, 2003b;

Chen and Chen, 2006). To this end, Zaslavskaia et al. (2001) has transformed an
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Table 1.3 – Common industrial uses of eukaryotic microalgae. For general reviews

see de la Noüe and de Pauw (1988), Cannell (1990), Richmond (1990), Radmer

(1996) and Pulz and Gross (2004).

Application Important Genera Selected reviews

Human health food Chlorella Jensen (1993), Yamaguchi
(1997)

Aquacultural feeds (for
Artemia, rotifers, bivalve
molluscs and fish larvae)

Chaetoceros, Cyclotella,
Isochrysis, Skeletonema

Becker (1994), Duerr et
al. (1998)

Agricultural feeds Chlorella Becker (1994), Spolaore
et al. (2006)

Wastewater treatment and
bioremediation

Various Becker (1994), Semple et
al. (1999)

Glycerol and lipids Dunaliella,
Phaeodactylum

Cohen (1986)

EPA, DHA and other fatty
acids

Crypthecodinium,
Nannochloropsis,
Nitzschia,
Phaeodactylum

Borowitzka (1988a);
Molina Grima et al.
(1999a); Lebeau and
Robert (2003a)

Polysaccharides Porphyridium Cohen (1986)

Biofuels (alcohols,
hydrogen, methane gas)

Various Cohen (1986), Yamaguchi
(1997)

β-carotene and other
pigments

Dunaliella Spolaore et al. (2006)

Vitamins Various Borowitzka (1988b)

Bioactive compounds Various Metting and Pyne (1986),
Lincoln et al. (1990),
Borowitzka (1999a)

Isotope-labelled compounds Phaeodactylum Apt and Behrens (1999)

Nanotechnology Thalassiosira Parkinson and Gordon
(1999), Wee et al. (2005)
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obligate autotrophic diatom to grow entirely heterotrophically, though certain species

may already be cultured heterotrophically (Gladue and Maxey, 1994; Chu et al.,

1996) or mixotrophically (Xu et al., 2004; Fernández Sevilla et al., 2004; Cerón

García et al., 2005). Further improvements have also been made in the design and

efficiency of bioreactors meaning that the microalgae can be exploited using existing

biotechnology (Borowitzka, 1997; Borowitzka, 1999b; Richmond, 1999).

Although feasible, it is very unlikely that any bioactive compound would be produced

as a final product by culturing the microalga itself. It is much more desirable to

chemically synthesise a pharmaceutical compound for commercial, regulatory and

safety reasons (Hutchinson, 1994; Burkart, 2003; Rouhi, 2003a). Alternatively, the

gene or pathway producing the compound of interest could be transferred into viral or

bacterial vector species (Pfeifer et al., 2001; Burkart, 2003; Wenzel and Müller,

2005). Only if these other avenues fail is it likely that the microalga would be

cultured, although microorganisms can produce structurally complex molecules which

may be difficult or impossible to manufacture by chemical synthesis (Hutchinson,

1994; Borowitzka, 1995; Wenzel and Müller, 2005).

In short, the eukaryotic microalgae exhibit huge genetic and chemical diversity but

have been completely under explored for the production of bioactive compounds

despite being shown to produce such compounds using present day biotechnology

(Harvey, 2000). Indeed, the microalgae can be considered to be in the unique position

of sharing the advantages of huge chemical diversity, at least as great as that of the

higher plants, with the benefits of a microorganism, in so much that their growth and

metabolite expression can be altered in a controlled way using conventional culture
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methods (Cannell, 1993). For the reasons detailed above the eukaryotic microalgae,

and especially the diatoms, are becoming increasingly attractive as a potential

exploitable source of novel antibacterial molecules.

1.4 Microalgal chemical defence

From an ecological viewpoint, microalgae are able to survive and even flourish in an

environment that is richly populated with competitors, pathogens, parasites and

predators. Indeed, one mL of coastal seawater typically contains ~103 microalgae,

~106 bacteria and ~107 viruses (Cole, 1982; Børsheim et al., 1990; Selph et al., 2001)

of which some will be competitors whilst others potential pathogens and parasites. To

be successful in such a densely populated milieu, microalgae must possess strategies

that provide defence or competitive advantages and the production of antibacterial

compounds may partially explain their success (Steemann-Nielsen, 1955; Jørgensen,

1956; Sieburth, 1960).

Many studies have described the antibacterial nature of microalgal cell extracts and

cell-free culture supernatant but in only very few instances have the compounds

responsible for the activity been isolated and a full structural characterisation

performed (e.g., Findlay and Patil, 1984; Ohta et al., 1994). In most of these studies

little attention was paid to whether the expression of antibacterial compounds is

constitutive or inducible, the environmental factors that control their expression, if

pathogen challenge affects titre or what happens in their absence. Many of these

parameters are difficult to investigate but it does mean that an evaluation of their

ecological relevance is rather difficult and even unclear (Engel et al., 2002).

Furthermore, the antibacterial compounds are often found only at very low levels or
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may be too unstable in seawater to have any relevance to surrounding bacteria

(Aubert et al., 1979; Glombitza, 1979). Moreover, antibacterial activity is often

absent in preparations from many ecologically successful species and this may be

because these algae use different strategies to outcompete or defend against bacteria

(Duff et al., 1966; Reichelt and Borowitzka, 1984; Cannell et el., 1988; Kellam and

Walker, 1989; Kjelleberg and Steinberg, 2001). These different strategies may

involve compounds that prevent bacterial colonisation of the algal surface or may

encourage a bacterial flora that prevents the settlement of undesirable epiphytes

(Engel et al., 2002). Certainly, it is known that microalgae often harbour

characteristic bacterial flora (Grossart et al., 2005), but the role of antibacterial

compounds in the defence of microalgae against bacteria has yet to be conclusively

proven (Paul, 1988; Engel et al., 2002). Despite doubts as to why microalgae have

antibacterial compounds the widespread nature of these compounds warrants further

investigation because these compounds provide one of the more simple explanations

for how microalgae can compete with and defend against bacteria.

Antibacterial compounds have been considered to function as allelochemicals to

provide a competitive advantage against surrounding microbes or defend against

bacterial parasites but much less attention has been paid to the potential role against

bacterial pathogens (Hay, 1996) despite bacteria potentially playing a major role in

reducing microalgal numbers (Mitchell, 1971; Mayali and Azam, 2004; Kim et al.,

2007). Often defence pathways are evaluated in terms of the protection that they

provide against grazers, perhaps due to the importance of this selection pressure on

microalgal evolution (Hay, 1996; Smetacek, 2001). However, it is entirely reasonable

that microalgae may have defence pathways that are capable of combating bacterial
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pathogens. It seems most likely that some of the defence pathways already described

for the microalgae are multifunctional (Wolfe, 2000) and thus defend the cell against

a variety of threats. Of course, other pathways described in microalgae, not thought

to act in defence, may indeed do so.

Defence strategies described in the microalgal literature are often classified as either

constitutive, which is to say they are always present, or inducible, meaning that they

are formed in response to a biotic elicitor, or termed ‘activated’ when the defence is

only triggered after cell death (Métraux, 1994; Harvell and Tollrian, 1999; Pohnert et

al., 2007). Defence strategies may be further considered as either physical

(mechanical, structural and behavioural) or chemical. For physical defences, the

protection provided by the diatom shell (Hamm et al., 2003) is a good example of a

constitutive defence. The shell can thicken in response to the presence of grazers,

which may be considered an induced, physical defence (Pondaven et al., 2007).

Constitutive chemical defences include not only those that are always present during

normal cell functioning but also those that may be affected by the cell’s nutrient

status. The major advantage of constitutive defences is that they are maintained

whenever nutritionally feasible, and such defences are desirable where a threat is

frequently encountered (Tollrian and Harvell, 1999). The toxins of Alexandrium

lusitanicum, or feeding deterrent compounds produced by P. tricornutum, are

examples of constitutive defences and, though their levels do change during culture,

this is due to altered nutrient conditions and not a specific biological elicitor

(Mascarenhas et al., 1995; Shaw et al., 1995a; Shaw et al., 1995b). The

disadvantages of constitutive pathways are that they may be considered metabolically
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‘costly’ to maintain, and this is especially so in an environment with shifting threats

or changing predatory pressure (Tollrian and Harvell, 1999; Wolfe, 2000). A

potentially less ‘costly’ strategy is an inducible one where defence metabolites are

only produced or upregulated once a potential threat is perceived. For example, the

presence of feeding copepods can cause an upregulation of paralytic shellfish toxin

production in marine dinoflagellates (Tollrian and Harvell, 1999; Selander et al.,

2006). Induced defences reduce the opportunity for self-toxicity and may be

considered less wasteful as they are only produced when required (Tollrian and

Harvell, 1999; Wolfe, 2000). A potentially more efficient option is an activated

defence whereby the bioactive metabolites are freed from essential cell components

only after death (Pohnert, 2004; Pohnert et al., 2007). Activated defences have the

advantages of little or no self-toxicity and a negligible or zero ‘cost’ of maintenance

because extra protein synthesis is thought not to be required other than is necessary

for normal cell functioning (Wolfe et al., 1997; Pohnert, 2000; Wolfe, 2000; Pohnert,

2004; Pohnert et al., 2007). The obvious disadvantage of activated defences is that

they can act only after death and are therefore unable to protect the individual cell.

However, they may be able to act effectively for a population of closely genetically

related surrounding cells (kin selection) (Wolfe, 2000; Pohnert et al., 2007).

1.4.1 Microalgal activated defence pathways

The two best-characterised activated defence pathways in the microalgae are the -

dimethyl-sulphoniopropionate (DMSP) and oxylipin pathways. One further activated

pathway that may be considered to act in defence is the generation of reactive oxygen

species, such as superoxide (Marshall et al., 2005a). This has been shown to occur in

diverse microalgal species upon cellular disintegration, though this has not been
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investigated in diatoms (Marshall et al., 2005b). This potential defence pathway is

certainly worthy of consideration as a protective strategy against pathogens and

grazers (Marshall et al., 2005a; Ross et al., 2005). Furthermore, the generation of

reactive oxygen species may act in wound repair for larger microalgae (Ross et al.,

2005).

The DMSP pathway is normally triggered by attack from a grazing predator when the

non-toxic substrate, DMSP, which normally functions as an antioxidant, osmolyte or

cryoprotectant (Kirst et al., 1991), is cleaved by the enzyme DMSP lyase to yield

dimethyl sulphide (DMS) and acrylic acid (Wolfe and Steinke, 1996; Wolfe et al.,

1997). The acrylic acid may reach toxic concentrations inside a grazer (Wolfe et al.,

1997; Wolfe, 2000) whilst the DMS may act as a diffusible warning signal of

digestion (Wolfe and Steinke, 1996; Wolfe et al., 1997). Normally DMSP and DMSP

lyase are kept apart in a healthy cell but these mix when the cell is broken by

mechanical disruption which occurs during ingestion by a grazer (Wolfe and Steinke,

1996; Strom et al., 2003). The DMSP pathway can also be triggered during lysis by

viral pathogens (Malin et al., 1998).

Recently the oxylipin pathway has been described for diatoms and this defence

mechanism is thought to reduce or prevent predation by herbivore grazers like

copepods (Pohnert, 2005). When a diatom cell loses it’s integrity, for example during

predator attack, lipases immediately act on membrane lipids to yield various free

mono- and polyunsaturated fatty acids (Jüttner, 2001; Pohnert, 2002; Pohnert et al.,

2004). The fatty acids, 16:3n4 and 20:5n3, are freed from the chloroplast-derived

glycolipids, especially monogalactosyldiacylglycerol (MGDG), whilst the 20:5n3
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may also be freed from phospholipids (d'Ippolito et al., 2004; Cutignano et al., 2006;

d'Ippolito et al., 2006; Figure 1.2; see Appendix I for an explanation of fatty acid

nomenclature). Most fatty acids are released during the first few minutes (Jüttner,

2001; Pohnert 2002; Pohnert et al., 2004) and lipase activity is concentrated around

the extruding cytoplasm of damaged cells (Pohnert, 2002). Subsequently, other

enzymes, the lipoxygenases and hydroperoxide lyases, rapidly act to cleave and

convert the free fatty acids to oxylipins, including C7-C11 polyunsaturated aldehydes

(PUA) that have biological activity (Pohnert, 2000; Pohnert, 2002; Pohnert et al.,

2002; d’Ippolito et al., 2005; Barofsky and Pohnert, 2007; Fontana et al., 2007). The

suite of PUA are species- and even strain-specific (Wichard et al., 2005) and many

PUA and oxylipins have been identified that have all been produced from the same

few fatty acid precursors (Pohnert, 2004). PUA can detrimentally affect grazers by

direct toxicity, exhibiting antiproliferative properties, reducing grazer fecundity,

reducing hatching success in copepods or reducing larval survival (Miralto et al.,

1999; Caldwell et al., 2002; Pohnert et al., 2002; Adolph et al., 2003; Romano et al.,

2003; Ianora et al., 2004; Adolph et al., 2004; Caldwell et al., 2005; Taylor et al.,

2007). However PUA pathways have been detected in less than 40 % diatom species

(Wichard et al., 2005) which has prompted some workers to speculate that other

compounds must be involved in the deleterious effects seen on grazing copepods and

invertebrates by species that do not produce PUA (Wichard et al., 2005; Fontana et

al., 2007). However, Jüttner (2001) reports that the precursor, 20:5n3, can itself be

toxic for grazers.

The DMSP and oxylipin pathways are highly metabolically efficient because essential

cell constituents are rapidly converted into compounds that are highly toxic for

17



Figure 1.2 – Biosynthetic pathways for the production of polyunsaturated aldehydes

by diatoms (adapted from d'Ippolito et al., 2004 and Fontana et al., 2007). Lipases

(lipolytic activity) act on phospholipids or glycolipids to yield free fatty acids. The

free fatty acids are altered by lipoxygenases, hydroperoxide lyases and lipolytic acyl

hydrolases to form a suite of oxylipin compounds including polyunsaturated aldeydes

such as octadienal and decatrienal. These pathways have largely been characterised

in Skeletonema costatum and Thalassiosira rotula.
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grazers without additional costs associated with maintaining constitutive toxins

(Wolfe et al., 1997; Pohnert, 2000; Jüttner, 2001; Pohnert, 2002; Pohnert et al., 2007).

DMSP may be slightly more ‘costly’ to maintain because there is evidence to suggest

that microalgal cells signal the presence of the damaging DMSP pathway to potential

predators (Wolfe et al., 1997; Strom et al., 2003). This is concluded because protist

grazers selectively ingest low DMSP-pathway-capable strains of Emiliana huxley

whilst avoiding more potentially toxic isolates (Wolfe and Steinke, 1996; Wolfe et al.,

1997; Wolfe, 2000; Strom et al., 2003).

Although the DMSP and oxylipin defensive reactions occur upon death and thus seem

to make little sense for an individual cell, it could benefit a population of genetically

similar or identical individuals (Wolfe, 2000; Pohnert and Boland, 2002; Pohnert et

al., 2007). Microalgal defences must be metabolically inexpensive due to the short

lifecycle. Thus cellular resources can be allocated to growth and division (Pohnert,

2000; Jüttner, 2001; Pohnert, 2005). It is highly likely that to reduce the metabolic

costs of maintaining defence strategies, a single multifunctional strategy that is able to

act against various threats will be under positive selection pressure (Wolfe, 2000).

There is evidence to suggest that this may be the case for the DMSP and oxylipin

pathways because end products of these pathways are not only toxic to grazers but are

also antimicrobial (Bisignano et al., 2001; Adolph et al., 2004; Prost et al., 2005). It

could be the case that many antibacterial compounds, which have been found, and

occasionally identified, previously in microalgal cultures are the products of

multifaceted defence pathways that may act against a variety of threats, including

bacterial pathogens and grazers.
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1.5 Broad aims of this thesis

The broad aim of this thesis is to study the antibacterial compounds from a model

microalgal species, paying particular attention to their isolation and identification.

Further, the ecological significance of these compounds will be considered as will

their production and whether or not they function to defend the microalga against

bacteria. Finally, the potential for commercial exploitation of microalgal-derived

antibacterial compound(s) will be explored.

1.6 P. tricornutum: species of choice

P. tricornutum is an unusual pennate marine diatom that was first isolated and

described by Bohlin (1897). Some early publications incorrectly refer to the organism

as Nitzschia closterium forma minutissima (Lewin, 1958). It is an obligate

photoautotroph (Hayward, 1968a; Hayward, 1968b) that has been isolated from

coastal and estuarine environments (Hayward, 1968b; Craggs, 1994; Li et al., 2006)

though strains have been isolated from an inland lake (Rushforth et al., 1988). It is an

unusual diatom in so much that it does not have a conventional silica shell (Lewin et

al., 1958; Lewin, 1958; Borowitzka and Volcani, 1978) and thus shows little or no

requirement for silicon (D’Elia et al., 1979).

P. tricornutum was selected for the isolation and characterisation of antibacterial

compounds in this thesis for numerous reasons. First, previous workers have shown

that cell extracts from this species are antibacterial although the molecules responsible

for this activity have never been isolated and identified (Table 1.4). Diatoms have

proved to generate a high hit ratio of antibacterial activity in cell extracts (Duff et al.,

1966; Aubert et al., 1979; Aaronson and Dubinsky, 1982; Viso et al., 1987; Kellam
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Table 1.4 – Previous reports in the literature for antibacterial activity of P. tricornutum. Often antibacterial activity has been found in non-polar

extracts.

Reference Antibacterial extract(s) Spectrum of activity Notes

Duff et al. (1966) Antibacterial activity in late exponential phase cultures
sequentially extracted with acetone, chloroform,
chloroform:methanol (1:1) and methanol:water (4:1).

Gram positive: Brevibacterium spp.,
Corynebacterium spp., Micrococcus spp.
Streptococcus faecalis; Gram negative:
Flavobacterium sp.

Similar activity found in
each extract.

Brown et al. (1977) Cell-free culture filtrates antibacterial. Gram negative: Escherichia coli

Cooper et al. (1983) Cultures in early- or late exponential phase or stationary
phase extracted with chloroform:methanol:water mixes
to yield antibacterial organic and aqueous extracts.

Gram positive: Bacillus subtilis (spores),
Staphylococcus aureus; Gram negative:
Alcaligenes cupidus, Alteromonas communis,
Alteromonas haloplanktis, Escherichia coli,
Vibrio fischeri, Vibrio parahaemolyticus.

Greatest activity in late
exponential phase but
aqueous and organic
extracts equally active.

Cooper et al. (1983) Antibacterial component (>10 kDa) detected in culture
supernatant.

Gram negative: Pseudomonas aeruginosa

Cooper et al. (1985) Antibacterial fraction containing six fatty acids isolated
(14:0, 16:2, 16:3, 16:4, 18:4, 20:5)a.

Gram positive: Bacillus subtilis; Gram
negative: Vibrio parahaemolyticus.

Kellam and Walker (1989) Stationary phase cultures extracted with methanol then
hexane.

Gram positive: Bacillus subtilis,
Staphylococcus aureus.

Hexane fraction more
active.

Bickerdike (2002) Cultures extracted with numerous solvents. Greatest
activity (against an unidentified Gram positive
bacterium) in 100 % methanol extracts. A fraction was
subsequently isolated with antibacterial activity.

Gram positive: Planococcus citreus, MRSA;
Gram negative: Escherichia coli,
Psychrobacter immobilis.

Compound in
antibacterial fraction not
fully identified.

a see Appendix I for a brief explanation of fatty acid nomenclature
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and Walker, 1989; Pesando, 1990; Lincoln et al., 1990) but only in a limited number

of studies have the authors succeeded in purifying and identifying the compounds

responsible for the antibacterial activity (Aubert et al., 1970; Pesando, 1972; Findlay

and Patil, 1984).

Second, this diatom can be grown rapidly in inexpensive culture media (Hayward,

1968b; Ansell et al., 1964; D’Elia et al., 1979) and is amenable to large-scale culture

(Raymont and Adams, 1958; Ansell et al., 1964; Goldman and Ryther, 1976). It is

robust and can survive in highly variable conditions of salinity (Hayward, 1968b;

Styron et al., 1976), nutrient status (Hayward, 1965), pH (Raymont and Adams, 1958;

Hayward, 1968b; Goldman et al., 1982), temperature (Hayward, 1968b; Styron et al.,

1976; Véron et al., 1996), irradiance and light quality (Hayward, 1968b; Terry et al.,

1983; Geider et al., 1985; Véron et al., 1996), light regime (Nelson et al., 1979) or

turbulence (Brindley Alias et al., 2004). As a result, it often dominates in man-made

habitats, such as aquaculture ponds (Raymont and Adams, 1958; Goldman and

Ryther, 1976; Goldman et al., 1982). However, relatively little is known with respect

to the pathways, if any, that defend this diatom against potential pathogens, such as

bacteria or viruses. This diatom is not thought to produce bioactive polyunsaturated

aldehydes (Wichard et al., 2005) though other products of the

lipoxygenase/hydroperoxide lyase pathways (polar oxo-acids) have been discovered

in P. tricornutum cultures (Pohnert et al., 2002). It is not clear whether this diatom

has the DMSP pathway but DMS has been detected in cultures upon cellular

disintegration (Ackman et al., 1966).
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Third, this diatom has been widely studied and it is considered the ‘model’ pennate

diatom. Indeed, there have been approximately 1000 peer-reviewed publications on

this organism (Web of Knowledge, 2007). The genome has been sequenced and is

undergoing annotation (Lopez et al., 2005; J. A. Berges, University of Wisconsin,

pers. comm.), which makes it amenable to follow up studies, especially of a genomic

nature. Genetic manipulation has been demonstrated for this species (Zaslavskaia et

al., 2000) and a strain has been produced that grows heterotrophically (Zaslavskaia et

al., 2001).

1.6.1 P. tricornutum: cell morphology

This species is curious because it exhibits phenotypic plasticity meaning it exists in a

number of different morphs: oval, fusiform (crescent-shaped) and triradiate (Figure

1.3) though there are numerous intermediary forms (Barker, 1935; Wilson, 1946;

Lewin et al., 1958; Hayward, 1968b; Borowitzka and Volcani, 1978; Figure 1.3). It is

unclear whether the triradiate morph is found in nature or is an artefact of culture

(Lewin et al., 1958). The cells typically divide clonally and give rise to daughter cells

of the same shape though variations in this life cycle have been reported (Wilson,

1946; Lewin et al., 1958; Coughlan, 1962; Borowitzka and Volcani, 1978).

Little is known with respect to the conditions that govern the expression of these

different morphs though it is likely to change in response to environmental conditions.

Many authors have reported that on successive culture transfer on to solid media the

oval morph becomes more plentiful but in liquid media the fusiform morph becomes

more numerous (Barker, 1935; Lewin et al., 1958; Gutenbrunner et al., 1994).

Nevertheless, ovals can be maintained in liquid culture media for many generations
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Figure 1.3 – Photograph showing the different morphology

marine diatom, P. tricornutum: (A) oval, (B) fusiform, (C)

triradiate.
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(Lewin et al., 1958; Cooksey and Cooksey, 1974; Borowitzka et al., 1977). In liquid

medium levels of calcium or copper may affect morphology (Cooksey and Cooksey,

1974; Markina and Aizdaicher, 2006) but osmolarity does not (Gutenbrunner et al.,

1994).

Such phenotypic plasticity may be an important mechanism for the survival and

adaptation of a population until rarer genetic mutations can occur (Morales et al.,

2002). The expression of different cell morphs probably allows greater opportunity

for success in the changing and highly competitive environment of coastal and

estuarine areas where this diatom is often found. In these habitats, natural selection

favours the evolution of plastic genotypes as an unpredictable environment tends to

prevent the production of an optimal phenotype (Morales et al., 2002). One obvious

difference between the morphs that may provide an advantage in the field is the

greater buoyancy of fusiform cells meaning they are better adapted to a planktonic

existence (Lewin et al., 1958). However, well-adapted organisms must be able to

sense environmental change and respond by producing suitable phenotypes for a

variety of environmental conditions (Morales et al., 2002). P. tricornutum can sense

external signals, such as those produced by members of the same species (Iwasa and

Shimizu, 1972), other species (Vardi et al., 2006), or changes in water movement,

osmotic stress or iron concentration (Falciatore et al., 2000; Scala and Bowler, 2002)

though none of these have yet been shown to affect cell morphology.

Whilst previous studies have shown that oval and fusiform cells differ physiologically

and chemically (Table 1.5) no workers have investigated whether or not the different

morphs differ with respect to levels of antibacterial activity. Due to greater
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Table 1.5 – Comparison of cellular characteristics for oval and fusiform cells of P. tricornutum.

Characteristic Oval Fusiform References

Cell size (length) 8 µm 25-35 µm Lewin (1958)

Growth in liquid media Tend to clump Found as single cells Lewin (1958)

Generation time No difference Darley (1968)

Buoyancy Low High Lewin et al. (1958)

DNA content No difference Darley (1968)

Cell walls Siliceous (1 pennate valve) Non-siliceous Lewin et al. (1958) Borowitzka et al.
(1977)

Mucilagenous capsule Yes (16 % dry weight) No Lewin et al. (1958)

Toluidine blue stain Red Slightly blue Gutenbrunner et al. (1994)

Packed cell volume (2.2 x1010 cells) 5.8 mL 2.7 mL Lewin et al. (1958)

Cell mass (mg) 2.00 x10-8 2.02 x10-8 Lewin et al. (1958)

Cell lipid by dry weight (%) 24 34 Lewin et al. (1958)

2
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Cell protein by dry weight (%) 34 41 Lewin et al. (1958)

Cell carbohydrate by dry weight (%) 2 3 Lewin et al. (1958)

Cell silica by dry weight (%) 0.4-0.5 0.4-0.5 Lewin et al. (1958)

12, 50, 116, 120 kDa proteins Present Absent Gutenbrunner et al. (1994)

A 21 kDa protein Absent Present Gutenbrunner et al. (1994)

66 and 90 kDa proteins More Less Gutenbrunner et al. (1994)

Form of colonies on agar Light brown, spreading with
irregular margin

Dark brown, rounded with
entire margin

Lewin (1958); Lewin et al. (1958)

Motility Motile (1 to 2.9 µm min-1) Non-motile Lewin (1958); Iwasa and Shimizu
(1972)

Immunogenicity Same level of response Gutenbrunner et al., 1994

2
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competition for space and nutrients, benthic organisms are thought to produce more

bioactive compounds compared to planktonic species (Cembella, 2003), thus it is

predicted in this thesis that the benthic-preferring oval morph will have greater levels

of antibacterial activity.

1.7 Specific aims

1. To identify the compounds responsible for the antibacterial activity of cell extracts

prepared from P. tricornutum cultures.

2. To investigate whether or not the different cell morphs have different quantities of

antibacterial compounds and explore why this may be so.

3. To evaluate the commercial and ecological significance of isolated antibacterial

compounds.
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Chapter 2: Growth of Phaeodactylum tricornutum in a custom-designed small-

scale culture system

2.1.0 Introduction

Before investigating the nature and production of antibacterial compounds by P.

tricornutum it is important to study the alga’s growth under specific laboratory

conditions. Culture parameters, such as irradiance, temperature, mixing rate and

nutrient availability, can all affect algal growth by increasing lag phase, hastening

entry into stationary phase or decreasing maximum cell concentration (Cole, 1982;

Fawley, 1984; Yongmanitchai and Ward, 1991; Ohta et al., 1995; Wen and Chen,

2001; Brindley Alias et al., 2004; Jiang and Gao, 2004; Xu et al., 2004; Schapira et

al., 2006). These parameters can ultimately affect the production of algal metabolites,

such as antibacterial compounds (Trick et al., 1984; Cannell et al., 1988; Ohta et al.,

1995). Therefore the growth conditions will be checked to ensure that these produce

unialgal and axenic P. tricornutum cultures that, in turn, yield cell extracts with

antibacterial activity.

This chapter describes the characterisation of axenic P. tricornutum growth under the

controlled conditions experienced in a custom designed small-scale batch culture

system that will permit further studies on the antibacterial activity of cell extracts

from this organism. A description of the culture system and growth conditions is

given and the effect of bottle position in the system on algal growth is investigated.

Procedures employed throughout this study are detailed for the harvest of diatom cells

and for the subsequent preparation of cell extracts. An outline is given for the radial

diffusion assay, used to screen extracts for antibacterial activity, and the measures
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taken to standardise this assay, with particular attention paid to characterising and

quantifying the growth of the assay bacteria.

2.2.0 Materials and methods

2.2.1 General methods used throughout this thesis

All chemicals, unless otherwise stated, were purchased from Sigma Aldrich Ltd. A

comprehensive list of manufacturer and supplier details can be found in Appendix II.

All solutions were made using deionised water (Option 3 Water Purifier; Elga).

Filtered seawater was prepared by passing through a 0.45 µm cellulose nitrate

membrane filter (Whatman International Ltd.) under vacuum. The orbital mixer

(OM501; Denley Instruments Ltd.) was always operated at room temperature, 170

rpm with a 1-inch throw. All vessels used for culturing algae were acid washed for 4

days with 10% (v/v) hydrochloric acid (VWR International) and extensively rinsed

with deionised water (Probert and Klaas, 1999). The speed vac consisted of a

centrifuge chamber (GL11 Gyrovap; Philip Harris Scientific) connected to a

condenser (CT02-50; Christ GmbH) and a vacuum pump (MZ2C; Vacuubrand

GmbH). All equipment, solutions and media that could be autoclaved were sterilised

by autoclaving at 121 ºC at 15 psi for 15 min (ASA270; Astell Scientific Ltd.). Other

liquids were sterilised by filtration through sterile 0.2 µm cellulose acetate syringe

filters (Nalgene). Operations requiring sterile conditions were performed in a laminar

flow hood (M51424/2; Microflow Ltd.). Statistical analyses were performed using

the SPSS package version 12.0 for Microsoft Windows. Data were tested for

normality typically with the Shapiro-Wilk test (Shapiro and Wilk, 1965), as this test is

most suitable for smaller sample sizes (Shapiro and Wilk, 1965; Gaten, 2000; Mendes

and Pala, 2003; Garson, 2007), and for homogeneity of variance with Levene’s test
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(Levene, 1960). Only where data deviated from normality or equal variance are test

results given. Where data violated the assumptions of normal distribution and equal

variance, which are required for ANOVA, ANOVA was still performed because it is

robust enough to cope with such deviations (Field, 2000; Pallant, 2005). Standard

deviation (SD) and standard error (SE) values are always given of the mean.

2.2.2 Small-scale batch culture system

The small-scale batch culture system consisted of 12 bottles positioned on a wooden

rack supplied with air in a temperature-controlled lightbox (Figure 2.1). It was

operated as a closed system to reduce the risk of microbial contamination.

2.2.2.1 The lightbox

The lightbox was composed of reflective white sides, white roof and lightly coloured

floor and had internal dimensions of 90 x 60 x 44 cm (w x h x d). Four 61 cm cool

white fluorescent tubes (General Electric F18W/33; Lightbulbs Direct Ltd.) provided

illumination from the top and rear. Irradiance at bottle-height was measured with a

digital quantum light meter (LI-189; LI-COR Biosciences UK Ltd.) and this ranged

from 25 µmol s-1 m-2 at positions 1 and 12 to 45 µmol s-1 m-2 at positions 6 and 7. A

14:10 h light:dark regime operated and the temperature was controlled at 20 ºC.

2.2.2.2 Culture bottles

Culture bottles consisted 470 mL transparent polycarbonate centrifuge bottles (VWR

International) with rubber stoppers (Ø 40.5 mm, 2-hole; Fisher Scientific) (Figure

2.2). One stopper hole was fitted with 6 cm and the other 19 cm of 316L stainless

steel tubing (external Ø 6.35 mm; RS Components Ltd.). Silicone rubber tubing (bore
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Figure 2.1 – The custom small-scale batch culture system used to axenically culture

P. tricornutum showing bottle positions numbered 1 to 12.

50 cm
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0.2 µm PFTE in-line air filter

Silicone rubber tubing (Ø 5 mm)

Rubber bung

¼ in stainless steel tubing

AIR IN AIR OUT
Figure 2.2 – Schematic diagram of the 470 mL transparent polycarbonate centrifuge

bottles used in the custom batch culture system. Filter sterilised air flowing into the

bottle is directed to the bottom of the vessel for gaseous exchange and culture mixing.

Diagram is not to scale.

Transparent polycarbonate
centrifuge bottle

15 cm
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Ø 5 mm; Fisher Scientific) was attached to external ends of the stainless steel tubing

and to this were connected 0.2 µm PTFE air filters (Midisart 2000; Sartorius AG).

The rack consisted of two square ends (15 cm x 15 cm; medium density fibre board)

connected by 3 x 87 cm length of wooden doweling (Ø 15 mm) that angled the bottles

at 60° to the floor.

2.2.2.3 Phaeodactylum tricornutum

A slope of axenic P. tricornutum Bohlin SAG 1090-6 was purchased from the

Experimental Phycology and Culture Collection of Algae (EPSAG), University of

Göttingen. This strain was isolated in 1951 by Dr. M. R. Droop from a rock pool on

the island of Segelskär, Finland (EPSAG, 2007a). The strain is held elsewhere as

CCAP 1052/6 and UTEX 646. A volumetric flask containing 300 mL sterile

modified half-strength Enriched Seawater, Artificial Water medium (modified

ESAW; Appendices III, IV and V) was aseptically inoculated with a loopful of P.

tricornutum from the original slope and cultured in the lightbox. The culture was

swirled daily by hand and every 17-20 days, 15 mL culture was used to aseptically

inoculate a fresh flask. This process of sub-culture continued throughout the study.

Oval and fusiform morphs dominated cultures whilst the triradiate morph was only

seen very rarely. The initial stock culture was confirmed as axenic (Appendix VI),

however, throughout the study sub-cultures were checked for contamination by

streaking the culture across sterile 2216E agar plates (Difco) that were monitored for

non-P. tricornutum growth. Very occasionally, colonies other than P. tricornutum

developed that indicated contamination and so these cultures were not used.
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2.2.2.4 Inoculum

Sterile bottles were filled with 300 mL sterile modified ESAW medium. Each bottle

was inoculated with 3.15 x107 cells from a 17-20 day-old volumetric flask culture to

give a final concentration 1 x105 cells mL-1. Inoculum volume was kept constant

between batches by topping up to 15 mL with sterile modified ESAW medium. Air

was supplied by a pump (XX5522050; Millipore) at a rate of 2.4 L min-1 bottle-1 (7.6

v/v/min). To counter the effects of variable irradiance across the lightbox, every 48 h

the bottles occupying positions 6 and 7 were moved to positions 1 and 12,

respectively (Figure 2.1); bottles in the other positions moved one position towards to

the middle. At the same time, each bottle was topped up to 315 mL with sterile

deionised water to counter small evaporative losses.

2.2.3 P. tricornutum growth in small-scale batch culture system

To assess the growth of P. tricornutum in the small-scale batch culture system 6

cultures were grown in bottles (as Section 2.2.2) for 12 days and aseptically sampled

every 24 h by removing 1 mL of culture. Each culture had the absorbance at 750 nm

(A750) determined using a spectrophotometer (Ultraspec K; LKB Biochrom) with

modified ESAW medium as reference. This experiment was performed in triplicate

(three batches of six bottles). To confirm that culture A750 could be used to assess,

quickly and reliably, algal growth the relationship with algal cell number per mL was

investigated. This was performed by determining total algae per mL each day for four

cultures of the first batch using a New Improved Neubauer haemocytometer (Weber

Scientific International Ltd.) under 25x objective lens in bright field (Leitz Diaplan;

Leitz Wetzlar). A mean of four counts was performed for each sample.
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2.2.4 Preparation of algal cell extracts

Algal cells were harvested by centrifugation at 3580 g for 11 min at 4 ºC (Beckman

J2-21M/E; Beckman Coulter Ltd.). The supernatant was discarded and the cell pellet

resuspended in 50 mL sterile 3.2% aqueous NaCl. The cell suspension was

transferred to a sterile 50 mL falcon tube and centrifuged at 3000 g for 15 minutes at

4 ºC. After discarding the supernatant, the cell pellets were stored at –80 ºC. For

extraction, each cell pellet was thawed and resuspended in 1 mL sterile 3.2% NaCl

solution and re-centrifuged at 12000 g for 2 min at ~20 ºC before discarding the

supernatant. The cell pellet was completely resuspended in 0.6 mL methanol:water

(5:1) and ultrasonicated (Status US 200; Philip Harris Scientific) on ice using a Ø 2

mm probe (MS72; Philip Harris Scientific) for 2 min in 30 s bursts with 30 s breaks to

reduce sample warming. The probe was set to an active:passive interval of 0.6:0.4 s

and was wiped clean between samples. Lysate was kept on ice, agitated on the orbital

mixer for 1 h and then cellular debris removed by centrifuging at 12000 g for 1 h at 4

ºC. The supernatant was transferred to a sterile 1.5 mL Eppendorf tube and dried to

completion using the speed vac at 30 ºC. Dried extracts were massed and

reconstituted to a concentration of 60 mg mL-1 with sterile 50 mM HEPES aqueous

solution pH 7.8 (Acros Organics). The algal extracts were stored at –80 ºC until use.

To assess the extraction efficiency, four cell pellets were re-extracted twice more and

tested for antibacterial activity (see Section 2.2.7). Total antibacterial activity was

calculated as the activity in each tested 4 µL sample multiplied by total volume of

extract.
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2.2.5 Testing for antibacterial activity by radial diffusion assay

The radial diffusion assay (RDA) was used to test cell extracts for antibacterial

activity and a broad range of bacterial species was selected for use in this assay

including Gram positive, Gram negative, marine and terrestrial strains. This increased

the possibility of identifying numerous antibacterial molecules that may act on

different targets. The bacterial species used for the RDA are listed in Table 2.1.

Staphylococcus aureus SH1000 was gifted by Dr Kate Cosgrove (University of

Sheffield, UK), Pseudomonas aeruginosa HW was gifted by Dr Andrew Mearns-

Spragg (Aquapharm Bio-Discovery Ltd.), Pseudomonas aeruginosa 10775 was

purchased (NCIMB Ltd.) and all other bacterial strains are held in the Comparative

Immunology and Marine Microbiology Group collection, University of St. Andrews.

Each bacterial strain was kept on appropriate agar plates (Table 2.1) at 4 ºC until

required and sub-cultured onto fresh plates every 4 weeks. For long-term storage,

glycerol stocks were made by adding 0.3 mL sterile glycerol to 1.7 mL of stationary

phase bacterial culture and kept at –80 ºC.

2.2.6 Standardisation of the radial diffusion assay

To ensure that the RDA could be performed in a standard and reproducible way it was

necessary to have an accurate and rapid method for enumerating bacterial colony

forming units (cfu). For each bacterial species the relationship between cfu mL-1 and

culture absorbance at 570 nm (A570) was tested to ensure that the latter could be used

as a reliable measure for cfu. A universal bottle containing 15 mL appropriate

medium (Table 2.1) was inoculated with a single bacterial colony and cultured on the

orbital mixer until late exponential phase. Cells were harvested by centrifugation at

2060 g for 10 minutes at 4 ºC. The cell pellet was washed by discarding the
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Table 2.1 – Bacterial strains used throughout experimentation giving details on their Gram stain, the growth medium used, the salt concentration

of the wash solution, the incubation temperature and the positive control used in the RDA.

Bacterium Strain number Gram
stain

Growth
mediuma

NaCl wash
solution (%)

Incubation
temperature (ºC)b

Positive control for
RDA (µg mL-1)

Escherichia coli B Strain Type -ve LB 0.9 37 Ampicillin (40)

Listonella (= Vibrio) anguillarum MT 1637 -ve 2216E 3.2 25 Cecropin P1 (100)

Micrococcus luteus NCIMB 9278 +ve 2216E 3.2 25 Melittin (100)

Planococcus citreus NCIMB 1493 +ve 2216E 3.2 25 Melittin (100)

Pseudomonas aeruginosa NCIMB 10775 -ve LB 0.9 37 Melittin (100)

Pseudomonas aeruginosa HW -ve LB 0.9 37 Melittin (100)

Staphylococcus aureus SH1000 +ve LB 0.9 37 Ampicillin (5)

Staphylococcus epidermidis ATCC 10145 +ve Nutrientc n/ad 37 n/ad

Staphylococcus epidermidis CIG +ve LB 0.9 37 Melittin (100)

a This medium was used for liquid cultures and modified appropriately for agar plates or for the RDA.

b Incubation temperature used for static growth on agar plates.

c Nutrient agar (Sigma Aldrich Ltd.).

d Not applicable as this bacterium was not used for RDA.
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supernatant and making the volume up to 10 mL using appropriate sterile NaCl

solution (Table 2.1). The cell pellet was resuspended using a vortex (Whirlimixer;

Jencons Scientific Ltd.) and centrifuged as before. This procedure was repeated to

complete the washing. This initial cell suspension (100 %) was diluted with

appropriate sterile NaCl solution (Table 2.1) to give cell suspensions of 75 %, 50 %,

25 %, 10 % or 1 %. The A570 of cell suspensions was determined using the

spectrophotometer with medium as reference. In turn, 1, 10, 25, 50, 75 and 100 %

cell suspensions were serially diluted in NaCl solution and 100 µL of each dilution

spread across triplicate agar plates. These were incubated at appropriate temperature

(Table 2.1) until colonies could be counted. This experiment was performed twice for

each bacterial species.

Data were collected to determine exponential growth phase. This is important, as

bacteria are more susceptible to antibiotics when they are actively growing (Ganz et

al., 1985). Every 4 h, until 24 h post-inoculation, at least three cultures for each

bacterium were harvested, washed and the A570 determined as above. M. luteus

cultures were also sampled after 26, 30, 36, 42, 48 or 54 h. For Ps. aeruginosa 10775

cultures were harvested every 6 h until 30 h.

To check that there was a significant relationship between the concentration of an

antibiotic and clear zone area on a RDA plate, standard solutions of melittin (Sigma

Aldrich Ltd.) in water at concentrations of 50, 100, 200, 400 and 600 µg mL-1 were

tested as positive control against P. citreus (as Section 2.2.7). Melittin is an

antibacterial peptide with activity against P. citreus.
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2.2.7 Performing the radial diffusion assay

The RDA method was a modified version of the two-layer radial diffusion assay

technique as described by Lehrer et al. (1991). A 15 mL 1/10-nutrient strength lower

agar appropriate for the target bacterium (Table 2.1; prepared as Appendix III) was

melted by heating to 100 ºC and cooled to ~40 ºC. Then 1 x107 cfu of exponentially

growing bacteria was added (prepared as above) and the agar mixed gently by hand.

It was immediately poured into a sterile square Petri dish (120 x 120 mm; Greiner

Bio-One) on a level surface. Once set, the plate was briefly chilled (20 min at 4 ºC)

and wells of Ø 3 mm were bored using a sterile plastic Pasteur pipette. Four µL of

sample was added to each well and a suitable positive control (Table 2.1) and

appropriate negative control(s) added to each plate. Samples were allowed to diffuse

for 4 h at 4 ºC. For the top layer, 15 mL full-nutrient strength upper agar appropriate

for the target bacterium (Table 2.1; prepared as Appendix III) was melted by heating

to 100 ºC and cooled to ~40 ºC. This was poured over the lower agar, allowed to set,

and the plate incubated at the appropriate temperature for the bacterial species (Table

2.1). After 24 h, ~20 mL stain was poured on to the agar surface. This stain consisted

of 20 mg Coomassie brilliant blue reagent (G-250; Pierce), 210 mL methanol (VWR

International), 630 mL deionised water and 150 mL 37% formaldehyde. The plate

was gently agitated on a rocker (A600; Denley) for 16 h. The stain was poured away

and clear zones measured with a rule to the nearest half millimetre. Area of bacterial

growth inhibition was calculated as total area of clear zone minus the area of the well.

2.2.8 Statistical analyses

The data collected for each day to test the effect of culture bottle position on P.

tricornutum growth was shown to be normally distributed by Shapiro-Wilk test and
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show equal variances by Levene’s test except day 12 where the variances were not

equal (F 5,12 = 3.271, p < 0.05). One-way ANOVA were performed for each day on

the A750 data generated for the three batches. For all analyses p ≤ 0.05 was considered

significant.

2.3.0 Results

2.3.1 P. tricornutum growth in small-scale batch culture system

Algal growth was monitored for 12 days to assess how P. tricornutum grows under

the conditions encountered in the small-scale batch culture system. The growth curve

showed that, after inoculation, the culture reached late exponential phase between

days 9 – 11 with onset of stationary phase at day 11 (Figure 2.3). The relationship

between culture A750 and algal cell number per mL was investigated and, as expected,

this was very highly significant (p < 0.001) confirming that A750 can be used to

measure algal cell number (Figure 2.4). Culture A750 was favoured over other

wavelengths, such as those that rely on levels of chlorophyll a, because cell pigment

contents have been shown to change during algal growth (Borowitzka, 1988b;

Fernández Sevilla et al., 2004).

One-way ANOVAs confirmed that there was no significant difference (p > 0.05)

between bottles each day for the growth of P. tricornutum therefore confirming that

algal growth is consistent for each bottle in the small-scale culture system.

2.3.2 Preparation of algal extracts

Extraction efficiency for antibacterial molecules was estimated by repeated re-

extraction of cell pellets. The initial extraction removed a mean total clear zone area
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Figure 2.3 - Growth of P. tricornutum in modified ESAW medium in the custom

small-scale batch culture system for 12 days at 20 ºC. n = 18; error bars ± 1 SD.
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Figure 2.4 – Growth of P. tricornutum in modified ESAW medium in the custom

small-scale batch culture system showing the relationship between culture absorbance

at 750 nm and number of algal cells per mL. Regression: cells mL-1 = 3.01 x107

(A750) – 1.09 x105. Correlation is very highly significant (F1,47 = 3514, r2 = 0.987; p <

0.001).
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on the RDA (antibacterial activity) of 3,566 mm2 (Figure 2.5). After first re-

extraction a further area of 1,020 mm2 antibacterial activity was extracted whilst the

second re-extraction contained 431 mm2 antibacterial activity (Figure 2.5). This

meant that the initial extraction, first and second re- extractions contained 71 %, 20 %

and 9 % respectively of the total antibacterial activity removed by the three

extractions. Small quantities of methanol-soluble antibacterial compounds may have

still been present after the second re-extraction but the initial extraction is efficient as

it removes a large proportion of the antibacterial activity present in P. tricornutum

cells. Methanol was selected as the extraction solvent because it has been used

previously to obtain antibacterial extracts from P. tricornutum (Duff et al., 1966;

Cooper et al., 1983; Kellam and Walker, 1989; Bickerdike, 2002).

2.3.3 Standardisation of the radial diffusion assay

Experiments were designed to show that culture A570 could be used to estimate the

number of bacterial cfu in a washed bacterial suspension and for each bacterium

highly significant relationships (p < 0.01) were found to exist between these

parameters (Figure 2.6). This enabled the construction of growth curves for each

bacterial species (Figure 2.7). These data mean that the lower layer of agar, used in

the RDA, can be seeded consistently with an accurate number of exponentially

growing bacterial cfu (1 x 107).

Different concentrations of the antibacterial peptide, melittin, were tested as positive

control against P. citreus to confirm that a very highly significant relationship (p <

0.001) existed between the concentration of antibacterial compound and the area of

bacterial growth inhibition that developed on the RDA plate (Figure 2.8). This
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Figure 2.5 – Quantity of antibacterial activity against S. aureus in aqueous methanol

cell extracts from sequential extraction of a P. tricornutum cell pellet: (1) the initial

extraction; (2) re-extraction of the same cell pellet; and (3) a second re-extraction of

the cell pellet. The data is presented as the total clear zone area calculated to be in the

total volume of the extract. This was determined from the clear zone area caused by

the 4 µL of extract tested. n = 4; error bars are ± 1 SE.
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Figure 2.6 – Relationships between cfu mL-1 and cell suspension absorbance at 570

nm for (A) E. coli (regression: cfu mL-1 = 3.86 x108 [A570] – 4.56 x107; F1,10 = 14.0, r2

= 0.542; p < 0.01); (B) L. anguillarum (regression: cfu mL-1 = 3.77 x108 [A570] – 9.29

x106; F1,10 = 141, r2 = 0.927; p < 0.001); (C) M. luteus (regression: cfu mL-1 = 2.22

x107 [A570] – 1.82 x106; F1,10 = 42.1, r2 = 0.789; p < 0.001); (D) P. citreus (regression:

cfu mL-1 = 2.67 x108 [A570] – 2.29 x107; F1,10 = 177, r2 = 0.941; p < 0.001); (E) Ps.

aeroginosa 10775 (regression: cfu mL-1 = 4.07 x108 [A570] – 9.09 x106; F1,10 = 350, r2

= 0.969; p < 0.001); (F) Ps. aeruginosa HW (regression: cfu mL-1 = 2.31 x108 [A570]

+ 5.17 x106; F1,4 = 31.0, r2 = 0.857; p < 0.01); (G) S. aureus (regression: cfu mL-1 =

3.48 x108 [A570] – 2.17 x105; F1,10 = 330, r2 = 0.968; p < 0.001); and (H) S.

epidermidis CIG (regression: cfu mL-1 = 1.84 x108 [A570] – 9.35 x105; F1,10 = 240, r2

= 0.956; p < 0.001).
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Figure 2.7 – Growth of (A) E. coli , (B) L. anguillarum, (C) M. luteus, (D) P. citreus,

(E) Ps. aeroginosa 10775, (F) Ps. aeruginosa HW, (G) S. aureus and (H) S.

epidermidis CIG on the orbital shaker in universal bottles containing either sterile LB

(A, E, F, G and H) or sterile 2216E medium (B, C and D). In all cases n = 3 (except

B at 4 and 8 h where n = 6, at 12 and 16 h where n = 7; C at 24, 48 and 54 h where n

= 6; and H at 12 and 16 h where n = 6); error bars are ± 1 SD (except B and F ± 1 SE).
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Figure 2.8 – Antibacterial activity of melittin against P. citreus as measured by clear

zone area on RDA plate showing that the concentration of an antibacterial compound

is proportional to the area of bacterial growth inhibition. The correlation is very

highly significant (F1,17 = 314, r2 = 0.949; p < 0.001); error bars not visible.
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confirmed that the RDA could be used to quantify antibacterial activity and detect

differences in the concentration of antibacterial compounds.

2.4.0 Discussion

The growth of axenic P. tricornutum under the specific growth conditions of the

small-scale batch culture system has been characterised and, importantly, it was found

that under these conditions culture bottle position had no significant effect on the

growth of the alga. These cultures yielded cell extracts with antibacterial activity.

The RDA method was standardised so that it can be performed in a reproducible

manner thus minimising inter-assay variability.

A P. tricornutum batch culture system that permits reproducible and predictable

growth was designed and implemented. The RDA method was standardised with

particular attention paid to ensuring that the bacterial inoculum for the lower layer of

agar would be seeded with the same number of cells at the same stage of the growth

curve and therefore in the same physiological condition. The RDA can provide a

measure of the level of antibacterial activity of P. tricornutum cell extracts but it

cannot provide any insight into the qualitative make up of the extract at this stage.

Greater inhibition zones could simply result from greater quantities of the same

antibacterial compound(s), however, this could also arise due to qualitative changes in

the compounds present in the extract, for example greater quantities of different

antibacterial compound(s) with the same potency, or a different compound(s) in a

lower quantity that has greater potency. Alternatively there could be quantitative or

qualitative changes in the levels of compounds that mask or antagonise antibacterial

activity.
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Having characterised the growth of P. tricornutum in a model culture system and

standardised the methods for testing for antibacterial activity, further studies can be

performed to investigate the temporal production of antibacterial compounds by this

alga. The qualitative nature of the antibacterial compounds present in cell extracts of

P. tricornutum can also now be considered.
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Chapter 3: Production of antibacterial compounds by P. tricornutum and

preliminary studies on their chemical properties

3.1.0 Introduction

Before isolating antibacterial compounds from P. tricornutum it is necessary to

determine if these are released from or are confined to the algal cells, if their

production changes during growth and if the cell’s morphology affects the level of

antibacterial activity. Such studies enable the optimal production of material for the

subsequent isolation of the active compounds. Further, to permit successful isolation

by bioassay-guided fractionation, it is necessary to select susceptible bacterial species

and make an assessment for the stability and chemical nature of the active

compounds.

This chapter describes preliminary studies to characterise the antibacterial activity

from cultures of P. tricornutum using the small-scale batch culture system. The effect

of bottle position in the batch culture system is tested to ascertain if this has a

significant effect on the level of antibacterial activity in cell extracts prepared from

the cultures, thus confirming whether the system is suitable for such studies.

Localisation of antibacterial compounds are investigated because active compounds

can be released by the microalgae into the culture medium (Berland et al., 1972;

Cooper et al., 1983; Trick et al., 1984; Cannell et al., 1988) or can be found within

the cells and require solvent extraction (Duff et al., 1966; Debro and Ward, 1979;

Viso et al., 1987; Cannell et al., 1988; Kellam and Walker, 1989; Chu et al., 2004).

The spectrum of antibacterial activity of cell extracts is also determined to enable the

selection of susceptible bacteria for bioassay-guided isolation of active compounds.
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To allow the determination of optimal harvest time for greatest yield of antibacterial

compounds the production of antibacterial activity is monitored over time because

antibacterial activity of cell extracts can change during growth (Debro and Ward,

1979; Cooper et al., 1983). In addition, the stability of the compounds responsible for

the antibacterial activity of cell extracts is investigated with respect to changes in heat,

pH and salinity. Similarly, the qualitative nature of the antibacterial compounds is

studied by digesting cell extracts with broad-spectrum proteinases, to assess the

contribution of proteinaceous species with measurements of protein and fatty acid

concentration in antibacterial extracts providing further insight. Finally, the affect of

cell morphology on the level of antibacterial activity in cell extracts is analysed.

3.2.0 Materials and methods

3.2.1 Testing P. tricornutum culture supernatant for antibacterial activity

Algal cells were removed from three 10-day-old cultures (cultured as Section 2.2.2)

by centrifuging at 3580 g for 11 min at room temperature. The supernatant was

collected and filtered through a sterile 0.2 µm cellulose acetate syringe filter. This

was tested for its ability to inhibit bacterial growth (E. coli, L. anguillarum, M. luteus,

P. citreus S. aureus or S. epidermidis CIG), first by RDA (as Section 2.2.7) and

second by turbimetric assay. For the turbimetric assay, into each well of a sterile 24-

well plate (flat-bottomed; Corning Inc.) was dispensed 0.4 mL sterile LB medium

solution (100 g L-1; this gave full-strength LB medium in the final well volume). To

each experimental well was added 1.6 mL sterile culture supernatant. To each control

well was added 1.6 mL modified ESAW. Each well was then inoculated with 5 x105

cfu S. aureus (exponential phase) and incubated on an orbital mixer (operating as

Section 2.2.1). At 6, 12, 22 and 28 h bacterial growth was determined for three
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experimental wells and the three corresponding control wells by removing 1.5 mL

culture and measuring A570 with a spectrophotometer (using as references LB plus

culture supernatant or modified ESAW). This experiment was repeated for the other

five bacterial species above, except that 0.4 mL sterile 2216E medium (187 g L-1) was

used for marine species.

3.2.2 Production of antibacterial compounds by P. tricornutum during culture

To measure antibacterial activity in P. tricornutum cell extracts during the growth

curve the small-scale batch culture system was set up and inoculated as Section 2.2.2.

At days 4, 6, 8, 10, 12 and 14 post-inoculation, two algal cultures were selected at

random for harvest as in Section 2.2.4 (using Microsoft Excel random number

generator) and the A750 determined using modified ESAW medium as reference. To

maintain consistent conditions of light and airflow in the remaining flasks, harvested

bottles were replaced with water-filled bottles. The experiment was performed twice

to give quadruplicate replicates for each day.

Cell pellets were extracted (Section 2.2.4), resuspended to 60 mg mL-1 and tested for

antibacterial activity against S. aureus by RDA (Section 2.2.7). Antibacterial activity

per cell was calculated by dividing the total number of cells extracted by the total

quantity of antibacterial activity in the extract (this is calculated by dividing the

quantity of antibacterial activity in 4 µL of sample by four then multiplying by total

extract volume). Yield of antibacterial activity was calculated as the product of the

antibacterial activity of each cell and the number of cells at harvest.
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3.2.3 Antibacterial activity of cell extracts between culture bottles

The effect of culture bottle position in the small-scale batch culture system was tested

to see whether this affected the level of antibacterial activity in extracts by inoculating

the culture system, harvesting at day 10, extracting and testing for activity versus S.

aureus (as Sections 2.2.2, 2.2.4 and 2.2.7). This experiment was performed in

triplicate.

3.2.4 Spectrum of antibacterial activity in P. tricornutum cell extracts

The spectrum of antibacterial activity for 30 cell extracts that came from cultures

grown, harvested at day 10 and prepared as Sections 2.2.2 and 2.2.4. These were

tested for antibacterial activity by RDA (Section 2.2.7) against Gram positive and

Gram negative marine and terrestrial bacteria: E. coli, L. anguillarum, M. luteus, P.

citreus, Pseudomonas aeruginosa 10775, Pseudomonas aeruginosa HW, S. aureus

and S. epidermidis CIG (n = 30; except Ps. aeruginosa 10775 where n = 8, and Ps.

aeruginosa HW where n = 5).

3.2.5 Stability of antibacterial activity in cell extracts

Antibacterial activity in cell extracts (prepared as Sections 2.2.2 and 2.2.4) were

investigated for stability under various physicochemical conditions. After

experimental treatments, in each case samples were tested for antibacterial activity by

RDA against S. aureus (Section 2.2.7).

To examine the effect of temperature on cell extracts, previously prepared cell extract

(60 mg mL-1 in sterile 50 mM HEPES solution; pH = 7.8) was defrosted from –80 ºC

and divided into seven aliquots of 8 µL. One was the control treatment (returned to
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–80 ºC), whilst the others were kept at –20, 4, 25, 37 or 55 ºC for 4 h. Also, one

aliquot was autoclaved at 121 ºC for 15 min. After treatment, extracts were returned

to –80 ºC before being defrosted and assayed for antibacterial activity. Treatments

were performed for three cell extracts.

To assess the stability of cell extract to different pH, five aliquots of dried extract

were resuspended in sterile buffers at pH 3, 5, 7, 9 or 11 to 20 mg mL-1. McIlvaine’s

sodium phosphate/citric acid buffer (Hale, 1966) was used to obtain pH values

between 3 – 7, whilst Sørensen-Walbum glycine/NaCl/sodium hydroxide buffer

(Hale, 1966) was used for pH 9 and 11. The buffer pH values were confirmed post-

autoclaving. Extracts were stored for 24 h at 4 ºC before being assayed for

antibacterial activity. Each sterile buffer acted as negative controls in the RDA. The

experiment was repeated for a further two cell extracts.

Third, to test the stability of antibacterial activity in cell extracts at different salinities

dried extracts were resuspended to 20 mg mL-1 in sterile deionised water or a sterile

solution of 1, 2, 3, 4 or 5 % NaCl. The samples were stored for 24 h at 4 ºC before

being assayed for antibacterial activity. Each salinity solution was a negative control.

The experiment was repeated for a further two cell extracts.

Finally, two cell extracts (prepared as Sections 2.2.2 and 2.2.4) were subjected to

digestion by broad-spectrum proteinase either proteinase K or trypsin to evaluate the

role of proteins in the antibacterial activity. For experimental group A, 10 μL of 1 mg

mL-1 proteinase K solution was added to 10 μL extract and incubated for 4 h at 37 ºC;

for experimental group B, 10 μL of 1 mg mL-1 trypsin solution was added to 10 μL
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extract and incubated for 4 h at 25 ºC. Two negative controls consisted of proteinase

K or trypsin (10 μL) and 10 μL sterile 50 mM HEPES only. An additional negative

control consisted of 10 μL cell extract with 10 μL water that was incubated at 25 or 37

ºC.

To ensure that the proteinase K and trypsin were active at the concentrations used,

additional controls consisting of 10 µL of the commercially available antibacterial

peptide, melittin (100 µg mL-1 in water), with 10 µL of proteinase K or trypsin

solutions were incubated at the appropriate temperature for 4 h. To ensure that the

melittin was antibacterial on the RDA, a further treatment of 10 μL melittin solution

and 10 μL water was included. These treatments were performed in duplicate. The

melittin samples (and associated positive and negative controls) were tested versus P.

citreus and not S. aureus because the latter is not susceptible to killing by melittin at

the concentration tested.

3.2.6 Total mass of protein in P. tricornutum cell extracts

The total mass of protein in the 23 antibacterial cell extracts produced in Section 3.2.2

was investigated using the Bradford assay (Bradford, 1976). Briefly, 492 μL double-

deionised water and 500 μL Coomassie Protein Assay Reagent (Pierce) was added to

8 μL cell extract and mixed by inversion before determining the absorbance at 595 nm

(Ultrospec 3300 pro; Biochrom Ltd.). A calibration curve (plotting protein

concentration against absorbance at 595 nm) was produced for a series of albumin

standard solutions ranging 0.05 – 2 mg mL-1 (Sigma Aldrich Ltd.).
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3.2.7 Total mass of fatty acids in P. tricornutum cell extracts

The total mass of fatty acids was investigated for 50 µL of each of the 23 P.

tricornutum cell extracts found to be antibacterial (produced in Section 3.2.2). This

was kindly performed by Dr. Mike Walton (Sea Mammal Research Unit, University

of St Andrews). Briefly, 50 µg of an internal standard (saturated fatty acid 23:0) was

added to each cell extract and methyl esters of fatty acids (FAME) prepared by

dissolving each extract in 1 mL toluene and adding 2 mL 1 % sulphuric acid in

methanol. The mixture was left overnight in a stoppered tube flushed with nitrogen at

50 ºC. Then 2 mL of 2 % potassium bicarbonate in water was added and the esters

extracted twice with 3 mL hexane:diethyl ether 1:1 using Pasteur pipettes to collect

the upper layers. The combined fractions were washed with 4 mL water and any

residual water was removed by mixing with anhydrous sodium sulphate. The solution

was filtered through non-absorbent cotton wool (pre-washed with diethyl ether) and

the solvent removed with gentle warming under a stream of nitrogen. The resultant

FAME were analysed by gas-liquid chromatography (GLC) on a gas chromatograph

(Trace GC-2000; ThermoQuest Ltd.) equipped with a flame-ionisation detector and

fitted with a DB23 fused silica capillary column (25 m x 0.25 mm internal diameter;

SGE Ltd.). Hydrogen was used as the carrier gas and sample application was by split

injection. Oven temperature was programmed to start at 60 ºC and held at 60 ºC for 2

min, then rise to 150 ºC at 20 ºC min-1, held for 2 min and then rise to 205 ºC at 1.8 ºC

min-1 and finally rise to 230 ºC at 5 ºC min-1. Reference standard FAME mixtures

(Sigma Aldrich Ltd.) were also analysed and separated FAME identified by reference

to these authentic samples.
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3.2.8 Test for muramidase activity in cell extracts

Though the presence of muramidases has not been reported in microalgae, P.

tricornutum cell extracts were tested for muramidase activity because they are very

active against M. luteus (see below), a bacterium that is highly sensitive to the action

of this enzyme (Fleming, 1922). Three antibacterial cell extracts (prepared as

Sections 2.2.2 and 2.2.4) were tested using a modified RDA (based on Section 2.2.7).

For this modification the LB or 2216E media in the lower agar was replaced with

0.0055 g Micrococcus lysodeikticus (M. luteus) cell walls (Sigma Aldrich Ltd.). It

was autoclaved, poured and allowed to set. The agar was not inoculated with bacteria

and an upper agar was not required. Once set, wells were punched into the agar and 4

μL of each sample loaded into individual wells. The positive control consisted 50 mg

mL-1 lysozyme (Sigma Aldrich Ltd.) in 50 mM HEPES buffer. The plate was

incubated overnight at room temperature and then examined. Clear zones indicate

muramidase action.

3.2.9 Antibacterial activity of different cell morphs

To investigate whether different algal morphs exhibited different levels of

antibacterial activity, 51 P. tricornutum cultures were grown, harvested, extracted and

tested for antibacterial activity against S. aureus by RDA (as Sections 2.2.2, 2.2.4 and

2.2.7), except that the morphology of the culture just before harvest was determined

from at least triplicate cell counts under the microscope (as Section 2.2.3). The

antibacterial activity attributable to each cell in the culture was calculated and plotted

against the culture’s morphology. To further investigate whether or not the morphs

had different levels of antibacterial activity, cultures enriched for each morph are

required. However, the small-scale batch culture system proved unsuitable for the
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production of such cultures (Appendix VII). Hence, P. tricornutum was cultured in

two batches of ten shake-flasks containing 150 – 300 mL sterile modified ESAW

medium to give cultures enriched in either oval or fusiform cells. In the first batch the

fusiform-enriched inoculum contained 61 % fusiforms, 36 % ovals and 3 %

intermediates whilst in the second batch this inoculum contained 74 % fusiforms, 21

% ovals and 4 % intermediates whilst in both batches the oval-enriched inoculums

contained 100 % ovals (calculated from at least triplicate counts under the

microscope). In the first batch the initial cell concentration was 1 x105 cells mL-1 but

in the second batch it was double this. Inoculum volumes were kept the same within

each batch with sterile modified ESAW medium. Flasks were kept in the lightbox

(Section 2.2.2.1) and shaken once daily by hand. The presence of algal growth on the

sides of the flasks was monitored but this was not seen. Prior to cell harvest 1 mL of

culture was taken for A750 determination and cell morphology of the culture

determined from at least duplicate cell counts (as Section 2.2.3). The volume of

culture harvested was noted. Diatom cells were harvested at day 15 in batch one and

at day 13 in batch two by centrifuging at 3000 g for 15 min at 4 ºC. The supernatants

were discarded whilst cell pellets were stored at –80 ºC until extraction with aqueous

methanol (Section 2.2.4). Dried cell extracts were resuspended in sterile HEPES so

that 1 µL contained extract from 7.5 x106 cells. Extracts were stored at –80 ºC until

each was tested once for antibacterial activity against S. aureus by RDA (Section

2.2.7).

3.2.10 Statistical analyses

Data sets for the growth of six bacterial species in the presence or absence of algal

supernatant were shown to be normally distributed and have equal variances by
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Shapiro-Wilk and Levene’s tests. Data obtained at 28 h for each bacterium was tested

for significant differences between growth of bacteria in the presence or absence of

algal supernatant by student’s t-test.

Data collected for determination of significant differences in the antibacterial activity

between bottles were shown to be non-normally distributed by Shapiro-Wilk test (W

36 = 0.887, p < 0.01) and have unequal variance by Levene’s test (F 11,24 = 3.357, p <

0.01). One-way ANOVA was performed on these data with bottle number as the only

factor.

Temperature stability data were shown to deviate from normality by Shapiro-Wilk

test (W 21 = 0.870, p < 0.01) but show equal variances by Levene’s. Treatment groups

were tested for significant differences by one-way ANOVA.

pH stability data were shown to deviate from normality by Shapiro-Wilk test (W 15 =

0.854, p < 0.05) but show equal variances by Levene’s. Treatment groups were tested

for significant differences by one-way ANOVA.

Salinity stability data were shown to deviate from normality by Shapiro-Wilk test (W

18 = 0.856, p < 0.05) but show equal variances by Levene’s. Treatment groups were

tested for significant differences by one-way ANOVA.

The clear zone area on RDA data obtained to test for a significant difference between

the antibacterial activity attributable to each cell in morph-enriched cultures was

shown to be non-normally distributed by Shapiro-Wilk test (D 20 = 0.763, p < 0.001)
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and have unequal variances by Levene’s test (F 3,16 = 26.08, p < 0.001). Two-way

ANOVA (with batch and morphology as factors) was performed to test these data for

significant difference between the fusiform- or oval-enriched cultures.

Shapiro-Wilk and Levene’s tests showed that the data collected for A750 of morph-

enriched cultures at harvest was normally distributed and have equal variances. Two-

way ANOVA (with batch and morphology as factors) was also performed on these

data to determine whether there was a significant difference between the fusiform- or

oval-enriched cultures.

Where one-way ANOVA showed significant differences existed between treatment

groups the post hoc Tukey’s HSD was used to identify the treatment groups that

significantly differed. For all analyses p ≤ 0.05 was considered significant.

3.3.0 Results

3.3.1 Testing P. tricornutum culture supernatant for antibacterial activity

The presence of antibacterial factors in P. tricornutum sterile culture supernatant was

examined, first by RDA, but no activity was found against any bacterial species

tested. Second, bacterial growth in the presence or absence of sterile algal culture

supernatant showed no negative effects on growth of any of the six bacterial species

tested (Figure 3.1). In fact, for five species bacterial growth was faster (seen as a shift

left in the growth curve; Figure 3.1) and reached significantly greater A570 values at

28 h in the presence of culture supernatant (p < 0.01; Table 3.1). The effect of

increased bacterial growth rate and greater final A570 in the presence of algal

supernatant was most pronounced with E. coli and L. anguillarum and only with S.
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Figure 3.1 – Growth of (A) E. coli, (B) L. anguillarum, (C) M. luteus, (D) P. citreus, (E) S. aureus and (F) S. epidermidis in the absence (●) or presence 

(□) of sterile-filtered P. tricornutum culture supernatant showing that growth was significantly improved at 28 h (p < 0.05) in the presence of supernatant

for all bacterial species except S. epidermidis where no significant difference exists between the treatment groups. n = 3; error bars are ± 1 SD.

Time (hours)

0 4 8 12 16 20 24 28

C
u
lt
u

re
a

b
s
o
rb

a
n
c
e

a
t

5
7

0
n
m

(A
U

)

0.0

0.4

0.8

1.2

1.6

A

Time (hours)

0 4 8 12 16 20 24 28

C
u
lt
u

re
a

b
s
o
rb

a
n
c
e

a
t

5
7

0
n
m

(A
U

)

0.0

0.1

0.2

0.3

0.4

0.5

F

Time (hours)

0 4 8 12 16 20 24 28

C
u
lt
u

re
a

b
s
o
rb

a
n
c
e

a
t

5
7

0
n
m

(A
U

)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

E

Time (hours)

0 4 8 12 16 20 24 28

C
u
lt
u

re
a

b
s
o
rb

a
n
c
e

a
t

5
7

0
n
m

(A
U

)

0.0

0.2

0.4

0.6

0.8

B

Time (hours)

0 4 8 12 16 20 24 28

C
u
lt
u

re
a

b
s
o
rb

a
n
c
e

a
t

5
7

0
n
m

(A
U

)

0.0

0.2

0.4

0.6

0.8

C

Time (hours)

0 4 8 12 16 20 24 28 32

C
u
lt
u

re
a

b
s
o
rb

a
n
c
e

a
t

5
7

0
n
m

(A
U

)

0.0

0.5

1.0

1.5

2.0

D

6
4



Table 3.1 – T-test results for the growth of six bacterial species in the presence or

absence of sterile algal culture supernatant. In five cases the bacteria reached a

significantly greater A570 value at 28 h in the presence of sterile algal culture

supernatant. For only one bacterial species (S. epidermidis) was no significant

difference found between bacterial growth in the presence or absence of sterile algal

culture supernatant. p ≤ 0.05 was considered significant.

Bacterium species T-test result

E. coli t4 = -9.887, p < 0.001

L. anguillarum t4 = -6.999, p < 0.01

M. luteus t4 = -6.218, p < 0.01

P. citreus t4 = -6.118, p < 0.01

S. aureus t4 = -6.451, p < 0.01

S. epidermidis t4 = 0.693, p > 0.05
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epidermidis was growth in the algal supernatant not significantly different from the

control (p > 0.05). Thus it seems likely that most, if not all, antibacterial compounds

are retained within the algal cells and not released into the surrounding milieu.

3.3.2 Production of antibacterial compounds by P. tricornutum during culture

Cell extracts were found to be antibacterial against S. aureus for each day tested, but

the amount of antibacterial activity changed during the growth curve (Figure 3.2).

Activity was low in cell extract at day 4 but this increased steadily up to day 10,

which is mid-exponential phase (Figure 3.2). Extracts from late-exponential phase

cultures (day 12) showed slightly reduced levels of activity and this decreased to the

lowest amount for those extracts prepared from cultures harvested in early stationary

phase at day 14 (Figure 3.2). When antibacterial activity was calculated on a per cell

basis, the quantity of antibacterial activity tended to decrease gradually with culture

age (Figure 3.3). At day 4, the clear zone area on a RDA plate attributable to a single

cell was calculated to be 4.2 x 10-6 mm2 but at day 12 this had reduced five-fold to

0.82 x 10-6 mm2. The yield of antibacterial activity was low at day 4 but increased

steadily up to day 10 (Figure 3.3). At day 10 (mid-exponential phase), the yield of

antibacterial activity from the whole culture, as calculated by total clear zone area on

a RDA, was 6.7 x 103 mm2 but reached a high of 7.1 x 103 mm2 at day 12 (late-

exponential phase) (Figure 3.3). When the culture entered early-stationary phase (day

14) antibacterial yield quickly diminished to a level lower than that for day 8 (Figure

3.3).
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Figure 3.2 – Growth of P. tricornutum in the custom culture system for 14 days (●; 

values plotted are A750 x 700; units AU) and the antibacterial activity of aqueous

methanol cell extracts against S. aureus (vertical bars; units mm2). Extracts tested at

60 mg mL-1 in sterile 50 mM HEPES solution (pH 7.8). The antibacterial activity of

cell extracts changes during culture with extracts prepared from cultures harvested at

day 10 giving greatest antibacterial activity. Data for days 4–12: n = 4 (data for day

14: n = 3); all error bars are ± 1 SE.
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Figure 3.3 – Growth of P. tricornutum in the custom batch culture system for 14 days

(●), amount antibacterial activity calculated for each cell as measured by clear zone 

area on a S. aureus RDA (scale x 10-6) (□), and yield of antibacterial activity 

calculated as the total clear zone area on a S. aureus RDA that would be expected in

the whole culture (scale x 103) (▼). The graph shows that the antibacterial activity

calculated as an estimated quantity for each cell reduces during culture. However,

yield of antibacterial activity is greatest at mid- to late-exponential phase,due to the

greater total number of cells in the culture. Data for days 4–12: n = 4 (data for day

14: n = 3); all error bars are ± 1 SE.
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3.3.3 Antibacterial activity of cell extracts between culture bottles

No significant difference was found between bottles in the level of the antibacterial

activity in extracts (one-way ANOVA: F 11,24 = 290.5, p > 0.05).

3.3.4 Spectrum of antibacterial activity in P. tricornutum cell extracts

Terrestrial and marine bacterial species were found to vary in their sensitivity to

growth inhibition by P. tricornutum cell extracts (Figure 3.4). The cell extracts tested

against M. luteus consistently gave the largest clear zone area on the RDA plates with

a mean clear zone area of 180 ± 34 mm2 (mean ± 1 SE) followed by S. epidermidis

(154 ± 24 mm2), S. aureus (138 ± 16 mm2), and to a lesser extent P. citreus (97.1 ±

17mm2) (Figure 3.4). L. anguillarum was only slightly sensitive to cell extracts (10.1

± 3.0 mm2) but E. coli and the two Ps. aeruginosa strains were not inhibited by cell

extracts (Figure 3.4). The four most susceptible species were Gram positive whilst, of

the four Gram negative species tested, only the marine pathogen, L. anguillarum, was

susceptible (Figure 3.4).

3.3.5 Stability of antibacterial activity in cell extracts

Exposure of P. tricornutum cell extracts to different temperatures affected the ability

to inhibit the growth of S. aureus with a significantly reduced (p < 0.05) amount of

antibacterial activity in extracts exposed to higher temperatures (55 and 121 ºC )

though no significant reduction (p > 0.05) in activity was seen with extracts exposed

to temperatures up to 37 ºC (Figure 3.5). Significantly greater (p < 0.05) antibacterial

activity was found in cell extracts that had been resuspended in buffers at pH 3, 9 and

11 compared to reduced amount of activity in extracts resuspended in buffers at pH 5

and 7 (Figure 3.6). The antibacterial activity of cell extracts was not significantly
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Figure 3.4 – Antibacterial activity of P. tricornutum aqueous methanol cell extracts

as measured by clear zone area on RDA showing that the Gram positive species are

more susceptible than Gram negative species. n = 30 (except Ps. aeruginosa 10775, n

= 8; Ps. aeruginosa HW, n = 5); error bars are ± 1 SE.
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Figure 3.5 – Antibacterial activity of P. tricornutum aqueous methanol cell extracts

against S. aureus (expressed as clear zone area on RDA) exposed to temperatures

between –80 and 55 ºC for 4 h with an additional treatment group being autoclaved at

121 ºC for 15 min. One-way ANOVA confirmed that significant differences existed

between the treatment groups (one-way ANOVA: F 6,14 = 9.088, p < 0.001) with bars

having different letters signifying those groups that differed significantly from each

other by Tukey’s HSD (p ≤ 0.05). The sample at –80 ºC is the control but

antibacterial activity of extracts did not reduce significantly until exposed to 55 ºC.

Antibacterial activity significantly reduced further after autoclaving but some activity

remained even after this harsh treatment. n = 3; error bars are ± 1 SE.
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Figure 3.6 – Antibacterial activity against S. aureus of P. tricornutum aqueous

methanol cell extracts resuspended in buffers at pH 3 to 11 measured as clear zone

area on RDA. One-way ANOVA confirmed that significant differences existed

between the treatment groups (one-way ANOVA: F 4,10 = 7.769, p < 0.01) with bars

having different letters signifying those groups that differed significantly from each

other by Tukey’s HSD (p ≤ 0.05). Significantly greater antibacterial activity was

found in extracts resuspended in low or high pH buffers (pH 3, 9 and 11). n = 3; error

bars are ± 1 SE.

pH

3 5 7 9 11

C
le

a
r

z
o

n
e

a
re

a
o
n

S
.

a
u

re
u
s

R
D

A
(m

m
2
)

0

100

200

300

400

500
a,c

a,c

b

b

a,b

72



affected by salinity (p > 0.05) with extracts at salinity ranging 0 to 5 % showing

similar levels of activity (Figure 3.7). Negative control solutions did not give any

clear zones on the RDA.

Antibacterial activity in cell extracts was not affected by proteinase digestion, as

activity remained similar in samples incubated in the presence or absence of trypsin

and proteinase K (Figure 3.8). The trypsin and proteinase K showed no antibacterial

effect but their ability to digest antibacterial compounds of a peptide nature was

confirmed by the diminished level of activity in melittin samples incubated with either

enzyme (Figure 3.9).

3.3.6 Total mass of protein in P. tricornutum cell extracts

The total mass of protein in extracts tested for activity against S. aureus changed

depending on which day the culture was harvested (Figure 3.10). Total protein in

tested cell extracts increased steadily up to a high of 3.87  0.66 µg (mean  1 SD) at

day 10 then reduced to 1.91  0.52 µg (day 12) and 0.65  0.28 µg at day 14 (Figure

3.10). A very highly significant relationship (p < 0.001) existed between the total

mass of proteins in the cell extract and anti-S. aureus activity meaning greater

quantities of proteins in extracts showing higher antibacterial activity (Figure 3.11).

When assessed as ‘protein per cell’, greatest mass of protein was found in cells from

cultures harvested at day 6 then, generally, mass of protein per cell reduced with each

later harvest time (Figure 3.12).
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Figure 3.7 – Antibacterial activity against S. aureus of P. tricornutum aqueous

methanol cell extracts resuspended in NaCl solutions ranging from 0-5 % (measured

as clear zone area on RDA). One-way ANOVA confirmed that there were no

significant differences between the treatment groups (one-way ANOVA: F 5,12 =

0.371, p > 0.05). Salinity does not affect the antibacterial activity of cell extracts. n =

3; error bars are ± 1 SE.
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Figure 3.8 – Antibacterial activity against S. aureus of P. tricornutum aqueous

methanol cell extracts (measured as clear zone area on RDA) showing similar levels

of activity for cell extracts incubated in either the presence or absence of the

proteinases, trypsin or proteinase K. Antibacterial activity in the cell extracts does not

appear to be affected by proteinase digestion. Trypsin and proteinase K alone

possessed no antibacterial activity. n = 2; error bars are ± 1 SD.

75

E
xt

ra
ct

+
w

at
er

(2
5

ºC
)

E
xt

ra
ct

+
tr
yp

si
n

(2
5

ºC
)

T
ry

ps
in

+
H

E
P

E
S

(2
5

ºC
)

E
xt

ra
ct

+
w

at
er

(3
7

ºC
)

E
xt

ra
ct

+
pr

ot
ei

na
se

K
(3

7
ºC

)

P
ro

te
in

as
e

K
+

H
E

P
E

S
(3

7
ºC

)

C
le

a
r

z
o
n
e

a
re

a
o
n

S
.
a
u
re

u
s

R
D

A
(m

m
2
)

0

20

40

60

80

100

120

140

160

180



Figure 3.9 – Antibacterial activity against P. citreus of melittin in solution at 100 µg

mL-1 (measured as clear zone area on RDA) showing that activity was completely

abolished by incubating with proteinases, trypsin or proteinase K. Therefore, trypsin

and proteinase K were both able to digest small peptides such as melittin. Trypsin

and proteinase K alone showed no antibacterial activity on the RDA. n = 2; error bars

are ± 1 SD (not all error bars visible).
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Figure 3.10 – Total mass of proteins (●) and FAME (□) in P. tricornutum aqueous

methanol cell extracts resuspended at 60 mg mL-1 in sterile 50 mM HEPES (pH 7.8)

and tested for antibacterial activity (prepared from algal cultures grown in the custom

culture system and harvested 4 – 14 days). Values given as the total masses of protein

or FAME calculated for a 4 µL sample. n = 4 (except day 14 where n = 3), error bars

are  1 SE.
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Figure 3.11 – Total mass of protein in P. tricornutum cell extracts tested for

antibacterial activity (prepared from algal cultures grown in the custom batch culture

system and harvested between days 4 – 14) showing that extracts containing a greater

mass of proteins had higher levels of antibacterial activity. Relationship is very

highly significant (F1,22 = 22.0, r2 = 0.512; p < 0.001).

Total mass of protein in 4 µL of cell extract (µg)

0 1 2 3 4 5

C
le

a
r

z
o

n
e

a
re

a
o
n

S
.

a
u

re
u
s

R
D

A
(m

m
2
)

0

100

200

300

400

500

78



Figure 3.12 – Mass of protein (●; values plotted are mass x 5) and FAME (□) in cell 

extracts calculated on a per algal cell basis from cultures grown in the custom culture

system and harvested between days 4 – 14 showing that levels of both cellular

constituents reduce during culture. Data for days 4 – 12: n = 4 (data for day 14: n =

3); all error bars are ± 1 SE.

Time of harvest (day)

4 6 8 10 12 14

M
a
s
s

(p
g
)

0.1

0.2

0.3

0.4

0.5

79



3.3.7 Total mass of fatty acids in P. tricornutum cell extracts

The total mass of FAME in extracts tested for antibacterial activity against S. aureus

depended on which day the culture was harvested but generally there was

approximately five times more FAME than protein. Total mass of FAME in extracts

tested for activity increased up to a total of 10.2  2.9 µg (mean  1 SD) at day 10

then rapidly reduced at days 12 and 14 (2.6  1.1 µg and 1.28  0.08 µg respectively),

essentially following the same trend as protein level (Figure 3.10). A significant

relationship (p < 0.05) existed between mass of FAME in cell extract and antibacterial

activity meaning greater quantities of FAME were present in extracts showing higher

antibacterial activity (Figure 3.13). When calculated as ‘FAME per cell’, greatest

quantity of FAME were in cells from cultures harvested at day 4 with FAME mass

generally reducing with each later harvest time until day 14 when FAME per cell was

14 times less than at day 4 (Figure 3.12).

3.3.8 Test for muramidase activity in cell extracts

No muramidase activity was found in any of the P. tricornutum cell extracts, though a

clear zone was found around the lysozyme positive control.

3.3.9 Antibacterial activity of different cell morphs

When the antibacterial activity attributable to each cell in mixed morphology cultures

is plotted against the relative morphology of each culture it is clear that the cultures

with a greater proportion of fusiform cells produce extracts with greater antibacterial

activity against S. aureus (Figure 3.14). Conversely, cell extracts from cultures with

higher proportions of oval cells show lower levels of antibacterial activity attributable

to each cell (Figure 3.14).
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Figure 3.13 – Total mass of fatty acids (as FAME) in P. tricornutum cell extracts

tested for antibacterial activity (prepared from algal cultures grown in the custom

batch culture system and harvested between days 4–14) showing that extracts

containing greater levels of fatty acids had higher levels of antibacterial activity.

Relationship is significant (F1,22 = 6.42, r2 = 0.234; p < 0.05).
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Figure 3.14 – Antibacteria
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At harvest, the morph-specific enriched cultures the oval-enriched cultures contained

100 % oval cells, whilst the fusiform-enriched cultures contained a range of 71 – 83

% fusiform cells (mean = 76 %). When the enriched cultures were extracted and

tested for antibacterial activity against S. aureus by RDA the antibacterial activity

attributable to each cell in fusiform-enriched cultures was significantly greater (p <

0.05) than for oval-enriched cultures (Figure 3.15). Interestingly, the fusiform-

enriched flasks had significantly greater (p < 0.001) A750 values at harvest suggesting

that these cultures grew faster than the ovals (Figure 3.16). This finding was later

confirmed in other culture vessels (Appendix VIII) and has never previously been

reported.

3.4.0 Discussion

Level of antibacterial activity in P. tricornutum cell extracts peaked at mid-

exponential phase (day 10) and largely remained confined within the algal cells.

Antibacterial activity per cell reduced gradually through the growth curve and the

optimum time to harvest the culture for greatest yield of antibacterial activity was

determined to be late-exponential phase. Fusiform cells have greater antibacterial

activity than oval cells. Extracts were shown to be most active against Gram positive

species and this activity was found to remain stable at high and low temperatures and

at different values of salinity. However, pH affects the antibacterial activity with

greatest activity found in extracts resuspended in low (pH 3) or high (pH 9 or 11)

values. Activity does not appear to be primarily due to proteins, as proteinases had no

effect on the RDA clear zone areas of antibacterial cell extracts.
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Figure 3.15 – Antibacterial activity against S. aureus attributable to each cell

(calculated from clear zone area on RDA) in cultures enriched in either the oval or

fusiform cells showing that cells in the fusiform morphology have significantly

greater antibacterial activity than oval cells (two-way ANOVA: F 3,16 = 4.66, p <

0.05). Due to inter-batch variability data is expressed as values relative to batch mean

(batch mean = 100 %). n = 10; error bars are ± 1 SE.
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Figure 3.16 – Culture A750 at harvest of fusiform- and oval-enriched shakeflasks

showing that the fusiform-enriched flasks had significantly greater A750 values than

the oval-enriched flasks (two-way ANOVA: F 3,16 = 19.6, p < 0.001). This suggests

that the fusiform-enriched cultures grew faster than the oval-enriched cultures. n =

10; error bars are ± 1 SE.

Oval Fusiform

C
u

ltu
re

A
7

5
0

a
t
h

a
rv

e
s
t
(A

U
)

0.00

0.05

0.10

0.15

0.20

0.25

85



In the present study, the amount of antibacterial activity in P. tricornutum cell extracts

was shown to change during growth, with greatest antibacterial activity in extracts

prepared from cultures harvested in exponential phase and lowest activity in extracts

from stationary phase. Cooper et al. (1983) found that cell extracts prepared from

late-exponential phase P. tricornutum show greater spectrum of antibacterial activity

compared to extracts from stationary phase cultures though this was not investigated

in the present work. However, in contrast to Cooper et al. (1983), who found only

cell extracts prepared from stationary phase cultures show anti-S. aureus activity, the

present study found activity against this bacterium throughout the growth curve,

including early- and late-exponential phases. This could reflect the use of different

algal and bacterial strains, culture conditions, extraction and antibacterial assays.

Previous workers have often monitored antibacterial activity at a limited number of

points in the growth curve, e.g. 3 points (Debro and Ward, 1979; Kogure et al., 1979;

Cooper et al., 1983). Importantly, the assessment of antibacterial activity in P.

tricornutum cell extracts has only ever been qualitative (Cooper et al., 1983). Thus,

the present study is the first to assess quantitatively antibacterial activity of P.

tricornutum extracts throughout the entire growth curve.

In the present study, P. tricornutum culture supernatant was found to enhance the

growth of most of the bacterial species tested, which confirms previous observations

(Berland et al., 1972). Faster and greater total bacterial growth is likely to be due to

the presence of growth factors or the utilisation of bio-molecules as energy sources.

Other studies with P. tricornutum culture supernatants reported anti-E. coli activity,

which was attributed to acrylic acid (Brown et al., 1977), and anti-Ps. aeruginosa

activity attributed to a molecule with mass >10 kDa (Cooper et al., 1983). However,
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Brown et al. (1977) provided few details with respect to algal culture and the

physiological condition of the alga at harvest, whilst Cooper et al. (1983) used

stationary phase cultures. In the present study, however, the culture supernatants

came from exponential phase cultures, which may be important, as algal cultures can

release greater quantities of compounds in stationary or death phase (Borowitzka,

1988b; Shaw et al., 1995b). Further, in the present study different algal and bacterial

strains were used compared to those used by Brown et al. (1977) and Cooper et al.

(1983). If antibacterial compounds were present in the sterile culture supernatants

here they may not have been present in sufficient concentrations to have a detrimental

effect on bacterial growth, or the advantageous effects of other excreted compounds

may have masked activity of antibacterial compounds.

To enable an assessment of optimal time for harvest of P. tricornutum culture to

obtain maximum antibacterial activity, the antibacterial activity of individual

microalgal cells was considered over the growth curve. It was found that antibacterial

activity of individual cells gradually reduced with time. This could be because the

active compounds are being partitioned between dividing cells, perhaps for either

metabolism or growth. Alternatively, the extraction may have become increasingly

inefficient as the number of cells in the extract increased. Despite the reduction in the

antibacterial activity of individual cells, the increased numbers of algal cells in the

culture resulted in day 12 being determined as the day with maximum yield of

activity. This may signify that the actual peak yield occurs between days 10 and 14.

To be cautious, cultures should be harvested earlier rather than later as antibacterial

yield decreases dramatically at day 14. This is the first study to consider how

antibacterial activity of individual microalgal cells changes with time.
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The faster growth of fusiform cultures may be because this cell morph tends to be

dominant in liquid culture, and thus, is considered to be adapted for growth in a liquid

medium (Barker, 1935; Lewin et al., 1958; Hayward, 1968a; Gutenbrunner et al.,

1995). The reduced A750 seen in oval-dominated flasks is not due to growth on the

vessel walls as this was absent. Using a different strain of P. tricornutum, Borowitzka

and Volcani (1978) have reported that there was no difference in the growth rates of

the three common morphs. In the present study, cells in the fusiform morph were

shown to have greater antibacterial activity than oval cells, and as no such previous

investigations have been reported, this is a novel finding. This cannot be explained by

harvest of cultures in different growth phases because whilst the fusiform cultures did

grow faster, the data presented above shows that the further through the growth curve

a culture is harvested, the lower the antibacterial activity of the extract on a per cell

basis. A possible explanation is that the antibacterial compounds are more easily

extracted from the fusiform cells compared with the ovals and this could be due to the

differences in cellular structure. Oval cells have a siliceous shell whereas the shell of

a fusiform cell is, at best, only partially silified (Lewin et al., 1958; Lewin, 1958;

Borowitzka and Volcani, 1978) and may therefore be more fragile and thus more

susceptible to breaking during sonication.

Previous workers have reported that Gram positive bacteria are often more susceptible

to killing by P. tricornutum cell extracts than Gram negative bacteria (Duff et al.,

1966; Cooper et al., 1983; Table 1.4). Gram positive bacteria susceptible to P.

tricornutum extracts include Micrococcus species (Duff et al., 1966) and S. aureus

(Cooper et al., 1983; Kellam and Walker, 1989). As there are no other published

accounts, the present study is the first to report P. tricornutum cell extracts showing
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antibacterial activity against S. epidermidis and P. citreus. However, in contrast to

Brown et al. (1977) and Cooper et al. (1983) no activity was found against E. coli or

Ps. aeruginosa. It is noteworthy that the only susceptible Gram negative species (L.

anguillarum) is a marine pathogen of fish (Toranzo et al., 2005). These results enable

the selection of susceptible bacterial species for use for bioassay-guided fractionation

of cell extracts to isolate the antibacterial compounds.

To enable the implementation of suitable protocols for future work aimed at isolating

active molecules, an assessment for the stability of the antibacterial activity was

necessary. Duff et al. (1966) reported that antibacterial activity of various P.

tricornutum extracts remain stable in the dark at 4 ºC for at least 1 month. However,

activity is lost progressively when left at room temperature in the light (Duff et al.,

1966). In the present study, antibacterial activity in the cell extract was found to be

stable over a wide range of temperatures and even the samples exposed to autoclaving

retained some activity. These findings are similar to results found with the

antibacterial activity in cell extracts from Chlorococcum that remain active, despite

incubating for 1 h at 100 ºC (Ohta et al., 1993). Temperature stability does not help

to identify the compounds responsible but it does mean that strict temperature controls

will not be needed during isolation. It is noteworthy that the extracts used for

temperature stability in the present study had been dried at 30 ºC for 3 h and so the

possibility exists that temperature sensitive compounds may have already been

inactivated by this procedure. In the present work cell extracts were shown to be

antibacterial at salinity values up to 5 % NaCl showing that the compounds

responsible are active at salt concentrations of the alga’s natural habitat. Moreover,

greater activity was found in extracts resuspended in buffers at high or low pH with
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reduced activity at pH 5 and 7. As seawater has a pH of 8.2 (Palmer and Pearson,

2003) this indicates that the compounds responsible might be soluble and active at

environmental pH. This is the first study to specifically address the stability of

antibacterial activity in cell extracts from P. tricornutum to temperature changes,

different pH and salinity conditions. The antibacterial activity of cell extracts

remained despite incubating with broad-acting proteinases suggesting that the major

compound(s) responsible for the antibacterial activity is not a protein. However, that

proteins contribute to the antibacterial activity of the extract cannot be completely

ruled out because, whilst unlikely, it is possible that an antibacterial protein could

resist proteinase inactivation.

In the present study, levels of fatty acids (derivatised as FAME) and proteins were

assessed to provide further insight into the nature of the antibacterial compounds

present. There was a large decrease in the concentrations of proteins and fatty acids

in extracts from cultures harvested in late-exponential and early-stationary compared

to early-exponential phase. This was because the mass of dried cell extracts were

much larger for later harvest times (Figure 3.17) which suggests that other molecules

were making up a larger proportion of the extract than at previous points of the

growth curve. This additional mass may have been due to debris from dead or

damaged algal cells. As extracts were resuspended in HEPES buffer at the same

concentration each time (60 mg mL-1) the concentration of fatty acids, proteins or

other antibacterial molecules in these samples would be reduced, assuming that the

material providing this extra mass was inactive. This explains not only why extracts

from the later harvested cultures show lower concentration of protein and fatty acids

in their extracts but also why these have lower levels of antibacterial activity.
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Figure 3.17 – Mass of dried cell extracts from P. tricornutum cultures harvested and

extracted at different times during culture showing that the mass of the extracts

increased with later harvest time. n = 4 (except for day 14, where n = 3); error bars

are ± 1 SD.

Harvest time (days)

2 4 6 8 10 12 14 16

M
a
s
s

o
f
d

ri
e

d
e
x
tr

a
c
t

(m
g
)

0

2

4

6

8

10

12

14

16

18

91



Significant relationships were found between antibacterial activity of cell extracts and

the mass of proteins and FAME found therein. However, as the mass of proteins and

FAME in the cell extracts also correlate significantly with each other (p < 0.001;

Figure 3.18), and the fact that protein concentration is often used as a general measure

of organic molecules (Becker, 1994; Barbarino and Lourenço, 2005), this information

does not aid with identifying the nature of the active compound(s). At this stage

activity cannot be attributed conclusively to either proteins or fatty acids. The

amounts of protein and FAME, when calculated on a ‘per cell’ basis, generally

reduced with culture age and this could be because the stores of such molecules

reduced as they could have been used for energy. Alternatively, the extraction may

have become more inefficient as the number of cells in the extract increased. This

reduction is unlikely to be due to the cells reducing in size because, even though

diatoms generally reduce in size with subsequent generations (van den Hoek et al.,

1995; Sze, 1998), this is often not observed with P. tricornutum (Wilson, 1946). In

the present study, mass of fatty acids decreased five-fold during culture on a ‘per cell’

quota calculation. By contrast, Liang et al. (2006) found that total lipid increased

with P. tricornutum culture age whilst Siron et al. (1989) report cellular fatty acid

content increased three-fold during P. tricornutum culture. Contradictory findings

probably reflect the use of different extraction protocols. Further, Liang et al. (2006)

found that protein ‘per cell’ increased and peaked early in the culture (day 2) then

gradually reduced with culture age and this was also found in the present study.

To summarise, there is evidence to suggest that multiple factors are responsible for

the antibacterial activity of P. tricornutum cell extracts. First, extracts showed

variable antibacterial activity against Gram positive and negative bacteria possibly
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Figure 3.18 – Mass of protein and FAME in 4 µL aqueous methanol cell extracts of

P. tricornutum resuspended at 60 mg mL-1 in sterile 50 mM HEPES (pH 7.8) prepared

from algal cultures grown in the custom batch culture system and harvested 4 – 14

days. This shows that the mass of protein and fatty acids in the extracts correlate with

each other and this correlation is very highly significant (F1,21 = 56.33, r2 = 0.728; p <

0.001).
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indicative of two mechanisms of action. Further, Cooper et al. (1983) showed that

spectrum of antibacterial activity changed according to the growth curve suggesting

qualitative changes in the expression of antibacterial molecules. Second, antibacterial

activity has been reported in lipophilic and aqueous fractions of cell extracts (Cooper

et al., 1983). Third, evidence from the pH work reported above shows that acid and

alkali soluble compounds may be present.

Now that the kinetics of production have been characterised, the optimal yield of

antibacterial activity has been determined and stability of antibacterial compounds in

the extract assessed, the thesis continues with the isolation of antibacterial molecules

from P. tricornutum cell extracts by bioassay-guided fractionation.
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Chapter 4: Isolation of (5Z, 8Z, 11Z, 14Z, 17Z)-eicosapentaenoic acid, an

antibacterial fatty acid, from aqueous methanol cell extracts of the marine

diatom, Phaeodactylum tricornutum

4.1.0 Introduction

Microalgae have been shown to produce antibacterial molecules of varied chemical

species including fatty acids (Pesando, 1972; Findlay and Patil, 1984; Ohta et al.,

1994), nucleosides (Aubert et al., 1970), peptides (Berland et al., 1972) and pigment

derivatives (Blaauw-Jansen, 1954; Jørgensen, 1962; Bruce et al., 1967; Hansen, 1973;

Trick et al., 1984). As any of these bio-molecules could be responsible for the

activity in P. tricornutum cell extracts, a broad approach to isolating the antibacterial

molecules is required. A much larger quantity of P. tricornutum biomass is also

required and this can only be achieved by scaling up culture.

For ease of preparation, an alternative, cheaper medium, Miquel seawater (Allen and

Nelson, 1910), was selected and tested for reliable P. tricornutum growth and

production of antibacterial compounds because medium composition is known to

affect the production of antibacterial metabolites (Cannell et al., 1988; Ohta et al.,

1995). Large-scale production and extraction of algal biomass is performed from

which the antibacterial compounds can be separated by chromatographic methods.

4.2.0 Materials and methods

All solvents were HPLC-grade and all water used was sterile ultra pure de-ionised

water (Option 3 Water Purifier; Elga). Seawater that had been coarse-filtered through

sand was obtained from the Gatty Marine Laboratory aquarium.
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4.2.1 Large-scale P. tricornutum culture

4.2.1.1 Lightbox

An enlarged lightbox of internal dimensions of 190 cm x 70 cm x 55 cm (w x h x d)

was constructed. Illumination was provided from five 6 ft white light fluorescent

tubes (TLD70W/35; Philips) positioned at the rear of the box. Irradiance ranged from

200 - 450 µmol s-1 m-2 with a 14:10 h light:dark regime and lightbox temperature

ranged from 15-25 ºC. These light and temperature conditions are suitable for P.

tricornutum culture (Hayward, 1968b; Styron et al., 1976; Fawley, 1984; Chrismadha

and Borowitzka, 1994).

4.2.1.2 Culture vessels

Nine separate culture vessels were positioned in the lightbox. They comprised 4x 18

L, 2x 22 L, 1x 23 L, 1x 10 L polypropylene carboys (Nalgene) and 1x 10 L flat-

bottom glass jar (Pyrex; Corning Ltd.) (Figure 4.1). Together they provide batches of

158 L of culture. The upper opening of each vessel had a non-absorbent cotton wool

bung with rigid plastic tubing passed through. The tubing enabled air, sterilised

through an in-line 0.3 µm PTFE filter (Hepavent; Whatman International Ltd.) filter,

to be supplied to the bottom of each vessel at 0.3 v/v/min.

4.2.1.3 Culture medium

The culture vessels were filled with seawater and sterilised with 0.25 mL 4 % sodium

hypochlorite solution per litre of seawater (final concentration 10 ppm free chlorine).

Air, supplied from an aquarium air line, was used to aerate the seawater for 30 min.

The vessels were left in the dark for 12 h before 1 mL 12 g L-1 sodium thiosulphate

solution per litre seawater was added to deactivate the residual chlorine. To ensure no
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A

Figure 4.1 – (A) Photograph of the large-scale system for culturing 158 L batches of

P. tricornutum in Miquel seawater medium in a lightbox supplied with sterile air and

(B) the positions of the nine culture vessels in relation to the lights.
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free chlorine remained, its concentration was assessed before inoculation (Free

Chlorine Detection Kit; Hanna Instruments). Nutrients in sterile solution were

aseptically added to give Miquel seawater medium (Appendix III).

4.2.1.4 Inoculum, growth and cell harvest

Each vessel was inoculated with a 8 to 9 day-old exponential phase mixed-

morphology axenic P. tricornutum culture (5 % v/v ) that had been cultured in 5 L

glass jars (as Appendix VIII). Growth was monitored in each vessel by determining

the A750 of 1 mL aliquots removed at intervals. Sterile medium was used as reference.

The cultures were harvested at mid- to late-exponential phase by centrifugation in 400

mL batches at 1387 g for 5 minutes at 18 ºC (Beckman J2-21M/E). The supernatants

were discarded and the cell pellets were resuspended in sterile 3.2 % NaCl solution,

combined together before transferring to sterile 50 mL falcon tubes. The resuspended

cell pellets were centrifuged at 3000 g for 15 minutes at 4 ºC (4K15; Sigma Aldrich)

and the supernatant discarded. Each culture generated 1 cell pellet that was stored at

–80 ºC. A total of 632 L of P. tricornutum was cultured in 36 vessels.

4.2.2 Comparison of growth and yield of antibacterial activity in modified ESAW

and Miquel seawater media

To ensure that the new culture conditions had no significant effect on P. tricornutum

growth or production of antibacterial compounds, the small-scale batch culture system

was inoculated and run (as Section 2.2.2) for 10 days, except that six culture bottles

contained Miquel seawater medium and six contained modified ESAW medium. At

24 h intervals, 1 mL aliquots were aseptically removed from each culture and the A750

determined. The respective sterile medium was used as reference. After 10 days, the
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algae in each bottle was harvested and the cells extracted as Section 2.2.4. Extracts at

60 mg mL-1 were tested for antibacterial activity against S. aureus by RDA as Section

2.2.7.

4.2.3 Extraction of scale up biomass

Each cell pellet (15 – 35 mL) was resuspended to 50 mL with methanol:water (5:1)

and extracted on ice by agitating on the orbital shaker for 16 h. The extracts were

centrifuged at 5525 g for 1 h at 4 ºC to remove cellular debris and the supernatants

stored at –80 ºC. To test that each extract contained antibacterial activity, 100 µL of

each extract was dried at 30 C with a speed vac and resuspended in 50 µL sterile 50

mM HEPES buffer (pH 7.8) before testing for antibacterial activity against S. aureus

by RDA (as Section 2.2.7). Active extracts (from 533 L of P. tricornutum culture)

were dried on the speed vac at 30 ºC before storage at –80 ºC. The yield was 18.98 g.

4.2.4 Separation of methanol:water (5:1) cell extracts

4.2.4.1 Sep Pak separation

To 1.2 g of the dried cell extract 60 mL of 70% methanol was added and the extract

resuspended. Of this, 20 mL was loaded on to a Sep Pak cartridge (Sep Pak Vac 35cc

tC18 – 10 g; Waters Ltd.) and the cartridge eluted with 20 mL of 70 % aqueous

methanol followed by 20 mL each of methanol in increasing 5 % steps until 100 %.

Eluates were collected as pigmented bands and 1 % by volume of each dried on the

speed vac at 30 ºC, resuspended in methanol to 40 mg mL-1 and antibacterial activity

of each tested against S. aureus by RDA (as Section 2.2.7). The remainder of each

fraction was dried using the speed vac and stored at –20 ºC.
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4.2.4.2 RP-HPLC of Sep Pak fractions 8 and 10

As fraction 8 was highly antibacterial, it was resuspended in 1.3 mL buffer A (99.93

% HPLC-grade water, 0.07 % TFA) and centrifuged at 13000 g for 20 min at room

temperature. The supernatant was filtered through a 0.2 μm nylon filter (Acrodisc;

Gelman Sciences Ltd.) and 1 mL was injected on to a C18 column (Gemini 5 μm, 250

x 10 mm, 110 Å; Phenomenex) of the HPLC (Finnegan Surveyor; Thermo Fisher

Scientific Inc.). The column was eluted at 2 mL min-1 on a gradient of 0 – 100 min, 0

– 100 % v/v B; 100 – 120 min, 100 % v/v B (buffer B was 99.93 % HPLC-grade

methanol, 0.07 % TFA). The eluate was monitored at 214 nm and 258 nm with a UV-

VIS detector and 2 mL fractions collected in borosilicate glass tubes (Foxy Jr;

Teledyne Isco Inc.). The same process was performed for active fraction 10.

Fractions were tested for antibacterial activity against S. aureus by disc diffusion as

described below (Section 4.2.5).

4.2.4.3 RP-HPLC of Sep Pak fraction 7

As fraction 7 was also antibacterial, it was resuspended in 2 mL buffer A (5 %

acetonitrile, 0.07 % trifluoracetic acid (TFA), 94.93 % water) and prepared for RP-

HPLC by filtering through a 0.2 μm nylon membrane syringe filter. One mL was

injected on to the C18 column and eluted at 2 mL min-1 by a gradient of 0 – 100 min, 0

– 100 % v/v B; 100 – 120 min, 100 % v/v B (buffer B was 99.93 % HPLC-grade

acetonitrile, 0.07 % TFA). The eluate was monitored for 0 – 100 min at 214 nm and

278 nm with a UV-VIS detector and 2 mL fractions collected and tested for

antibacterial activity against S. epidermidis ATCC 10145 as described in Section 4.2.5

below.
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4.2.5 Disc diffusion assay for antibacterial activity

A disc diffusion assay was used in preference to the RDA because a drying step was

not required. For this assay, 25 µL of each fraction was pipetted on to sterile paper

discs (Ø 6 mm AA; Whatman) and allowed to dry to completion at room temperature.

This was repeated twice more for each disc to give 75 µL of each fraction per disc. A

sterile swab was used to pick bacterial colonies from a stock agar plate and these were

spread evenly across the surface of a sterile nutrient agar plate. The extract-

impregnated discs were placed on the agar surface and the plates were incubated at 37

ºC for 18 h. Clear zones appearing around discs were interpreted as an indication of

antibacterial activity. The clear zone was measured with a ruler to the nearest half

millimetre and area of bacterial growth inhibition calculated as total area of clear zone

minus the area of the disc.

4.2.6 Mass spectrometry and NMR spectroscopy

As fraction 96 from the RP-HPLC separation of Sep Pak fraction 7 exhibited greatest

antibacterial activity (see Section 4.3.3 below) it was dried to completion on the speed

vac at 30 ºC (dried mass = 1.7 mg) and resuspended in ~1.3 mL methanol. Chemical

ionisation mass spectrometry (CI-MS) was performed for this fraction by Dr.

Catherine Botting (School of Biology, University of St Andrews) using a 10 µL

injection in negative ionisation mode at 20 kV with peak detection between 50 to

1500 Da. The remainder of fraction 96 was re-dried on the speed vac at 30 ºC and

resuspended in ~1.5 mL methanol-d4. The sample was filtered through lens tissue in a

glass Pasteur pipette before the 1H-NMR spectrum was recorded at 300 MHz (Avance

300; Bruker BioSpin GmbH). The NMR experimentation was kindly performed by

Dr. Tomas Lebl (School of Chemistry, University of St Andrews). Chemical shifts
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(δ) are given in parts per million (ppm) with respect to tetramethylsilane (δ 1H for

CD3OD = 3.31 ppm).

4.2.7 Statistical analyses

The data collected on the growth and the level of antibacterial activity in

methanol:water (5:1) cell extracts of P. tricornutum cultures grown for 10 days in

either Miquel seawater or modified ESAW media were tested for normality by

Shapiro-Wilk test and for homogeneity of variance by Levene’s test. Neither the

antibacterial activity nor A750 data were normally distributed (W 12 = 0.830, p < 0.05

and W 12 = 0.828, p < 0.05, respectively) but Levene’s test showed that both sets of

data had equal variance. T-tests were used to test for significant differences between

growth and antibacterial activity of extracts of cultures in the two media. For all

analyses p ≤ 0.05 was considered significant.

4.3.0 Results

4.3.1 Large-scale P. tricornutum culture

Growth of P. tricornutum tended to vary between culture vessels (Figure 4.2)

probably because there were small differences in irradiance, temperature, airflow or

agitation. Most cultures were harvested in late exponential stage, with only three of

36 vessels failing to show good growth. These three were not used in subsequent

experimentation.
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Figure 4.2 – Range of P. tricornutum growth (shaded area) in large-scale cultures of

Miquel seawater medium showing that culture growth varied between vessels. Three

cultures (not shown) were not harvested for further work due to poor growth.
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4.3.2 Comparison of growth and yield of antibacterial activity in modified ESAW

and Miquel seawater media

P. tricornutum cultured in Miquel seawater medium had a longer lag phase compared

to those grown in modified ESAW medium (Figure 4.3), perhaps because the

inoculum was also cultured in modified ESAW. The modified ESAW medium

cultures showed significantly more growth at day 10 compared with Miquel seawater

medium cultures (t10 = 11.78, p < 0.001) (Figure 4.3). However, no significant

differences were found between the quantity of antibacterial activity in cell extracts

prepared from those cultures grown in modified ESAW and those grown in Miquel

seawater medium (t10 = 1.073, p > 0.05) (Figure 4.4).

4.3.3 Separation of methanol:water (5:1) cell extracts

The antibacterial activities of Sep Pak fractions against S. aureus are shown in Figure

4.5. Greatest activity was found in fractions 8 and 10, but no activity was found in

fractions 1, 2, 13 and 14 (Figure 4.5). No activity was found in any fraction from the

RP-HPLC separation of Sep Pak fractions 8 and 10 against S. aureus. However, two

fractions (nos. 95 and 96) from the RP-HPLC separation of Sep Pak fraction 7 were

antibacterial against S. epidermidis (Figure 4.6). Fraction 96 had greater antibacterial

activity (45.9 mm2) than fraction 95 (23.3 mm2). This activity coincided with a major

peak on the 214 nm spectrum at 94.168 min (Figure 4.7).

4.3.4 Mass spectrometry and NMR spectroscopy

Mass spectrometry of antibacterial fraction 96 from the RP-HPLC separation of Sep

Pak fraction 7 revealed a prominent m/z ion at 301.26 Da corresponding to [M]-

(Figure 4.8). The minor m/z ion at 603.58 Da probably corresponds to a dimer
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Figure 4.3 – Growth of P. tricornutum for 10 days in modified ESAW medium (●) or 

Miquel seawater medium (□) using the small-scale batch culture system showing that 

the modified ESAW cultures grow significantly better after 10 days (t10 = 11.78, p <

0.001). The other days not tested for significant differences. n = 6; error bars ± 1 SD.
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Figure 4.4 – Antibacterial activity of P. tricornutum aqueous methanol cell extracts

against S. aureus prepared from cultures grown in modified ESAW or Miquel

seawater medium showing that extracts from cultures grown in these media did not

significantly differ in their levels of antibacterial activity. n = 6; error bars are ± 1 SE.
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Figure 4.5 – Antibacterial activity against S. aureus of 14 fractions collected from C18

Sep Pak cartridge separation of P. tricornutum aqueous methanol cell extracts. At

least two peaks of activity are present (marked with arrows) suggesting the presence

of multiple antibacterial compounds. For antibacterial activity testing, 1 % by volume

of each fraction was resuspended to 40 mg mL-1. The dashed line shows the elution

gradient (from 70–100 % methanol) used on the Sep Pak column.
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Figure 4.6 – Antibacterial activity of fractions 76-100 from RP-HPLC separation of

Sep Pak fraction 7 against S. epidermidis showing that only fractions 95 and 96 were

active (fractions 1-74 not shown).
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Figure 4.7 – A214 of eluate (0 – 100 min) during RP-HPLC C18 separation of Sep Pak fraction 7 showing the peak at 94.168 min corresponding

to antibacterial fractions 95 and 96 (marked with arrow). Dashed line shows the elution gradient (buffer A: 5 % acetonitrile, 0.07 % TFA, 94.93

% water; buffer B: 99.93 % acetonitrile, 0.07 % TFA).
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Figure 4.8 – Mass spectrum of antibacterial fraction 96 from the RP-HPLC

separation of Sep Pak fraction 7 showing predominant peak at 301.26 Da

corresponding to [M]- (only data 50 – 800 Da shown because no peaks found 800 –

1500 Da).
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[M+M]- (Figure 4.8). The 1H-NMR spectrum (Figure 4.9) showed a signal at δ 0.98

(3H) due to the terminal methyl group (Table 4.1). The signal at δ 2.02-2.18 (4H)

indicates the presence of a methylene group adjacent to the terminal methyl group,

and this signal also represents the methylene group at C4 (Table 4.1). The degree of

unsaturation in the carbon chain was determined from the integration of the olefinic

protons at δ 5.25-5.45 ppm (Table 4.1). The presence of 10 olefinic protons indicates

5 double bonds. The signal at δ 2.78-2.90 (8H) is the protons in the methylene groups

between the double bonds (Table 4.1) whilst the signals at δ 2.29 and δ 1.67 are

attributable to the methylene groups adjacent to the carbonyl group (C2) and C3,

respectively (Table 4.1). The 1H-NMR spectrum is characteristic of an unsaturated

fatty acid. These data, in addition to the CI-MS results, enable the identification of

the molecule present in fraction 96 from the RP-HPLC separation of Sep Pak fraction

7 as (5Z, 8Z, 11Z, 14Z, 17Z)-eicosapentaenoic acid (Figure 4.10). This fatty acid will

be referred to henceforth as 20:5n3 (see Appendix I). The 1H-NMR spectrum

compares very well to previously published 1H-NMR spectra for 20:5n3 (Guil-

Guerrero et al., 2001; Fu et al., 2004). Yield of 20:5n3 was calculated to be ~0.2 mg

L-1 culture.

4.4.0 Discussion

In this chapter, the long-chain unsaturated fatty acid, 20:5n3, was isolated from

aqueous methanol cell extracts of P. tricornutum and shown to have antibacterial

activity against S. epidermidis. Sep Pak separation revealed that additional

antibacterial factors were present in the aqueous methanol cell extracts, although their

activities were lost during subsequent RP-HPLC fractionation.
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Figure 4.9 – 1H-NMR spectrum of antibacterial fraction 96 from the RP-HPLC separation of Sep Pak fraction 7 in methanol-d4 at 300 MHz

showing the peaks attributable to the H atoms in: the terminal CH3 group (a), the CH2 at C3 (b), the CH2 group adjacent to the terminal CH3

group and the CH2 group at C4 (c), the CH2 group adjacent to the carbonyl group (d), the CH2 groups between the C=C groups (e) and the five

C=C double bonds (f). The other peaks are residual solvent (x).
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Table 4.1 – 1H-NMR data obtained in methanol-d4 at 300 MHz for antibacterial

fraction 96 from the RP-HPLC separation of Sep Pak fraction 7.

Peak label on
1Ha 1H-NMR spectrum

C1 - -

C2 2.29, t, 2H, 7.4 d

C3 1.67, q, 2H, 7.5 b

C4 2.02-2.18, m, 2H c

C5 5.25-5.45, m, 1H f

C6 5.25-5.45, m, 1H f

C7 2.78-2.90, m, 2H e

C8 5.25-5.45, m, 1H f

C9 5.25-5.45, m, 1H f

C10 2.78-2.90, m, 2H e

C11 5.25-5.45, m, 1H f

C12 5.25-5.45, m, 1H f

C13 2.78-2.90, m, 2H e

C14 5.25-5.45, m, 1H f

C15 5.25-5.45, m, 1H f

C16 2.78-2.90, m, 2H e

C17 5.25-5.45, m, 1H f

C18 5.25-5.45, m, 1H f

C19 2.02-2.18, m, 2H c

C20 0.98, t, 3H, 7.6 a

a Data given as: chemical shift (ppm), multiplicity, number of protons, coupling
constant (Hz) (where given).
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Figure 4.10 – Structure of (5Z, 8Z, 11Z, 14Z, 17Z)-eicosapentaenoic acid, the compound in antibacterial fraction 96 from the RP-HPLC

separation of Sep Pak fraction 7.
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It is well established that free fatty acids have antibacterial properties (Kodicek and

Worden, 1945; Nieman, 1954; Kabara et al., 1972; Butcher et al., 1976; Ko et al.,

1978; Kanai and Kondo, 1979; Bergsson et al., 1998). The exact mechanism(s) of

antibacterial activity by fatty acids remains unknown but it is likely that they act on

cellular membranes affecting their structure and function (Galbraith and Miller,

1973a; Galbraith and Miller, 1973b; Miller et al., 1977; Freese, 1978; Thormar et al.,

1987; McGaw et al., 2002). Fatty acids may cause leakage of molecules from the cell

(Galbraith and Miller, 1973b; Thormar et al., 1987), act on numerous proteins located

in the membrane (Miller et al., 1977), affect nutrient uptake (Sheu and Freese, 1972;

Galbraith and Miller, 1973c), interfere with cellular respiration (Borst et al., 1962),

inhibit bacterial fatty acid synthesis (Zheng et al., 2005) or mediate their effects by a

peroxidative process involving hydrogen peroxide (Knapp and Melly, 1986; Wang

and Johnson, 1992). It is also highly likely that unsaturated fatty acids act upon

multiple cellular targets to inhibit bacterial growth (Miller et al., 1977). Antibacterial

free fatty acids have been isolated from marine microalgae in bioassay-guided

separations and they include: linolenic acid from Chlorococcum HS-101 (Ohta et al.,

1994), hexadecatetraenoic acid from Navicula delognei (Findlay and Patil, 1984), 6,

9, 12-hexadecatrienoic acid and 9, 12-hexadecadienoic acid from Chaetoceros spp.

(Wang, 1999).

Over 20 years ago, Cooper et al. (1985) isolated an antibacterial fraction from P.

tricornutum cell extracts that contained a mixture of six fatty acids, including 20:5n3.

These authors then tested the closest commercially available structural homologue,

arachidonic acid (20:4n6), and found it to be antibacterial. Thus these authors

concluded that EPA was responsible for some of the antibacterial activity in the
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isolated fraction (Cooper et al., 1985). Other studies have confirmed EPA is

antibacterial (Saito et al., 1984; Knapp and Melly, 1986; Ohta et al., 1995;

Benkendorff et al., 2005; Shin et al., 2007). Interestingly, Pesando (1972) isolated a

fraction containing 20:5n3 with antibacterial activity from chloroform:methanol (2:1)

cell extracts of the marine diatom, Asterionella japonica, but attributed the activity to

a photo-oxidation product of EPA and not EPA itself. Hence the present study is the

first to isolate EPA from microalgal cell extracts and confirm it to be responsible for

antibacterial activity.

As the Sep Pak separation produced two major peaks with antibacterial activity it is

likely that more than one antibacterial compound is present in the aqueous methanol

cell extracts (Figure 4.5). The presence of multiple active factors in P. tricornutum is

quite plausible, especially as multiple antibacterial compounds have been isolated

from a single microalga species (Bruce et al., 1967; Aubert et al., 1970; Findlay and

Patil, 1984). However, it was not possible to isolate further antibacterial compounds

from Sep Pak fractions 8 or 10 as the activity was lost during fractionation by RP-

HPLC. The activity in these fractions could have been missed because they were not

tested at a sufficiently high concentration.

This is the first time that 20:5n3, isolated and identified from cell extracts of a marine

microalga, has been conclusively shown to be responsible for some of the

antibacterial activity of the extracts. The work described in this chapter also strongly

suggests the presence of further antibacterial compounds in aqueous methanol cell

extracts of P. tricornutum. The isolation and identification of these further

antibacterial compounds will form the focus of the next chapter.
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Chapter 5: Isolation of two antibacterial fatty acids, (9Z)-hexadecenoic acid and

(6Z, 9Z, 12Z)-hexadecatrienoic acid, from aqueous methanol cell extracts of the

marine diatom, Phaeodactylum tricornutum

5.1.0 Introduction

In the previous chapter, eicosapentaenoic acid was isolated from aqueous methanol

cell extracts of P. tricornutum and shown to be antibacterial. During its isolation, it

became apparent that further antibacterial compounds of unknown chemical species

were present. These compounds could not be purified using the techniques employed

in the previous chapter; hence an alternative separation strategy was selected for

isolating these further compounds. The aim of this chapter is to isolate these

antibacterial compounds from cell extracts using silica gel chromatography and RP-

HPLC. As such the compounds of interest will be separated initially according to

polarity and then by their hydrophobicity. Isolated antibacterial compounds will

undergo structural studies using mass spectrometry, 1H- and 13C-NMR spectroscopy.

5.2.0 Materials and methods

Only HPLC-grade solvents and ultra pure water was used in the following work.

5.2.1 Separation of aqueous methanol P. tricornutum cell extract

The dried P. tricornutum cell extract starting material for this chapter came from

surplus material generated in the previous chapter (Section 4.2.3). For clarity, the

following separation can be found as a schematic diagram (Figure 5.1).
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3.07 g dried cell extract

Fractionated by silica column
hexane → ethyl acetate → 

methanol → water

Fractionated by silica column
ethyl acetate → methanol → 

water

Assayed for antibacterial
activity against S. aureus

Methanol-soluble
Ethyl acetate-

soluble
Water-soluble

Figure 5.1 – Schematic separation of P. tricornutum aqueous

methanol cells extracts by silica chromatography and RP-HPLC.
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5.2.1.1 Ethyl acetate-soluble portion of aqueous methanol cell extract

Dried cell extract weighing 3.07 g was resuspended in 33 mL ethyl acetate,

centrifuged at 13,000 g for 10 min at room temperature to remove the insoluble

compounds. The insoluble pellet was stored at –20 C until it could be extracted in

methanol (see below). All the supernatant was applied to a Sep Pak silica cartridge

(10 g; Waters) by loading ~2-5 mL at a time and allowing the ethyl acetate to

evaporate. This was performed so that the extract never went beyond the top one

third of the total length of the silica portion of the cartridge. To ensure the ethyl

acetate had completely evaporated before the cartridge was run, it was left overnight

at room temperature. The next day, the compounds of interest were fractionated

according to their polarity using a step gradient of hexane, ethyl acetate, methanol and

water. First, 100 mL hexane was added to the cartridge and a 100 mL fraction

collected (fraction no. 1). Next 100 mL 9:1 hexane:ethyl acetate was added to the

cartridge and the next fraction collected (fraction no. 2). This was followed by 100

mL of hexane:ethyl acetate mixes in which ethyl acetate concentration was increased

by 10 % until pure ethyl acetate. With each change in elution solvent mix a 100 mL

fraction was collected (fraction nos. 3-11). Then 100 mL 8:2 ethyl acetate:methanol

was added followed by 100 mL ethyl acetate:methanol mixes in 20 % step increments

of methanol until pure methanol. Again with each change in elution solvent mix a

100 mL fraction was collected (fraction nos. 12-16). Finally 75 mL water was added

to the cartridge and the final fraction collected that was, in this case only, 75 mL

(fraction no. 17). Each fraction (Table 5.1) was dried to completion on the rotary

evaporator at 40 C and resuspended in ~ 2 mL of ethyl acetate, methanol, water or a

mix of these solvents as appropriate. Thirty microlitres of each fraction was tested for

119



Table 5.1 – Fractions generated from silica column separation of dried aqueous

methanol cell extract of P. tricornutum. Dried cell extract was initially resuspended

in ethyl acetate and run through a silica cartridge, the remaining extract was

resuspended in methanol and run on a fresh column, and finally the non-soluble

extract was resuspended in water.

Fraction Number Extraction solvent Elution solvent

1 Ethyl acetate Hexane
2 Ethyl acetate 9:1 hexane:ethyl acetate
3 Ethyl acetate 8:2 hexane:ethyl acetate
4 Ethyl acetate 7:3 hexane:ethyl acetate
5 Ethyl acetate 6:4 hexane:ethyl acetate
6 Ethyl acetate 1:1 hexane:ethyl acetate
7 Ethyl acetate 4:6 hexane:ethyl acetate
8 Ethyl acetate 3:7 hexane:ethyl acetate
9 Ethyl acetate 2:8 hexane:ethyl acetate
10 Ethyl acetate 1:9 hexane:ethyl acetate
11 Ethyl acetate Ethyl acetate
12 Ethyl acetate 8:2 ethyl acetate:methanol
13 Ethyl acetate 6:4 ethyl acetate:methanol
14 Ethyl acetate 4:6 ethyl acetate:methanol
15 Ethyl acetate 2:8 ethyl acetate:methanol
16 Ethyl acetate Methanol
17 Ethyl acetate Water

18 Methanol Ethyl acetate
19 Methanol 9:1 ethyl acetate:methanol
20 Methanol 8:2 ethyl acetate:methanol
21 Methanol 7:3 ethyl acetate:methanol
22 Methanol 6:4 ethyl acetate:methanol
23 Methanol 1:1 ethyl acetate:methanol
24 Methanol 4:6 ethyl acetate:methanol
25 Methanol 3:7 ethyl acetate:methanol
26 Methanol 2:8 ethyl acetate:methanol
27 Methanol 1:9 ethyl acetate:methanol
28 Methanol Methanol
29 Methanol Water

30 Water n/a
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antibacterial activity against S. aureus by disc diffusion (as Section 4.2.7). Fractions

were stored at –20 C until further separation.

Fractions found to be antibacterial were dried on the rotary evaporator at 40 C and

resuspended in ~1.6 mL methanol. This was centrifuged at 13,000 g for 10 min at

room temperature and the supernatant put through a 0.2 µm nylon syringe filter. One

mL of filtered supernatant was applied to the semi-prep C18 column (250 x 10 mm;

Phenomenex). Fractions containing very non-polar compounds (fraction nos. 1-11)

were eluted at 2 mL min-1 with a gradient: 0 – 50 min 0 – 100 % v/v B; 50 – 80 min

isocratic B (buffer A was 50 % methanol, 49.93 % water, 0.07 % TFA; buffer B was

99.93 % methanol, 0.07 % TFA) whilst fractions containing compounds of greater

polarity (fraction nos. 12-17) were eluted at 2 mL min-1 with a gradient: 0 – 100 min 0

– 100 % v/v B; 100 – 120 min isocratic B (buffer A was 99.93 % water, 0.07 % TFA;

buffer B was 99.93 % methanol, 0.07 % TFA). Eluate was monitored at 214 nm and

258 nm and 2 mL fractions were collected. The RP-HPLC fractions were stored at 4

C and 75 μL of each HPLC fraction was tested for antibacterial activity against S.

aureus by disc diffusion (as Section 4.2.7). Active fractions were freeze-dried

(Lyolab 3000; Heto-Holten A/S) at –55 C to completion in pre-massed sterile bottles

and stored at 4 C.

5.2.1.2 Methanol-soluble portion of aqueous methanol cell extract

The ethyl acetate-insoluble portion of the original dried extract was resuspended in 12

mL methanol and centrifuged at 13,000 g for 10 min at room temperature. The

insoluble cell pellet was stored at –20 C until it could be extracted in water (see

below). Meanwhile, all the supernatant was mixed with 20 mL silica gel (Matrex
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Silica 60; Fisher Scientific) and allowed to dry overnight at room temperature, before

drying to completion with the rotary evaporator at 40 C. The dried silica/extract mix

was applied to the top of a new silica Sep Pak cartridge. First, 100 mL ethyl acetate

was added to the cartridge and a 100 mL fraction collected (fraction no. 18). Next

100 mL 9:1 ethyl acetate:methanol was added to the cartridge and this was followed

by 100 mL each of ethyl acetate:methanol mixes in 10 % step increments of methanol

until pure methanol. With each change in elution solvent mix a 100 mL fraction was

collected (fraction nos. 19-28). Finally 50 mL water was added to the cartridge and

the final fraction collected that was, in this case only, 50 mL (fraction no. 29). Each

fraction (Table 5.1) was dried to completion and tested for antibacterial activity

against S. aureus as above. Fractions were stored at –20 C until further fractionation.

RP-HPLC was performed on fractions found to have antibacterial activity, as above.

Fraction nos. 18 and 19 were considered to contain very non-polar compounds whilst

fraction nos. 20-29 contained compounds of greater polarity. Again RP-HPLC

fractions were tested for antibacterial activity against S. aureus by disc diffusion, with

the active fractions being freeze-dried in pre-massed sterile bottles for storage at 4 C

(also as above).

5.2.1.3 Remaining water-soluble portion of aqueous methanol cell extract

The ethyl acetate and methanol-insoluble portion of original dried extract was

resuspended in 9 mL water and designated fraction no. 30 (Table 5.1). Thirty

microlitres of this was tested for antibacterial activity against S. aureus by disc

diffusion (as Section 4.2.7). The fraction was stored at –20 C before being prepared

for RP-HPLC as above. As this fraction contained mainly polar compounds it was
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run as such (see above). Once more the RP-HPLC fractions were tested for

antibacterial activity and the active fractions freeze-dried in pre-massed sterile bottles

for storage at 4 C (all as above).

5.2.2 1H-NMR spectroscopy of active RP-HPLC fractions

Each active RP-HPLC fraction was resuspended in ~0.7 mL methanol-d4, filtered and

1H-NMR performed as Section 4.2.6. This enabled identification of those fractions

sufficiently pure to permit complete structural characterisations and allowed

dereplication of fractions containing the same compound.

5.2.3 Structural characterisation of antibacterial compounds by NMR

spectroscopy and mass spectrometry

Each pure fraction had 1H-NMR and 2D 1H,13C-HSQC (heteronuclear multiple

quantum coherence), 1H,13C-HMBC (heteronuclear multiple bond correlation) spectra

recorded at 500 MHz (Avance 500; Bruker BioSpin GmbH). The 2D-NMR

experimentation would enable structural assignment. Again, chemical shifts are given

in ppm with respect to tetramethylsilane (δ 1H for CD3OD = 3.31 ppm, δ 13C for

CD3OD = 49.15 ppm). The pure fractions were dried on the speed vac at 30 ºC and

resuspended in 400-1000 µL methanol depending on yield. Mass spectrometry (CI-

MS) was performed for each fraction in negative mode with an injection volume of

10-20 µL by Dr. Catherine Botting and Mrs. Caroline Horsburgh (School of

Chemistry, University of St Andrews). As necessary, high resolution mass

spectrometry was also performed to generate empirical elemental composition data.
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5.2.4 Location of double bond

The position of the double bond in the carbon chain of monounsaturated fatty acids

was determined by electron impact mass spectrometry (EI-MS) of dimethyl

disulphide adduct derivatives (Moss and Daneshvar, 1992). Briefly, 300 µL of the 1

mL sample in methanol was converted to methyl esters (as Section 3.2.7) and then

dissolved in 200 µL dimethyl disulphide. Added to this was 50 µL of 60 mg mL-1

solution of iodine in diethyl ether. This mixture was put on the orbital shaker at room

temperature and 60 rpm for 24 hours. Next, 5 mL hexane was added and the mixture

washed three times with dilute 2 % aqueous sodium thiosulphate solution. Residual

water was removed by mixing with anhydrous sodium sulphate and, after filtering

through non-absorbent cotton wool (pre-washed with diethyl ether), the hexane was

removed by gentle heating under a stream of nitrogen. The final product was finally

resuspended in 50 µL hexane for EI-MS (kindly performed by Mrs. Caroline

Horsburgh).

5.3.0 Results

5.3.1 Ethyl acetate-soluble portion of aqueous methanol cell extract

Fractions 2, 3, 4, 5 and 12 from Sep Pak separation were strongly antibacterial against

S. aureus, whilst fractions 1, 6, 7, 8, 9, 10 and 11 showed weaker activity (Figure 5.2).

Fractions 2, 3, 4 and 5 were pooled and then fractionated by RP-HPLC. This yielded

four antibacterial fractions: nos. 52, 55, 56 and 57 (Figure 5.3). The major peak at

54.18 min on the A214 RP-HPLC trace corresponded to fraction 57 (Figure 5.4).

Fraction 12 was fractionated by RP-HPLC with antibacterial activity found only in

fractions 105 and 106.
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Figure 5.2 –Antibacterial activity of silica Sep Pak fractions against S. aureus using

disc diffusion assay expressed as clear zone area on the assay plate (A) and images

of the plates from which this data was obtained (B). Strong activity found in

fraction nos. 2, 3, 4, 5, 12, 18 and 19 and weaker activity in fraction nos. 1, 6, 7, 8,

9, 10, 11, 20, 21 and 30. Please note that assay plate image for fractions 29 and 30

unavailable.
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Figure 5.3 – Disc diffusion assay plate showing antibacterial activity against S.

aureus of fractions 52 and 54-80 from RP-HPLC separation of pooled silica column

fractions 2, 3, 4 and 5. Strong activity found in fractions 55, 56 and 57 and (inset)

weaker activity found in fraction 52.
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Figure 5.4 – A214 of eluate during RP-HPLC C18 separation of pooled silica column fractions 2, 3, 4 and 5 showing the peak at 54.18 min

corresponding to antibacterial fraction 57 (marked with arrow). Dashed line shows the elution gradient (buffer A: 50 % methanol, 49.93 %

water, 0.07 % TFA; buffer B: 99.93 % methanol, 0.07 % TFA).
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5.3.2 Methanol-soluble portion of aqueous methanol cell extract

Fractions 18 and 19 from Sep Pak separation were strongly antibacterial against S.

aureus with weak activity in fractions 20 and 21 (Figure 5.2). Each of these fractions

was further fractionated by RP-HPLC. For fraction 18 antibacterial activity was

found in RP-HPLC fractions 52, 55, 56 and 57 (Figure 5.5) with the minor peak at

50.55 min on the A214 RP-HPLC trace corresponding to fraction 52 (Figure 5.6). For

fraction 19 activity was found in RP-HPLC fractions 55, 56 and 57.

5.3.3 Remaining water-soluble portion of aqueous methanol cell extract

Weak activity was found in the remaining water-soluble portion of the cell extract

(fraction no. 30), however this activity was lost during further fractionation by RP-

HPLC.

5.3.4 1H-NMR spectroscopy of active RP-HPLC fractions

A total of 13 RP-HPLC fractions were antibacterial against S. aureus but, of these,

only two were sufficiently pure for structural characterisation. These were firstly,

fraction 57 from RP-HPLC separation of pooled silica column fractions 2, 3, 4, and 5

(dried mass = 2.4 mg) and secondly, fraction 52 from RP-HPLC of silica column

fraction 18 (dried mass = 0.8 mg). The remaining active RP-HPLC fractions

contained mixtures of the compounds found in the two pure fractions.

5.3.5 Structural characterisation of antibacterial compounds by NMR

spectroscopy and mass spectrometry

1H-NMR of fraction 57 from RP-HPLC separation of pooled silica column fractions

2, 3, 4, and 5 showed a spectrum with a signal at δ 0.91 (3H) due to the terminal
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Figure 5.5 – Disc diffusion assay plate showing antibacterial activity against S.

aureus of fractions 52-80 from RP-HPLC separation of silica column fraction 18.

Note strong activity found in fractions 55, 56 and 57 but weak activity also found in

fraction 52.
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Figure 5.6 – A214 of eluate during RP-HPLC C18 separation of silica column fraction 18 showing the peak at 50.55 min corresponding to

antibacterial fraction 52 (marked with arrow). Dashed line shows the elution gradient (buffer A: 50 % methanol, 49.93 % water, 0.07 % TFA;

buffer B: 99.93 % methanol, 0.07 % TFA).
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methyl group (Figure 5.7; Table 5.2). The signal at δ 2.27 (2H) indicates of the

presence of a methylene group adjacent to a carbonyl group (Table 5.2), while the

presence of two olefinic protons at δ 5.30-5.41 ppm (Table 5.2) denotes the presence

of one double bond. The signal at δ 1.98-2.14 (4H) can be attributed to the methylene

groups adjacent to the double bond and the signal at δ 1.56-1.64 (2H) to a methylene

group at C3 (Table 5.2). Finally, the signal at δ 1.24-1.39 (16H) is due to the protons

in the other methylene groups in the carbon chain (Table 5.2). The peak at δ 3.65 is

the methylated product caused by the replacement of the –OH group with a –OCH3

group at the carboxyl end (Figure 5.7). This can occur over time when the fatty acid

is exposed to methanol. Chemical shifts for 13C (Table 5.2) were determined from the

HSQC spectrum (Figure 5.8). The carbonyl group was confirmed as a carboxyl group

from the chemical shift on the HMBC spectrum (Figure 5.9). Mass spectrometry of

the fraction gives a prominent m/z ion at 253.19 Da corresponding to [M]- (Figure

5.10). The minor m/z ion at 267.17 Da probably represents a methylated degradation

product [M+Me]- (Figure 5.10). The high resolution mass spectrometry predicts an

empirical formula of C16H27O3 for [M]- (Appendix IX). The NMR and mass

spectrometry data show that the compound is a monounsaturated 16-carbon fatty acid

(hexadecenoic acid). However it is not possible to confirm the position of the double

bond from these analyses alone.

For fraction 52 from RP-HPLC of silica column fraction 18, the 1H-NMR spectrum

(Figure 5.11) shows a signal at δ 0.85 (3H) due to the terminal methyl group (Table

5.3). The signal at δ 2.19 (2H) indicates the presence of a methylene group adjacent

to a carbonyl group (Table 5.3) and the presence of six olefinic protons at δ 5.22-5.36

ppm (Table 5.3) denotes the presence of three double bonds. The signal at δ 2.70-
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Figure 5.7 – 1H-NMR spectrum of fraction 57 from RP-HPLC separation of pooled silica column fractions 2, 3, 4 and 5 in methanol-d4 at 500

MHz showing the peaks attributable to the H atoms in: the terminal CH3 group (a), the 8x CH2 groups (b), the CH2 group at C3 (c), the two CH2

groups either side of the C=C group (d), the CH2 group adjacent to the carboxyl end (e) and the C=C double bond (f). The other peaks can be

attributed to the product with a methylated carboxyl group (g) and residual solvent (x).
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Table 5.2 – 1H- and 13C-NMR data obtained in methanol-d4 at 500 MHz for

antibacterial fraction 57 from RP-HPLC separation of pooled silica column fractions

2, 3, 4, and 5.

Peak label on
1Ha 13Cb 1H-NMR spectrum

C1 - 176.6 -

C2 2.27, t, 2H, 7.4 33.8 e

C3 1.56-1.64, m, 2H 24.5 c

C4 1.24-1.39, m, 2H 22.0-31.5 b

C5 1.24-1.39, m, 2H 22.0-31.5 b

C6 1.24-1.39, m, 2H 22.0-31.5 b

C7 1.24-1.39, m, 2H 22.0-31.5 b

C8 1.98-2.14, m, 2H 26.5 d

C9 5.30-5.41, m, 1H 129.4 f

C10 5.30-5.41, m, 1H 129.4 f

C11 1.98-2.14, m, 2H 26.5 d

C12 1.24-1.39, m, 2H 22.0-31.5 b

C13 1.24-1.39, m, 2H 22.0-31.5 b

C14 1.24-1.39, m, 2H 22.0-31.5 b

C15 1.24-1.39, m, 2H 22.0-31.5 b

C16 0.91, t, 3H, 6.8 13.2 a

a 1H-NMR data given in the form: δ (ppm), multiplicity, number of H atoms, coupling
constant (Hz) (where given).

b 13C-NMR data for C1 from 2D 1H-13C HMBC; data for C2-C16 from 2D 1H-13C
HSQC; 13C-NMR data given is δ (ppm).
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Figure 5.8 – HSQC spectrum of fraction 57 from RP-HPLC separation of pooled silica column fractions 2, 3, 4 and 5 in methanol-d4 at 500

MHz. The 1H-NMR (top axis) correlates with the 13C-NMR (right axis). Coloured areas indicate the C atoms that couple with the respective 1H-

NMR peaks (via one bond) with a red area indicating a CH2 group and blue area indicating a CH or CH3 group.
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Figure 5.9 – HMBC spectrum of fraction 57 from RP-HPLC separation of pooled silica column fractions 2, 3, 4 and 5 in methanol-d4 at 500

MHz. The 1H-NMR (top axis) correlates with the 13C-NMR (right axis). Black areas indicate the C atoms that couple with the respective 1H-

NMR peaks (via more than one bond).
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Figure 5.10 – Mass spectrometry of antibacterial fraction 52 from RP-HPLC

separation of silica column fraction 18 showing prominent m/z ion at 253.19 Da

corresponding to [M]- and a minor m/z ion at 267.17 Da probably corresponding to

the methylated product [M+Me]-.
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Figure 5.11 – 1H-NMR spectrum of fraction 52 from RP-HPLC separation of silica column fraction 18 in methanol-d4 at 500 MHz showing the

peaks attributable to the H atoms in: the terminal CH3 group (a), the CH2 groups at C4 and C15 (b), the CH2 group at C3 (c), the CH2 groups

between C=C (d), the CH2 group adjacent to the carboxyl end (e), the CH2 groups between the double bonds (f) and the six H atoms in three

C=C double bonds (g). The other peaks can be attributed to the product with a methylated carboxyl group (h) and residual solvent (x).
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Table 5.3 – 1H- and 13C-NMR data obtained in methanol-d4 at 500 MHz for

antibacterial fraction 52 from RP-HPLC of silica column fraction 18.

Peak label on
1Ha 13Cb 1H-NMR spectrum

C1 - 177.5 -

C2 2.19, t, 2H, 7.3 34.6 e

C3 1.55, q, 2H, 7.5 24.6 c

C4 1.28-1.38, m, 2H 28.9 b

C5 1.92-2.06, m, 2H 26.4 d

C6 5.22-5.36, m, 1H 127.6 g

C7 5.22-5.36, m, 1H 127.6 g

C8 2.70-2.80, m, 2H 25.1 f

C9 5.22-5.36, m, 1H 127.6 g

C10 5.22-5.36, m, 1H 127.6 g

C11 2.70-2.80, m, 2H 25.1 f

C12 5.22-5.36, m, 1H 127.6 g

C13 5.22-5.36, m, 1H 127.6 g

C14 1.92-2.06, m, 2H 26.4 d

C15 1.28-1.38, m, 2H 28.9 b

C16 0.85, t, 3H, 7.4 12.8 a

a 1H-NMR data given in the form: δ (ppm), multiplicity, number of H atoms, coupling
constant (Hz) (where given).

b 13C-NMR data for C1 from 2D 1H-13C HMBC; data for C2-C16 from 2D 1H-13C
HSQC; 13C-NMR data given is δ (ppm).
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2.80 (4H) may be attributed to the methylene groups in between the double bonds

whilst the signal at δ 1.92-2.06 is the methylene groups between a double bond and a

methylene group (Table 5.3). The signals at δ 1.28-1.38 (4H) are the methylene

groups at C4 and C15 and the signal at δ 1.55 (2H) is the methylene group at C3 (Table

5.3). The peak at δ 3.58 is attributable to methylation of the carboxyl group. Again,

chemical shifts for 13C (Table 5.3) were determined from the HSQC spectrum (Figure

5.12). The carbonyl group was confirmed as a carboxyl group from the chemical shift

on the HMBC spectrum (Figure 5.13). Mass spectrometry of the fraction gives a

prominent m/z ion at 249.39 Da corresponding to [M]- (Figure 5.14). The NMR and

mass spectrometry data enables the compound in the fraction to be identified as the

unsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid or 16:3n4 (Figure 5.14).

5.3.6 Location of double bond

For fraction 57 from RP-HPLC of pooled silica column fractions 2, 3, 4, and 5 the

location of the double bond was investigated by synthesising dimethyl disulphide

adduct derivatives. When the EI-mass spectrum of the synthesised adducts was

searched against a molecular mass library (MassLynx, Waters Corporation) this

confirmed the presence of the methyl ester of 9, 10-dimethylthiohexadecanoic acid,

i.e. the dimethyl disulphide adduct product of an hexadecenoic acid methyl ester as

expected (Appendix X). The mass spectrometry revealed two substantial fragment

ions where the molecule was cleaved between the carbons that originally constituted

the double bond.  These are the ω fragment (aliphatic end of the molecule) at 145.10 

Da and the ∆ fragment (carboxyl end of the molecule) at 185.09 Da (Figure 5.15).  

The other diagnostic mass fragment peaks corresponding to the molecular ion [M]-

and the ∆-32 fragment (the loss of methanol at the ∆ end) found at 362.23 Da, and  
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Figure 5.12 – HSQC spectrum of fraction 52 from RP-HPLC separation of silica column fraction 18 in methanol-d4 at 500 MHz. The 1H-NMR

(top axis) correlates with the 13C-NMR (right axis). Coloured areas indicate the C atoms that couple with the respective 1H-NMR peaks (via one

bond) with a red area indicating a CH2 group and blue area indicating a CH or CH3 group.
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Figure 5.13 – HMBC spectrum of fraction 52 from RP-HPLC separation of silica column fraction 18 in methanol-d4 at 500 MHz. The 1H-NMR

(top axis) correlates with the 13C-NMR (right axis). Black areas indicate the C atoms that couple with the respective 1H-NMR peaks (via more

than one bond).
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Figure 5.14 – Mass spectrometry of fraction 52 from RP-HPLC separation of silica

column fraction 18 showing the prominent m/z ion at 249.39 Da corresponding to

[M]- (A) and the predicted structure of the major compound in this fraction, (6Z, 9Z,

12Z)-hexadecatrienoic acid (B).

A

B
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Figure 5.15 – EI-MS of DMDS adducts of monounsaturated fatty acid in fraction 57 from RP-HPLC of pooled silica column fractions 2, 3, 4,

and 5. This shows the two substantial fragment ions where the molecule was cleaved between the carbons that originally constituted the double

bond: ω and ∆ fragments at 145.10 Da and 185.09 Da, respectively.  The other diagnostic mass fragment peaks correspond to [M]- (362.23 Da)

and the ∆-32 fragment (217.12 Da). 
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217.12 Da, respectively (Figure 5.15). This data positions the double bond in the fatty

acid chain between carbons 9 and 10 from the carboxyl (or the n-7 position) meaning

the fatty acid in this fraction is (9Z)-hexadecenoic acid (Figure 5.16), which is more

commonly referred to as palmitoleic acid or 16:1n7 (Appendix I).

5.4.0 Discussion

Two long-chain unsaturated free fatty acids, 16:1n7 and 16:3n4, were isolated from

aqueous methanol cell extracts of P. tricornutum and shown to have antibacterial

activities. These compounds may be the antibacterial compounds that could not be

purified from the same dried cell extract in the previous chapter.

The antibacterial activity of 16-carbon chain length fatty acids is well established.

This includes the saturated 16:0 (Kabara et al., 1972; Galbraith and Miller, 1973a;

Miller et al., 1977; Lacey and Lord, 1981; Yff et al., 2002; Willie and Kydonieus,

2003; Benkendorff et al., 2005), the monosaturated isomers 16:1n7 (Kabara et al.,

1972; Miller et al., 1977; Dye and Kapral, 1981; Saito et al., 1984; Feldlaufer et al.,

1993; Bergsson et al., 1999; Bergsson et al., 2001a; Sun et al., 2003; Zheng et al.,

2005) and 16:1n10 (Willie and Kydonieus, 2003), and also the polyunsaturated fatty

acids 16:2n4 (Wang, 1999), 16:3n4 (Wang, 1999) and 16:4n1 (Findlay and Patil,

1984). In some cases these fatty acids have been isolated from a variety of natural

sources (Findlay and Patil, 1984; Wang, 1999; Yff et al., 2002; Willie and Kydonieus,

2003) but the present study is the first report in which 16:1n7 has been isolated from a

microalga using an antibacterial bioassay-guided approach.

144



Figure 5.16 – Structure of (9Z)-hexadecenoic acid, the compound found in fraction 57 from RP-HPLC of pooled silica column fractions 2, 3, 4,

and 5.
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The present study is also the first to report the isolation of 16:3n4 from P. tricornutum

and demonstrate its antibacterial activity. Wang (1999) previously reported the

antibacterial activity of 16:3n4 from the marine diatom, Chaetoceros spp., and

showed it to be active against S. aureus and E. coli. Interestingly, Cooper et al.

(1985) isolated a fraction from P. tricornutum cell extracts that contained a mixture of

six fatty acids, one of which was 16:3n4, but these authors concluded that 16:3n4 was

not responsible for the activity in this fraction because the closest commercially

available structural homologue, 16:1n7, was not antibacterial. By contrast, the

present study demonstrates that 16:3n4 is responsible for some of the antibacterial

activity in P. tricornutum cell extracts. Findlay and Patil (1984) claimed to have

isolated 16:3n4 from the marine diatom, Navicula delognei, and show it to be

antibacterial but this fatty acid was in fact merely a minor contaminant of a fraction

containing the antibacterial fatty acid, (6Z, 9Z, 12Z, 15Z)-octadecatetraenoic acid

(18:4n3). No indication was given by the authors of the quantity of the contaminating

16:3n4 nor was any evidence provided to support the assertion that this compound

was antibacterial (Findlay and Patil, 1984).

In conclusion, this chapter reports the novel isolation from a microalga of the

antibacterial fatty acid, 16:1n7. Further, the antibacterial fatty acid, 16:3n4, was

isolated from cell extracts of P. tricornutum for the first time. Thus far the present

study reports the isolation of three antibacterial fatty acids from aqueous methanol

cell extracts of P. tricornutum.
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Chapter 6: Further studies on the antibacterial properties of three free fatty

acids isolated from aqueous methanol cell extracts of the marine diatom,

Phaeodactylum tricornutum

6.1.0 Introduction

In Chapters 4 and 5, three free fatty acids were isolated from aqueous methanol cell

extracts of P. tricornutum using Staphylococcal species as target bacteria, but no

characterisations of their antibacterial properties were performed. Previous studies

have shown that 16:1n7, 16:3n4 and 20:5n3 are indeed antibacterial (Kabara et al.,

1972; Miller et al., 1977; Dye and Kapral, 1981; Saito et al., 1984; Knapp and Melly,

1986; Feldlaufer et al., 1993; Ohta et al., 1995; Bergsson et al., 1999; Wang, 1999;

Bergsson et al., 2001a; Hornitzky, 2003; Sun et al., 2003; Benkendorff et al., 2005;

Zheng et al., 2005) but studies of the spectra of activity and antibacterial potencies are

limited. This final experimental chapter is aimed at determining their antibacterial

potency against S. aureus by measurement of their 50 % inhibition concentration

(IC50) and minimum bactericidal concentration (MBC) values. Here, the IC50 is

defined as the lowest molar concentration required to inhibit bacterial growth by 50 %

compared to the control (Miller et al., 1977). A further measure of antibacterial

potency, the MBC, is defined, in this study, as the lowest molar concentration

required to kill all the bacteria in the original inoculum. It remains unknown whether

the fatty acids in combination can act to inhibit bacterial growth in a synergistic,

antagonistic or additive fashion and so the antibacterial potency of a combination of

the isolated fatty acids was investigated. Synergism and antagonism is when the

antibacterial effect of the combination is greater or less than the sum of the effects of

the individual components, respectively. In an additive scenario the antibacterial
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effect of a combination is the same as the sum of the effects of the individual

components.

Earlier reports have shown that free polyunsaturated fatty acids are not found in

healthy, intact diatom cells (Jüttner, 2001; Pohnert, 2002; Pohnert et al., 2004) but are

only released from lipids by the rapid action of enzymes (lipases) after cells lose their

integrity, for example, by freeze-thawing, sonication or solvent extraction (Budge and

Parrish, 1999; Jüttner, 2001; Pohnert, 2002; Pohnert et al., 2004). These lipases have

been shown to be most active around the effluent cytoplasm of disrupted cells

(Pohnert, 2002) and most hydrolysis occurs within the first minute (Jüttner, 2001).

Therefore the fatty acids isolated in the present study are likely to be artefacts of the

extraction procedure (Budge and Parrish, 1999). Further, d'Ippolito et al. (2004) has

shown that in a marine diatom, Skeletonema costatum, 16:3n4 and 20:5n3 are

enzymatically freed from the phospholipids and chloroplast-derived glycolipids,

especially monogalactosyldiacylglycerol (MGDG). To confirm the possible enzyme-

dependent release of antibacterial fatty acids from lipids in extracted diatom cells the

antibacterial activity of cell pellets extracted in solvent at temperatures sufficient to

dentaure proteins (i.e., enzymes) will be compared to those extracted on ice. It has

been shown that a hot extraction solvent can deactivate the lipases that act on lipids

releasing free fatty acids (Budge and Parrish, 1999; Jüttner, 2001; Pohnert, 2002).

The levels of fatty acids in cell extracts collected throughout the growth curve will be

examined as fatty acid composition of P. tricornutum changes during culture (Orcutt

and Patterson, 1975; Cooper et al., 1985; Siron et al., 1989; Liang et al., 2006). This

may explain the reduction in antibacterial activity of cell extracts seen during culture
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(Figure 3.3). Further, cell extracts from cultures enriched for different P. tricornutum

morphs have been shown to have different amounts of antibacterial activity in

aqueous methanol cell extracts (Figure 3.15) and so the concentration of fatty acids,

and in particular the three antibacterial fatty acids isolated in previous chapters, in cell

extracts from the different P. tricornutum morphs will be investigated to see whether

this could explain the antibacterial activity differences between these extracts. Thus

for each of the three antibacterial fatty acids the aim of this chapter is to assess their

spectra of activity, potency, kinetics of release and to monitor their levels during

culture and in cells of different morphology. In light of their isolation, preliminary

consideration will be given to the potential ecological significance of the three fatty

acids as a defence against bacteria.

6.2.0 Materials and methods

As only very small quantities of 16:1n7 and 20:5n3 were isolated in Chapters 4 and 5,

chemically synthesised free fatty acids (>99 %) were purchased from Sigma Aldrich

Ltd. As 16:3n4 is not commercially available, the small quantity of material isolated

in Chapter 5 (Section 5.3.4) was used in the following experiments. Stock solutions

of each fatty acid were made to 4 and 8 mM in methanol and stored at –20 ºC.

6.2.1 Potency of fatty acids against S. aureus

The IC50 was determined against S. aureus for 16:1n7, 16:3n4 and 20:5n3 using a

growth inhibition assay. The 4 mM fatty acid stock solutions were serially diluted 1:1

to give a further seven stock solutions. To each well of a sterile 96-well microtitre

plate (round-bottomed wells; Corning Inc.) was added 50 µL double-strength LB

medium, 2 µL of a fatty acid stock solution (16:1n7, 16:3n4 or 20:5n3 in methanol), 1
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x104 cfu of exponentially growing S. aureus resuspended in 0.9% NaCl solution

(cultured and determined as Section 2.2.6 and diluted so that the volume was ~5-10

µL) and each well was made up to 100 µL with sterile deionised water. This gives

fatty acid concentrations of 80, 40, 20, 10, 5, 2.5, 1.25 and 0.625 µM. For the

negative control wells the fatty acid solution was replaced with methanol. Blank

reference wells contained 50 µL double-strength LB medium solution, 8 µL methanol

and 42 µL sterile deionised water. For comparative purposes an IC50 for ampicillin in

water was determined using the same method but final well concentrations ranged

0.0078125-0.5 µM. To investigate whether mixtures of different fatty acids

synergise, antogonise or act in an additive manner wells containing combinations of

16:1n7 and 20:5n3 were set up so that these two fatty acids were at final

concentrations between 0.625-40 µM total fatty acid. Each treatment was performed

in quadruplicate. The plate was covered with an AirPore™ tape sheet (Qiagen Ltd.)

and incubated at ~20 °C. After 26 h, the mean A570 of each well was determined from

triplicate measurements using a plate reader (MRX II; Dynex Technologies Ltd.).

The mean of the blank reference wells was subtracted from the A570 of each well as

appropriate. The A570 of each experimental well was then compared to the mean

value of the respective negative control wells to generate values expressed as %

growth compared to control.

To determine the MBC, the contents of each well that appeared to show no growth

were spread across separate LB agar plates. To determine the MBC for ampicillin,

further wells had to be set up with final well concentrations 160-2560 µM. Each

blank reference well was plated out to control for contamination. Plates were

incubated overnight at 37 ºC.
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6.2.2 Spectrum of activity

Spectrum of activity was determined against two Gram positive (M. luteus and P.

citreus) and two Gram negative (E. coli and Ps. aeruginosa 10775) bacterial species

using a growth inhibition assay (based on Section 6.2.1). To each well of a sterile 96-

well microtitre plate (round-bottomed wells) was added 50 µL double-strength LB or

2216E medium solution as appropriate for the bacterium (see table 2.1), 8 µL of 8

mM fatty acid stock solution (16:1n7, 16:3n4 or 20:5n3 in methanol), 1 x 104 cfu of

exponentially growing bacteria (cultured and enumerated as in Section 2.2.6 and

diluted so that volume equalled 5 µL) and 37 µL sterile deionised water. This gave

fatty acid concentrations of 640 µM in each well. Negative control wells for each

bacterium replaced the fatty acid solution with methanol whilst blank reference wells

for each medium contained 50 µL double-strength medium solution, 8 µL methanol

and 42 µL sterile deionised water. Each assay was performed in quadruplicate. The

plate was covered with a lid and left to grow at room temperature. After 24 h, the

mean A570 of each well was determined from triplicate measurements using the plate

reader. The mean of the blank reference wells was subtracted from the A570 of each

well as appropriate. Antibacterial activity was defined as a significant reduction in

bacterial growth compared to the negative control wells.

Additionally, 16:1n7 and 20:5n3 were each tested for their ability to inhibit the

growth of MRSA and the human pathogenic fungus, Candida sp. This was tested

using the disc diffusion assay (as Section 4.2.5) with discs loaded with 1 µM fatty

acid. MRSA was cultured on nutrient agar whilst the fungus was cultured on PDY

agar (Appendix III). The MRSA strain (16a) and the Candida sp. (a patient isolate)
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were kindly gifted by Dr Andrew Mearns-Spragg (Aquapharm Bio-Discovery Ltd.).

Antibacterial or antifungal activity was identified as a clear zone around the disc.

6.2.3 Enzymatic release of the fatty acids

Of nine algal cultures (cultured and harvested as Sections 2.2.2 and 2.2.4) four were

extracted on ice (as Section 2.2.4) except that the extracts were kept on ice for a total

time of 1 h. These low temperature conditions permit the hydrolysis of lipids to free

fatty acids by lipases. Moreover, Jüttner (2001) has shown that methanol at ambient

temperature has no effect on the action of the lipases that cleave lipids to the free

unsaturated fatty acids. To prevent the action of these lipases, the remaining five

cultures were extracted with hot aqueous methanol (~70 ºC), at which temperature

proteins, such as enzymes, are fully denatured. These extracts were kept at ~70 ºC for

1 h. To account for any heat degradation of antibacterial compounds that may occur

during incubation, as indicated by experiments performed in Chapter 3 (Figure 3.5),

the cell pellets extracted on ice were kept in a water bath at ~70 ºC for 1 h. For

consistency the cell pellets extracted in hot methanol were kept on ice for 1 h.

Cellular debris was removed from each extraction by centrifugation at 12000 g for 1 h

at 4 ºC. The supernatant was transferred to a sterile 1.5 mL Eppendorf tube, dried to

completion using the speed vac at 30 ºC, massed, reconstituted to a concentration of

60 mg mL-1 with sterile 50 mM HEPES aqueous solution pH 7.8 (Acros Organics)

and stored at 4 ºC until use. Extracts were tested in duplicate for antibacterial activity

by RDA against S. aureus (Section 2.2.7). These data were converted to antibacterial

activity per cell using A750 data collected during culture harvest.
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6.2.4 Fatty acid levels during culture

The relative concentration of each fatty acid in aqueous methanol cell extracts were

determined throughout the P. tricornutum growth curve by analysing samples

collected days 4 – 14 (Section 3.2.2) by gas-liquid chromatography (as Section 3.2.7).

Further, the actual mass of each fatty acid was calculated on a per cell basis by

dividing the mass of total fatty acid in the analysed sample by the number of cells that

was extracted; this was then multiplied by the relative proportion of the particular

fatty acid. Relative percentage data are expressed to two decimal places though this

degree of accuracy is not implied.

6.2.5 Fatty acid levels in the different P. tricornutum cell morphs

To investigate whether fatty acid differences could explain the difference in

antibacterial activity observed for cell extracts produced from cultures enriched in

oval and fusiform cells (Figure 3.15), the relative concentration of each fatty acid in

aqueous methanol cell extracts from these 20 cultures (produced in Section 3.2.9)

were determined by gas-liquid chromatography (as Section 3.2.7). For each sample

the total quantity of fatty acids, actual amount of each fatty acid and the sum of the

three antibacterial fatty acids (isolated in Chapters 4 and 5) were also calculated.

6.2.6 Statistical analyses

For all statistical analyses, data were tested for normality by Shapiro-Wilk test and for

homogeneity of variance by Levene’s test. In all cases p ≤ 0.05 was considered

significant.
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For the spectrum of activity work the data was normally distributed in all instances

except P. citreus (W 15 = 0.873, p < 0.05) and showed equal variances, except Ps.

aeruginosa (F 3,8 = 5.348, p < 0.05). Significant differences between treatment

groups was assessed by one-way ANOVA for each bacterium with the four treatment

groups being growth in 16:1n7, 16:3n4, 20:5n3 or the absence of any fatty acid

(control). To identify the treatment groups that were significantly different from each

other, the post hoc Tukey HSD test was used.

For the enzyme-dependent release of fatty acids, antibacterial activity data were

shown to be normally distributed and have equal variance so the student’s t-test was

used to test for significant differences between the two treatment groups with p ≤ 0.05

considered significant.

The data obtained for the total quantity of fatty acids in cell extracts from morph-

enriched cultures were non-normally distributed (W 20 = 0.903, p < 0.05) and showed

unequal variances (F 3,16 = 3.983, p < 0.05). Nonetheless, two-way ANOVA was

performed (with batch and morph as factors) to test for significant differences

between the two treatment groups with p ≤ 0.05 considered significant.

For fatty acid levels in cell extracts from morph-enriched cultures, the relative

percentage data was first analysed using the multivariate approach of principal

components analysis (PCA) and this was kindly performed by Dr. Mike Walton (Sea

Mammal Research Unit, University of St Andrews). For further analysis, the relative

percentage values were transformed using the arcsine square root function. In 5/13

cases these transformed data were not normally distributed and in 5/13 cases these

154



data showed unequal variance (Table 6.1). Despite this, a two-way ANOVA was

performed for each fatty acid (with batch and morph as factors) to test for significant

differences between the morph-enriched cultures. The chance of a Type I error was

reduced by enforcing the highly stringent Bonferroni correction (Weisstein, 2004) and

thus p ≤ 0.0038 was considered significant.

For the actual levels data in 6/13 cases the data were not normally distributed and in

6/13 cases the data showed unequal variance (Table 6.1). Two-way ANOVA was

performed for each fatty acid (with batch and morph as factors) to test for significant

differences between the morph-enriched cultures. Again the Bonferroni correction

was enforced meaning p ≤ 0.0038 was considered significant.

The data on the summed masses of the three previously isolated fatty acids (16:1n7,

16:3n4 and 20:5n3) was normally distributed but showed unequal variances (F 3,16 =

3.572, p < 0.05). Again, two-way ANOVA was performed (with batch and morph as

factors) to test for significant differences between the morph-enriched cultures with p

≤ 0.05 considered significant.

6.3.0 Results

6.3.1 Potency of fatty acids against S. aureus

The IC50 values of 16:1n7, 16:3n4 and 20:5n3 against S. aureus were determined to be

in the ranges 10-20 µM, 20-40 µM and 10-20 µM, respectively (Figure 6.1). The

combination of 16:1n7 and 20:5n3 had an IC50 of 10-20 µM total fatty acid. This

suggests that the antibacterial action of fatty acids occurs in an additive manner

because the IC50 value of the mix is equal to that of 16:1n7 and 20:5n3 when tested
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Table 6.1 – Data collected for the relative and actual mass of each fatty acid in cells

from morph-enriched cultures were tested for a normal distribution by Shapiro-Wilk

test and homogeneity of variance by Levene’s test. As the relative data were

percentage points these were transformed prior to testing using the arcsine square root

function. Where the assumptions of normality and equal variances were violated the

test results are given. In 5/13 cases the relative data were not normally distributed and

in 5/13 cases these data showed unequal variance. For the actual mass data in 6/13

cases the data was not normally distributed and in 6/13 cases the data showed unequal

variance. For all analyses p < 0.05 was considered significant.

Fatty
Relative data Actual mass data

Acid Shapiro-Wilk
test

Levene’s
test

Shapiro-Wilk
test

Levene’s
test

14:0

16:0 F 3,16 = 9.398, p <
0.001

W 20 = 0.851, p <
0.01

16:1n7 F 3,16 = 4.633, p <
0.05

W 20 = 0.870, p <
0.05

F 3,16 = 4.461, p <
0.05

16:2n4 W 20 = 0.838, p <
0.01

F 3,16 = 6.838, p <
0.01

W 20 = 0.900, p <
0.05

F 3,16 = 10.51, p <
0.001

16:3n4 W 20 = 0.880, p <
0.05

16:4n1 W 20 = 0.794, p <
0.001

F 3,16 = 6.520, p <
0.01

18:1n9 F 3,16 = 3.780, p <
0.05

F 3,16 = 3.733, p <
0.05

18:2n6 F 3,16 = 5.153, p <
0.05

F 3,16 = 4.327, p <
0.05

18:3n6 W 20 = 0.802, p <
0.001

18:4n3 W 20 = 0.894, p <
0.05

20:4n6 W 20 = 0.890, p <
0.05

W 20 = 0.880, p <
0.05

20:5n3 F 3,16 = 3.317, p <
0.05

20:6n3 W 20 = 0.879, p <
0.05
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Figure 6.1 – IC50 determinations against S. aureus for (A) 16:1n7, (B) 16:3n4, (C)

20:5n3, (D) 16:1n7 + 20:5n3 and (E) ampicillin showing that 16:1n7 and 20:5n3 have

the same IC50 (10-20 M) but 16:3n4 is not so potent (20-40 M). Ampicillin was

more potent by approximately two orders of magnitude. The antibacterial action of

fatty acids occurs in an additive manner because when 16:1n7 and 20:5n3 were tested

as a 1:1 mix, with a total fatty acid concentration equal to that used when tested

individually, the IC50 value is equal to that of 16:1n7 and 20:5n3 when tested

individually. n = 4 (except 16:1n7+20:5n3 at 1.25 M and ampicillin at 0.0625 M

where n = 3); error bars are ± 1 SE.
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individually. For comparison, ampicillin had an IC50 value between 0.25-0.5 µM

(Figure 6.1).

MBC values against S. aureus are also presented as a range. The lower value is the

plate with the highest concentration of antibacterial compound that had one or more

colonies whilst the higher value is the plate with the lowest concentration of

antibacterial compound that showed no colonies. Thus, the actual MBC lies between

these concentrations (Table 6.2). Lowest MBC values (40-80 µM total fatty acid)

were found for 16:1n7, 20:5n3 and the wells with the combination of these fatty acids

(Table 6.2). It was not possible to determine MBC for 16:3n4 but this value is

unlikely to be much greater than 640 µM as these plates showed very few colonies.

MBC for ampicillin was 320-640 µM (Table 6.2). All microtitre plate studies were

considered to be free from contamination because there were no colonies on the plates

inoculated with the blank reference wells.

6.3.2 Spectrum of activity

16:1n7 significantly inhibited the growth of E. coli and P. citreus (p < 0.001) but not

Ps. aeruginosa and M. luteus (p < 0.05) whereas 16:3n4 and 20:5n3 significantly

inhibited only the growth of P. citreus (p < 0.01; Figure 6.2). Curiously, growth of E.

coli and Ps. aeruginosa in the presence of 16:3n4 was significantly better compared to

growth in the controls (p < 0.01; Figure 6.2).

Disc diffusion showed that 16:1n7 and 20:5n3 was active against MRSA (Figure 6.3)

but neither of these fatty acids was able to inhibit the growth of Candida sp. A
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Table 6.2 – Minimum bactericidal concentrations against S. aureus for ampicillin and

fatty acids tested individually or in combination showing that the most potent fatty

acids were 16:1n7 and 20:5n3. No value was determined for 16:3n4. Values given as

the total concentration of fatty acid(s) required to completely kill an inoculum of 1

x104 cfu after 26 h; n = 3.

Test compound MBC (M)

Ampicillin 320-640

16:1n7 40-80

16:3n4 > 640

20:5n3 40-80

16:1n7 + 20:5n3 40-80
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Figure 6.2 – Growth of E. coli, Ps. aeroginosa (both Gram negative), M. luteus and P.

citreus (both Gram positive) in the presence of 16:1n7, 16:3n4 and 20:5n3 at

concentrations of 640 µM compared to controls (no fatty acid). Significant differences

within the data were tested by one-way ANOVA with the post hoc Tukey’s HSD test

being used to identify which groups differed significantly from the control. Treatment

groups that differ significantly compared to the controls are identified by either ‘a’

(growth reduced compared to control) or ‘b’ (growth better than control). Growth of

P. citreus was significantly reduced by all three fatty acids (one-way ANOVA: F 3,11 =

61.29, p < 0.001) whilst growth of E. coli was significantly reduced by 16:1n7 (one-

way ANOVA: F 3,12 = 54.60, p < 0.001). Growth of E. coli and Ps. aeroginosa in the

16:3n4 wells was significantly better compared to controls (one-way ANOVAs: F 3,12

= 54.60, p < 0.001 and F 3,8 = 8.89, p < 0.01, respectively). n = 4 (except P. citreus

20:5n3 and all Ps. aeroginosa data where n = 3); error bars ± 1 SD.
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Figure 6.3 – Disc diffusion assay plate with zones of multi-resistant S. aureus growth

inhibition caused by (A) 20:5n3 and (B) 16:1n7 showing that both fatty acids inhibit

the growth of this bacterium.

A B
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summary of the spectrum of antibacterial activity of the three fatty acids can be found

in Table 6.3.

6.3.3 Enzymatic release of the fatty acids

Significantly lower antibacterial activity (by approximately five times) was found in

aqueous methanol extracts from cells extracted with boiling aqueous methanol

compared to the cell extracts from cells extracted on ice in the conventional way (t7 =

-2.83, p < 0.05) (Figure 6.4).

6.3.4 Fatty acid levels during culture

The relative percentage composition of fatty acids in aqueous methanol cell extracts

changed during culture (Table 6.4). The most notable observation was that 22:1n9

increased from a stable percentage of ~2 – 8 % between days 4 – 12 to a much higher

34.5 % at day 14. Levels of 16:2n4 and 16:4n1 declined gradually between days 4

and 14 from 4.8 to 1.1 % and from 3.7 to 0.7 %, respectively. 16:0 levels decreased

from 11 % to ~7-9 % during exponential phases (days 6, 8 and 10) then increased

again at day 12 to 10.9 % and further at day 14 to 16.2 %. Levels of 22:1n11 also

decreased during exponential phases (days 6, 8 and 10) from 0.5 % at day 4 to 0.1 %

at day 10 then increased again at day 12 to 0.4 % and further at day 14 to 0.6 %. The

levels of 20:5n3 were greatest at day 6 (31.5 %) then decreased to 9.6 % at day 14

(Table 6.4). With 22:6n3 and 18:2n6, the levels peaked at day 8 (4.5 and 6.3 %,

respectively) then declined to 2.6 and 1.1 % at day 14, respectively. 16:1n7 and

20:4n6 increased to their highest levels at day 10 (22.1 and 1.6 %, respectively) then

reduced to 7.6 and 0.8 % at day 14, respectively (Table 6.4). Levels of 16:3n4

increased slightly in mid to late exponential phase from 8.4 % at day 4 to 10.7 % at
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Table 6.3 – Effect of 16:1n7, 16:3n4 and 20:5n3 at 640 µM on the growth of the

fungus, Candida sp., and Gram positive and Gram negative bacteria showing that

each fatty acid was antibacterial against at least one bacterium but none inhibited the

growth of the fungus. Key: antibacterial (), not antibacterial () and not

determined (n/d).

Species Fatty acid
16:1n7 16:3n4 20:5n3

Gram +ve

M. luteusa   

P. citreusa   

S. aureus b b c

S. epidermidisd n/d n/d 

MRSAe  n/d 

Gram –ve

E. colia   

Ps. aeruginosaa   

Fungus

Candida sp.e   

a Determined by growth inhibition assay in microtitre plate.

b This bacterium was used to isolate the compounds in Chapter 5 using disc diffusion
assay.

c The growth of this bacterium was inhibited when determining IC50 values (Section
6.3.1).

d This bacterium was used to isolate 20:5n3 in Chapter 4 using disc diffusion assay.

e Determined by disc diffusion assay.
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Figure 6.4 – Antibacterial activity against S. aureus on a per cell basis for cell pellets

extracted for 1 h in hot aqueous methanol (~70 ºC) compared to those extracted for 1

h on ice showing significantly lower (p < 0.05) antibacterial activity (by

approximately five times) in those samples extracted in hot aqueous methanol. The

results suggest that the antibacterial activity is dependent upon the action of enzymes.

n = 5 for cell pellets extracted in hot aqueous methanol, n = 4 for those extracted on

ice; error bars are ± 1 SE.
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Table 6.4 – Relative percentage composition of fatty acids in aqueous methanol cell extracts of P. tricornutum grown in the small-scale batch

system showing that the relative level of each fatty acid, including the antibacterial fatty acids isolated in Chapters 4 and 5 (in bold), changes

during culture. n = 4 (except day 14 where n = 3); data given as mean ± 1 SD. Only data for fatty acids that contribute ~1 % or more are given.

Fatty acid Culture harvest day

4 6 8 10 12 14

14:0 8.84 ± 1.22 7.28 ± 0.45 8.59 ± 0.95 8.85 ± 0.68 8.48 ± 0.83 6.45 ± 0.73

14:1n5 0.87 ± 0.14 1.05 ± 0.23 0.95 ± 0.31 0.52 ± 0.12 0.62 ± 0.29 0.84 ± 0.13

16:0 10.93 ± 1.19 7.78 ± 1.21 8.95 ± 1.01 7.08 ± 0.83 10.86 ± 2.70 16.19 ± 1.82

16:1n7 14.66 ± 0.66 14.18 ± 0.94 16.47 ± 2.12 22.08 ± 1.46 16.68 ± 4.10 7.55 ± 2.68

16:2n6 0.39 ± 0.12 0.26 ± 0.09 0.26 ± 0.04 0.31 ± 0.07 0.45 ± 0.20 0.56 ± 0.13

16:2n4 4.81 ± 0.71 4.82 ± 0.55 4.16 ± 0.38 3.99 ± 0.26 3.08 ± 1.03 1.13 ± 0.54

16:3n4 8.35 ± 1.77 8.58 ± 1.01 8.43 ± 0.87 10.67 ± 0.66 11.29 ± 3.19 4.44 ± 3.09

16:4n1 3.65 ± 0.98 3.12 ± 1.84 2.06 ± 0.54 1.59 ± 0.17 1.66 ± 0.62 0.72 ± 0.10

18:0 1.73 ± 0.30 1.71 ± 1.63 1.36 ± 1.00 0.71 ± 0.29 3.10 ± 2.82 4.62 ± 2.57

18:1n9 3.23 ± 0.99 1.58 ± 0.74 3.43 ± 0.96 3.01 ± 0.29 5.03 ± 1.40 5.73 ± 1.11

18:1n7 0.58 ± 0.20 0.83 ± 0.76 0.67 ± 0.15 0.56 ± 0.05 0.97 ± 0.42 1.01 ± 0.54

18:2n6 2.70 ± 0.43 3.14 ± 1.79 6.32 ± 0.77 3.95 ± 0.77 1.83 ± 0.30 1.13 ± 0.16

18:3n6 1.13 ± 0.17 1.94 ± 1.36 1.60 ± 0.11 2.25 ± 0.38 1.80 ± 0.26 0.80 ± 0.35

18:4n3 0.94 ± 0.35 1.15 ± 0.17 0.74 ± 0.05 1.10 ± 0.38 1.01 ± 0.08 0.78 ± 0.29

20:4n6 0.41 ± 0.08 0.53 ± 0.05 0.88 ± 0.22 1.60 ± 0.67 1.34 ± 0.33 0.79 ± 0.28

20:5n3 26.52 ± 1.93 31.51 ± 4.10 23.42 ± 6.11 26.47 ± 2.07 20.90 ± 2.48 9.57 ± 6.14

22:1n11 0.46 ± 0.42 0.13 ± 0.10 0.17 ± 0.06 0.11 ± 0.08 0.41 ± 0.28 0.63 ± 0.30

22:1n9 6.67 ± 5.79 5.62 ± 3.63 7.10 ± 7.86 2.12 ± 1.46 8.08 ± 8.81 34.52 ±10.00

22:6n3 3.16 ± 0.67 3.78 ± 0.52 4.45 ± 0.57 3.05 ± 0.28 2.44 ± 0.14 2.56 ± 1.00

1
6
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day 10 then further to 11.3 % at day 12 before decreasing to only 4.4 % at day 14

(Table 6.4). 18:0 and 18:1n9 increased slightly to 3.1 and 5.0 % at day 12 from ~1.7

and ~3.2 %, respectively, then further at day 14 (to 4.6 and 5.7 %, respectively).

There was a slight reduction in 14:0 at day 14 from ~8 to 6.5 %. Levels of 14:1n5,

16:2n6, 18:1n7, 18:3n6 and 18:4n3 remained relatively stable throughout culture. In

general, the mass of each fatty acid (on a per cell basis) reduced gradually over the

growth curve (Table 6.5). During culture the masses of 16:1n7, 16:3n4 and 20:5n3 on

a per cell basis declined between days 4 and 14 by 22, 21, and 35 times, respectively.

The summed mass of these three fatty acids reduced 27-fold between days 4 – 14

(Figure 6.5). As a final point, the fatty acid 16:2n6 has been only tentatively

identified because a standard is unavailable for comparison.

6.3.5 Fatty acid levels in the different P. tricornutum cell morphs

The relative amount of each fatty acid was determined for aqueous methanol cell

extracts prepared from cultures enriched for either the oval or the fusiform morph and

the PCA showed that the data points split into two populations corresponding to cell

extracts from the cultures enriched for either morph (Figure 6.6). This is highly

suggestive of differences existing between fatty acid contents of the extracts

generated from flasks in the different morphologies. Two-way ANOVA confirmed

that the extracts from the different morphs differed significantly (p < 0.0038) in the

relative amounts of seven fatty acids (14:0, 16:0, 16:2n4, 16:3n4, 16:4n1, 20:4n6,

20:6n3) (Table 6.6) and, on a per cell basis, in the actual amounts of 14:0, 16:2n4 and

16:3n4 (Table 6.7). Also, on a per cell calculation, significantly greater mass of total

fatty acids were found in the aqueous methanol cell extracts from cultures enriched

with cells in the fusiform morph compared to oval-enriched cultures (two-way

167



Table 6.5 – Mass of each fatty acid on a per cell basis in aqueous methanol cell extracts of P. tricornutum grown in the small-scale batch system

showing that the mass of each fatty acid, including the antibacterial fatty acids isolated in Chapters 4 and 5 (in bold), reduces during culture. n = 4

(except day 14 where n = 3); data given as mean ± 1 SD; values are in fg (x10-15 g). Only data for fatty acids that contribute ~1 % or more are given.

Fatty acid Culture harvest day

4 6 8 10 12 14

14:0 25.39 ± 4.41 18.49 ± 6.86 11.84 ± 7.31 13.49 ± 5.49 2.93 ± 1.11 1.26 ± 0.23

14:1n5 2.50 ± 0.47 2.55 ± 0.71 1.19 ± 0.50 0.73 ± 0.15 0.19 ± 0.05 0.14 ± 0.07

16:0 32.12 ± 8.89 19.88 ± 8.55 11.41 ± 5.08 10.60 ± 4.00 3.53 ± 0.70 2.69 ± 1.58

16:1n7 42.83 ± 10.46 36.89 ± 17.40 22.75 ± 14.23 33.88 ± 14.20 5.96 ± 3.07 1.92 ± 0.89

16:2n6 1.07 ± 0.22 0.61 ± 0.19 0.34 ± 0.20 0.49 ± 0.26 0.14 ± 0.04 0.10 ± 0.05

16:2n4 13.74 ± 1.88 12.53 ± 6.03 5.68 ± 3.37 6.12 ± 2.60 1.10 ± 0.58 0.31 ± 0.20

16:3n4 23.85 ± 4.70 22.32 ± 10.37 11.48 ± 6.60 16.16 ± 6.35 4.00 ± 1.96 1.14 ± 0.71

16:4n1 10.65 ± 3.28 8.58 ± 6.46 2.86 ± 1.78 2.42 ± 0.97 0.60 ± 0.34 0.19 ± 0.10

18:0 5.21 ± 2.00 3.64 ± 2.32 1.34 ± 0.55 1.05 ± 0.45 0.85 ± 0.60 0.83 ± 0.34

18:1n9 9.79 ± 4.73 4.03 ± 2.21 4.05 ± 0.97 4.64 ± 2.04 1.64 ± 0.37 1.00 ± 0.58

18:1n7 1.70 ± 0.72 1.78 ± 1.10 0.81 ± 0.24 0.83 ± 0.25 0.30 ± 0.07 0.18 ± 0.15

18:2n6 7.81 ± 1.87 8.60 ± 5.74 8.71 ± 5.49 5.95 ± 2.62 0.65 ± 0.29 0.25 ± 0.06

18:3n6 3.27 ± 0.70 4.37 ± 1.93 2.10 ± 1.07 3.51 ± 1.76 0.63 ± 0.26 0.19 ± 0.08

18:4n3 2.63 ± 0.97 3.03 ± 1.67 0.97 ± 0.49 1.50 ± 0.19 0.34 ± 0.11 0.14 ± 0.05

20:4n6 1.24 ± 0.52 1.37 ± 0.62 1.09 ± 0.43 2.64 ± 1.88 0.48 ± 0.24 0.19 ± 0.09

20:5n3 76.89 ± 15.54 80.67 ± 34.80 33.88 ± 24.06 39.47 ± 13.21 7.32 ± 3.06 2.18 ± 1.09

22:1n11 1.18 ± 1.01 0.36 ± 0.28 0.21 ± 0.09 0.16 ± 0.12 0.12 ± 0.06 0.12 ± 0.09

22:1n9 22.85 ± 21.75 13.62 ± 7.75 5.68 ± 5.97 2.77 ± 1.01 2.74 ± 3.06 6.14 ± 3.25

22:6n3 9.46 ± 4.09 9.41 ± 3.15 5.91 ± 3.19 4.52 ± 1.45 0.84 ± 0.31 0.45 ± 0.13
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Figure 6.5 – Mass of 16:1n7 (●), 16:3n4 (□), 20:5n3 (▼) and their sum () on a per

cell basis in aqueous methanol cell extracts of P. tricornutum during growth in the

custom batch culture system showing that their levels reduce during the 14 days of

culture. n = 4 (except day 14 where n = 3); all error bars are ± 1 SE.
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Figure 6.6 – Plot of first two principal components calculated from 13 fatty acids

found in aqueous methanol cell extracts prepared from cultures enriched in either the

oval (O) or fusiform (F) morphs. The first and second components accounted for 36.8

and 22.6 % of the total variance, respectively. n = 20.

O

O

O

O O

O
O

O

O

O

F F
F

F

F

F

F

F

F

F

Principal Component 1 (36.8 %)

P
ri

n
ci

p
al

C
o
m

p
o
n

en
t

2
(2

2
.6

%
)

170



Table 6.6 – Relative percentage of each fatty acid in aqueous methanol cell extracts

from enriched cultures containing either >71 % fusiform cells or 100 % oval cells

showing that cells in the fusiform-enriched cultures contain significantly greater

proportions of 14:0, 16:2n4, 16:3n4 and 16:4n1 but significantly lower proportions of

16:0, 20:4n6 and 20:6n3. Data for the three antibacterial fatty acids isolated in

Chapters 4 and 5 are indicated in bold. n = 10; data given as mean ± 1 SD.
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Fatty acid Relative percentage of each fatty acid in cell extracts

Fusiform Oval

14:0a,c 7.89 ± 0.37 6.39 ± 0.28

16:0b,d 9.59 ± 1.32 10.70 ± 1.45

16:1n7 21.04 ± 1.99 21.72 ± 1.02

16:2n4a,e 4.26 ± 0.44 1.92 ± 0.23

16:3n4a,f 10.15 ± 1.52 9.10 ± 0.69

16:4n1a,g 0.66 ± 0.10 0.41 ± 0.30

18:1n9 2.66 ± 0.76 3.58 ± 1.21

18:2n6 1.95 ± 0.23 2.02 ± 0.56

18:3n6 1.23 ± 0.19 1.21 ± 0.10

18:4n3 0.64 ± 0.09 0.70 ± 0.15

20:4n6b,h 1.22 ± 0.13 1.74 ± 0.24

20:5n3 36.60 ± 2.36 37.79 ± 1.39

20:6n3b,i 2.12 ± 0.16 2.71 ± 0.19

a Significantly greater in cells from fusiform-enriched cultures (p < 0.0038).

b Significantly greater in cells from oval-enriched cultures (p < 0.0038).

c Two-way ANOVA: F 3,16 = 119.3, p < 0.001.

d Two-way ANOVA: F 3,16 = 12.08, p < 0. 003.

e Two-way ANOVA: F 3,16 = 344.9, p < 0.001.

f Two-way ANOVA: F 3,16 = 14.32, p < 0.002.

g Two-way ANOVA: F 3,16 = 45.45, p < 0.001.

h Two-way ANOVA: F 3,16 = 42.60, p < 0.001.

i Two-way ANOVA: F 3,16 = 71.25, p < 0.001.
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Table 6.7 – Mass of fatty acids in aqueous methanol cell extracts from 3.735 x 108

cells in enriched cultures containing either >71 % fusiform cells or 100 % oval cells

showing that cells in the fusiform-enriched cultures contain a significantly greater

quantity of total fatty acids and greater quantities of 14:0, 16:2n4 and 16:3n4. Data

for the three antibacterial fatty acids isolated in Chapters 4 and 5 are indicated in bold.

n = 10; data given as mean ± 1 SD.

Fatty acid Mass of each fatty acid in cell extracts (g x10-5)

Fusiform Oval

14:0a,b 1.884 ± 0.7973 1.295 ± 0.7686

16:0 2.370 ± 0.1784 2.305 ± 1.5529

16:1n7 5.117 ± 2.4066 4.293 ± 2.4041

16:2n4a,c 1.005 ± 0.4446 0.411 ± 0.2697

16:3n4a,d 2.293 ± 0.6821 1.785 ± 1.0004

16:4n1 0.162 ± 0.0816 0.113 ± 0.1104

18:1n9 0.672 ± 0.3981 0.680 ± 0.3741

18:2n6 0.460 ± 0.1895 0.435 ± 0.3263

18:3n6 0.293 ± 0.1304 0.247 ± 0.1501

18:4n3 0.155 ± 0.077 0.144 ± 0.0877

20:4n6 0.289 ± 0.1157 0.334 ± 0.179

20:5n3 8.520 ± 0.1609 7.579 ± 4.4627

20:6n3 0.00511 ± 0.002254 0.558 ± 0.3425

Totale 23.731 ± 9.7344 20.179 ± 11.9122

a Significantly different between morphs (p < 0.0038).

b Two-way ANOVA: F 3,16 = 40.06, p < 0.001.

c Two-way ANOVA: F 3,16 = 46.97, p < 0.001.

d Two-way ANOVA: F 3,16 = 15.20, p < 0.001.

e Significantly different between morphs (two-way ANOVA: F 3,16 = 6.282, p < 0.05).
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ANOVA: F 3,16 = 6.282, p < 0.05; Table 6.7). Additionally, significantly greater mass

(p < 0.05) of the three previously isolated fatty acids when summed

(16:1n7+16:3n4+20:5n3) was found in cell extracts produced from cultures enriched

in fusiform cells compared to oval-enriched cultures on a per cell basis (Figure 6.7).

6.4.0 Discussion

IC50 values against S. aureus were determined for all three fatty acids and these were

all µM concentrations. Of the three fatty acids, only 16:1n7 was found to inhibit the

growth of a Gram negative species (E. coli) whilst 16:1n7 and 20:5n3 inhibited the

growth of MRSA. Levels of fatty acids in the aqueous methanol cell extracts changed

throughout the P. tricornutum growth curve. The results appear to confirm that the

free fatty acids in cell extracts are produced by enzyme action because significantly

lower (p < 0.05) antibacterial activity was found in preparations from cell pellets

extracted in hot solvent. Finally, extracts from cultures enriched in different cell

morphs showed that cell morphology affected the levels of many fatty acids.

In the present study, 16:1n7 was found to be antibacterial against Gram positive and

Gram negative species, which confirms previous reports (Table 6.8). However, this is

the first report that 16:1n7 is active against the human pathogen, MRSA. Moreover,

16:1n7 is shown for the first time to demonstrate activity against a marine bacterium,

specifically the Gram positive P. citreus. No activity was found for 16:1n7 against

Candida sp., which confirms the findings of Bergsson et al. (2001b) but contradicts

the results of Kabara et al. (1972). This discrepancy is likely to be due to the different

strains and assay used. Previously, Wang (1999) showed 16:3n4 was antibacterial

against various Gram positive human pathogens (Table 6.8) but the current study is

the first to report 16:3n4 to be antibacterial against a marine bacterium (P. citreus).

174



Figure 6.7 – The combined mass of the three antibacterial fatty acids (isolated in

Chapters 4 and 5) found in aqueous methanol cell extracts of 3.735 x 108 cells from

enriched cultures containing either >71 % fusiform cells or 100 % oval cells showing

that extracts from the fusiform-enriched cultures contain a significantly greater

quantity (two-way ANOVA: F 3,16 = 5.838, p < 0.05). Due to inter-batch variability

data is expressed as relative to batch mean (batch mean = 100 %). n = 10; error bars

indicate ± 1 SE for the cumulative mass of the three fatty acids.

Oval Fusiform

T
o

ta
l
m

a
s
s

o
f
is

o
la

te
d

fa
tt
y

a
c
id

s
c
o

m
p
a

re
d

to
b
a

tc
h

m
e
a

n
(%

)

0

25

50

75

100

125
20:5

16:1

16:3

175



Table 6.8 – Reports in the literature for the spectrum of antibacterial activity of the

free fatty acids, 16:1n7, 16:3n4 and 20:5n3.

Fatty acid and bacterial species Reference

16:1n7
Gram +ve
Bacillus larvae Feldlaufer et al. (1993)
Clostridium welchii Kabara (1978)
Corynebacterium sp. Kabara et al. (1972)
Micrococcus sp. Kabara et al. (1972)
Mycobacterium spp. (15 spp.)a Saito et al. (1984)b

Nocardia asteroides Kabara et al. (1972)
Pneumococci sp. Kabara et al. (1972)
Staphylococcus aureus Kabara et al. (1972); Dye and Kapral (1981)b;

Bergsson et al. (2001)b; Zheng et al. (2005)b

Staphylococcus epidermidis Kabara et al. (1972)
Streptococcus sp. (group A) Kabara et al. (1972); Bergsson et al. (2001)b

Streptococcus sp. (group B) Bergsson et al. (2001)b

Streptococcus sp. (beta-haemolytic non-A) Kabara et al. (1972)
Streptococcus pyogenes Zheng et al. (2005)b

Gram -ve
Helicobacter pylori Sun et al. (2003)
Neisseria gonorrhoeae Miller et al. (1977); Bergsson et al. (1999)

16:3n4
Gram +ve
Bacillus cereus Wang (1999)
Bacillus subtilis Wang (1999)
Carynobacter xerosis Wang (1999)
Enterococcus sp. (vancomycin resilient) Wang (1999)
MRSA Wang (1999)
Pyogenes vulgaris Wang (1999)
Shigella dysenteriae Wang (1999)
Streptococcus mitis Wang (1999)
Streptococcus facaelis Wang (1999)

20:5n3
Gram +ve
Lactococcus garvieae Benkendorff et al. (2005)
MRSA Ohta et al. (1995)
Mycobacterium spp. (15 spp.)a Saito et al. (1984)b

Staphylococcus aureus Knapp and Melly (1976)b; Ohta et al. (1995)

Gram -ve
Vibrio harveyi Benkendorff et al. (2005)
Vibrio anguillarum Benkendorff et al. (2005)
Vibrio alginocolyticus Benkendorff et al. (2005)

a These are not conventional Gram positive (as they do not take up the stain) but are
widely considered to be so due to the structure of their cell wall (Trifiro et al., 1990).

b These studies did not explicitly state the position of the double-bond though it is
almost certainly in the n7 position.
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The data obtained in the present study confirm that 20:5n3 is active against Gram

positive species. Previously free 20:5n3 has been shown to be antibacterial against S.

aureus (Knapp and Melly, 1986; Ohta et al., 1995; Shin et al., 2007), MRSA (Ohta et

al., 1995) and the marine pathogen Lactococcus garvieae (Benkendorff et al., 2005)

(Table 6.8). Moreover, Benkendorff et al. (2005) showed 20:5n3 is active against

Gram negative marine Vibrio species (Table 6.8). The results of the present study

confirm previous reports that unsaturated fatty acids show greater antibacterial

activity against Gram positive than Gram negative species (Kodicek and Worden,

1945; Kodicek, 1949; Galbraith et al., 1971; Kabara et al., 1977). Curiously, none of

the fatty acids tested were active against M. luteus even though crude aqueous

methanol cell extracts inhibited the growth of this bacterium (Figure 3.4). This could

be because the compound responsible for the anti-M. luteus activity was unstable after

separation by RP-HPLC or the concentration tested may have been too low to show

the activity.

It is often difficult to compare results between studies on the antibacterial potency of

free fatty acids as authors have used different methods. Nevertheless, it has been

widely reported that potency of antibacterial activity varies upon the length of the

carbon chain (Sheu and Freese, 1972; Miller et al., 1977) and degree of unsaturation

(Kabara et al., 1973; Saito et al., 1984; Ohta et al., 1995; Sun et al., 2003). Generally

greatest antibacterial activity for saturated fatty acids is found in those possessing a

C12 carbon chain (Kabara et al., 1972; Feldlaufer et al., 1993; Sun et al., 2003).

Antibacterial activity tends to increase with greater number of double bonds present in

those fatty acids with the same number of carbons in the chain (Kabara et al., 1972;

Knapp and Melly, 1986; Sun et al., 2003). In the present study 16:1n7 and 20:5n3
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were determined to be approximately twice as potent against S. aureus as 16:3n4.

With respect to the MBC, 16:1n7 and 20:5n3 were much more potent than 16:3n4, for

which a definitive value was not determined due to the low quantity of sample

available. Sun et al. (2003), using different methods from the present study and the

Gram negative pathogen Helicobacter pylori, determined IC50 and MBC values for

16:1n7 as 250 µM and 1000 µM, respectively, and for another Gram negative

pathogen, Neisseria gonorrhoeae, Miller et al. (1977) determined an IC50 of 7 µM.

Further, Zheng et al. (2005) determined the MBC values for 16:1n7 against S. aureus

and S. pyogenes to be 400 and 100 µM, respectively. The only previous studies on

the potency of 16:3n4 and 20:5n3 have used a disc diffusion assay and presented the

data as minimum inhibitory concentration (MIC), which is the lowest concentration

that causes a clear zone of bacterial growth inhibition around the disc. This makes

comparison impossible but for entirety, Wang (1999) reported the MIC for 16:3n4

against both MRSA and vancomycin-resilient enterococcus to be 15-20 µg/disc (0.06-

0.08 µM/disc) whilst Ohta et al. (1995) determined the MIC for 20:5n3 against S.

aureus and MRSA to be 10 and 20 µg/disc (0.04 and 0.08 µM/disc), respectively.

The potency of the three fatty acids approximates closely to previous data against

Gram positive species (Knapp and Melly, 1986; Zheng et al., 2005). Nevertheless,

the finding that 16:1n7 is more potent than 16:3n4 contradicts the generally accepted

principle that fatty acids of the same carbon chain length but with more double bonds

have greater antibacterial potency. However, it is known that the position of double

bonds can also affect activity (Kabara et al., 1973; Kabara et al., 1977) and, perhaps

more importantly, the 16:3n4 sample used in these experiments was the HPLC-

fraction isolated in Chapter 5 and not a highly pure commercial sample as was the

case for 16:1n7 and 20:5n3. The 16:3n4-containing HPLC-fraction was not entirely
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pure and contained a quantity of the methylated fatty acid, which considering

methylated fatty acids possess only very weak or no antibacterial activity compared to

the free acid (Kodicek and Worden, 1945; Dye and Kapral, 1981; Ohta et al., 1995;

Zheng et al., 2005), would apparently reduce the fraction’s potency.

Combinations of antibacterial free fatty acids were found in this thesis not to act in a

synergistic or antagonistic way, rather they were found to function in an additive

fashion confirming a previous observation by Sun et al. (2003). There are no

published IC50 and MBC values whatsoever for 16:3n4 or 20:5n3, and for 16:1n7,

there is no previously reported IC50 value against a Gram positive species.

Fatty acid composition of P. tricornutum has been shown to change during culture

(Orcutt and Patterson, 1975; Cooper et al., 1985; Siron et al., 1989; Liang et al.,

2006). In the present study, each fatty acid was more abundant early in the growth

curve compared to later but comparisons with other studies are difficult because the

extraction, unlike the other published studies, was not optimised for lipids, only

antibacterial activity. As such, the extraction contained only a fraction (~0.5 %) of

the total cell lipid contents (Appendix XI) which would largely comprise polar lipid

compounds and free fatty acids. However, the changes in fatty acids found in

aqueous methanol cell extracts throughout culture presented herein largely conform to

the findings of Liang et al. (2006), who reported a marked increase in 16:1n7 and

18:1n7 and decrease in 16:3n4 and 20:5n3 during xenic culture. The only difference

is that 16:1n7 was found to decrease during culture under the growth and extraction

conditions used in the present study. Orcutt and Patterson (1975) examined the

relative composition of P. tricornutum in stationary phase and reported that cells
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contained 53 % 16:1; a result very different from the present study. Finally, Siron et

al. (1989) found cellular fatty acid content increased 3-fold during culture but in the

present study mass of fatty acids calculated on a ‘per cell’ basis reduced five-fold

during culture. Contradictory findings in the aforementioned studies reflect the use of

different extraction protocols but are likely to have been compounded by the use of

different P. tricornutum strains and culture conditions. The reduction in ‘per cell’

total mass of fatty acids and the summed relative and actual levels of the three

antibacterial fatty acids during culture follows the same trend as the reduction in

antibacterial activity (on a per cell basis) through culture (Figure 6.8). This appears to

further implicate the fatty acids as being responsible for the antibacterial activity of P.

tricornutum cell extracts. No previous study has considered the changing levels of

fatty acids during culture in the context of their antibacterial action.

Only a few studies have considered differences between the P. tricornutum morphs

(Table 1.5) and so this is the first study to report a difference in antibacterial activity

between the morphs, with greater activity attributable to a fusiform cell compared to

an oval cell. Whilst the morphs differed in relative and actual amount of fatty acids in

cell extracts a significantly greater mass of the three isolated antibacterial fatty acids

was found in extracts from fusiform-enriched cultures (p < 0.05). Therefore, the

greater quantity of these fatty acids in extracts from fusiform-enriched cultures could

explain the greater antibacterial activity of these extracts compared to extracts

prepared from oval-enriched cultures. Lewin et al. (1958) compared the different

morphs and found that in oval cells 24 % of the dry weight was lipid whereas in

fusiform cells the lipid comprises 34 %. Little difference was found with respect to

the dry weight of the cells (confirmed in the present study; Appendix XII) suggesting
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Figure 6.8 – The summed relative percentage (●) and actual mass (□) per cell of the 

three antibacterial fatty acids isolated in chapters 4 and 5 (16:1n7, 16:3n4 and 20:5n3)

throughout culture showing that levels reduce during growth. Also shown is the

antibacterial activity per cell (▼) showing that this reduces in a similar way. For data

each day n = 4 (except day 14 where n = 3); all error bars ± 1 SE.
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that fusiform cells contain a greater quantity of total lipid, thus possibly explaining the

greater mass of fatty acids found in aqueous methanol cell extracts. An alternative

suggestion is that the fusiform cells are more fragile due to their shape and cell wall

structure and are therefore more likely to lose their cell integrity and release

antibacterial fatty acids.

In the present study, reduced antibacterial activity was found in cell extracts that were

extracted in boiling methanol compared with those on ice, which may be attributed to

inactivation of the enzymes that cleave antibacterial free fatty acids from lipids

(Budge and Parrish, 1999; Jüttner, 2001). Therefore, the antibacterial unsaturated free

fatty acids are probably released as a cascade on cell disruption but consideration

needs to be given to whether these compounds can reach sufficiently high

concentrations to affect surrounding bacteria. A calculation was performed to

determine a spherical area in which the concentration of the fatty acids released from

an algal cell could reach a level that affected bacteria located in that area. The IC50

values determined above were selected as the measure for showing an effect on

bacteria with the upper values of the range being used for conservatism. Therefore,

the IC50 values used for the following calculations are 20 µM (or 2 x10-5 M L-1) for

16:1n7 and 20:5n3 and 40 µM (or 4 x10-5 M L-1) for 16:3n4. Using data for the levels

of fatty acids found in cell extracts from P. tricornutum culture harvested at day 4, a

P. tricornutum cell ‘released’ 4.28 x10-14 g 16:1n7, 2.39 x10-14 g 16:3n4 and 7.69 x

10-14 g 20:5n3 (or 1.69 x10-16 M, 9.56 x10-17 M and 2.55 x10-16 M, respectively) when

calculated on a per cell basis. The following calculations assume that all the fatty

acids in the extract were in the free form, i.e., antibacterially active. The volume (in

litres) in which a fatty acid reaches the IC50 concentration is determined by dividing
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the total molar quantity of the fatty acid by its respective IC50 value (in M L-1). Thus

the volume in which 1.69 x10-16 M of 16:1n7 reaches 2 x10-5 M L-1 is 8.45 x10-12 L,

the volume in which 9.56 x10-17 M of 16:3n4 reaches 4 x10-5 M L-1 is 2.39 x10-12 L

and the volume in which 2.55 x10-16 M of 20:5n3 reaches 2 x10-5 M L-1 is 1.28 x10-11

L. Assuming that these fatty acids act in an additive fashion these volumes can be

summed giving a total volume of at least 2.36 x10-11 L or 2.36 x10-14 m3. If it is

assumed that the fatty acids diffuse uniformly to give a sphere, the radius of which

can be calculated from: r = 3√((V÷4π) x 3) where r is the radius and V is the volume.

Thus the calculated radius of the sphere is 17.7 µm (Figure 6.9). This simple

hypothetical model is based on broad assumptions that have limitations and so this is

merely intended to be a starting point for assessing the broad ecological relevance of

fatty acids. Further attention needs to be directed to the solubility and stability of free

fatty acids in seawater for which few data exist (Brash, 2006). At the levels seen in

this study free fatty acids would be expected to be completely soluble (Sun et al.,

2003) but as unsaturated free fatty acids are relatively unstable the half-life in

seawater requires evaluation. The calculated model assumed that the fatty acids

remained unaffected by other molecules that may be released during cellular

disruption though this will not be the case as fatty acids are known to bind proteins

(Galbraith and Miller, 1973b; Lacey and Lord, 1981), which will render the fatty

acids antibacterially inactive. The model assumes that the fatty acids are concentrated

evenly throughout the calculated zone and that this occurs at an instant in time. To

enable further refinement, the rapidity of release needs to be studied. However, the

model excludes the potential additional antibacterial effects of other fatty acids.

Finally, the model was calculated for the fatty acids in the extract which represented

~0.53 % of the total fatty acids though Jüttner (2001) estimated that ~30 % of total
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Figure 6.9 – Predicted zone of antibacterial activity around an oval P. tricornutum

cell if the isolated antibacterial fatty acids found in aqueous methanol cell extracts

from a day 4 culture were released in an instant upon cell disintegration. It assumes

that the fatty acids disperse equally in all directions and each fatty acid is found at

equal concentration throughout this area. The zone has been calculated from the IC50

value of the fatty acids against S. aureus. The diagram is to scale assuming that the P.

tricornutum cell is 5 µm in length.
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fatty acids may be freed by lipases, which suggests that the proposed model is

conservative.

In conclusion, it appears from potency data that 16:1n7 and 20:5n3 are responsible for

most of the antibacterial activity of aqueous methanol cell extracts of P. tricornutum

though 16:3n4 does make a contribution. The differing levels of the three

antibacterial fatty acids in the cell extracts appears to explain the changing level of

antibacterial activity throughout the culture of P. tricornutum. Further, the greater

level of antibacterial activity on a per cell basis seen in cell extracts from fusiform-

enriched cultures compared to oval-enriched culture appears to be explained by the

higher level of the antibacterial fatty acids in extracts from fusiform-enriched cultures.
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Chapter 7: General discussion

Three antibacterial long-chain unsaturated fatty acids, 16:1n7, 16:3n4 and 20:5n3,

were isolated from aqueous methanol cell extracts prepared from axenic cultures of

the marine diatom, Phaeodactylum tricornutum. These fatty acids are active against

S. aureus at micromolar (µM) concentrations and are released when the diatom cell

loses its integrity. Changes in the levels of these fatty acids explain the reduction in

antibacterial activity of cell extracts on a per cell basis during P. tricornutum culture

and the greater antibacterial activity in extracts prepared from fusiform- compared to

oval-enriched cultures.

The fatty acids, 16:1n7, 16:3n4 and 20:5n3, were isolated from aqueous methanol cell

extracts in Chapters 4 and 5. The cumulative concentration of these three fatty acids

was calculated to reach a maximum of 450 µM in cell extracts prepared from the time

series cultures (Section 3.2.2) harvested at day 10 when antibacterial activity was

greatest (Figure 3.2). When one considers that the IC50 values of the three fatty acids

ranged from 10 to 40 µM (Figure 6.1) it is possible that these fatty acids are

responsible for at least most of the antibacterial activity of the P. tricornutum cell

extracts prepared in the present study. To quantitatively assess the contribution of the

three fatty acids to the antibacterial activity of cell extracts a sample containing the

same concentration of the three fatty acids as a crude extract will have to be prepared

and compared to the activity of the crude extract. Before this can be performed

however, the level of free fatty acids, as a fraction of the total fatty acids in the cell

extract, will have to be determined because it is only the free fatty acids that have

appreciable antibacterial activity (Dye and Kapral, 1981; Willie and Kydonieus,

2003). It is likely that the same three fatty acids isolated in the present study are
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responsible for the activity of P. tricornutum cell extracts reported elsewhere (Table

1.4). Free fatty acids may explain the high occurrence of antibacterial activity

reported in diatom species, especially as organic solvent extractions often contain the

greatest antibacterial activity (Duff et al., 1966; Aubert et al., 1979; Aaronson and

Dubinsky, 1982; Viso et al., 1987; Kellam and Walker, 1989; Pesando, 1990; Lincoln

et al., 1990). If free fatty acids are indeed confirmed to be responsible for much of

the activity of diatom cell extracts, the potential of diatoms as a natural source of

novel antibacterial and other bioactive compounds may be limited. To reduce the

chances for isolating free fatty acids in antibacterial or other bioassays when

screening diatoms for bioactive compounds in future, lipase inhibitors could be added

when preparing cell extracts.

For each of the three fatty acids isolated from aqueous methanol cell extracts prepared

from axenic P. tricornutum cultures in Chapters 4 and 5, the yields were calculated

for 16:1n7, 16:3n4 and 20:5n3 to be 0.026, 0.0086 and 0.2 mg L-1, respectively.

These yields are very low when compared to other studies (Yongmanitchai and Ward,

1991; Otero et al., 1997; Molina Grima et al., 1999a) which probably reflect the use

of an extraction protocol that was not optimised for lipids. In the present study, the

greater yield of 20:5n3 compared to 16:1n7 and 16:3n4 is probably due to the

different separation methods used and, maybe more importantly, 16:1n7 and 16:3n4

separated into multiple fractions (Section 5.3.4).

The fatty acids isolated in the present study are some of the major fatty acid

components of P. tricornutum lipids (Orcutt and Patterson, 1975; Moreno et al., 1979;

Siron et al., 1989; Yongmanitchai and Ward, 1992; Molina Grima et al., 1999b; Patil
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et al., 2007). The results here confirm that the fatty acids are released by enzyme

action as reported for other diatoms (Budge and Parrish, 1999; Jüttner, 2001; Pohnert,

2002). Other studies have found that the free fatty acids are cleaved from the polar

lipid species that constitute cellular membranes when the diatom cell disintegrates

(Parrish and Wangersky, 1987; Budge and Parrish, 1999; Cutignano et al., 2006), but

these fatty acids are not cleaved from triacylglycerides (TAG) (Budge and Parrish,

1999; Pohnert, 2002; Cutignano et al., 2006). Whether the free fatty acids isolated in

the present study are released from the polar lipid species requires confirmation but it

seems likely, especially as Yongmanitchai and Ward (1992) reported that up to 90 %

of total 20:5n3 of P. tricornutum was found in the polar lipid fraction, with 16:1n7

and 16:3n4 also identified as dominant components of the polar lipids

(Yongmanitchai and Ward, 1993). Further, other workers have determined that

during exponential phase fixed carbon is directed into growth and cell division and

the formation of the polar lipids such as membrane glycolipids (for example, MGDG)

and phospholipids (Bergé and Barnathan, 2005). However, towards the end of the

growth curve (stationary phase) fixed carbon is directed towards triacylglycerides

(TAG) for long-term energy storage perhaps due to nitrogen limitation (Parrish and

Wangersky, 1987; Bergé and Barnathan, 2005). This gradual switch from the

production of polar lipid species to TAG may explain the reduction in antibacterial

activity (on a per cell basis) during progression through the P. tricornutum growth

curve (Figure 3.3) as the pool of polar lipids available to lipases, on cellular

disintegration, reduces. In Chapter 3 the antibacterial activity attributable to a

fusiform cell was found to be greater than that of an oval cell and this was shown in

Chapter 6 to be due to the higher levels of the three isolated fatty acids in the extracts

from fusiform cells. It is proposed that this might be because the fusiform cells
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contain greater total quantities of lipid or are more fragile due to their cellular

structure and could therefore be extracted more efficiently. But, it could be that oval

cells contain higher amounts of TAG in their total lipids and, as TAG is not acted

upon by lipases to produce antibacterial fatty acids, there would be fewer quantities of

these fatty acids in extracts. The amounts of each class of lipid (MGDG, TAG, etc.)

could be determined for oval and fusiform cells to qualify this suggestion.

The production of free fatty acids upon wounding or cellular disintegration is,

metabolically speaking, an exceptionally energy-efficient and cost-effective system of

defence. The fatty acids are released from lipids (that are essential cell components

and are probably located in membranes) by lipases and, although the lipase(s)

responsible have yet to be fully identified (Cutignano et al., 2006), they are enzymes

of primary metabolism that probably function differently in healthy cells. Such an

activated defence pathway has well documented benefits such as low self-toxicity

(Wolfe, 2000; Pohnert, 2004). Furthermore, the metabolic cost of such a system can

be considered minimal or nil and require very low or no maintenance, as the fatty

acids are released from cell components that have to be maintained regardless and the

defence is only triggered in dying cells (Pohnert, 2005). The benefit of this defence to

an individual cell is zero because the cell has to be destroyed for the defence pathway

to be triggered. Intuitively therefore, it would seem unlikely that this trait would be

selected. However, it is conceivable that such a system could be selected for on the

basis that it could increase the fitness of closely genetically-related organisms i.e., kin

selection. This is plausible, as diatoms generally divide asexually and, as such, cells

close together spatially will therefore be clones (Wolfe, 2000). However, recent

evidence has questioned the clonal nature of diatom blooms and, in fact, diatom
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blooms exhibit large intraspecific variation (Rynearson and Armbrust, 2005). Even

so, this defence could be selected for at the population level due to the negligible costs

in possessing and maintaining this defence pathway. Such a metabolically

inexpensive pathway means most cellular resources are allocated to growth and cell

division and the rapid completion of the lifecycle (Pohnert, 2000; Jüttner, 2001;

Pohnert, 2005). Fatty acid release is an efficient activated defence that may be

considered alongside the DMSP and oxylipin pathways.

Protection, rather than resource competition, is thought to drive microalgal evolution

(Smetacek, 2001) with predation (i.e., grazing) considered to be a major selection

pressure (Hay, 1996; Smetacek, 2001; Shurin et al., 2006). Hence most microalgal

defence systems are evaluated for their defensive protection against grazer attack.

However, as suggested in Section 1.4 it is entirely reasonable that a defence system

will act against multiple threats (Wolfe, 2000). Whilst grazers may be the major

threat to microalgae, the importance of pathogens should not be overlooked (Mitchell,

1971; Brussaard, 2004) though only a few studies have identified microbial pathogens

of microalgae. These include viruses (Brussaard, 2004; Nagasaki et al., 2005) and

bacteria (Stewart and Brown, 1969; Baker and Herson, 1978; Coder and Starr, 1978;

Cole, 1982; Imai et al., 1993; Peterson et al., 1993; Mayali and Doucette, 2002;

Mayali and Azam, 2004; Jeong et al., 2005; Kim et al., 2007). The release of

antibacterial fatty acids from dead and dying P. tricornutum cells may function to

defend the diatom population against attack by bacterial pathogens. They may have

broader significance because fatty acids have remarkably broad biological activities at

very low concentration including toxicity to bacteria, viruses (Thormar et al., 1987;

Hilmarsson et al., 2006), fungi (Bergsson et al., 2001b), algae (McGrattan et al.,

190



1976; Suzuki et al., 1996; Ikawa et al., 1997; Wu et al., 2006), protozoans (Rohrer et

al., 1986; Dohme et al., 2001), red blood cells (Yasumoto et al., 1990; Arzul et al.,

1995; Fu et al., 2004), fish (Marshall et al., 2003), an anostracan grazer (Jüttner,

2001), brine shrimp, abalone and mosquito larvae (Curtis et al., 1974; Jensen et al.,

1990; Harada et al., 2000; Caldwell et al., 2003), Daphnia magna (Reinikainen et al.,

2001) and can inhibit the development of fertilised echinoderm and sea urchin eggs

(Murakami et al., 1989; Sellem et al., 2000). Further, free fatty acids can inhibit

photosynthesis (Peters and Chin, 2003). Often these fatty acids are highly active at

µM concentrations and 20:5n3, one of the fatty acids isolated in the present study, has

been shown to exhibit some of these activities at very low concentration (Table 7.1).

Moreover, at 20 µM, 16:1n7 can inhibit photosynthesis within seconds (Peters and

Chin, 2003). Thus free fatty acids may provide a comprehensive and multifunctional

defence against numerous microbial pathogens, such as bacteria and viruses, and

predators such as copepods or protozoan flagellates.

Many further questions need to be addressed if the significance the proposed fatty

acid defence cascade, triggered on cell disintegration, is to be fully evaluated. There

have been relatively few reports of bacterial pathogens of microalgae and more

attention is needed in this area to identify a suitable diatom-bacterial pathogen

interaction for assessing the relevance of the proposed fatty acid release mechanism as

a defence against bacteria and other pathogens. It is curious that long-chain fatty

acids, such as those isolated in the present study, show greater antibacterial activity

under weak alkaline conditions (pH 8) compared to weakly acidic conditions (pH 6)

(Galbraith and Miller, 1973a). The importance of the free fatty acids functioning as

conventional allelochemicals is worthy of further consideration. The possible
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Table 7.1 – Reported biological activities for µM concentrations of 20:5n3 showing

that this compound is active in various assays.

Reported
activity

Specific example Active
concentration

Reference

Anti-algal Total growth inhibition of
conchospores of red
microalga, Heterosigma
akashiwo

6.6 µM Kakisawa et al.
(1988)

Growth inhibition of green
eukaryotic microalga,
Chlorella vulgaris

IC50 410 µM Wu et al. (2006)

Growth inhibition of green
eukaryotic microalga,
Monoraphidium contortum

IC50 330 µM Wu et al. (2006)

Total growth inhibition of
green macroalga, Monostroma
oxyspermum

3.3 µM Suzuki et al. (1996)

Growth inhibition of diatom,
Chaetoceros gracile

IC99 7 µMa Arzul et al. (1995)

Anti-grazer Toxic to anostracan grazer
Thamnocephalus platyurus

IC50 34 µM Jüttner (2001)

Toxic to nauplii of brine
shrimp, Artemia salina

33 µMb Caldwell et al. (2003)

Anti-proliferative Inhibits sea urchin egg
cleavage

IC50 0.34 µM Sellem et al. (2000)

Reduces proliferation of
human HL-60 cells

30 µM Finstad et al. (1994)

Haemolytic Total haemolysis of sheep red
blood cells

40 µM Arzul et al. (1995)

Haemolysis of human
erythrocytes

33 µM Fu et al. (2004)

Ichthyotoxic Toxic to damselfish,
Acanthochromis marina

IC50 8.9 µM Marshall et al. (2003)

Settlement and
metamorphosis
cue

Induces settlement and
metamorphosis of tube worm
Phragmatopoma californica

166 µM Pawlik (1986)

a Dosage required to inhibit growth by 99 %.

b Survival of nauplii significantly lower compared to control. 192



involvement of free fatty acids as defence against grazers warrants much deeper

investigation, especially due to the importance of this selection pressure on diatom

population size and evolution (Hay, 1996; Selph et al., 2001; Smetacek, 2001).

Whilst 20:5n3 is toxic to grazers (Jüttner, 2001; Caldwell et al., 2003) the toxicity of

16:1n7 and 16:3n4 to grazers needs to be assessed. The toxicity of all three isolated

fatty acids needs to be determined when given internally, perhaps by the use of

liposome technology, as most studies for toxicity of free fatty acids have the fatty

acids at the desired concentration in the medium and this may be unrealistic (Jüttner,

2001; Caldwell et al., 2004). Moreover, aside from the direct toxic effects, the

possible effects on the grazer’s archaeal and bacterial flora should be investigated.

Grazers are known to employ different feeding methods (Selph et al., 2001; Strom et

al., 2003), so pinpointing the location of free fatty acid release must be considered in

terms of the possibility that the fatty acids can reach toxic concentrations. Finally,

free fatty acids are known to act as signalling molecules or controllers of metabolic

processes (Pawlik, 1986; Jensen et al., 1990; Finstad et al., 1994; Khan et al., 1995;

Itoh et al., 2003) and a role for such compounds has been suggested for microalgae

(Ikawa, 2004). Nguyen and Thompson (2006) propose that free fatty acids signal a

‘hostile environment’ in many organisms. Thus it is possible that free fatty acids

could act to warn algal populations of an increased threat of grazing rather like the

DMS in the DMSP pathway may function (Pohnert et al., 2007) and, of course, this

requires further study.

The antibacterial activity of the free fatty acids, as shown by disc diffusion and liquid

assays (Sections 5.3.2, 6.3.1 and 6.3.2), does not absolutely confirm that these

compounds are responsible for the activity. For example, Shin et al. (2007) found
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that the antibacterial activity against numerous bacteria of a solution of 20:5n3

increased greatly when the fatty acid was bioconverted into unspecified products.

Furthermore, Pesando (1972) attributed the antibacterial activity found in an

antibacterial fraction containing 20:5n3 to photo-oxidation products formed during

exposure to the light. To guard against this, a disc diffusion assay could be performed

whereby the 20:5n3 is recovered from the paper disc at completion of the assay.

In Chapter 6, two of the fatty acids isolated in the present study, 16:1n7 and 20:5n3,

were shown to be antibacterial against the human pathogen, MRSA. This is the first

report that 16:1n7 has the ability to inhibit the growth of this bacterium and this

finding means that the molecule requires evaluation as a possible medicine. Potential

drug compounds must meet certain chemical criteria (Table 7.2) but, whilst the fatty

acids do fulfil most of the criteria and bacterial resistance to the action of free fatty

acids seems not to arise (Laser, 1952; Lacey and Lord, 1981; Petschow et al., 1996;

Sun et al., 2003), it remains very doubtful that free fatty acids could ever be

administered as systemic drugs. This is largely due to their instability, the fact that

they bind to serum proteins (Galbraith and Miller, 1973b; Kanai and Kondo, 1979;

Lacey and Lord, 1981) and have low specificity of activity (Khan et al., 1995; Table

7.1). It is noteworthy that ampicillin is approximately 100 times more potent than the

fatty acids with respect to the IC50 but was found, in the present study, to have a

comparatively high MBC for an ampicillin-susceptible S. aureus strain. This reflects

the dangerous but remarkable ability of S. aureus to spontaneously mutate into an

antibiotic-resistant phenotype.

194



Table 7.2 – Desirable chemical properties of candidate drug compounds. These

characteristics are known as the ‘Rule of 5’ (Battershill et al., 2005).

Chemical property

Molecular mass should be < 500 Da.

Total number of N and O atoms should be < 10.

There should be < 5 hydrogen bond donors.

Lipophilicity should be logP < 5.
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In summary, the present study is the first to isolate the compounds responsible for the

antibacterial activity of P. tricornutum cell extracts. These were determined to be

three free fatty acids, 16:1n7, 16:3n4 and 20:5n3 and of these, 16:1n7 has never

previously been isolated as an antibacterial compound from a microalga. This study

is the first to suggest that the release of free fatty acids by diatoms is a simple but

elegant, very low cost population-level activated defence mechanism against potential

pathogenic bacteria. The pathway may act against multiple threats to the microalga,

including grazers, as fatty acids exhibit an extraordinary array of biological activities.

The fatty acid defence pathway is triggered on cell death much like the DMSP and

oxylipin pathways and, though very similar, it should be considered in its own right

and as discreet from the oxylipin pathway when evaluating the importance of

microalgal defence systems.
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Appendix I: Fatty acid nomenclature

Fatty acids consist of a carbon chain of variable length with a terminal carboxyl group

at one end and a terminal methyl group at the other end. Often, in biological systems

the carbon chain is an even number of carbons (e.g., 16). Within this carbon chain, a

number of the bonds can be double bonds.

For full chemical names, the positions of the double bonds are given from the

carboxyl end of the fatty acid chain, for example (6Z, 9Z, 12Z)-hexadecatrienoic acid

has double bonds in the fatty acid chain at positions 6, 9 and 12 from the terminal

carboxyl end. When the double bonds are in cis-orientation they are designated ‘Z’

and this is the case for most natural molecules (double bonds in trans-orientation are

designated ‘E’).

The shorthand notation used in this thesis would give the fatty acid, (6Z, 9Z, 12Z)-

hexadecatrienoic acid, as 16:3n4. In this notation the first numeral, in this case 16,

gives the number of carbon atoms in the fatty acid chain. The second numeral, in this

case 3, gives number of double bonds in this fatty acid chain. The final numeral (that

after the ‘n’) gives the position of the first double bond from the terminal methyl end.
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Appendix II: Supplier addresses

Acros Organics, Geel, Belgium

Aquapharm Bio-Discovery Ltd., Dunstaffnage, Argyll, UK

Astell Scientific Ltd., Sidcup, Kent, UK

Beckman Coulter Ltd., High Wycombe, Buckingham, UK

Biochrom Ltd., Cambridge, Cambridgeshire, UK

Bruker BioSpin GmbH, Rheinstetten, Germany

Christ GmbH, Osterode, Germany

Corning Inc., Corning, New York, USA

Corning Ltd., Hemel Hempstead, Hertfordshire, UK

Denley Instruments Ltd., Billingshurst, West Sussex, UK

Difco, West Moseley, Surrey, UK

Dynex Technologies Ltd., Worthing, West Sussex, UK

Elga, High Wycombe, Buckinghamshire, UK

Emscope Laboratories, Ashford, Kent, UK

Fisher Scientific, Loughborough, Leicestershire, UK

Gelman Sciences Ltd., Northampton, Northamptonshire, UK

Greiner Bio-One, Kremsmünster, Austria

Hanna Instruments, Leighton Buzzard, Bedfordshire, UK

Heto-Holten A/S, Allerød, Denmark

Jencons Scientific Ltd., Leighton Buzzard, Bedfordshire, UK

JEOL Ltd., Welwyn Garden City, Hertfordshire, UK

Leitz Wetzlar, Germany

LI-COR Biosciences UK Ltd., Cambridge, Cambridgeshire, UK

Lightbulbs Direct Ltd., Amersham, Buckinghamshire, UK

LKB Biochrom, Cambridge, Cambridgeshire, UK

Microflow Ltd., Andover, Hampshire, UK

Millipore, Billerica, MA, USA

Nalgene, Rochester, NY, USA

NCIMB Ltd., Aberdeen, Aberdeenshire, UK

Pierce, Rockford, Illinois, USA

Phenomenex, Macclesfield, Cheshire, UK

Philips, Guildford, Surrey, UK
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Philip Harris Scientific, Lichfield, Staffordshire, UK

Qiagen Ltd., Crawley, West Sussex, UK

RS Components Ltd., Corby, Northamptonshire, UK

Sartorius AG, Göttingen, Germany

Sigma Aldrich Ltd., Poole, Dorset, UK

Teledyne Isco Inc., Lincoln, NE, USA

Thermo Fisher Scientific Inc., Waltham, MA, USA

ThermoQuest Ltd., Hemel Hempstead, Hertfordshire, UK

Tousimis Research Corporation, Rockville, Maryland, USA

Vacuubrand, GmbH, Wertheim, Germany

VWR International, Lutterworth, Leicestershire, UK

Waters Corporation, Milford, MA, USA

Waters Ltd., Elstree, Hertforshire, UK

Weber Scientific International Ltd., Teddington, Middlesex, UK

Whatman International Ltd., Maidstone, Kent, UK
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Appendix III: Culture media and agar

a) Modified enriched seawater, artificial water (ESAW) medium (modified from

Harrison et al., 1980)

Constituent Mass in stock solution (g)

AW I stock solution (made up to 1 L with deionised water)
NaCl 207.58
Na2SO4 34.77
KCl 5.87
NaHCO3 1.70
KBr 0.845
H3BO3 0.225
NaF 0.027

AW II stock solution (make up to 1 L with deionised water)
MgCl2.6H2O 93.95
CaCl2.2H2O 13.16
SrCl2.6H2O 0.214

Nutrient and trace metal stock solution (make up to 1 L with deionised water)
NaNO3 4.667
Na2SiO3.9H2O 3.000
Na2glyceroPO4 0.667
Na2EDTA 0.553
H3BO3 0.380
Fe(NH4)2(SO4)2.6H2O 0.234
FeCl3 0.016
MnSO4.H2O 0.054
ZnSO4.7H2O 0.0073
CoSO4.7H2O 0.0016

Each stock solution was made separately and sterilised by autoclaving at 121 ºC for

15 min. To give 1 L final modified ESAW medium, to 890 mL sterile deionised

water was added 50 mL AWI stock solution, 50 mL AWII stock solution and 10 mL

nutrient and trace metal stock solution. Stock solutions were stored at 4 ºC. This
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modified ESAW recipe contains half-strength AWI and AWII but full-strength

nutrient and trace metal solution in the final formulation (see Appendices IV and V).

201



b) Miquel seawater medium (Allen and Nelson, 1910)

Constituent Mass in stock solution (g)

Solution A (make up to 100 mL with deionised water)
KNO3 20.0

Solution B
Na2HPO4.2H2O 2.0
CaCl2.2H2O 2.7
HCl (concentrated) 2 mL
FeCl3 2.0
Distilled water 80 mL

Solutions A and B were sterilised by autoclaving at 121 ºC for 15 min. For each litre

of filtered seawater (Section 4.2.0) in the culture vessel, 0.25 mL 4 % sodium

hypochlorite was added for sterilisation. The seawater was aerated for 30 min then

left in the dark for 12 h. The residual chlorine was deactivated with 1 mL 12 g L-1

sodium thiosulphate solution for each litre of seawater. To give final Miquel seawater

medium, to each litre of sterile seawater was added 2 mL solution A and 1 mL

solution B.
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c) Modified Bold’s basal medium for heterotrophs (TOM) (EPSAG, 2007b)

Constituent Mass in stock solution (g)

Base solution (make up to 800 mL with deionised water, pH to 5.5 (with HCl)
HEPES 0.715
Glucose 15.0
Bacteriological peptone 20.0

Stock solution (make up to 100 mL with deionised water)
NaCl 0.25
CaCl2.2H20 0.25
KNO3 5.00
MgSO4.7H2O 0.65
(NH4)2HPO4 2.50

Trace element solution I (make up to 100 mL with deionised water)
KOH 3.0
EDTA 5.0

Trace element solution II (make up to 100 mL with deionised water)
FeSO4.7H2O 0.5

Trace element solution III (make up to 100 mL with deionised water)
H3BO3 1.14

Trace element solution IV (make up to 100 mL with deionised water, soluting all by
using H2SO4)
ZnSO4.7H2O 0.882
MnCl2.4H2O 0.144
NaMoO4.2H2O 0.072
CuSO4.5H2O 0.158
Co(NO3)2.6H2O 0.050

Vitamin stock solution (initially make up to 50 mL with deionised water but to make
final vitamin stock solution take 0.1 mL and make up to 100 mL)
Vitamin B12 0.01
Biotine 0.05
Thiamine 5.0
Nicotinamide 0.005

All solutions were sterilised by autoclaving at 121 ºC for 15 min (except the vitamin

stock solution that must be sterilised by filtration as Section 2.2.1).
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To the base solution was added 10ml of stock solution, 1ml of each trace element

solution (I, II, III and IV) and 1ml of the final (diluted) vitamin stock solution. The

volume is made up to 1 L with sterile deionised water.

204



d) SWEg medium (EPSAG, 2007b)

Constituent Mass in stock solution (g)

Soil extract
A 6 L flask was filled one third with soil. Deionised water was added until the
water level was 5 cm above the soil. This was sterilised by autoclaving for 1 h at
121 ºC and autoclaving repeated after 24 h. The extract was taken off and
centrifuged at 3580 g for 11 min. The supernatant was removed and autoclaved at
121 ºC for 15 min to give final soil extract.

Micronutrient solution I (make up to 10 mL with deionised water)
ZnSO4.7H2O 0.01
MnSO4.H2O 0.02
H3BO3 0.1
Co(NO3)2.6H2O 0.01
Na2MoO4.2H2O 0.01

Micronutrient solution II (make up to 1 L with deionised water)
CuSO4.5H2O 0.005

Micronutrient solution III (make up to 100 mL with deionised water)
FeSO4.7H2O 0.7
EDTA 0.4

Base solution I
KNO3 0.05
K2HPO4 0.005
MgSO4.7H2O 0.005
Filtered seawater 905 mL
Distilled water 60 mL

Base solution II
Na-acetate 1
Lablemco 1
Tryptone 2
Yeast Extract 2
Seawater 910 mL
Deionised Water 60 mL

First, to 898 mL distilled water add 1 mL micronutrient solution I, 1 mL micronutrient

solution II and 0.4 g EDTA and sterilise by autoclaving at 121 ºC for 15 min.

Autoclave micronutrient solution III at 121 ºC for 15 min and combine both solutions
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aseptically to give 1 L final micronutrient solution. Base solution I was autoclaved at

121 ºC for 15 min then aseptically 30 mL sterile soil extract and 5 mL final

micronutrient solution were added to give final base solution I. Base solution II was

autoclaved at 121 ºC for 15 min then aseptically 30 mL soil extract was added to give

final base solution II. To give 1 L final SWEg medium, 500 mL final base solution I

was added to 500 mL final base solution II.
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e) Radial diffusion assay agars (modified from Lehrer et al., 1991)

2216E agars (for marine bacteria)

For the ‘bottom’ agar, to a shakeflask was added 0.56 g 2216E medium and this was

made up to 150 mL with deionised water. This was dissolved by boiling on a hot

plate for 2 min. Once cool, 15 mL aliquots were dispensed to universal bottles

containing 0.09 g agar powder (VWR). For the ‘top’ agar the process was repeated

but 5.61 g 2216E medium was used. All agars were sterilised by autoclaving at

121ºC for 15 min.

LB agars (for terrestrial bacteria)

For the ‘bottom’ agar, to a shakeflask was added 0.3 g LB medium and this was made

up to 150 mL with deionised water. This was dissolved and 15 mL aliquots were

dispensed to universal bottles containing 0.09 g agar powder (VWR). For the ‘top’

agar the process was repeated but 3 g LB medium was used. All agars were sterilised

by autoclaving at 121 ºC for 15 min.
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f) PDY agar (Dr. Liming Yan, Aquapharm Bio-Discovery Ltd, pers. comm.)

Constituent Mass in stock solution (g)

Made up to 1 L with deionised water and sterilised by autoclaving at 121ºC for 15 min
Potato dextrose agar 39
Yeast extract 2

208



Appendix IV: ESAW preparation protocol correction

Submitted to Phycological Research June 2007:

A CLARIFIED PROTOCOL FOR THE PREPARATION OF ENRICHED

SEAWATER ARTIFICIAL WATER (ESAW) MEDIUM USED FOR CULTURE

OF MARINE MICROALGAE

Andrew P. Desbois and Valerie J. Smith*

Gatty Marine Laboratory, School of Biology, University of St Andrews, Fife,

Scotland.

*Author for correspondence: email vjs1@st-andrews.ac.uk; phone +44 (1334)

463474; fax +44 (1334) 463443.
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Summary

This short article points out a possible confusion about the preparation of the

commonly used algal growth medium, enriched seawater artificial water (ESAW),

devised by Harrison et al. (1980). It is possible to misinterpret the ESAW preparation

protocol so that the medium is made approximately half-strength. We highlight the

potential for misinterpretation and provide a clarified protocol for the preparation of

this medium. Whilst growth may still be achieved with alternative formulations of

ESAW, physiological activities or bioproducts may be affected.

Keywords: artificial seawater, culture medium, micro-algae, phytoplankton.

The selection of a suitable growth medium is extremely important for most

physiological studies of microalgae. In some cases a medium made with natural

seawater supplemented with additional nutrients suffices, with the f and f/2

compositions of Guillard and Ryther (1962) and Guillard (1975) being the most

highly cited (Berges et al., 2001). However, as natural seawater tends to vary in

quality, an entirely artificial chemically defined medium is often more desirable. One

that is widely used is enriched seawater artificial water (ESAW) devised by Harrison

et al. (1980). ESAW has salt values similar to natural seawater, facilitates the growth

of phylogenetically diverse microalgal species (Harrison et al., 1980) and is

commonly considered an excellent growth medium. Certainly, Harrison et al. (1980)

is very highly cited with a total 341 citations to date, including 62 since 2003 (ISI

Web of Knowledge, 2007).
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Whilst routinely culturing marine diatoms in ESAW we have realised that it is

possible to misinterpret the ESAW preparation protocol in Harrison et al. (1980).

This could result in an experimenter unwittingly making a final composition of

approximately half-strength. Subsequent publications by Harrison (Berges et al.,

2001; 2004) describe modifications to the ESAW formula but make no changes to the

portion of the protocol that could be misinterpreted. The uncertainty in ESAW

preparation may at first seem trivial but this could have misled some workers.

Moreover, incorrect instructions for ESAW are available on reputable websites.

The point of debate in Harrison et al. (1980) concerns the preparation of the artificial

water base (AW) that is prepared by mixing equal proportions of 2 salt stock

solutions, AWI and AWII. The complete AW is then supplemented with vitamins,

nutrients and trace metals from stock of enrichment solutions (ES) to give final

ESAW. In Table 2 of Harrison et al. (1980) each of the constituents for AWI and

AWII are listed at their required concentrations. However, it is not made clear

whether these values are the final concentration of each ingredient after the AW

stocks have been combined in a ratio of 1:1 or the concentrations required for the

initial AWI and AWII stock solutions. If it is assumed that they are the latter then the

complete AW will contain the salts at half their intended strength (JA Berges, pers.

comm.). Whilst the salinity of complete AW is given in the legend for Table 2 of

Harrison et al. (1980), it is easy to overlook this. The protocol would have been

clearer if the authors had indicated either that the gramme weight values for each

ingredient in AWI and AWII are the final concentrations in complete AW or that

these values should be doubled for the initial AWI and AWII stock solutions. The g

L-1 amounts for the salts that should be used to make the initial AWI and AWII stock
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solutions and a clarified protocol for the preparation of ESAW medium is given in

Table 1.

If ESAW is made up using half-strength AW the resulting reduced salinity may affect

microalgal growth, physiology and metabolites (Rowland et al., 2001; Lim and Ogata,

2005; Ranga Rao et al., 2007). The value of ESAW as an algal growth medium is

undoubted and this short communication seeks to raise awareness that the AW portion

of the ESAW recipe could be misinterpreted. Growth may still be achieved with

alternative formulations of this medium but physiological activities or bioproducts

may be altered. This may have implications in data interpretation when comparing

between studies.
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Table 1 – Clarification of the salt concentrations required for initial ES and AW stock

solutions, and the volumes of these stock solutions that are combined to produce

ESAW medium of Harrison et al. (1980).

Each stock solution is made up to 1 L with deionised water. Stock solutions are

sterilised separately by autoclaving for 30 min at 121 °C except the vitamin stock

solution, which is sterilised by filtration and stored at –20 °C. Stock solutions are left

for 48 h to allow gaseous exchange then aseptically combined in volumes provided to

give final ESAW medium (1007 mL)a,b. Final pH 8.2.

Constituent
Concentration in

stock solution (g L-1)
Volume of stock solution

for final ESAW (mL)

AW stock solution I 500
NaCl 42.38
Na2SO4 7.1
KCl 1.198
NaHCO3 0.348
KBr 0.1726
H3BO3 0.046
NaF 0.0056

AW stock solution II 500
MgCl2.6H2O 19.184
CaCl2.2H2O 2.688
SrCl2.6H2O 0.0436

Major nutrient stock I 1
NaNO3 46.7

Major nutrient stock II 1
NaH2PO4.H2O 3.09

Major nutrient stock III 2
Na2SiO3.9H2O 15.000

Metals stock I 1
FeCl3.6H2O 2.44
Na2EDTA.2H2O 3.09

Metals stock II 1
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ZnSO4.7H2O 0.073
CoSO4.7H2O 0.016
MnSO4.4H2O 0.54
Na2MoO4.2H2O 1.48 x 10-3

Na2SeO3 1.73 x 10-4

NiCl2.6H2O 1.49 x 10-3

Na2EDTA.2H2O 1.77

Vitamin stock solution 1
Thiamine HCl 0.1
Vitamin B12 0.002
Biotin 0.001

aEnrichment solutions based on figures provided by Berges et al. (2001).

bAWI and AWII values calculated from Harrison et al. (1980) multiplied by specific

gravity (1.021).
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Appendix V: Comparison of P. tricornutum growth and production of

antibacterial activity in ESAW or modified ESAW medium

A comparison was made between ESAW and modified ESAW media for the growth

of P. tricornutum and level of antibacterial activity in subsequently prepared cell

extracts. The small-scale batch culture system was set up and inoculated as Section

2.2.2, except that three bottles were filled with ESAW medium and three with

modified ESAW (Appendices III and IV). For each culture, growth was monitored

every 24 h by determination of A750. After 10 days the bottles were harvested,

extracted and tested for antibacterial activity against S. aureus (as Sections 2.2.4 and

2.2.7). The student’s t-test was used to compare the level of growth attained by the

cultures in the two media at day 12 and this showed that growth was significantly

greater at harvest in the modified ESAW medium (t4 = 3.254, p < 0.05) (Figure Va).

The student’s t-test was also used to compare the level of antibacterial activity in cell

extracts prepared from cultures grown in ESAW or modified ESAW media. The t-

test showed that there was no significant difference between the level of antibacterial

activity in cell extracts prepared from either medium (t4 = 2.402, p > 0.05) (Figure

Vb). However, if p < 0.10 was to be considered significant then there would have

been a difference. As a result of these findings, modified ESAW was selected as a

better growth and production medium.
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Figure Va – Growth of P. tricornutum in ESAW medium compared to modified

ESAW medium showing that growth was significantly greater at day 12 (p < 0.05) in

the modified ESAW medium. n = 3; error bars are ± 1 SE.
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Figure Vb – Antibacterial activity for cell extracts prepared from P. tricornutum

cultures that had been grown in either ESAW or modified ESAW media. There was

no significant difference (p > 0.05) between the level of antibacterial activity in cell

extracts prepared from cultures grown in either medium. n = 3; error bars are ± 1 SE.
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Appendix VI: Axenicity of P. tricornutum initial stock culture

The initial P. tricornutum stock culture used throughout this study (Section 2.2.2.3)

was checked to confirm that the growth conditions generated unialgal and axenic

cultures as contaminating organisms can affect algal growth and gene expression

(Cole, 1982; Bates et al., 1995). To this end, the culture was examined for

contaminants first using a scanning electron microscope (SEM) (method based on

Bates et al., 2004). In preparation for SEM, P. tricornutum was cultured as Section

2.2.2.3, except that 0.22 µm polycarbonate membrane filters (Ø 25mm Isopore;

Millipore) were added to the flask pre-sterilisation. After 12 days a filter was

removed and 5 mL culture was passed through. Cells attached to the polycarbonate

filter were then washed by passing through the filter a further 50 mL sterile filtered

seawater. The sample was fixed with 3% glutaraldehyde in filtered seawater for 1 h

and dehydrated in a graded series of ethanol (20 %, 50 %, 70 %, 96 % and absolute)

for 10 min at each grade (VWR). Critical point drying (Samdri 780CPD; Tousimis

Research Corporation) removed all traces of ethanol. The sample was affixed to a

mounting block, sputter coated with gold (SC500; Emscope Laboratories) and

observed at 20 kV using the University of St Andrews SEM (JSM-35CF; JEOL Ltd.).

Under SEM, oval-shaped cells in the pictures ranged from 5-7 µm in length whilst

crescent-shaped (fusiform) cells were ~13 µm in length (Figure VI). There were also

numerous other shaped cells that were intermediates between the two predominant

cell morphs in this culture. The shapes and sizes of all cells are consistent with what

would be expected for the polymorphic diatom, P. tricornutum (Lewin, 1958). There

is no evidence of any cells that resemble other species of microalga thus confirming

the unialgal status of this strain. Small rod-shaped structures 1.5 µm in length were

found in some electron micrograph images and these are probably bacteria (Figure
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VI). But importantly, in none of the pictures were bacteria ever found on the algal

surface and as a result it is likely that these bacteria were introduced during sample

preparation, as some of the procedures used for SEM have to be performed in non-

sterile conditions. Very often bacteria that have symbiotic or parasitic relationships

with algae are found to exist on the algal cell surface (Baker and Herson, 1978; Imai

et al., 1993). Further, these structures could have been introduced from dead bacteria

present in autoclaved reagents.

Second, axenicity of the P. tricornutum stock culture was investigated by culturing

the diatom in heterotroph-promoting media: i) Modified Bold’s Basal Medium for

heterotrophs (TOM), and ii) sterile SWEg Medium (Appendix III) (Dr. M. Lorenz,

Culture Collection of Algae at the University of Göttingen, pers. comm.). After 7

days culture, broths were aseptically streaked on to sterile TOM, SWEg, LB and

2216E agar plates. Plates were incubated at 25 ºC to allow colonies to form. Other

than brown colonies, which were confirmed as P. tricornutum by light microscopy, no

contaminating colonies appeared on any agar plate confirming the axenicity of the

algal stock culture.

The initial P. tricornutum stock culture of the alga used throughout this study was

confirmed to be unialgal and axenic. This is important because the bioactivity of

culture extract preparations may not necessarily be due to the most abundant organism

found in the culture (Scheuer, 1990; Jensen and Fenical, 1994; Borowitzka, 1995).

B
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Figure VI – Scanning electron micrograph of P. tricornutum culture showing (A) an

oval P. tricornutum cell, (B) an intermediate-shaped cell, and (C) structures that may

be bacteria. The scale bar is 1 µm.
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Appendix VII: Small-scale culture system not suitable for production of different

P. tricornutum morphs

The small-scale culture system was investigated to see whether it could be used to

produce cultures enriched for cells in the fusiform morph. A P. tricornutum culture

(cultured in a flask as Section 2.2.2.3) that had become enriched in fusiform cells was

used to inoculate three bottles in the small-scale batch culture system (as Section

2.2.2). The proportion of fusiform cells in this inoculum was determined from

quadruplicate cell counts under the microscope (as Section 2.2.3). After 10 days

growth in the small-scale batch culture system, the number of cells in the fusiform

morph for each culture was determined from duplicate cell counts. It was evident that

the proportion of cells in the fusiform morph had reduced substantially during growth

from 75 % to ~40 % (Table VI). The fusiform cells were not able to grow and divide

in the culture system and this may be due to the turbulent conditions required to keep

the culture well mixed. Therefore, this culture system is not suitable for the

production of P. tricornutum cultures enriched for cells in the fusiform morph.

Table VI – Relative morphology of P. tricornutum cultures at inoculation and after

10 days growth in the small-scale batch culture system; n = 3.

Time Relative morphology (%)

Oval Fusiform Other

At inoculation 19.4 75.0 5.6

After 10 days 52.3 39.1 8.6
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Appendix VIII: P. tricornutum fusiform-enriched cultures grow faster than oval-

enriched cultures

Growth of P. tricornutum cultures enriched for either the oval or fusiform morph was

monitored to see whether or not cell morph affected growth. P. tricornutum was

cultured in four 5 L flat-bottomed Pyrex glass jars. Each jar had one opening at the

bottom and one at the top. The upper hole was filled with a non-absorbent cotton

wool bung covered in tin foil. A one-hole rubber stopper (Fisher Scientific) was fixed

into the lower hole. This had 8 cm of 6.35 mm (external diameter) 316L stainless

steel tubing (RS Components Ltd.) passed through. Attached to the inner end was 10

cm of 5 mm bore PVC tubing (Fisher Scientific); attached to the outer end was 10 cm

of 5 mm bore silicone tubing with an in-line 0.2 µm PTFE air filter (Midisart 2000;

Sartorius AG). Air was supplied at 4.65 L min-1 per bottle. Each glass jar was filled

with 4.45 L deionised water and sterilised by autoclaving. Sterile solutions were

aseptically added to give sterile modified ESAW media (see Appendix III). Bottles

were positioned in a lightbox composed of three white sides, white roof and lightly

coloured floor and had internal dimensions of 72 cm x 57 cm x 43 cm (w x h x d).

Temperature was controlled at 20 ºC. Four 24” cool white fluorescent tubes (General

Electric F18W/33) provided illumination: two at the top and two at the rear. Light

intensity was 115 µmols-1m-2 with a regime of 14:10 h light:dark. Two bottles were

inoculated with oval-enriched cultures whilst two bottles were inoculated with

fusiform-enriched cultures. The proportion of cells in different cell morphs were

determined in these inoculums from triplicate cell counts under the microscope (as

Section 2.2.3). The oval-enriched culture contained 100 % ovals whilst the fusiform-

enriched culture contained 79 % fusiform cells. Inoculum volumes were kept

constant with the addition of sterile modified ESAW medium. The inoculums gave
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final cell concentrations of 1 x105 cells mL-1. Growth was monitored in each culture

every 24 h by measurement of culture A750 (as Section 2.2.3). After 8 days, the

proportion of cells in each culture was checked as before. Both oval-enriched cultures

contained 100 % ovals whilst the fusiform-enriched cultures contained 76 and 67 %

fusiform cells. The fusiform-enriched cultures appeared to grow faster than the oval-

enriched cultures (Figure VIII), which appears to confirm the findings reported in

Figure 3.16.
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Figure VIII – Growth of fusiform- and oval-enriched P. tricornutum cultures in 5 L

glass vessels showing that the fusiform-enriched cultures appeared to grow faster. n =

2; error bars are ± 1 SD.
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Appendix IX: High resolution mass spectrometry of fraction 57 from RP-HPLC

separation of pooled silica column fractions 2, 3, 4, and 5

Figure IX – High resolution mass spectrometry was performed for fraction 57 from

RP-HPLC separation of pooled silica column fractions 2, 3, 4, and 5 to generate

empirical elemental composition data. Having evaluated 50 possible molecular

formulae (within certain limits of C, H, O and N) an empirical formula of C16H27O3

was suggested for the [M]- ion.
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Figure X – Comparison of mass spectrum of methyl ester DMDS adduct derivatives of fraction 57 from RP-HPLC of pooled silica

column fractions 2, 3, 4, and 5 (B) with molecular mass library (MassLynx) (A) confirming the presence of the methyl ester of 9, 10-

dimethylthiohexadecanoic acid, i.e. the dimethyl disulphide adduct product of an hexadecenoic acid methyl ester as expected (mass

spectrometry kindly performed by Ms. Caroline Horsburgh).
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Appendix XI: Total P. tricornutum cell lipid content

To investigate the total lipid content of P. tricornutum cells, eight 5 L vessels (in two

batches of four) were inoculated with mixed morphology cultures and run as

Appendix VIII. After 8 days, culture A750 was determined and 1 L was harvested (as

Section 2.2.4). The resultant cell pellets were stored at –80 ºC until a total lipid

extraction could be performed. The extraction and subsequent GLC (as Section 3.2.7)

was kindly performed by Dr. Mike Walton (Sea Mammal Reasearch Unit, University

of St. Andrews). The resulting data showed that a mean of 1.02 x10-12 g FAME was

attributable to each P. tricornutum cell extracted (Table XI).

If the mean mass of FAME per P. tricornutum cell in the total extraction is compared

to the mean mass of FAME in the aqueous methanol extractions (for example, Tables

6.5 and 6.7) it is clear that the latter contains far fewer FAME. As a worked example,

in Table 6.7 an oval cell can be calculated to contain 5.4 x10-13 g FAME (total mass

of FAME in sample, 20.179 x10-5, divided by the total number of cells extracted

3.735 x 108). As an approximate percentage of the total lipid content of a P.

tricornutum cell (1.02 x10-12 g), this represents 0.53 %.
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Table XI – Total FAME attributable to each P. tricornutum cell in late-exponential

phase cultures.

Sample
number

FAME in extracted
sample (g)

Total number of
cells extracted

FAME per
cell (g)

1 0.0129 8.20 x109 1.57 x10-12

2 0.0096 8.58 x109 1.12 x10-12

3 0.0058 1.24 x109 4.68 x10-13

4 0.0068 8.73 x109 7.79 x10-13

5 0.0118 9.70 x109 1.22 x10-12

6 0.0145 1.28 x1010 1.13 x10-12

7 0.0107 9.18 x109 1.17 x10-12

8 0.0057 8.10 x109 7.04 x10-13

MEANS 0.0097 9.71 x109 1.02 x10-12
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Appendix XII: P. tricornutum dry cell weight

To investigate the dried cell weight for the different morphs of P. tricornutum, eight 5

L vessels (in two batches of four) were inoculated with either fusiform- or oval-

enriched cultures. The vessels were run as Appendix VIII for 8 days. At harvest, the

proportion of cells in the different morphs was determined for each culture from

quadruplicate cell counts under the microscope (as Section 2.2.3). For each culture,

30 mL was passed through a pre-dried (50 °C for 24 h) and pre-massed glass

microfibre filter (Ø 25 mm, GF/C; Whatman International Ltd.). The filters were then

dried at 50 °C for 16 h. For controls, the same filtration and drying process was

performed for blank sterile modified ESAW (performed in quadruplicate). All filter

discs were then re-massed. The difference between the mass before and after the cells

had been added (minus the mean mass of the salts on the control filters) and data from

the cell counts enabled a calculation of the mean mass for each cell (Table XII).

Student’s t-test showed that there was no significant difference between the mean

dried mass of a cell in a fusiform-enriched compared to an oval-enriched culture (p >

0.05).
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Table XII – Calculated mean dried cell masses for cells in fusiform- and oval-

enriched cultures. The data shows that there is no significant difference between the

mean dried mass of a cell in a fusiform-enriched compared to an oval-enriched culture

(t6 = -2.399, p > 0.05).

Proportion of cells in each morphSample
number

Dried
weight of
cells on

filtera (mg)
Fusiform Oval Int.

Number
of cells in

30 mL
sample

Dried
mass per
cell (mg)

1 2.925 0 99.8 0.2 2.46 x108 1.19 x10-8

2 3.425 0 100 0 2.57 x108 1.33 x10-8

3 4.425 0 100 0 2.93 x108 1.51 x10-8

4 3.525 0 100 0 2.43 x108 1.45 x10-8

5 5.725 49.6 43.8 6.6 3.71 x108 1.54 x10-8

6 3.825 41.8 51.7 6.4 2.61 x108 1.46 x10-8

7 4.725 49.2 44.1 6.7 2.91 x108 1.62 x10-8

8 6.425 50.4 44.4 5.2 3.84 x108 1.67 x10-8

a After salts deducted
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